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Abstract

This study focuses on the projections and time of emergence (TOE) for temperature extremes over Australian regions in the

phase 6 of Coupled Model Intercomparison Project (CMIP6) models. The model outputs are based on the Shared Socioeco-

nomic Pathways (SSPs) from the Tier 1 experiments (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) in the Scenario Model

Intercomparison Project (ScenarioMIP), which is compared with the Representative Concentration Pathways (RCPs) in CMIP5

(i.e., RCP2.6, RCP4.5 and RCP8.5). Furthermore, two large ensembles (LEs) in CMIP6 are used to investigate the effects of in-

ternal variability on the projected changes and TOE. As shown in the temporal evolution and spatial distribution, the strongest

warming levels are projected under the highest future scenario and the changes for some extremes follow a “warm-get-warmer”

pattern over Australia. Over subregions, tropical Australia usually shows the highest warming. Compared to the RCPs in

CMIP5, the multi-model medians in SSPs are higher for some indices and commonly exhibit wider spreads, likely related to

the different forcings and higher climate sensitivity in a subset of the CMIP6 models. Based on a signal-to-noise framework,

we confirm that the emergence patterns differ greatly for different extreme indices and the large uncertainty in TOE can result

from the inter-model ranges of both signal and noise, for which internal variability contributes to the determination of the

signal. We further demonstrate that the internally-generated variations influence the noise. Our findings can provide useful

information for mitigation strategies and adaptation planning over Australia.
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Key Points: 12 

• There indicates a “warm-get-warmer” pattern for some extremes over Australia and 13 
tropical regions usually show the highest warming 14 

• Compared to CMIP5, the higher warming for some extremes in CMIP6 can lead to earlier 15 
time of emergence under the highest scenario 16 

• Internal variability influences the determination of the noise  17 
  18 
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Abstract 19 

This study focuses on the projections and time of emergence (TOE) for temperature extremes 20 

over Australian regions in the phase 6 of Coupled Model Intercomparison Project (CMIP6) 21 

models. The model outputs are based on the Shared Socioeconomic Pathways (SSPs) from the 22 

Tier 1 experiments (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) in the Scenario Model 23 

Intercomparison Project (ScenarioMIP), which is compared with the Representative 24 

Concentration Pathways (RCPs) in CMIP5 (i.e., RCP2.6, RCP4.5 and RCP8.5). Furthermore, 25 

two large ensembles (LEs) in CMIP6 are used to investigate the effects of internal variability on 26 

the projected changes and TOE. As shown in the temporal evolution and spatial distribution, the 27 

strongest warming levels are projected under the highest future scenario and the changes for 28 

some extremes follow a “warm-get-warmer” pattern over Australia. Over subregions, tropical 29 

Australia usually shows the highest warming. Compared to the RCPs in CMIP5, the multi-model 30 

medians in SSPs are higher for some indices and commonly exhibit wider spreads, likely related 31 

to the different forcings and higher climate sensitivity in a subset of the CMIP6 models. Based 32 

on a signal-to-noise framework, we confirm that the emergence patterns differ greatly for 33 

different extreme indices and the large uncertainty in TOE can result from the inter-model ranges 34 

of both signal and noise, for which internal variability contributes to the determination of the 35 

signal. We further demonstrate that the internally-generated variations influence the noise. Our 36 

findings can provide useful information for mitigation strategies and adaptation planning over 37 

Australia. 38 

 39 
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1 Introduction 40 

Anthropogenic climate change will lead to more severe temperature extremes, which 41 

have significant impacts on society and natural systems (Intergovernmental Panel on Climate 42 

Change, 2021). To assess possible climate futures, projections by global climate models from the 43 

Scenario Model Intercomparison Project (ScenarioMIP; O'Neill et al., 2016) as part of the 44 

Coupled Model Intercomparison Project phase 6 (CMIP6; Eyring et al., 2016) are useful 45 

resources, and may provide new insights into how temperature extremes are projected to change 46 

under climate change (e.g., Alexander & Arblaster, 2017; Grose et al., 2020; Sillmann, Kharin, 47 

Zwiers, et al., 2013; Thibeault & Seth, 2014). 48 

Over Australia, Alexander and Arblaster (2017) indicated that significant increases 49 

(decreases) are projected for the occurrence of warm (cold) extremes by the end of this century 50 

under the intermediate- and highest-emission scenarios in CMIP5, and that these changes are 51 

most distinct in the tropics. Compared to 29 CMIP5 models, Grose et al. (2020) documented that 52 

projected changes in temperature extremes over Australia are more distinct and span narrower 53 

ranges in seven CMIP6 models. However, the smaller number of models used in this study may 54 

lead to misleading conclusions. Recently, Tebaldi et al. (2021) demonstrated that the CMIP6 55 

ensemble projects higher warming and larger spread for global mean temperature compared with 56 

CMIP5, which could result from both a wider range of radiative forcing and higher climate 57 

sensitivity in a subset of CMIP6 models. In the present study, to obtain a more reasonable 58 

comparison with CMIP5, more models are included in the CMIP6 ensemble to analyze the 59 

projected changes of temperature extremes over Australia. 60 

In addition, detecting the time of emergence (TOE) for extremes over Australia needs 61 

investigation. TOE is defined as the time when the externally forced climate signal (i.e., forced 62 
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response) emerges from the noise (i.e., natural variability), suggesting that a significant change is 63 

detected and a novel climate regime become evident (e.g., Hawkins et al., 2020; Hawkins & 64 

Sutton, 2012; King, Donat, et al., 2015). Estimating TOE can provide insights for mitigation 65 

strategies, adaptation planning and scientific community, as the forced response relative to the 66 

background noise may be more relevant for the assessment of climate impacts, compared to the 67 

absolute change (Beaumont et al., 2011; Deutsch et al., 2008; Hawkins et al., 2020; Hawkins & 68 

Sutton, 2012; Ossó et al., 2021). For example, similar absolute changes in extreme temperature 69 

can result in different ecological impacts since extratropical ecosystems are usually more 70 

resilient than tropical ecosystems, as they are adapted to a more variable climate (Beaumont et 71 

al., 2011; Deutsch et al., 2008).  72 

Previous studies have concluded that for mean temperature there is earlier TOE over 73 

tropical regions than that in the extratropics where the noise is generally larger (e.g., Giorgi & 74 

Bi, 2009; Hawkins et al., 2020; Hawkins & Sutton, 2012; Mahlstein et al., 2012; Mahlstein et al., 75 

2011). Furthermore, for warm and cold extremes that display larger variability, the signals for 76 

these indices tend to emerge later over both the tropics and extratropics (e.g., King, Donat, et al., 77 

2015; Tan et al., 2018) relative to mean temperature. Currently, most studies on TOE have been 78 

conducted at global levels, with less detailed analyses over smaller-scale regions (e.g., Batibeniz 79 

et al., 2020; Gaetani et al., 2020; Ossó et al., 2021), especially for Australia (King, Donat, et al., 80 

2015). Under different future scenarios, we aim to investigate the TOE of extreme temperatures 81 

over Australia at the subregional scale. 82 

A variety of methods have been used in TOE assessment, which can lead to a source of 83 

uncertainty (Abatzoglou et al., 2019; Gaetani et al., 2020). A recent study (Gaetani et al., 2020) 84 

found that compared to Kolmogorov-Smirnov (KS) non-parametric test (King, Donat, et al., 85 
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2015), the signal-to-noise ratio (SNR) frameworks exhibit increased uncertainty and later times 86 

for TOE over West Africa (Gaetani et al., 2020). However, the SNR methods facilitate the 87 

separation between signal and noise, and identifying both components and their interaction 88 

physically (e.g., slow-varying ocean conditions and the modes of internal variability) can deepen 89 

our understanding in climate change (e.g., Barnes et al., 2019; Barsugli & Battisti, 1998). In this 90 

study, we adopt the method by Hawkins and Sutton (2012) and Hawkins et al. (2020) to address 91 

the TOE assessment, which is widely used and allows more cross-study comparisons (e.g., 92 

Abatzoglou et al., 2019; Gaetani et al., 2020; Hawkins et al., 2020; Hawkins & Sutton, 2012; 93 

Ossó et al., 2021). For the uncertainty in the detection of TOE in this method, it can arise from 94 

inter-model spread not only in the signal, but also from noise (Hawkins & Sutton, 2012).  95 

Furthermore, as internal variability can also be an important source of uncertainty for 96 

regional climate (Dai & Bloecker, 2019; Deser, Knutti, et al., 2012; Deser, Phillips, et al., 2012; 97 

Hawkins & Sutton, 2009; Lehner et al., 2020), single-model initial-condition large ensembles 98 

(SMILEs; hereafter LEs) are an important tool to investigate the consequences of the intrinsic 99 

variability on the uncertainty in projected changes and TOE of extreme temperatures over 100 

Australia, of which external forcing and model structure are identical among the members (e.g., 101 

Dai & Bloecker, 2019; Deser, 2020; Deser et al., 2020; Lehner et al., 2020; Mankin et al., 2020; 102 

Perkins-Kirkpatrick et al., 2017; Xie et al., 2015). 103 

Previous research evaluated the ability of CMIP6 models to simulate extreme 104 

temperatures over Australian regions in the historical period (1950-2014), compared these results 105 

to the CMIP5 ensemble, and investigated the effects of internal variability on the corresponding 106 

trends based on the LEs in CMIP6 (Deng et al., 2021). Following from this research, the 107 

purposes of this study are: to assess future climate changes of the extremes and the TOE over 108 
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Australian regions in both the CMIP6 and CMIP5 models, and to explore the effects of internal 109 

variability on the projected changes and TOE based on LEs in CMIP6. 110 

 111 

2 Data and Methods 112 

2.1 Model Data 113 

Although the scenarios in the ScenarioMIP consist of two tiers, we only use the Tier 1 114 

experiments based on the Shared Socioeconomic Pathway (SSP) scenarios: SSP1-2.6, SSP2-4.5, 115 

SSP3-7.0 and SSP5-8.5, as these sample a varying range of possible emission futures and contain 116 

relatively large number of model outputs. Among them, SSP1-2.6, SSP2-4.5 and SSP5-8.5 117 

indicate the same nominal stratospheric-adjusted radiative forcing (2.6, 4.5 and 8.5 W m−2) 118 

reached in 2100, compared to the scenarios based on Representative Concentration Pathways 119 

(RCPs) used in CMIP5 (i.e., RCP2.6, RCP4.5 and RCP8.5); and SSP3-7.0 fills a gap between 120 

medium and high end in the range of future forcing pathways, not included in previous CMIP 121 

generations (O'Neill et al., 2016; Tebaldi et al., 2021). Despite the similarity among the future 122 

scenarios in CMIP6 and CMIP5, it is noted that there are some differences, such as the 123 

composition of some radiatively active gases or species (e.g., CO2 and CH4) and aerosol 124 

emissions, making the resulting effective radiative forcing (ERF) different (Lurton et al., 2020; 125 

Riahi et al., 2017; Tebaldi et al., 2021).  126 

As one aim of this study is to compare the two CMIP ensembles in projected changes and 127 

TOE in extremes, we do not consider the interdependence among the models and use emergent 128 

constraints or any other ways of model weighting to reduce the differences between CMIP6 and 129 

CMIP5 (e.g., Tokarska et al., 2020), which is similar to the practice by Seneviratne and Hauser 130 
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(2020). Similar to Deng et al. (2021), only one ensemble member (typically the first member) in 131 

each model is considered for the main part of analysis. There are 25 models in CMIP6 and 26 132 

models in CMIP5 for at least one of the future scenarios. In addition, two LEs under SSP5-8.5 133 

and SSP1-2.6 in CMIP6 are used to investigate the impacts of internal variability on the 134 

projected changes and TOE of the extremes: CanESM5-LE and MIROC6-LE, which contain 25 135 

members and 50 members, respectively. Detailed information on the simulations from CMIP6 136 

and CMIP5 models are listed in the Tables S1 and S2, respectively. 137 

2.2 Temperature indices 138 

As in Deng et al. (2021), based on daily maximum and minimum temperatures (TX and 139 

TN), the annualized temperature extremes defined by the Expert Team on Climate Change 140 

Detection and Indices (ETCCDI; Zhang et al., 2011) are used, which forms a continuous and 141 

comprehensive investigation of changes in extremes, similar to other studies for CMIP5 (e.g., 142 

Alexander & Arblaster, 2017; Sillmann, Kharin, Zhang, et al., 2013; Sillmann, Kharin, Zwiers, et 143 

al., 2013; Thibeault & Seth, 2014). Besides diurnal temperature range (DTR), other extreme 144 

indices for temperatures are classified into four categories: absolute indices (hottest day [TXx], 145 

coldest day [TXn], warmest night [TNx] and coldest night [TNn]), threshold indices (summer 146 

days [SU], tropical nights [TR] and frost days [FD]), percentile-based indices (warm days 147 

[TX90p], cold days [TX10p], warm nights [TN90p] and cold nights [TN10p]), and duration 148 

indices (warm spell duration index [WSDI] and cold spell duration index [CSDI]). The bootstrap 149 

resampling procedure by Zhang et al. (2005) is applied to the percentile-based and duration 150 

indices, among which the spells crossing year boundaries are taken into consideration for WSDI 151 

and CSDI. Since the definitions of growing season length (GSL) and ice days (ID) are not 152 
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suitable over most of Australia (Alexander & Arblaster, 2017), we do not use them in this study. 153 

Detailed information on the indices can be found in Table S3. 154 

2.3 Time of Emergence 155 

The TOE is determined using the signal-to-noise framework as detailed by Hawkins and 156 

Sutton (2012) and Hawkins et al. (2020), which is considered as the first year when the signal-to-157 

noise ratio (SNR) is larger than nominated thresholds (e.g., 1 and 2). As suggested by Frame et 158 

al. (2017), we consider SNR=1 as the threshold for an “unusual” climate and SNR=2 as 159 

“unfamiliar”. This approach linearly regresses annual local variations in temperature extremes 160 

onto global mean surface temperature change (∆𝐺𝑀𝑆𝑇), relative to the base period: 161 

𝐿'(𝑡) = 	𝛼𝐺(𝑡) + 	𝛽 162 

where 𝐿'(𝑡)	represents the regressed 𝐿(𝑡), denoting annual local changes in extremes over time; 163 

𝐺(𝑡) is a smoothed version of ∆𝐺𝑀𝑆𝑇 over the same period; 𝛼 defines the linear scaling between 164 

𝐿'(𝑡)	and 𝐺(𝑡); and 𝛽 is a constant. ∆𝐺𝑀𝑆𝑇 is smoothed with a “Locally Weighted Scatterplot 165 

Smoothing” filter (LOWESS; Cleveland, 1979) of 21 years, which filters out interannual 166 

variability (though retaining multi-decadal variability). The signal of local climate change 167 

described by ∆𝐺𝑀𝑆𝑇 is 𝛼𝐺(𝑡), and the noise is defined as the standard deviation of the residuals 168 

(𝐿(𝑡) – 𝛼𝐺(𝑡)). The method implies that local variations for some variables scale well with 169 

∆𝐺𝑀𝑆𝑇 (Fischer et al., 2014; Seneviratne & Hauser, 2020; Sutton et al., 2015). It is also noted 170 

that internal variability can contribute to the determination of signal, which may introduce 171 

further uncertainty in the estimate of TOE (Gaetani et al., 2020; Kumar & Ganguly, 2018; 172 

Lehner et al., 2020). 173 
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To compare observed SNR with the simulations, Berkeley Earth Surface Temperatures 174 

(BEST; Rohde, Muller, Jacobsen, Muller, et al., 2013; Rohde, Muller, Jacobsen, Perlmutter, et 175 

al., 2013) is used in this study. Although TN in BEST is biased over Australia (Deng et al., 176 

2021), the TX and TN in BEST show higher correlation compared to Australian gridded climate 177 

data (AGCD, previously termed Australian Water Availability Project [AWAP]; Jones et al., 178 

2009), which is better than other global datasets, including National Centers for Environmental 179 

Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1 (NCEP1; 180 

Kalnay et al., 1996), NCEP/Department of Energy (DOE) Reanalysis 2 (NCEP2; Kanamitsu et 181 

al., 2002), Twentieth Century Reanalysis (20CR; Compo et al., 2011), and European Centre for 182 

Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) with preliminary 183 

extension to 1950 (Bell et al., 2021; Hersbach et al., 2020) (not shown).  184 

2.4 Regional Assessment 185 

According to climatological and geographical conditions (Perkins et al., 2014; 186 

http://www.bom.gov.au/climate/change/about/temp_timeseries.shtml), Australia is divided into 187 

nine sub-regions: AUS (Australia), NA (Northern Australia), SA (Southern Australia), SEA 188 

(South East Australia), MEA (Middle Eastern Australia), TA (Tropical Australia), SWA (South 189 

West Australia), SSA (Southern South Australia), CAU (Central Australia), and MWA (Mid-190 

Western Australia), shown in Table S4 and Fig. S1, which allows a detailed assessment over 191 

smaller subregions. And the base period is from 1961 to 1990, which is commonly used and 192 

allows us to analyze TOE with respect to a recent period. Still, we regrid TX and TN to 1° × 1° 193 

resolution using bilinear interpolation, and then calculate extreme indices. In addition, grid boxes 194 

containing less than 75% land are masked out (King, van Oldenborgh, et al., 2015).  195 



manuscript submitted to Earth’s Future 

 

In the next section, temporal variations from 1950 to 2100 for the ETCCDI indices in 196 

different future scenarios are first analyzed, followed by the spatial patterns of the changes in the 197 

indices over 2071-2011 and 2031-2060. Then, the SNR and TOE for TXx and TNn is calculated 198 

to address when a novel climate for temperature extremes emerges. For consistency among 199 

CMIP6, CMIP5 and BEST, we calculate the noise in SNR for the period 1950-2005, as the 200 

estimation of noise can stabilize over longer timescale (Dai & Bloecker, 2019; Santer et al., 201 

2011). Finally, we use two LEs to check the effects of internal variability on the projected 202 

responses of extremes and TOE. 203 

 204 

3 Results 205 

3.1 Projected changes 206 

Relative to the base period 1961-1990, Figs. 1 and 2 indicate time series of the anomalies 207 

for the 14 ETCCDI indices averaged over Australia (10-45°S, 110-155°E) during the period 208 

1950-2100 under different future scenarios in CMIP6 (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-209 

8.5) and CMIP5 (RCP2.6, RCP4.5 and RCP8.5). For the multi-model medians (Fig. 1), 210 

consistent with RCPs in CMIP5 (Fig. 2), the Tier 1 experiments in ScenarioMIP show projected 211 

increases in the absolute indices (TXx, TXn, TNx and TNn) and in the warm extremes for 212 

percentile-based, duration and threshold indices (TX90p, TN90p, WSDI, SU and TR); in 213 

contrast, there are decreases in other cold extremes (TX10p, TN10p, CSDI and FD).  214 

Among the scenarios, the indices under SSP5-8.5 and RCP8.5 generally show larger 215 

warming evolution, especially by the end of the century. Moreover, except for DTR, CSDI and 216 

FD (Fig. 1e, k and n), extremes under the SSP3-7.0 fill the gap between SSP2-4.5&RCP4.5 and 217 
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SSP5-8.5&RCP8.5. For example, in the year 2100, the median of TXx under SSP3-7.0 is 218 

4.58°C, lower than 5.78°C&5.82°C in SSP5-8.5&RCP8.5 and higher than 3.24°C&2.67°C in 219 

SSP2-4.5&RCP4.5. In the lower emission scenarios (SSP1-2.6&RCP2.6) there is a stabilization 220 

for the extremes in the second half of 21st century, achieving lowest warming (e.g., 221 

2.23°C&1.92°C for TXx in 2100). This result implies the benefits of mitigation strategies 222 

associated with these scenarios (O'Neill et al., 2016). However, the separation for the adjacent 223 

pathways (e.g., SSP5-8.5&SSP3-7.0, SSP3-7.0&SSP2-4.5 and SSP2-4.5&SSP1-2.6) usually 224 

occurs after 2060s for most indices over Australia. In particular, compared to SSP5-225 

8.5&RCP8.5, if a more aggressive mitigation policy is undertaken (e.g., SSP1-2.6&RCP2.6), it 226 

may still take one or two decades to notice its effects on projected changes in temperature 227 

extremes over Australia.  228 
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 229 
Figure 1. Time series of the anomalies (base period: 1961-1990) for the 14 ETCCDI indices averaged over 230 
Australia (10°S–45°S, 110°E–155°E) from 1950 to 2100, under the historical simulations and Tier 1 experiments of 231 
ScenarioMIP in CMIP6: Hist (grey), SSP1-2.6 (green), SSP2-4.5 (blue), SSP3-7.0 (yellow) and SSP5-8.5 (red) (the 232 
number of models indicated in parentheses in the legend). Solid lines represent the multi-model medians and 233 
shading indicates the full range across the models for each experiment. 234 
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 235 
Figure 2. Same as Fig.1, but for CMIP5: Hist (grey), RCP2.6 (green), RCP4.5 (blue), and RCP8.5 (red). 236 
 237 

To illustrate the spreads and medians of the projected climatological changes in extremes 238 

over Australian regions in detail, boxplots for SSP5-8.5&RCP8.5 and SSP1-2.6&RCP2.6 are 239 

shown in Figs. 3 and 4, and Figs. S2 and S3 for SSP3-7.0 and SSP2-4.5&RCP4.5. Over the 240 

regions, the spreads of the indices in SSPs and RCPs tend to be larger with higher emission 241 

pathways and over time, among which some regions such as NA and TA commonly span 242 
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relatively wider ranges. Compared to RCP8.5, the spreads in SSP5-8.5 are usually larger, 243 

especially over the period 2071-2100. As for the multi-model medians, most indices display 244 

larger warming trends over TA and lower warming over southern Australian regions (e.g., SSA 245 

and SWA); while for other indices (e.g., TXx, TNx and TN10p), there are relatively similar 246 

warming levels across the 10 regions. Relative to RCPs, the warming levels for some indices 247 

(e.g., TXx, TNn, and WSDI) tends to be higher under the SSPs; in contrast, the relative 248 

magnitudes of some indices between RCPs and SSPs, such as TXn and TNx (e.g., Fig. 3b, c and 249 

Fig. S3b, c), differ among the regions and the levels of radiative forcing. 250 
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 251 
Figure 3. Boxplots of projected changes in the 14 ETCCDI indices over 2071–2100 (bold color) and 2031-2060 252 
(light color) relative to the base period 1961–1990 across 10 Australian regions, under SSP5-8.5 (red) and RCP8.5 253 
(blue). The boxes indicate the interquartile spreads (ranges between the 25th and 75th percentiles), the black lines 254 
within the boxes are the multi-model medians, the whiskers extend to the edges of 1.5 × interquartile ranges and 255 
“outliers” outside of the whiskers are denoted by diamonds.  256 
 257 



manuscript submitted to Earth’s Future 

 

 258 
Figure 4. Same as Fig. 3, but for SSP1-2.6 and RCP2.6. 259 
 260 

Generally, the spatial patterns for the extremes in both CMIP6 and CMIP5 (Figs. 5 and 6; 261 

Figs. S4-S15 in the supplementary material) are similar to previous studies (Alexander & 262 
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Arblaster, 2017). In the highest scenarios for CMIP6 and CMIP5, the extreme indices show a 263 

warmer Australia than other pathways, especially in the end of this century. For most indices 264 

(expect DTR in Fig. S6 and FD in Fig. S15), most models (at least 75%) in both CMIP 265 

ensembles project significant changes in extreme temperature indices over most regions of 266 

Australia, both in the middle and the end of the century. However, there are different warming 267 

patterns for some indices. For example, as shown in Fig. 5, the warming pattern in TXx is 268 

relatively consistent among the regions, with the highest warming over central Australia; while 269 

for TNn, Northern Australia displays the most marked warming (Fig. 6).  270 

 271 
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Figure 5. Multi-model median changes in TXx for 2071–2100 (a-d; i-k) and 2031–2060 (e-h; l-n) relative to the 272 
base period 1961–2010, under different future scenarios in CMIP6 (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) 273 
and CMIP5 (RCP2.6, RCP4.5 and RCP8.5). Hatching indicates that at least 75% of the models for each future 274 
scenario project significant changes at 95% level, based on the two-tailed Student’s t-test. 275 
 276 

 277 
Figure 6. Same as Fig. 5, but for TNn. 278 
 279 

Compared to RCP scenarios in CMIP5, the higher projected warming for some extremes 280 

(e.g., TXx and TNn) and the larger spreads in CMIP6 (especially under SSP5-8.5) by the end of 281 

the 21st century is likely related to the different forcings in the SSPs and higher ECS in some 282 

CMIP6 models (e.g., Fyfe et al., 2021; Palmer et al., 2021; Tebaldi et al., 2021). Although there 283 

are similar levels of stratospheric-adjusted radiative forcing in 2100 in RCPs and SSPs, aerosol 284 

emissions, the composition of gases and some radiatively active species (e.g., CO2 and CH4) and 285 
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the resulting ERF in the pathways can be very different (Fyfe et al., 2021; Lurton et al., 2020; 286 

Smith et al., 2020; Tebaldi et al., 2021). In addition, the wider inter-model spread of the 287 

projected changes under stronger external forcing can result from higher climate sensitivity 288 

(Lehner et al., 2020; Tebaldi et al., 2021). As documented in Meehl et al. (2020), 12 of the 39 289 

CMIP6 models show higher ECS than the CMIP5 models, some of which can contribute to the 290 

wider ranges of projected changes in this study.  291 

3.2 Signal-to-Noise Ratio and Time of Emergence 292 

The maps of SNR for TXx and TNn in the year 2005 are plotted for BEST, CMIP6 and 293 

CMIP5 (Fig. 7), the corresponding signal and noise of which are shown in Figs. S16 and S17, 294 

respectively. Although the spatial patterns of noise are relatively similar (Fig. S17), the signals of 295 

TXx and TNn show noticeable differences between the observation and the two CMIP 296 

ensembles (Fig. S16), which means the resulting SNR in BEST and the two CMIP ensembles 297 

differ greatly (Fig. 7). The largest observed SNR for TXx (> 1.2) occurs over central and 298 

southwestern regions (Fig. 7a), and for TNn there exhibit negative SNR values (< -0.2) over 299 

southwest, northern and southeast parts in Australia (Fig. 7d). In contrast, the SNR of TXx and 300 

TNn for both CMIP6 and CMIP5 in 2005 tend to be between 0.2 and 0.8. Although there are 301 

differences in the observations and the simulations, the low SNR values in 2005 suggest that the 302 

signal for the two temperature extremes over most Australia regions has not emerged from the 303 

noise. 304 

 305 
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 306 

 307 
Figure 7. Signal-to-noise ratio (SNR) in the year 2005 for temperature extremes in BEST, CMIP6 and CMIP5. (a) 308 
SNR in TXx for BEST; (b) SNR in TXx for the multi-model medians in CMIP6; and (c) SNR in TXx for the multi-309 
model medians in CMIP5. (d-f) Same as (a-c), but for TNn. 310 
 311 

As spatial aggregation or averaging may reduce the impact of internal variability (Deser, 312 

Knutti, et al., 2012; Hawkins & Sutton, 2009; Lehner et al., 2020), Figs. 8 and 9 show the times 313 

series (1950-2100) of SNR for TXx and TNn, which are averaged over each region before the 314 

calculation of SNR (the corresponding signal and noise are in the supplementary Figs. S18-S20). 315 

For the temporal variations of median SNR over the period 1950-2014, the signal and SNR for 316 

TXx in BEST can be within the spread of the two CMIP ensembles over some regions (Fig. 8 317 

and Fig. S18). However, for TNn the signal and SNR are usually outside the ranges of CMIP6 318 

and CMIP5 at the beginning of this century (Fig. 9 and Fig. S19). Despite the influence of 319 

observational uncertainty in BEST over Australia (Deng et al., 2021), the above results suggest 320 

that the differences between the observed and simulated signal and SNR are mostly related to 321 

internal variability (Dai & Bloecker, 2019). In the study by Dai and Bloecker (2019), they 322 
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concluded that comparing the trends of the observed and modelled precipitation (a variable also 323 

exhibiting relatively large variability), which can represent the signal in some studies (e.g., 324 

Gaetani et al., 2020), is not appropriate over short timescales and at local and regional scales, as 325 

the observed precipitation changes are still dominated by internal variability. 326 

 327 

 328 
Figure 8. Time series of signal-to-noise ratio (SNR) in TXx from 1950-2100 over 10 Australian regions for BEST 329 
(black), SSP5-8.5 (red) and RCP8.5 (blue) (the number of models indicated in parentheses in the legend). Solid lines 330 
represent the multi-model medians and shading indicates the full range across the models for each experiment. 331 



manuscript submitted to Earth’s Future 

 

 332 

 333 
Figure 9. Same as Fig. 8, but for TNn. 334 
 335 

Fig. 10 exhibits the spatial distributions of the multi-model median SNR for TXx and 336 

TNn under SSP5-8.5 and RCP8.5 in the year 2050, for which the signal is in Figs. S21. Under 337 

both SSP5-8.5 and RCP8.5, despite exhibiting different spatial patterns, the magnitudes of SNR 338 

for TXx and TNn are already above 1 over most Australian regions in 2050. For TXx (Fig. 10a, 339 

c), there are larger SNR values (>2) over northwest Australia and lower SNR values (>1) over 340 
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southwest regions. In contrast, the SNR for TNn (Fig. 10b, d) is more than 2 over western and 341 

central Australia and indicates lower values (>1) over tropical and southeast regions. As 342 

described in Frame et al. (2017), around mid-century, the regions exhibiting SNR > 1 suggest 343 

that there would be “unusual” climate compared to the recent climate over 1950-2005; and for 344 

TXx over northwest Australia and TNn over western and central regions, the new climate for the 345 

extremes would be “unfamiliar” (SNR > 2). Compared to RCP8.5, SSP5-8.5 in CMIP6 generally 346 

displays stronger SNR and the corresponding signal for the two indices, which is valid for other 347 

SSPs and RCPs (Figs. S22 and S23). 348 

 349 

 350 
Figure 10. Median signal-to-noise ratio (SNR) for TXx and TNn under SSP5-8.5 and RCP8.5 in the year 2050. (a) 351 
SNR for TXx under SSP5-8.5 in the year 2050; (b) SNR for TNn under SSP5-8.5 in the year 2050; (c, d) same as (a) 352 
and (b), but for RCP8.5. 353 
 354 

As for the temporal evolution of SNR (Figs. 8 and 9), in general, the multi-model 355 

medians of SNR in TXx and TNn are slightly larger in SSP5-8.5 than RCP8.5 (e.g., 3.22 under 356 

SSP5-8.5 and 2.77 under RCP8.5 in 2050 over AUS); while over some southern regions for TNn 357 

(e.g., SA, SSA, SWA), the two CMIP ensemble show higher similarity. In addition, the medians 358 
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of signal and noise for the two indices are also comparable in the two scenarios (Figs. S18-S20). 359 

It is noted that the differences in signal between CMIP6 and CMIP5 in the end of the century 360 

resemble that shown in Figs. 3a and 3d, which may further imply that the regional climate 361 

sensitivity in CMIP6 and CMIP5 is comparable indicated in previous studies (Palmer et al., 362 

2021; Seneviratne & Hauser, 2020). In terms of the inter-model spread, although the spreads of 363 

the signals for TXx and TNn in SSP5-8.5 are commonly larger than RCP8.5, in which there are 364 

more models showing stronger signal in SSP5-8.5 (Figs. S18 and S19), the ranges in noise (Fig. 365 

S20) also contribute to the uncertainty of SNR. Consequently, the relative magnitudes of SNR in 366 

SSP5-8.5 and RCP8.5 may change (e.g., Fig. 8a), compared to the signal (e.g., Fig. S18a). For 367 

example, the spread of the signal in SSP5-8.5 is slightly larger in the end of the century than 368 

RCP8.5; however, influenced by the noise, the resulting range of SNR in SSP5-8.5 becomes 369 

narrower. Over the regions, the ranges of SNR for TXx are usually narrower over southern 370 

regions (e.g., SSA and SEA); in contrast, for TNn, northern regions such as TA exhibit less 371 

uncertainty for SNR and TOE. In other scenarios (Figs. S24-S27), the medians in SNR for TXx 372 

and TNn are lower, compared to SSP5-8.5&RCP8.5; and the medians in SSPs are generally still 373 

higher than that in RCPs. Also, the spreads of SNR and signal in the lower forcing pathways is 374 

generally narrower, consistent with the time series of projected changes.  375 

To estimate the TOE for TXx and TNn, we use SNR > 1 and SNR > 2 as the thresholds 376 

(Hawkins and Sutton 2012; Frame et al. 2017; Hawkins et al. 2020) and present the spatial 377 

patterns for multi-model median TOE under SSP5-8.5 and RCP8.5 (Fig. 11). As TOE occurring 378 

at the end of the century may be a temporary change, which is considered as “pseudo-379 

emergence”, we exclude the TOE occurring after the year 2050 (Abatzoglou et al., 2019; 380 

Diffenbaugh & Scherer, 2011; Hawkins et al., 2014; King, Donat, et al., 2015).  381 
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 382 

 383 
Figure 11. Median time of emergence (TOE) for TXx and TNn based on SNR thresholds under SSP5-8.5 and 384 
RCP8.5. (a) TOE for TXx under SSP5-8.5 when SNR > 1; (b) TOE for TXx under SSP5-8.5 when SNR > 2; (c, d) 385 
same as (a) and (b), but for TNn; (e-h) same as (a-d), but for RCP8.5. 386 
 387 

Over some central and tropical parts of Australia, the multi-model median TOE in TXx 388 

for SNR > 1 can occur as early as the second decade of this century (2010-2020). Generally, the 389 

signal emerges earlier over northwestern region than the southeast for both thresholds (Fig. 11a, 390 

b, e and f), in which the signal emerges in 2020s for SNR > 1 and 2040s for SNR > 2, as there 391 

indicate relative smaller noise and larger signal (Figs. S17 and S21). Over the southeast regions, 392 

the TOE occurs within 2030-2050 for SNR > 1. In contrast, for TNn, the signal emerges from the 393 

noise in 2020s over Australia (SNR > 1; Fig. 11c and g); while for SNR > 2, the TOE is within 394 

the fifth decade (2040-2050) over western and central regions (Fig. 11d and h). Compared to 395 

RCP8.5, the multi-model medians of TOE for TXx and TNn in CMIP6 show earlier TOE over 396 

more regions based on the threshold SNR > 2, implying the larger median SNR in the middle of 397 

this century as shown in Figs. 8 and 9. However, the uncertainty surrounding these TOE 398 

estimates remains large (Figs. 8 and 9). For example, for SNR = 2, the range (inter-model 399 

spread) of TOE for TXx over AUS can be from 2010s to 2060s (Fig. 8a). For lower scenarios, 400 
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the multi-model medians of TOE commonly occur later and over smaller regions than the 401 

stronger pathways. For example, TOE (SNR > 1) for TNn under SSP2-4.5&RCP4.5 usually can 402 

be 10 years later over some southeast regions (Fig. S28g and k) than that shown in SSP5-403 

8.5&RCP4.5 (Fig. 11c and g), as the signal is lower compared to that in higher pathways. 404 

The analysis on SNR and TOE has useful implications for Australia. Under the highest-405 

emission scenarios SSP5-8.5&RCP8.5, in which the medians of the signal for TXx are 406 

comparable, the early emergence over northwest Australia suggests that there is less time for 407 

stakeholders and policy makers to implement effective measures, compared to southeast 408 

Australia. In contrast, if under lower scenarios, the TOE for TXx can be postponed, especially 409 

for southeast regions which exhibit larger variability for TXx in the extratropics. However, the 410 

adaptation policy may change for different extremes, even under same future pathways. For 411 

TNn, the TOE (SNR > 1) can occur over most regions even under lower-emission scenarios; 412 

while the “unfamiliar” climate (SNR > 2) can be largely postponed if taking a more sustainable 413 

pathway (lower emission). It is also noted that the large uncertainty in the estimate of SNR and 414 

TOE highlights further challenges for stakeholders and policy makers. 415 

3.3 Large Ensembles in CMIP6 416 

Previous research has demonstrated the model uncertainty in estimating the effects of 417 

internal variability on the TXx and TNn trends, shown in LEs during 1950-2014 over Australian 418 

regions (Deng et al., 2021). Therefore, how internal variability influences the projected changes 419 

and TOE/SNR (including signal and the noise) needs further investigation. In Fig. 12, which 420 

represents the boxplots of projected changes in TXx and TNn for CanESM5-LE and MIROC6-421 

LE over Australian regions under SSP5-8.5 and SSP1-2.6, model uncertainty for representing 422 

internal variability still exists, and the relative magnitudes of the spreads for projected changes 423 
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resemble the results in Figs. 12 and 13 in Deng et al. (2021). The projected changes in TXx for 424 

MIROC6-LE span larger ranges than CanESM5-LE by a factor of ~3 or more over the regions, 425 

which can be larger than that in Fig. 3a. Moreover, there exhibit larger ranges of the projected 426 

changes for TXx over SEA, MEA, and SSA, and relatively narrower spreads over TA for 427 

CanESM5-LE and SWA for MIROC6-LE. For TNn, the relative magnitude for the two LEs are 428 

comparable over the regions. The different effects of internal variability for different LEs and 429 

regions complicate the assessment of the uncertainty on projected changes.  430 

 431 

 432 
Figure 12. Boxplots of projected changes in TXx and TNn over 2071–2100 (bold color) and 2031-2060 (light color) 433 
relative to the base period 1961–1990 across 10 Australian regions, for CanESM5-LE (cyan) and MIROC6-LE 434 
(green). (a) TXx under SSP5-8.5; (b) TNn under SSP5-8.5; (c, d) same as (a, b) but for SSP1-2.6. The boxes indicate 435 
the interquartile spreads (ranges between the 25th and 75th percentiles), the black lines within the boxes are the 436 
multi-member medians, the whiskers extend to the edges of 1.5 × interquartile ranges and “outliers” outside of the 437 
whiskers are denoted by diamonds.  438 
 439 
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The temporal evolution of signal and the boxplots of noise for TXx and TNn over 440 

Australian regions under SSP5-8.5 are shown in Figs. 13-15, and the resulting SNR in Figs. S29 441 

and S30. The relative magnitudes of the ranges in signal and noise over the regions between the 442 

two LEs also resemble that for the spread of the TXx and TNn trends shown in Deng et al. 443 

(2021). This suggests that internal variability has impacts not only on the uncertainty of signal, 444 

but also on the ranges of noise, making the resulting spread of SNR (Figs. S29 and S30) wider or 445 

narrower than that for the corresponding signal (Figs. 13 and 14), which introduce further 446 

uncertainty in the ranges of TOE. Although the effects of internal variability on TXx and TNn 447 

are similar under SSP1-2.6, the temporal evolution of the SNR and the signal for TXx and TNn 448 

stabilizes and there are narrower spreads for SNR compared to SSP5-8.5, which is due to the 449 

lower magnitude in signal under the lower scenario (Figs. S31-34). 450 

 451 
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 452 
Figure 13. Time series of signal (unit: K) in TXx from 1950-2100 over 10 Australian regions under SSP5-8.5 for 453 
CanESM5-LE (cyan) and MIROC6-LE (green) (the number of members indicated in parentheses in the legend). 454 
Solid lines represent the multi-member medians and shading indicates the full range across the members for each 455 
LE. 456 
 457 
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 458 
Figure 14. Same as Fig. 13, but for TNn. 459 
 460 



manuscript submitted to Earth’s Future 

 

 461 
Figure 15. Boxplots of noise (unit: K) in TXx (a) and TNn (b) calculated over the period 1950-2005 across 10 462 
Australian regions, for CanESM5-LE (cyan) and MIROC6-LE (green). The boxes indicate the interquartile spreads 463 
(ranges between the 25th and 75th percentiles), the black lines within the boxes are the multi-member medians, the 464 
whiskers extend to the edges of 1.5 × interquartile ranges and “outliers” outside of the whiskers are denoted by 465 
diamonds.  466 
 467 

4 Conclusions 468 

In this study, we analyzed the projected changes for the temperature extremes under 469 

future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) from the Tier 1 experiment in 470 

ScenarioMIP, which is compared with RCP2.6, RCP4.5 and RCP8.5 in CMIP5. We then use an 471 

SNR framework to estimate the time when the signal of climate change for TXx and TNn 472 

emerges from the internal variability in the two CMIP ensemble. In addition, two LEs in CMIP6 473 

are employed to estimate the effect of internal variability on the projected changes and 474 

TOE/SNR. 475 

The projected changes for the multi-model medians of the extremes under the highest 476 

scenario show the strongest warming, and the warming for the indices under SSP3-7.0 fills the 477 

gap between SSP2-4.5and SSP5-8.5, with SSP1-2.6 showing the least warming, especially in the 478 

end of this century. For some extreme indices (TXx, TXn, TNx, TNn, WSDI and CSDI), 479 

although the spatial patterns of warming can be different, there usually projects “warm-get-480 

warmer” pattern over Australia. As for the spread in the projections of temperature extremes, 481 
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they broadly span narrower envelopes for most indices under lower scenarios in the end of this 482 

century. If we take a more sustainable pathway (SSP1-2.6), although it may take two or three 483 

decades to take effects, the narrower spreads and weaker projected changes pose relatively less 484 

challenge for adaptation decisions compared to other scenarios. Compared to other regions, TA 485 

usually shows highest warming. However, as the performance of the models over TA usually 486 

shows lower scores (Deng et al., 2021), the projected changes for the medians and the spread for 487 

the extremes may not be robust (Pierce et al., 2009), which is also applied to other regions such 488 

as SSA and SEA. 489 

Compared to the counterpart future pathways in CMIP5, the spread in the CMIP6 SSPs 490 

are commonly wider than RCPs; and for some extremes (e.g., TXx and TNn), the multi-model 491 

medians in SPPs are usually higher as well. This is likely caused by different forcings and higher 492 

ECS in some CMIP6 models (e.g., Fyfe et al., 2021; Palmer et al., 2021; Tebaldi et al., 2021). 493 

For example, Fyfe et al. (2021) concluded that despite the partly countervailing effect by the 494 

background stratospheric aerosols, the higher amount of CO2 can lead to stronger warming in 495 

SSPs. In this study, we also find that for some indices (e.g., TXx), it is the models with higher 496 

ECS that usually show warmer evolution than the multi-model medians in SSP5-8.5 (not shown). 497 

To further figure out relative importance of each factor, more experiments based on CMIP6 498 

models forced by CMIP5 RCP scenarios and/or CMIP5 models forced by CMIP6 SSP scenarios 499 

needed be conducted and added to the collection in ScenarioMIP (Fyfe et al., 2021; Tebaldi et 500 

al., 2021).  501 

We also demonstrate that the medians of SNR for both TXx and TNn in SSPs are 502 

commonly higher than in RCPs; and the uncertainty for the SNR of TNn is wider. It is noted that 503 

the spreads of SNR for both indices decrease under lower scenarios, which confirms the benefits 504 
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of lower emission future pathways. Furthermore, the large uncertainty in time of emergence 505 

(TOE) result from the inter-model spread of both signal and noise, which is consistent with 506 

Hawkins and Sutton (2012). As previous studies concluded that the statistical fit used in the SNR 507 

framework can attribute internal variability to the signals (e.g., Hawkins & Sutton, 2012; Kumar 508 

& Ganguly, 2018; Lehner et al., 2020), we further illustrate that internal variability can also 509 

influence the ranges of noise. To better isolate forced response, dynamical adjustment or LEs can 510 

be used (e.g., Lehner et al., 2020; Merrifield et al., 2020). In contrast, using the mean across the 511 

range of noise in a LE may be a more appropriate way to represent the expected noise for the 512 

model, which needs further investigation.   513 

This study suggests that for different extreme temperature indices, the patterns for 514 

projected changes and TOE over Australia can be different, which poses large challenge for 515 

stakeholders and policymakers. A further effort is to improve the climate models in simulating 516 

the physical processes and the internal variability. Unless they are better understood and 517 

constrained, the uncertainty of projected changes and TOE will likely continue over future model 518 

generations. 519 
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Table S1. Models and simulations in CMIP6 used in this study. 40 
Model Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

1. ACCESS-CM2 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
2. ACCESS-ESM1-5 r1i1p1f1 - r1i1p1f1 r1i1p1f1 r1i1p1f1 
3. AWI-CM-1-1-MR r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
4. AWI-ESM-1-1-LR r1i1p1f1 - - - - 
5. BCC-CSM2-MR r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
6. BCC-ESM1 r1i1p1f1 - - - - 
7. CanESM5 r1i1p1f1 

~ 
r25i1p1f1 

r1i1p1f1 
~ 

r25i1p1f1 

r1i1p1f1 r1i1p1f1 r1i1p1f1 
~ 

r25i1p1f1 
8. CMCC-ESM2 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
9. CNRM-CM6-1 r1i1p1f2 r1i1p1f2 r1i1p1f2 r1i1p1f2 r1i1p1f2 
10. CNRM-CM6-1-
HR 

r1i1p1f2 r1i1p1f2 - - r1i1p1f2 

11. CNRM-ESM2-1 r1i1p1f2 r1i1p1f2 r1i1p1f2 r1i1p1f2 r1i1p1f2 
12. FGOALS-f3-L r1i1p1f1 - - - - 
13. FGOALS-g3 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
14. GFDL-CM4 r1i1p1f1 - r1i1p1f1 - r1i1p1f1 
15. GFDL-ESM4 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
16. GISS-E2-1-G r1i1p1f1 - - - - 
17. HadGEM3-
GC31-LL 

r1i1p1f3 r1i1p1f3 r1i1p1f3 - r1i1p1f3 

18. HadGEM3-
GC31-MM 

r1i1p1f3 r1i1p1f3 - - r1i1p1f3 

19. INM-CM4-8 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
20. INM-CM5-0 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
21. IPSL-CM6A-LR r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
22. MIROC-ES2L r1i1p1f2 r1i1p1f2 r1i1p1f2 r1i1p1f2 r1i1p1f2 
23. MIROC6 r1i1p1f1 

~ 
r50i1p1f1 

r1i1p1f1 
~ 

r50i1p1f1 

r1i1p1f1 
 

r1i1p1f1 
 

r1i1p1f1 
~ 

r50i1p1f1 
24. MPI-ESM-1-2-
HAM 

r1i1p1f1 - - - - 

25. MPI-ESM1-2-HR r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
26. MPI-ESM1-2-LR r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
27. MRI-ESM2-0 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
28. NorCPM1 r1i1p1f1 - - - - 
29. NorESM2-LM r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
30. NorESM2-MM r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1 
31. SAM0-UNICON r1i1p1f1 - - - - 
32. UKESM1-0-LL r1i1p1f2 r1i1p1f2 r1i1p1f2 r1i1p1f2 r1i1p1f2 
Number of models 32 23 23 21 25 

 41 
 42 

 43 
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Table S2. Models and simulations in CMIP5 used in this study. 44 
Model Historical RCP2.6 RCP4.5 RCP8.5 

1. ACCESS1-0 r1i1p1 - r1i1p1 r1i1p1 
2. ACCESS1-3 r1i1p1 - r1i1p1 r1i1p1 
3. bcc-csm1-1 r1i1p1 r1i1p1 r1i1p1 r1i1p1 
4. BNU-ESM r1i1p1 r1i1p1 r1i1p1 r1i1p1 
5. CanESM2 r1i1p1 r1i1p1 r1i1p1 r1i1p1 
6. CCSM4 r1i1p1 r1i1p1 r1i1p1 r1i1p1 
7. CESM1-BGC r1i1p1 - r1i1p1 r1i1p1 
8. CMCC-CM r1i1p1 - r1i1p1 r1i1p1 
9. CNRM-CM5 r1i1p1 r1i1p1 r1i1p1 r1i1p1 
10. CSIRO-Mk3-6-0 r1i1p1 r1i1p1 r1i1p1 r1i1p1 
11. FGOALS-g2 r1i1p1 - r1i1p1 r1i1p1 
12. GFDL-ESM2G r1i1p1 r1i1p1 r1i1p1 r1i1p1 
13. GFDL-ESM2M r1i1p1 r1i1p1 r1i1p1 r1i1p1 
14. GISS-E2-R r6i1p1 - r6i1p1 r2i1p1 
15. HadGEM2-CC r1i1p1 - r1i1p1 r1i1p1 
16. HadGEM2-ES r1i1p1 r1i1p1 r1i1p1 r1i1p1 
17. IPSL-CM5A-LR r1i1p1 r1i1p1 r1i1p1 r1i1p1 
18. IPSL-CM5A-MR r1i1p1 r1i1p1 r1i1p1 r1i1p1 
19. IPSL-CM5B-LR r1i1p1 - r1i1p1 r1i1p1 
20. MIROC5 r1i1p1 r1i1p1 r1i1p1 r1i1p1 
21. MIROC-ESM r1i1p1 r1i1p1 r1i1p1 r1i1p1 
22. MIROC-ESM-
CHEM 

r1i1p1 r1i1p1 r1i1p1 r1i1p1 

23. MPI-ESM-LR r1i1p1 r1i1p1 r1i1p1 r1i1p1 
24. MPI-ESM-MR r1i1p1 r1i1p1 r1i1p1 r1i1p1 
25. MRI-CGCM3 r1i1p1 r1i1p1 r1i1p1 r1i1p1 
26. NorESM1-M r1i1p1 r1i1p1 r1i1p1 r1i1p1 
Number of models 26 18 26 26 

 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
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Table S3. Extreme temperature indices used in this study. 63 
Label Index Name Description Unit 
TXx Hottest day Annual maximum value of daily maximum temperature °C 
TXn Coldest day Annual minimum value of daily maximum temperature °C 
TNx Warmest night Annual maximum value of daily minimum temperature °C 
TNn Coldest night Annual minimum value of daily minimum temperature °C 

DTR 
Diurnal 

temperature range 
Annual mean difference between daily maximum and 
minimum temperature °C 

TX90p Warm days 
Percentage of time when daily maximum temperature is 
greater than 90th percentile (using running 5-day window) 

% 

TX10p Cold days Percentage of time when daily maximum temperature is less 
than 10th percentile (using running 5-day window) 

% 

TN90p Warm nights Percentage of time when daily minimum temperature is 
greater than 90th percentile (using running 5-day window) 

% 

TN10p Cold nights 
Percentage of time when daily minimum temperature is less 
than 10th percentile (using running 5-day window) % 

WSDI Warm spell 
duration index 

Annual count when at least six consecutive days of 
maximum temperature is greater than 90th percentile (using 
running 5-day window) 

days 

CSDI 
Cold spell 

duration index 

Annual count when at least six consecutive days of minimum 
temperature is less than 10th percentile (using running 5-day 
window) 

days 

SU Summer days Annual count when daily maximum temperature is greater 
than 25°C 

days 

TR Tropical nights 
Annual count when daily minimum temperature is greater 
than 20°C days 

FD Frost days 
Annual count when daily minimum temperature is less than 
0°C days 

 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
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Table S4. Latitude and longitude boundaries of Australian regions. 86 
Label Region Lat (°S) Lon (°E) 
1. AUS Australia 10-45 110-155 
2. NA Northern Australia 10–26 110–155 
3. SA Southern Australia 26–45 110–155 
4. SEA South East Australia 32.5–45 140–155 

5. MEA 
Middle Eastern 
Australia 20–32.5 140–155 

6. TA Tropical Australia 10–20 110–155 
7. SWA South West Australia 27.5–40 110–127.5 

8. SSA Southern South 
Australia 

30–40 127.5–140 

9. CAU Central Australia 20–30 127.5–140 
10. MWA Mid-Western Australia 20–27.5 110–127.5 

 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
 100 
 101 
 102 
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 103 
Fig. S1. Regions used in the study. Northern Australia (NA) and Southern Australia (SA) are 104 
divided by the dashed line at 26°S, and solid lines denote the boundaries of other Australian 105 
subregions. 106 
 107 
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 108 
Fig. S2. Boxplots of projected changes in the 14 ETCCDI indices over 2071–2100 (bold color) and 109 
2031-2060 (light color) relative to the base period 1961–1990 across 10 Australian regions, under 110 
SSP3-7.0 (red). The boxes indicate the interquartile spreads (ranges between the 25th and 75th 111 
percentiles), the black lines within the boxes are the multi-model medians, the whiskers extend to 112 
the edges of 1.5 × interquartile ranges and “outliers” outside of the whiskers are denoted by 113 
diamonds.  114 
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 115 
Fig. S3. Same as Fig. S2, but for SSP2-4.5 (red) and RCP4.5 (blue).  116 
 117 
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 118 
Fig. S4. Multi-model median changes in TXn for 2071–2100 (a-d; i-k) and 2031–2060 (e-h; l-n) 119 
relative to the base period 1961–2010, under different future scenarios in CMIP6 (SSP1-2.6, SSP2-120 
4.5, SSP3-7.0 and SSP5-8.5) and CMIP5 (RCP2.6, RCP4.5 and RCP8.5). Hatching indicates that at 121 
least 75% of the models for each future scenario project significant changes at 95% level, based 122 
on the two-tailed Student’s t-test. 123 
 124 



 
 

10 
 

 125 
Fig. S5. Same as Fig. S4, but for TNx. 126 
 127 
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 128 
Fig. S6. Same as Fig. S4, but for DTR. 129 
 130 
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 131 
Fig. S7. Same as Fig. S4, but for TX90p. 132 
 133 
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 134 
Fig. S8. Same as Fig. S4, but for TX10p. 135 
 136 
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 137 
Fig. S9. Same as Fig. S4, but for TN90p. 138 
 139 
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 140 
Fig. S10. Same as Fig. S4, but for TN10p. 141 
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 142 
Fig. S11. Same as Fig. S4, but for WSDI. 143 
 144 
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 145 
Fig. S12. Same as Fig. S4, but for CSDI. 146 
 147 
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Fig. S13. Same as Fig. S4, but for SU. 149 
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 150 
Fig. S14. Same as Fig. S4, but for TR. 151 
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 152 
Fig. S15. Same as Fig. S4, but for FD. 153 
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 167 
Fig. S16. Signal (unit: K) in the year 2005 for temperature extremes in BEST, CMIP6 and CMIP5. (a) 168 
Signal in TXx for BEST; (b) Signal in TXx for the multi-model medians in CMIP6; and (c) Signal in 169 
TXx for the multi-model medians in CMIP5. (d-f) Same as (a-c), but for TNn. 170 
 171 
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 194 
Fig. S17. Sane as Fig. S16, but for noise (unit: K). 195 
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 212 
Fig. S18. Time series of signal (unit: K) in TXx from 1950-2100 over 10 Australian regions under 213 
SSP5-8.5 for BEST (black), CMIP6 (red) and CMIP5 (blue) (the number of models indicated in 214 
parentheses in the legend). Solid lines represent the multi-model medians and shading indicates 215 
the full range across the models for each experiment. 216 
 217 
 218 
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 219 
Fig. S19. Same as Fig. S18, but for TNn. 220 
 221 
 222 
 223 
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 226 
Fig. S20. Boxplots of noise (unit: K) in TXx (a) and TNn (b) calculated over the period 1950-2005 227 
across 10 Australian regions, under SSP5-8.5 (red) and RCP8.5 (blue). The boxes indicate the 228 
interquartile spreads (ranges between the 25th and 75th percentiles), the black lines within the 229 
boxes are the multi-model medians, the whiskers extend to the edges of 1.5 × interquartile 230 
ranges and “outliers” outside of the whiskers are denoted by diamonds.  231 
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 257 

Fig. S21. Median signal (unit: K) for TXx and TNn under SSP5-8.5 and RCP8.5 in the years 2050. (a) 258 
Signal for TXx under SSP5-8.5 in the year 2050; (b) Signal for TNn under SSP5-8.5 in the year 259 
2050; (c, d) same as (a) and (b), but for RCP8.5. 260 
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 290 
 291 

Fig. S22. Median signal-to-noise ratio (SNR) for TXx and TNn under SSP3-7.0, SSP2-4.5&RCP4.5, 292 
and SSP1-2.6&RCP2.6 in the year 2050. (a) SNR for TXx under SSP3-7.0 in the year 2050; (b) SNR 293 
for TNn under SSP3-7.0 in the year 2050; (c, d) same as (a) and (b), but for SSP2-4.5; (e, f) same as 294 
(a) and (b), but for RCP4.5; (g, h) same as (a) and (b), but for SSP1-2.6; (i, j) same as (a) and (b), but 295 
for RCP2.6. 296 
 297 
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 300 
 301 

Fig. S23. Same as Fig. S22, but for the signal (unit: K). 302 
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 303 
Fig. S24. Time series of signal-to-noise ratio (SNR) in TXx from 1950-2100 over 10 Australian 304 
regions under SSP1-2.6 (green), SSP2-4.5 (blue), SSP3-7.0 (yellow) (the number of models 305 
indicated in parentheses in the legend). Solid lines represent the multi-model medians and 306 
shading indicates the full range across the models for each experiment. 307 
 308 
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 309 
Fig. S25. Same as Fig. S24, but for RCP2.6 (green), RCP4.5 (blue). 310 
 311 
 312 
 313 
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 314 
Fig. S26. Same as Fig. S24, but for TNn. 315 
 316 
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 320 
Fig. S27. Same as Fig. S24, but for TNn under RCP2.6 (green), RCP4.5 (blue). 321 
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 333 

 334 
Fig. S28. Median time of emergence (TOE) for TXx and TNn based on SNR thresholds under 335 
SSP3-7.0, SSP2-4.5&RCP4.5, and SSP1-2.6&RCP2.6. (a) TOE for TXx under SSP3-7.0 when SNR > 1; 336 
(b) TOE for TXx under SSP3-7.0 when SNR > 2; (c, d) same as (a) and (b), but for TNn; (e-h) same 337 
as (a-d), but for SSP2-4.5; (i-l) same as (a-d), but for RCP4.5; (m-p) same as (a-d), but for SSP1-2.6; 338 
(q-t) same as (a-d), but for SSP1-2.6. 339 
 340 
 341 
 342 
 343 
 344 



 
 

34 
 

 345 
Fig. S29. Time series of signal-to-noise ratio (SNR) in TXx from 1950-2100 over 10 Australian 346 
regions under SSP5-8.5 for CanESM5-LE (cyan) and MIROC6-LE (green) (the number of members 347 
indicated in parentheses in the legend). Solid lines represent the multi-member medians and 348 
shading indicates the full range across the members for each LE. 349 
 350 
 351 
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 352 
Fig. S30. Same as Fig. S29, but for TNn. 353 
 354 
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 355 
Fig. S31. Same as Fig. S29, but for SSP1-2.6. 356 
 357 
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 358 
Fig. S32. Same as Fig. S29, but for TNn under SSP1-2.6. 359 
 360 
 361 
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 362 
Fig. S33. Same as Fig. S29, but for signal under SSP1-2.6. 363 
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 365 
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 366 
Fig. S34. Same as Fig. S29, but for signal in TNn under SSP1-2.6. 367 
 368 


