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Abstract

Submesoscale currents, comprising fronts and mixed-layer eddies, exhibit a dual cascade of kinetic energy: a forward cascade

to dissipation scales at fronts and an inverse cascade from mixed-layer eddies to mesoscale eddies. Within a coarse-graining

framework using both spatial and temporal filters, we show that this dual cascade can be captured in simple mathematical form

obtained by writing the cross-scale energy flux in the local principal strain coordinate system, wherein the flux reduces to the

the sum of two terms, one proportional to the convergence and the other proportional to the strain. The strain term is found to

cause the inverse energy flux to larger scales while an approximate equipartition of the convergent and strain terms capture the

forward energy flux, demonstrated through model-based analysis and asymptotic theory. A consequence of this equipartition

is that the frontal forward energy flux is simply proportional to the frontal convergence. In a recent study, it was shown that

the Lagrangian rate of change of quantities like the divergence, vorticity and horizontal buoyancy gradient are proportional to

convergence at fronts implying that horizontal convergence drives frontogenesis. We show that these two results imply that the

primary mechanism for the forward energy flux at fronts is frontogenesis. We also analyze the energy flux through a Helmholtz

decomposition and show that the rotational components are primarily responsible for the inverse cascade while a mix of the

divergent and rotational components cause the forward cascade, consistent with our asymptotic analysis based on the principal

strain framework.
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ABSTRACT: Submesoscale currents, comprising fronts and mixed-layer eddies, exhibit a dual

cascade of kinetic energy: a forward cascade to dissipation scales at fronts and an inverse cascade

from mixed-layer eddies to mesoscale eddies. Within a coarse-graining framework using both

spatial and temporal filters, we show that this dual cascade can be captured in simple mathematical

form obtained by writing the cross-scale energy flux in the local principal strain coordinate system,

wherein the flux reduces to the the sum of two terms, one proportional to the convergence and the

other proportional to the strain. The strain term is found to cause the inverse energy flux to larger

scales while an approximate equipartition of the convergent and strain terms capture the forward

energy flux, demonstrated through model-based analysis and asymptotic theory. A consequence

of this equipartition is that the frontal forward energy flux is simply proportional to the frontal

convergence. In a recent study, it was shown that the Lagrangian rate of change of quantities

like the divergence, vorticity and horizontal buoyancy gradient are proportional to convergence at

fronts implying that horizontal convergence drives frontogenesis. We show that these two results

imply that the primary mechanism for the forward energy flux at fronts is frontogenesis. We

also analyze the energy flux through a Helmholtz decomposition and show that the rotational

components are primarily responsible for the inverse cascade while a mix of the divergent and

rotational components cause the forward cascade, consistent with our asymptotic analysis based

on the principal strain framework.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2



1. Introduction25

Most of the kinetic energy (KE) in the earth’s oceans is found in mesoscale eddies consequent26

of which, understanding the mechanisms and pathways of their generation and dissipation is of27

fundamental importance (Ferrari and Wunsch 2009). Since they are approximately in geostrophic28

balance, classical geostrophic turbulence theory (Salmon 1998) provides a paradigm wherein29

available potential energy (APE) created by the action of large scale wind stress and surface30

buoyancy fluxes is converted into kinetic energy through baroclinic instability. Nonlinear eddy-31

eddy interactions then induce an inverse cascade of this kinetic energy to larger eddy scales, with32

their dissipation primarily limited to occur at the boundaries, both at the ocean bottom and, as has33

been demostrated recently, the air-sea interface (Ma et al. 2016; Renault et al. 2016, 2018, 2019;34

Rai et al. 2021). Studies over the past two decades have, however, found that mesoscale eddies35

can have significant energy exchanges with smaller and faster oceanic components comprising36

submesocale mixed layer eddies (MLEs) and fronts (Thomas et al. 2008; McWilliams 2016), and37

inertia gravity waves (IGWs) (Thomas 2012; Xie and Vanneste 2015; Taylor and Straub 2016;38

Alford et al. 2016; Jing et al. 2017; Barkan et al. 2017; Rocha et al. 2018; Thomas and Daniel 2021;39

Barkan et al. 2021). Mesoscale eddies have horizontal length scales in the range O(10km-100km)40

and time scales of weeks to a months. MLEs typically have O(1-10km) while cross-frontal scales41

can be as small as tens of metres. While MLEs can last a few days, frontal time scales can overlap42

with those of IGWs that are physically constrained to be faster than the local Coriolis frequency.43

Like mesoscale eddies, MLEs are also formed through baroclinic instability but of the near-44

surface mixed layer (Boccaletti et al. 2007), which is deeper during the winter season due to surface45

cooling driven convective mixing (Mensa et al. 2013; Brannigan et al. 2015; Callies et al. 2015;46

Thompson et al. 2016). In fact layered quasi-geostrophic models that have been a long standing47

framework for studying mesoscale eddies also reproduce MLEs with a shallow upper layer, but not48

fronts (Callies et al. 2016). Fronts, which are highly anisotropic structures, are formed through a49

multitude of mechanisms (Hoskins and Bretherton 1972;McWilliams 2017; Srinivasan et al. 2017)50

that involve the background gradients provided by both mesoscale eddies and MLEs, but also the51

turbulence in themixed layer (McWilliams et al. 2015;Wenegrat andMcPhaden 2016;McWilliams52

2017). Energetically, the generation of both fronts and MLEs involves a conversion of mixed layer53

APE to KE, but unlike MLEs, fronts also have a significant ageostrophic flow component in the54
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cross-front direction i.e. the ageostrophic secondary circulation (ASC). Frontal ASCs are highly55

asymmetric, with strong downwelling and weak upwelling, and this manifests as a large visible56

negative value of the divergence in the mixed layer, 𝛿 = 𝑢𝑥 + 𝑣𝑦 (𝑢 and 𝑣 are the velocities along the57

zonal, 𝑥, and meridional, 𝑦, directions). Heuristically one might expect that the similarity in the58

generation and balance of mesoscale eddies and MLEs might lead to similar nonlinear dynamics.59

A recent study by Schubert et al. (2020) employed a coarse graining approach (Aluie et al. 2018)60

to explicitly demonstrate that MLEs undergo an inverse energy cascade to mesoscales, echoing the61

inverse energy transfer of mesoscale eddies themselves to larger scales. In particular they were able62

to provide a visual and dynamical demonstration of the absorption of MLEs into mesoscale eddies.63

They also show that the energy transfer at smaller scales occurs primarily at frontal features and is64

forward i.e. from large to small scales. This is consistent with previous studies that suggest that65

ageostrophic motions might be responsible for forward energy cascades found at submesoscales66

(Capet et al. 2008b).67

In this study we examine the cross scale flux of kinetic energy in realistic submesoscale resolving68

numerical simulations of the North Atlantic. Instead of the traditionally used spectral energy flux69

approach (Scott and Wang 2005; Scott and Arbic 2007; Klein et al. 2008; Capet et al. 2008b,a;70

Molemaker et al. 2010; Barkan et al. 2015; Wang et al. 2019; Klein et al. 2019; Ajayi et al. 2021;71

Siegelman et al. 2022), we employ the filter-based coarse graining framework to compute energy72

fluxes across both spatial (Aluie et al. 2018; Srinivasan et al. 2019; Schubert et al. 2020) and73

temporal (Barkan et al. 2017, 2021; Garabato et al. 2022; Zhang et al. 2021b,a) scales. Figure 174

shows the spatial structure of the spatial KE flux from our 500 m horizontal resolution run (details75

in Section 2) for a filter-scale of 4km (Π4
ℎ
, representing the horizontal KE transfer from scales76

larger than 4km to those smaller) during the month of January. Echoing the results of Schubert77

et al. (2020), we find that the flux is largest at the frontal features which can be identified as regions78

of strong convergence (−𝛿) and buoyancy gradient, |∇𝑏 |. Furthermore, while some of the regions79

of strong forward transfer are clearly at fronts that lie on the edges of large mesoscale anticyclones80

(leading to the possibility that these are generated through strain-induced frontogenesis) most other81

regions are at fronts associated with smaller scale eddies or sometimes none at all. This indicates82

that the mechanism of energy flux at fronts is agnostic to the mechanism of frontal generation.83

The choice of 4km filter-scale in Fig. 1 is not specific and represents a typical length scale in the84
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submesoscale range (in Sec 4a we show that this actually corresponds to an equivalent spectral85

length scale of _𝑠𝑝 = 9.6 km). In the rest of the paper, we employ a wide range of filter-scales for86

analysis starting from the grid scale till beyond mesoscale eddy length scales.87

To make the association between fronts and the energy flux stronger and foreshadow the results101

in our paper ahead, we compare the energy flux across the 4 km scale (Π4
ℎ
) averaged over the flow102

domain seen in Fig. 1 with that conditionally averaged on fronts only (given by the region satisfying103

∇𝑏 > 1.5×10−7s−2) as a function of depth (Fig. 2a). We note that both the frontal-averaged flux (red104

curve) and the domain-averaged flux (blue curve) are positive over this depth, i.e. a positive energy105

flux from scales larger than 4km to smaller or equivalently a forward flux. The front-averaged106

forward flux is also two orders of magnitude larger, supporting the visual inference from Fig. 1 that107

the energy flux at this scale is predominantly at fronts. The vertical structure of the front-averaged108

flux closely resembles that of the front-averaged convergence, −𝛿4
𝑓 𝑟𝑜𝑛𝑡𝑠

(where 𝛿4 is the divergence109

smoothed at the same 4 km scale for consistency) and the kinetic energy at scales smaller than 4110

km, E′4, averaged at fronts, E′4
𝑓 𝑟𝑜𝑛𝑡𝑠. It should be noted that the rate of change of E′4 due to the111

energy exchange with larger scales is precisely, Π4
ℎ
, i.e.112 (

𝐷E′4

𝐷𝑡

)
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

= Π4ℎ . (1)

By plotting the Π4
ℎ, 𝑓 𝑟𝑜𝑛𝑡𝑠

against −𝛿4
𝑓 𝑟𝑜𝑛𝑡𝑠

E′4
𝑓 𝑟𝑜𝑛𝑡𝑠 (a natural choice, given that the two quantities113

have identical dimensions) we find the simple result that the relationship is linear, so that Π4
ℎ
∝114

−𝛿4
𝑓 𝑟𝑜𝑛𝑡𝑠

E′4
𝑓 𝑟𝑜𝑛𝑡𝑠. But from (1) we get115

1
E′4

𝑓 𝑟𝑜𝑛𝑡𝑠

(
𝐷E′4

𝐷𝑡

)
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟, 𝑓 𝑟𝑜𝑛𝑡𝑠

∝ −𝛿4𝑓 𝑟𝑜𝑛𝑡𝑠 . (2)

The results above can be summarized as follows: the rate of change of kinetic energy(the energy116

flux) at around 4km scales during the winter season in this region is predominantly at fronts while117

the relative rate of change of frontal kinetic energy is simply governed by the convergence as give118

by (2).119

The entire analysis above was based on a combination of dimensional considerations and simple120

model-based heurestics, but is a key result of this study. We show that (2) can in fact be derived from121
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Fig. 1. A snapshot of horizontal cross-scale energy flux Π4
ℎ
[m2s−3] on January 7th (i.e. the winter season),

where the superscript indicates a filterscale of 4 km, the energy transferred from scales larger than 4 km to finer

scales at a ocean surface [Note that this is equivalent to an effective spectral scale, _𝑠𝑝 = 9.6 km (see Section

4a)]. Also shown are the surface vorticity [s−1], Z = 𝑣𝑥 − 𝑢𝑦 and the divergence [s−1], 𝛿 = 𝑢𝑥 + 𝑣𝑦 normalized

with the Coriolis paramter, 𝑓 and the magnitude of the horizontal buoyancy gradient, |∇𝑏 | [s−2]. The horizontal

model resolution here is 500 m.

88

89

90

91

92

93

first principles by writing the energy flux in principal strain coordinates (Section 3) followed by a122

combination of detailed model-based analysis (Section 4, including an analysis of the energy flux123
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Fig. 2. Plots, as a function of depth [m], of (a) Π4
ℎ
[m2s−3], the horizontal energy flux from scales larger

than 4km to smaller scales, (b) −𝛿4 [s−1], the convergence smoothed at a 4km scale and, (c) E ′4 [m2s−2], the

kinetic energy of scales finer than 4 km, either spatially averaged over the entire flow domain shown in Fig. 1

(marked by the subscript, ‘global’ and in blue) or spatially averaged only on fronts defined by the region having

|∇𝑏 | > 1.5×10−7s−2 (marked by the subscript, ’fronts’ and in red); temporal averaging is also performed over the

winter months of January, February and March on top of the indicated spatial averaging. (d) A plot of Π4
ℎ, 𝑓 𝑟𝑜𝑛𝑡𝑠

in a) versus −𝛿4
𝑓 𝑟𝑜𝑛𝑡𝑠

E ′4
𝑓 𝑟𝑜𝑛𝑡𝑠 [the product of b) and c)].

94

95

96

97

98

99

100

using the Helmholtz decomposition in Section 4c) and asymptotic theory (Section 5). Section 5124

connects the results here with the theory of frontogenesis proposed by Barkan et al. (2019)125

demonstrating that convergence drives frontogenesis, a result that we show here also applies to the126

cross-scale energy flux through the form of (2). In this paper we do not explore the seasonality127

of the forward and inverse energy cascades as has been suggested in recent work (Garabato et al.128

2022) that analyses temporal energy transfers from observational data (in particular the OSMOSIS129

current meter array) and find an inverse energy cascade in winter from submesoscales tomesoscales130

but a forward energy transfer in late spring. We instead limit our attention to the winter season in131

the North Atlantic when the submesoscales are strongest and examine the cross-scale KE fluxes and132

their structure at submesoscale spatial and temporal scales. We also briefly discuss a potentially133

alternative pathway for forward energy cascade, namely symmetric instability accompanied by134

some analysis and discussions involving the vertical component of the energy flux, Πℓ
𝑣, and the135

corresponding geostrophic shear production, Πℓ
𝑣𝑔 (Section 6b). In concurrent (Barkan et al. 2021)136

and upcoming studies we also examine the energy exchanges between eddies, fronts and IGWs.137
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2. Numerical methodology138

Fig. 3. A snapshot of the normalized surface vorticity, Z/ 𝑓 , on February 8, obtained from the 2 km (outer

nest) and 500 m (inner nest) horizontal resolution nested ROMS simulations. The 2km run, forced by a 6 km

resolution North Atlantic run (not shown here), spans the North Atlantic region between Greenland and Iceland.

The actual analysis region (shown in Fig. 1) for the 2 km and 500 m runs in this work is a square region spanning

about two-thirds of the inner 500 m nest here.

139

140

141

142

143

Numerical solutions are conducted using the Regional Ocean Modeling System (ROMS) a144

split-explicit hydrostatic primitive model (Shchepetkin and McWilliams 2005). A nested grid145

hierarchy with one-way nesting is employed; a 6km resolution parent grid run forced on its external146

boundaries by climatology is run beginning 1 January, 1999 for two years with only the third147

year run used to force a 2 km run at the boundaries; the 2 km run is then subsequently used to148
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force and run a submesoscale-permitting 500 m resolution run. A surface vorticity snapshot in149

early February is plotted in Fig. 3 highlighting the 2 km-500 m nested hierarchy and the stronger150

submesoscale field of the 500 m resolution model. The actual analysis domain employed in this151

work is an approximately 430 km × 430 km region within the 500 m nested grid, displayed in152

Fig. 1. The air-sea interface is forced with the Climate Forecast System Reanalysis (CFSR)(Saha153

et al. 2014; Dee et al. 2014) atmospheric product low pass filtered using a one-day filter to eliminate154

high frequency forcing that would generate Near-inertial internal waves (NIWs). We only use the155

winter months (January, February and March 2001) of the 500 m and 2 km runs for analysis in this156

study since these are the months when submesoscale MLEs and fronts are especially active. The157

solutions used for analysis in this paper have been validated extensively in our concurrent study158

(Barkan et al. 2021) against satellite altimetry and current meter observations in the region so we159

refer the readers to that paper.160

3. Dynamics in principal strain coordinates161

We compute the energy flux across scales using the so-called coarse graining approach which162

entails a method for decomposing the flow field into small and large scales for spatial transfers163

(Eyink and Aluie 2009; Aluie et al. 2018), and fast and slow scales for temporal transfers (Barkan164

et al. 2017). These are accomplished using a simple low-pass filtering (or smoothing) operator.165

In this study we separately compute cross-scale transfers across spatial and temporal scales rather166

than a joint spatio-temporal approach. While previous studies have been limited to computing167

either spatial (Aluie et al. 2018; Schubert et al. 2020) or temporal scale-to-scale transfers (Barkan168

et al. 2017, 2021), we compute both to demonstrate the robustness of our analysis framework.169

Furthermore, in the abscence of IGWs (which is true for the simulations employed here) slower170

(faster) scales correspond to larger (smaller) ones and this should be reflected in the cross-scale171

energy fluxes.172

a. Scale-to-scale energy flux173

We decompose the velocity fields into scales smaller (faster) and larger (slower) than a given174

length scale ℓ (time scale 𝜏) with a low-pass filtering function; this is chosen to be a uniform175

filter (also referred to as a boxcar or tophat filter) for the spatial filtering (Aluie et al. 2018)176
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and a Butterworth filter for the temporal (Barkan et al. 2021). The uniform filter is sharp in177

physical space but the Butterworth is spectrally sharp. These filter choices and their implications178

are discussed in Section 4a (in particular, see the discussion around Fig. 6.). Since the theory179

applies to both spatial and temporal filters, we identify the slower (larger) component as �̄�𝑖 and180

the faster (smaller) component as 𝑢′
𝑖
where 𝑖 ∈ [1,2] and (𝑢1, 𝑢2) ≡ (𝑢, 𝑣). In other words, because181

𝑢𝑖 = �̄�ℓ + 𝑢′ℓ = �̄�𝜏 + 𝑢′𝜏 ≡ �̄� + 𝑢′, we derive our expressions in general and for presentation of our182

results, we use 𝜏 (units in hours) superscript for the temporal transfers and ℓ (units in km) for the183

spatial. We call the �̄� and 𝑢′ fields as coarse and fine fields respectively. The energy transfer from184

scales finer than a certain scale to coarser scales is then (Aluie et al. 2018)185

Π = −(𝜏𝑢𝑢�̄�𝑥 + 𝜏𝑢𝑢 (�̄�𝑦 + �̄�𝑥) + 𝜏𝑢𝑢 �̄�𝑥)︸                                  ︷︷                                  ︸
Πℎ

−(𝜏𝑢𝑤�̄�𝑧 + 𝜏𝑣𝑤 �̄�𝑧)︸               ︷︷               ︸
Π𝑣

.

(3)

where Πℎ and Π𝑣 are the vertical and horizontal energy flux terms. The Leonard’s stress term186

(Leonard 1975) is 𝜏𝑢𝑣 = 𝑢𝑣−𝑢 𝑣, and similarliy for the other terms. Since for filters, 𝑢′, 𝑣′ ≠ 0 (i.e.187

the filter operator is not a Reynolds’ operator), 𝜏𝑢𝑣 ≠ 𝑢′𝑣′. The horizontal component can be further188

expressed in the form,189

Πℎ = −τ : S = −

𝜏𝑢𝑢 𝜏𝑢𝑣

𝜏𝑢𝑣 𝜏𝑣𝑣




�̄�𝑥 (�̄�𝑦 + �̄�𝑥)/2
(�̄�𝑦 + �̄�𝑥)/2 �̄�𝑦,

 (4)

where the : operator represents a tensor dot product operation (a term-by-term product followed190

by summation).The expression in (4) can be identified as “the stress of the finer scales times the191

strain of the coarser scale”.192

We rotate our (𝑥, 𝑦) coordinate axis along the vertical by angle \ (𝑥, 𝑦) at every point in space,193

such that in the new local coordinate system, the strain tensor, 𝑆𝑖 𝑗 , is diagonal. Such a \ (𝑥, 𝑦)194

always exists because 𝑆𝑖 𝑗 is a symmetric tensor. It is straightforward to show that that the precise195
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form this diagonal tensor takes is196

[𝑆] =

(𝛿+ �̄�)/2 0

0 (𝛿− �̄�)/2

 (5)

Where the coarse-scale divergence, 𝛿 = �̄�𝑥 + �̄�𝑦 and the strain magnitude, �̄�2 = (�̄�𝑦− �̄�𝑥)2+ (�̄�𝑥 + �̄�𝑦)2197

are both quantities that are invariant to a rotation of coordinate system and can be effectively treated198

as scalars. Clearly, in the limit of 𝛿 → 0, the diagonal terms reduce to ±�̄�/2, so that the latter can199

also be referred to as the “non-divergent” strain though we drop the characterization in our usage200

here. In this rotated coordinate system the energy flux takes the form201

Πℎ = −[𝜏𝑢𝑢 (𝛿+ �̄�)/2+ 𝜏𝑣𝑣 (𝛿− �̄�)/2] , (6)

= (𝜏𝑣𝑣 − 𝜏𝑢𝑢)
�̄�

2
− (𝜏𝑣𝑣 + 𝜏𝑢𝑢)

𝛿

2
, (7)

= E′𝛾�̄�︸︷︷︸
Π𝛼

− E′𝛿︸︷︷︸
−Π𝛿

. (8)

where E′ = (𝜏𝑣𝑣 + 𝜏𝑢𝑢)/2 is the energy of finer scales, and 𝛿 and �̄� are the divergence and strain of202

the coarse field. The parameter203

𝛾 ≡ 𝜏𝑣𝑣 − 𝜏𝑢𝑢

𝜏𝑣𝑣 + 𝜏𝑢𝑢
(9)

is the anisotropy of finer scales in principal strain coordinates (Huang and Robinson 1998; Srini-204

vasan and Young 2014). It is important to emphasize the coordinate system when discussing 𝛾205

because unlike �̄�, 𝛿 and E′, 𝛾 is not invariant to rotation. The termΠ𝛼 in related contexts is referred206

to as the deformation shear production (DSP) (Thomas 2012) but the Π𝛿 is new and is in general207

only relevant when 𝛿 is significant i.e. for submesoscale currents and so we call it the convergence208

production (CP). Note that −1 ≤ 𝛾 ≤ 1 which gives the bounds −𝛼E′ ≤ Π𝛼 ≤ 𝛼E′. The expression209

in (8) can also be written in coordinate invariant form as210

Πℎ = (𝜏𝑣𝑣 − 𝜏𝑢𝑢)
�̄�𝑛

2
− 𝜏𝑢𝑣�̄�𝑠︸                     ︷︷                     ︸

Π𝛼

− (𝜏𝑣𝑣 + 𝜏𝑢𝑢)
𝛿

2︸        ︷︷        ︸
−Π𝛿

, (10)
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The Π𝛿 expectedly remains unchanged as it is the product of two coordinate invariant quantities,211

E′ = (𝜏𝑣𝑣 + 𝜏𝑢𝑢)/2 and 𝛿 = �̄�𝑥 + �̄�𝑦 but the two terms comprising Π𝛼 associated with the normal212

strain, 𝜎𝑛 = �̄�𝑥 − �̄�𝑦 and shear strain, 𝜎𝑠 = �̄�𝑦 + �̄�𝑥 are not invariant and therefore have no separate213

meaning. While the principal strain form of Π𝛼 in (8) has a very simple elegant form, estimating214

𝛾 in principal strain coordinates is not straightforward and we mostly use the coordinate-free form215

specified in (10).216

Eq. (10) with 𝛿 = 0 was derived by Polzin (2010), for studying the interactions between IGWs217

and mesoscale flows, in straightforward fashion from (3). Even with 𝛿 ≠ 0, starting from (10) and218

showing that Πℎ is equivalent to the form in (3) is easily done. However directly inferring the219

form of Πℎ in (10) from (3) is not obvious and the principal strain coordinates helps arrive there220

naturally. The treatment of Πℎ in principal strain coordinates outlined above follows that by Jing221

et al. (2017) in their study of near-inertial mesoscale eddy interactions, who derived the form in222

(7) for 𝛿 = 0; in essense, Πℎ ∝ 𝛼, where 𝛼 is the mesoscale strain field. Our treatment extends the223

result to submesoscale flows for finite 𝛿 and we use it in the more general coarse-graining context.224

b. Frontogenetic equations225

The primary focus of this study is to examine the connection between energy transfer at fronts226

and frontogenesis. To this end we consider the evolution equation for the buoyancy gradient,227

|∇𝑏 |2 = 𝑏2𝑥 + 𝑏2𝑦, also referred to as the frontogenetic tendency equation (Hoskins and Bretherton228

1972),229

1
2
𝐷 | |∇𝑏 | |2

𝐷𝑡
=−(𝑏2𝑥𝑢𝑥 + 𝑏2𝑦𝑢𝑦) + 𝑏𝑥𝑏𝑦 (𝑢𝑦 + 𝑣𝑥)︸                                   ︷︷                                   ︸

Bℎ

−𝑏𝑧 (𝑤𝑥𝑏𝑥 +𝑤𝑦𝑏𝑦)︸                 ︷︷                 ︸
B𝑣

(11)

Then we can write (Barkan et al. 2019)230

Bℎ = −B : S , (12)
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where S is the strain tensor while231

B =


𝑏2𝑥 𝑏𝑥𝑏𝑦

𝑏𝑥𝑏𝑦 𝑏2𝑦

 (13)

is a dyadic, a special kind of second rank tensor formed by the outer product of two vectors, in232

this case of (𝑏𝑥 , 𝑏𝑦) with itself. Comparing (12) with (4) we note that the horizontal component233

of the buoyancy gradient tendency can be written in the same form as the horizontal component234

of the fine-scale energy tendency (4), with the fine scale stress tensor, τ replaced by the buoyancy235

gradient tensorB. As before we switch to the principal strain coordinates, and retracing the steps236

from (5) to (8) for (12) we get237

Bℎ = ( |∇𝑏 |2𝛾𝑏𝛼− |∇𝑏 |2𝛿)/2 . (14)

where 𝛾𝑏 is the buoyancy gradient anisotropy in principal strain coordinates238

𝛾𝑏 ≡
𝑏2𝑥 − 𝑏2𝑦

𝑏2𝑥 + 𝑏2𝑦
, (15)

and the coordinate free form of (14) in analogy with (10)239

Bℎ = (𝑏2𝑦 − 𝑏2𝑥)
𝜎𝑛

2
− 𝑏𝑥𝑏𝑦𝜎𝑠︸                      ︷︷                      ︸

𝐵𝛼

− (𝑏2𝑦 + 𝑏2𝑥)
𝛿

2︸       ︷︷       ︸
−𝐵𝛿

. (16)

Recently (Balwada et al. 2021) derived the evolution equations for square of the gradient of a240

passive scalar (|∇𝑐 |2) in principal strain coordinates, which is essentially the same as that of |∇𝑏 |2241

derived above, although the authors do not express the result in the 𝛼 − 𝛿 form that we prefer242

or in the coordinate-free form in (16). In general, an equation like (16) can be written for any243

physical quantity whose rate of change takes the form in (12). Beyond scalar fields like 𝑏, we state244

(without elaboration) that similar forms can be written for the evolution equations of the square245

vertical shear, 𝑢2𝑧 +𝑣2𝑧 [employed in the study of topographic submesoscale wakes (Srinivasan et al.246

2021) and front-surface wave interactions (Hypolite et al. 2021)] and the magnitude of the velocity247

gradient tensor, |∇u|2 [used as another proxy for frontogenesis by Barkan et al. (2019)]248
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Fig. 4. Horizontally and temporally averaged temporal energy fluxes [m2s−3] (a)-(f) as a function of depth

and inverse filterscale [hr−1] and (g), (h) vertically averaged over the top 50m. The top row shows fluxes at 500

m resolution and the second row at 2 km resolution. The curves in the bottom row are the total horizontal flux

Π𝜏
ℎ
(black), the deformation shear production Π𝜏

𝛼(red) and the convergence production Π𝜏
𝛿
(blue).

251

252

253

254

4. Results from the numerical model249

a. Spatiotemporally averaged fluxes250

We compute the fluxes Πℎ, Π𝛼 and Π𝛿 from (10) at multiple depth levels between 0 and 100 m259

for two model runs at 2 km and 500 m resolutions. For each of the two runs and at each depth260

we use a range of scales for computing the fluxes - the spatial filter sizes are varied between the261

lowest grid scale (500 m and 2 km for the two models) to around 100 km while the temporal scales262

are varied between 1 hr and 100 hrs. Computing the fluxes on a cluster (XSEDE (Towns et al.263
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2014)) using the Ray multiprocessing library 1 allows us to use a significantly larger number of264

filters, 54 filters in space and 27 fiters in time at a large number of depths, compared to recent265

studies. The coarse-graining approach has the advantage over spectral methods in not needing a266

windowing function for ensuring periodicity at the boundaries, but a consistent treatment of the267

filter at the boundaries is still required. Whenever the spatial (uniform) filter hits the boundary, we268

use a mirroring of the velocity field outward, preserving the structure of the flow. For the temporal269

(Butterworth) filter, after filtering, we discared the first 120 hours (being about twice the length of270

the largest filter used) in January and last 120 hrs in March to avoid edge efftecs.271

We first show Πℎ, Π𝛼 and Π𝛿 spatially averaged over the domain and temporally averaged over276

the winter season (sans the edge data for the temporal case) in Figs. 4a-f (temporal transfer) and277

5a-f (spatial transfer). These represent the average energy transferred over the whole domain and278

during the winter months from scales larger to smaller. Thus positive values represent an energy279

transfer to smaller scales (or a forward cascade) and negative values represent an inverse energy280

cascade. Both figures show broadly similar patterns, in particular inverse cascade at larger (slower)281

scales and forward cascade at smaller (faster) scales. The transition from forward to inverse transfer282

is at 10km and around 50 hrs at the surface.283

These transition scales need to be interpreted with some care given the different filter choices284

in the two cases, the spatially sharp uniform filter and the spectrally sharp Butterworth filter in285

time. To evaluate the importance of these filter choices on the flux, we also compute a temporal286

scale-to-scale flux with the uniform filter at the surface and compare it with the flux obtained using287

the Butterworth filter. Fig. 6 highlights the result that the forward-to-inverse transition timescale288

obtained from the Butterworth filter is around 2.4 times larger than what one might expect from289

the uniform filter flux calculation as demonstrated by plotting the flux obtained using the uniform290

filter against 2.4𝜏 instead of the actual filterscale, 𝜏. Given the lack of an obvious implementation291

of the Butterworth filter to two dimensions, we continue using the uniform filter, in line with recent292

studies (Aluie et al. 2018; Schubert et al. 2020) with the knowledge that forward cascade region in293

Fig. 5 occupies a larger range of scales and the actual transition scale is at a scale of 24km, rather294

than 10km result found in Fig. 5. In particular, we introduce an equivalent spectral scale for the295

spatial flux calulations _𝑠𝑝 = 2.4ℓ and report it along with the actual filter scale ℓ. Later, in Sec. 6a296

we again demonstrate the effective spectral resolution of the uniform filter, but by comparing297

1https://github.com/ray-project/ray
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Fig. 5. Horizontally and temporally averaged spatial energy fluxes [m2s−3] (a)-(f) as a function of depth and

inverse filterscale [km−1] and (g), (h) vertically averaged over the top 50m. The top row shows fluxes at 500 m

resolution and the second row at 2 km resolution. The curves in the bottom row are the total flux Πℓ
ℎ
(black), the

deformation shear production Πℓ
𝛼(red) and the convergence production Πℓ

𝛿
(blue).

255

256

257

258

energy spectra instead of fluxes (see Fig. 13). A similar result was found by Schubert et al. (2020)298

by comparing the traditional spectral flux (in space) with the result from the coarse-grained fluxes299

from the uniform filter as done here although they obtained a factor of 2 instead of 2.4. We surmise300

that this is a consequence of the larger number of filters sizes used here, making it easier for us to301

estimate this factor accurately.302

While the temporal transition scale is around 50 hr, a majority of the forward cascade (Figs. 4a303

and 6) is actually found within 24hr timescales. A recent study (Ajayi et al. 2021) computed304

(spatial) spectral energy fluxes at different regions of the North Pacific for a 1km resolution ocean305
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Fig. 6. Horizontally and temporally averaged temporal energy flux (Π𝜏
ℎ
[m2s−3]) at the surface as a function of

filterscale, 𝜏 [hr] for the choice of two filters, the Butterworth (red) and uniform (blue) filters. The green curve

is simply the blue curve plotted against 2.4𝜏, i.e. by rescaling the abscissa by a factor of 2.4. The red curve is

precisely the surface value in Fig. 4a although the abscissa here is 𝜏 instead of 𝜏−1.
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273

274

275

model and found that using daily averages instead of snapshots substantially suppressed the forward306

energy cascade signal. Our temporal flux results explicate why this might be, assuming that in the307

absence of waves, the scales of motion associated with the temporal forward flux correspond to308

those that result in the spatial forward energy flux.309

Both the forward and inverse cascade are weaker in the 2 km model run consistent with the310

notion that the 500 m model resolves both submesoscale MLEs and fronts better. The peak inverse311

energy flux is at ℓ=30 km (_𝑠𝑝 = 72 km) in the spatial though it is slower than the largest temporal312

filter width used here (i.e. slower than around 3 days which is still consistent with average MLE313

lifetimes of around a few days). In subsequent discussions we exclusively focus on the 500 m nest314

given the inadequecy of the 2 km nest in resolving submesoscales.315

The most interesting results concern the breakup of Πℎ into Π𝛼 and Π𝛿. Specifically, the inverse319

energy transfers in both the spatial and temporal cases are almost entirely due to theΠ𝛼 (or the DSP320

term); while the forward energy fluxes are approximately equipartitioned in the temporal case, the321
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Π𝛿 (the CP term) is slightly larger in the spatial case. However, looking at the vertically integrated322

transfers, we notice that for scales smaller than 5 km (_𝑠𝑝 = 12 km) and slower than around 10 hrs,323

both the Π𝛿 and the Π𝛼 do in fact seem to converge, this being especially evident for the temporal324

case. We use the scaling for frontogenesis used in Barkan et al. (2019) to support the hypothesis325

that for small enough scales, there is an equipartition between Π𝛼 and Π𝛿. In general, the fact that326

the Π𝛿 = −E′𝛿 is positive at the smallest, fastest scales in is line with our expectations about fronts,327

whose strong near-surface convergence (i.e. negative 𝛿) should lead to positive values for Π𝛿. This328

also offers clear evidence for the hypothesis by Capet et al. (2008b) that the forward energy cascade329

is due to ageostrophic motions (geostrophic flows have negligible 𝛿). However the cause of the330

forward cascade contribution of Π𝛼 are less clear. We plot the spatial and temporal energy spectra331

for the 2 km and 500 m winter runs (Fig. 7). Both show a larger level of energy at all scales in332

the 500 m model run relative to 2 km model. This is broadly consistent with the stronger inverse333

energy cascade in the 500 m model relative to the 2 km model from MLEs to larger scales. The334

500 m model has a larger energy even at small scales in spite of having a stronger forward cascade.335

This is because both frontal dynamics and mixed layer instability are accompanied by a conversion336

of APE to KE, energizing the surface mixed layer. A quantitative explanation of the equilibrium337

structure of the energy spectrum would require a full spectral kinetic energy budget, which is not338

the focus here.339

b. The spatial structure of energy fluxes340

To shed greater light on the transfers, following Fig. 1, we visualize the spatial structure ofΠ𝛼 and347

Π𝛿 in for different filter scales, along with the other components that constitute (8): �̄�, 𝛿, E′ and the348

principal strain anisotropy in the form 𝛾E′ = (𝜏𝑣𝑣 − 𝜏𝑢𝑢)/2. For a filter scale of ℓ = 4𝑘𝑚 (_𝑠𝑝 = 9.6349

km) we plot this breakup in Fig. 8. An immediate observation is the close similarity of the Π𝛼 and350

Π𝛿 fields to the extent that they almost look identical at first glance. This further lends credence to351

the hypothesis that at frontal spatial scales, there is an approximate equipartition between the two352

terms. The largest positive values in the Π𝛼 and Π𝛿 fields are found in regions where 𝛿 is strongly353

negative (i.e. regions of strong convergence). The small scale kinetic energy is also collocated354

with the convergent regions , as is the anisotropy 𝛾E′ which suggests that that these two quantities355

are associated with the ageostrophic secondary circulation of the fronts, whose signature is the356
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Fig. 7. (a) Spatial [m2s−2/(cycles/m)] and (b) temporal [m2s−2/(cycles/s)] kinetic energy spectrum averaged

over the winter months of January, February and March for the 2 km run (thin line) and the 500 m run (thick

line).
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Fig. 8. The same snapshot as Fig. 1 showing the various components of Equation (8): the convergence

production,Π4
𝛿
[m2s−3], the deformation shear productionΠ4𝛼, where the superscript indicates ℓ = 4 km (_𝑠𝑝 = 9.6

km), i.e. Π4 is the energy transferred from scales larger than 4 km to finer scales at a ocean surface. Also shown

are the energy of the smaller scales E ′4 [m2s−2], the anisotropy of the final scales in the local principal strain

coordinates 𝛾E ′4, the larger scale divergence, 𝛿 and the larger scale strain, �̄� normalized by the Coriolis paramter,

𝑓 .
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346

convergent region. The large scale strain �̄� also has a distinctly frontal structure but encompasses357

regions of both positive and negative divergence and has a broader extent than the other fields. It358

is important to keep in mind that this section explains the forward energy cascades at fronts purely359

based on the structure of fronts themselves; this is obvious in the case Π𝛿 but a little more nuanced360

in the case of Π𝛼. We provide a simple theoretical framework explaining this connection between361

the forward cascade at fronts and frontogenesis in the Sec. 5. The correspondence between Π𝛼 and362

Π𝛿 breaks down at larger filter scales as is evident from Fig. 9 where a 12 km filter scale is used363

(_𝑠𝑝 = 28.8 km). Π𝛿 is expectedly large where 𝛿 is large and negative, however, Π𝛼 is no longer364
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Fig. 9. Same as Fig. 8 but with a filter scale of ℓ = 12 km (_𝑠𝑝 = 28.8 km).

correlated with the same in spite of structural similarities between the two fields; at larger scales365

(i.e. at scales of MLEs), even these similarities in spatial patterns break down.366

c. Rotational and divergent components of the cross-scale energy flux367

Given that theΠ𝛼 andΠ𝛿 terms do not cleanly seperatemechanisms of inverse and forward energy368

fluxes, we decompose the horizontal velocity field into its rotational and divergent components,369

i.e. a Helmholtz decomposition, and subsequently compute energy transfers. Thus, we write370

𝑢 = 𝜙𝑥 +𝜓𝑦 , (17)

𝑣 = 𝜙𝑦 −𝜓𝑥 , (18)

where 𝜙 and 𝜓 are the velocity potential and streamfunction respectively. 𝜙 and 𝜓 are solved by371

inverting the Poisson equations ∇2𝜙 = 𝛿 and ∇2𝜓 = −Z assuming the simple Dirchlet boundary372
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Fig. 10. (a) Spatiotemporally averaged energy flux Π
ℓ,𝑟
𝛼 [m2s−3] (=Πℓ,𝑟

ℎ
) term computed purely using the

rotational component of velocity. The corresponding Πℓ,𝑟

𝛿
using only rotational components is trivially zero.

(b) The difference between Πℓ
𝛼 and Π

ℓ,𝑟
𝛼 interpreted as the forward flux component of Πℓ

𝛼. (c) The net forward

energy flux component in Πℓ
ℎ
obtained by adding the result in (b) with that obtained in Fig. 5b; this is same as

the difference between Πℓ
ℎ
and its purely rotational component, Πℓ,𝑟

ℎ
.
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384

385

386

condition 𝜙 = 0 at the boundary. We associate (𝑢𝑟 , 𝑣𝑟) ≡ (𝜓𝑦,−𝜓𝑥) as the rotational component373

of the velocity and (𝑢𝑑 , 𝑣𝑑) ≡ (𝜙𝑦, 𝜙𝑥) as the divergent component. Note that once the Poisson374

equation for 𝜙 is inverted to obtain (𝑢𝑑 , 𝑣𝑑), (𝑢𝑟 , 𝑣𝑟) are obtained by simply subtracting the divergent375

components from the full velocity field so that the Poisson equation for 𝜓 does not actually need to376

be solved. To keep the analysis simple, we first compute the energy fluxes through (10) using only377

the rotational components i.e. both the consituent fine-scale stresses and the coarse-scale strains that378

make up the energy flux are entirely rotational. We refer to the resulting horizontal energy transfer379

as Πℓ,𝑟

ℎ
, where the superscript refers to “completely rotational”, noting that Πℓ,𝑟

ℎ
= Π

ℓ,𝑟
𝛼 +Πℓ,𝑟

𝛿
.380

However, because Πℓ
𝛿
∝ 𝛿, we have that Πℓ,𝑟

𝛿
≡ 0 and thus381

Π
ℓ,𝑟

ℎ
= Πℓ,𝑟

𝛼 (19)

We plot the spatiotemporally averaged rotational component Πℓ,𝑟
𝛼 in Fig.10a and find it to be387

entirely upscale. The residual Πℓ
𝛼−Π

ℓ,𝑟
𝛼 (Fig.10b) which includes a mix of rotational and divergent388

components, is almost entirely forward, implying that the purely rotation component, Πℓ,𝑟
𝛼 (equiv-389

alently Πℓ,𝑟

ℎ
from (19)) accounts for the entirety of the inverse cascade of Πℓ

ℎ
. We associate this390

with the energetic interactions between MLEs through the mechanism demonstrated by Schubert391

et al. (2020) and also mesoscale eddies themselves. Adding this residual forward flux term to the392
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other forward flux term found earlier, Πℓ
𝛿
(Fig. 5c) gives us the total forward flux associated with393

the flow and this works out to be394

Πℓ
𝛿 +Π

ℓ
𝛼 −Πℓ,𝑟

𝛼 = Πℓ
ℎ −Π

ℓ,𝑟

ℎ
(20)

where we used the fact that Πℓ,𝑟

𝛿
is identically zero. The total forward flux is plotted in Fig. 10c.398

In summary, using the helmholtz decomposition, we can decompose the total horizontal transfer399

Πℓ
ℎ
into the inverse energy flux, given by Π

ℓ,𝑟

ℎ
comprising interactions among purely rotational400

components and the forward energy flux Πℓ
ℎ
−Π

ℓ,𝑟

ℎ
which includes a mix of the rotational and401

divergent components. This decomposition is dynamically relevant unlike an attempted forward-402

inverse decomposition by Schubert et al. (2020) who separately average the negative values and403

positive values ofΠℓ
ℎ
to separate the forward and inverse fluxes. It is notable that the peak values of404

the forward (Fig. 10c) and inverse (Fig. 10a) fluxes are in fact comparable though the latter spans a405

larger range of spatial scales and has a deeper vertical extent. The reason of course is that forward406

energy flux is highly localized at fronts. But a casual examination of the spatiotemporal energy407

spectra (Fig. 11a-b) of the divergent and rotational fields can give the impression that the divergent408

component is dynamically insignificant compared to the rotational (note the order of magnitude409

smaller spectral density at submesocales), in contrast with the picture that emerges from Fig. 10c.410

Though of secondary importance to the present study, a key question is how both the magnitude411

of the forward flux and the ratio of the rotational and divergent spectra change with increasing412

horizontal resolutions. We address this in detail in an upcoming study.413

At this point it must be clear that the results in this section could have been obtained directly from414

(4) or (10) without employing the principle strain coordinates or the 𝛼− 𝛿 decomposition; all that415

was required was the Helmholtz decomposition. However, the real strength of this decomposition416

lies in the theoretical connections that are readily established with the asymptotic framework for417

frontogenesis discovered by Barkan et al. (2019) as discussed in Section 5.418

5. The connection between energy flux at fronts and frontogenesis419

Barkan et al. (2019) provided a broad theoretical framework for frontogenesis based on general420

scaling considerations for frontal Rossby number, 𝑅𝑜 = 𝑉/ 𝑓 𝑙 and the frontal anisotropy, 𝜖 = 𝑙/𝐿,421

where𝑉 is the along front velocity scale and 𝑙 the frontal width, and 𝐿 the along front length scale.422
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Fig. 11. (a) Spatial [m2s−2/(cycles/m)] and (b) temporal kinetic energy spectrum [m2s−2/(cycles/s)] of the

rotational (red lines) and divergent (blue lines) components of the flow averaged over the winter months of

January, February and March for the 2 km (thin lines) and 500 m (thick lines) run.
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Under the assumptions of423

𝑅𝑜 ∼𝑂 (1) , 𝜖 � 1 , (21)

both of which are defining frontal characteristics, Barkan et al. (2019) were able to show after424

neglecting dissipative terms, that for fronts 2,425

𝐷𝛿

𝐷𝑡
∼ −𝛿2 , (22)

𝐷Z

𝐷𝑡
∼ −Z𝛿 (23)

𝐷 |∇𝑏 |2
𝐷𝑡

∼ −2|∇𝑏 |2𝛿 . (24)

Eq. (22) can be solved directly in a Lagrangian reference frame and was shown by Barkan et al.426

(2019) to have a finite-time singularity similar to the result by Hoskins and Bretherton (1972)427

derived under the less general semi-geostrophic approximation. Of course, the actual singularity428

cannot manifest and the rapid increase in the convergence −𝛿 is arrested in practice by frontal429

instabilities (like symmetric or shear instabilities), or numerical dissipation in ocean models. From430

(23) and (24), both Z and ∇𝑏 also have finite-time singularities.431

The equations for the fine-scale kinetic energy, from (8), can be written in the form (Aluie et al.432

2018),433

𝐷E′

𝐷𝑡
+∇ ·T = −𝛿E′+𝛾E′�̄� (25)

where T is the fine-scale kinetic energy transport flux (for detailed forms, see Aluie et al. (2018)434

or the Appendix B in Barkan et al. (2017)). The similarities in the dominant terms describing the435

evolution of |∇𝑏 |2 and E′ as seen in (10) and (16) suggest that (25) can be written in a form similar436

to (24) under the frontal scalings (21). Here we neglect the vertical shear terms in both cases,437

which is justified in the scaling analysis of Barkan et al. (2019), supported by our model analysis;438

in particular Π𝑧 [defined in (3)] is on average about 5 times smaller than Πℎ (see Fig. 14). As439

a reminder, we note that while (25) involves coarse-grained quantities 𝛿 and �̄�, the frontogenetic440

equations (22)-(24) involve the actual fields themselves. Therefore these quantities are comparable441

in the limit when the filter-scale is smaller than the average frontal scale (in our case, ℓ ≤ 10 km or442

equivalently, _𝑠𝑝 ≤ 24 km).443

2Two additional terms appear at leading order in the vorticity and divergence equations. These terms turn out to be subdominant as they cancel
out with the vertical mixing terms through the turbulent thermal wind (TTW) balance that are not formally included in inviscid theory.
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While the principal strain coordinates lead to very compact forms for the energy transfer, the444

Π𝛼 term can be difficult to interpret, principally owing to the opaqueness of the anisptropy term445

𝛾. Instead, for the remainder of this section we work in a front aligned coordinate system, with446

the 𝑦-axis being along the frontal axis and 𝑥 being the cross-frontal axis. The along and crossfront447

velocities are 𝑣 and 𝑢 respectively. Working in this coordinate system, we employ the coordinate-448

free forms of energy transfer (10) and frontogenetic tendency (16). The frontal scaling assumptions449

(21) need to be supplemented by one for the velocities,450

𝑢 ∼ 𝑅𝑜𝑣 . (26)

which crucially differs from the semigeostrophic approximation of Hoskins and Bretherton (1972)451

who always have 𝑢 � 𝑣. But because oceanic fronts have 𝑅𝑜 = 𝑂 (1), 𝑢 ∼ 𝑣 i.e. the alongfront452

and crossfront velocities have similar order. This is a crucial observation about oceanic fronts453

that separates the analysis in Hoskins and Bretherton (1972) and Barkan et al. (2019). For frontal454

coarse graining scales, we also assume that the coarse and fine velocities scale similarly. i.e.455

�̄� ∼ �̄� , 𝑢′ ∼ 𝑣′. (27)

Thus we can infer that456

𝜏𝑢𝑢 ∼ 𝜏𝑣𝑣 ∼ 𝜏𝑢𝑣 ∼ (𝜏𝑢𝑢 + 𝜏𝑣𝑣)/2 = E′ . (28)

Furthermore the crossfront gradients and alongfront gradients are related as457

𝜕𝑦 ∼ 𝜖𝜕𝑥 ⇒ 𝜕𝑦 � 𝜕𝑥 , (29)

reflecting the crossfront gradients at fronts are a lot larger than alongfont gradients. From (29), we458

can infer that459

𝛿 = �̄�𝑥 + �̄�𝑦

∼ �̄�𝑥 ∼ �̄�𝑥

∼ �̄�𝑥 − �̄�𝑦 = Z̄ ,

(30)
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i.e. 𝛿 ∼ Z̄ and that �̄�2 ∼ 𝛿2+ Z̄2. Thus the strain comprises both divergent and rotational components.460

We can use the above scaling estimates to assess the energy transfer term Π𝛼 using the coordinate461

free form (10). First to estimate Π𝛼,462

Π𝛼 =(𝜏𝑢𝑢 − 𝜏𝑣𝑣) (�̄�𝑥 − �̄�𝑦)/2− 𝜏𝑢𝑣 (�̄�𝑦 + �̄�𝑥)

∼ −𝜏𝑢𝑣 �̄�𝑥/2 ∼ −E′�̄�𝑥

∼ −E′𝛿 = Π𝛿 ,

(31)

where we neglect the first term (because 𝜏𝑢𝑢 ∼ 𝜏𝑣𝑣) and the 𝑦-derivative in the second term (from463

(29)). ThusΠ𝛼 ∼Π𝛿, supporting the model-based observation thatΠℎ has an equipartition at small464

scales. The scaling arguments used to infer this result fall short of an actual explanation for the465

striking similarity of the Π𝛼 and Π𝛿 observed in Fig. 8 but provide a strong heuristic for the same.466

Then (25) can be written as467

𝐷E′

𝐷𝑡
+∇ ·T ∼ −2𝛿E′ , (32)

where we use Π𝛼 ∼ Π𝛿 = −E′𝛿. Thus the evolution equation (32) takes the same form as (24).468

Because the equipartition demonstrated here is asymptotic, the precise numerical factor of 2469

multiplying −𝛿E′ is not expected in general. In the simple model-based computation in Fig. 2, for470

example, the numerical factor is actually around 2.5 although that calulation depended on some471

specific choices for the frontal averaging which could affect the factor obtained. We also note472

the connection between the result obtained here, namely −2𝛿E′ as the forward cascade at fronts,473

and that from the Helmholtz decomposition, Πℓ
ℎ
−Π

ℓ,𝑟

ℎ
; the latter expression consists of a mix of474

rotational and divergent components which is consistent with the fact that although 𝛿 is purely475

divergent, E′ comprises both rotational and divergent velocity fields.476

For completeness, we derive (24) starting from the coordinate-free form in (16). From (29),477

using 𝑏2𝑦 � 𝑏2𝑥 and 𝑏𝑥𝑏𝑦 � 𝑏2𝑥 , we get478

B𝛼 = (𝑏2𝑥 − 𝑏2𝑦) (𝑢𝑥 − 𝑣𝑦)/2− 𝑏𝑥𝑏𝑦 (𝑢𝑦 + 𝑣𝑥)

∼ −𝑏2𝑥𝑢𝑥/2

∼ −(𝑏2𝑥 + 𝑏2𝑦)
𝛿

2
=B𝛿 ,

(33)
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which leads to (24). Interestingly, as in the case of (31), (33) also demonstrates an equipartition in479

the 𝛼 and 𝛿 terms but the dominant terms are different. Now, because we associate the evolution480

of ∇𝑏 through (24), it also follows that we associate the forward energy cascade at fronts as being481

primarily caused due to frontogenesis. This is, in retrospect, expected because the rapid increase in482

the convergence through (22) can be interpreted as a correspendingly rapid shrinkage in the frontal483

scale, 𝑙 associated with the frontal velocities, 𝑢 and 𝑣. In other words, frontogenesis is the primary484

cause of forward energy cascade at fronts.485

The mechanism elucidated above can be connected to the broader energetics of the surface mixed486

layer as follows: Mixed layer instabilities which are strongest during the winter convert mixed layer487

available potential energy to kinetic energy of fronts and MLEs. Frontogenesis transfers energy at488

fronts to smaller scales by the mechanism proposed by Barkan et al. (2019) as demonstrated here,489

while mixed layer eddies undergo an inverse cascade of energy to mesoscales as shown by Schubert490

et al. (2020). Of course, this framing presumes that no competing mechanisms are present, chief491

among them being symmetric instability which is likely not resolved at the 500 m model resolution492

employed here. We discuss this last point further in Section 6b.493

6. Discussion494

a. The dependence of energy transfer on effective flow resolution495

The 2 km solution, as seen in Figures 5 and 4 fails to not only resolve the forward cascade but500

underestimates the submesoscale inverse cascade signal too. The reason for this is that the 2 km501

model has a larger amount of numerical dissipation, which in ROMS is a grid dependent implicit502

biharmonic dissipation i.e. lower resolutions are more dissipative and therefore can suppress503

advective dynamics that lie closer to the grid resolution. Other studies have noted this increase504

in upscale energy flux as the resolution is increased towards submesoscale-permitting resolutions505

Kjellsson andZanna (2017);Qiu et al. (2014). When computing energy transfers fromobservations,506

however, the key issue is one of spatiotemporal resolution of the measured data (unlike models507

where the issue is innacurate physics). To study how spatial sampling affects the energy transfer508

without the added effects of spurious physics (through higher numerical dissipation), we treat the509

500 m run as the ground truth solution and smooth the flow fields with systematically larger filter510

sizes and compute the crosscale energy fluxes of the smoothed fields. The actual fidelity of the 500511
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m run is not of particular importance; while it plausibly resolves the MLE inverse energy cascade512

accurately, it is likely that higher resolution runs would modify the forward energy flux.

Fig. 12. Spatiotemporally averaged horizontal energy flux [m2s−3] for the 500 m resolution run, with uniform

smoothing performed on the velocity fields before computing the fluxes. The subscripts denote the smoothing

filterwidth with values (a) 2 km (b) 4km and (c) 8km. These results are directly comparable to the unsmoothed

energy transfer in Fig. 5a.

496

497

498

499

513

Figure 12 shows the spatiotemporally averaged fluxes for increasing values of smoothing scale (a519

simple uniform filter is applied in each case). Comparing Fig. 12a, which has a 2 km smoothing,520

with the corresponding results from the 2 km model (Fig. 5d) and the 500 m model (Fig. 5a), we521

find that about half of the forward cascade and most of the inverse cascade region is accurately522

captured. The 4km smoothed fields have fluxes that resemble the 2 kmmodel fluxes without a trace523

of the forward flux captured while the upscale flux is also diminished. The 8km smoothed fields524

(Fig. 12c) have almost no forward fluxes and substantially weaker upscale fluxes, suggesting that525

observations would need an average spatial resolution of at least 8km at this latitude to capture any526

fraction of the submesocale energy fluxes. In Fig. 13 we also plot the spatial spectra corresponding527

to these smoothed fields. An interesting observation is the effect of the uniform filter on the spatial528

spectrum of the flow. For example, the 2km filter smoothed field has a rapid spectral drop off529

between 4 km and 5 km allowing us to infer that spectral cutoff is between 2 and 2.5 times the filter530

scale. However, it can be difficult to discern a single length scale as the effective spectral cutoff of531

the uniform filter given the continous drop off starting from around 5 km scales of the 2km-filtered532

field (the red curve in Fig. 13). Unlike the spectrum however, the energy flux is a direct diagnostic533
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Fig. 13. (a) Spatial energy spectra [m2s−2/(cycles/m)] of the velocity fields used to compute the energy flux

for smoothing performed by different uniform filter sizes in Fig. 12. The red, green and blue curves correspond

to Fig. 12a, b and c respectively. The black curve is the spectrum of the unsmoothed velocity field, replotted

from Fig. 7a for reference. Note that the 2km-smoothed field (red) starts dropping off between 4 km and 5km

scales.

514

515

516

517

518

of the dynamics allowing us to infer the effective spectral cutoff of the uniform filter, as has been534

done in Fig. 6 (Sec. 4a) where a factor of 2.4 was found.535

b. Symmetric instability: A competing and downstream mechanism for forward energy flux536

Symmetric Instability (SI) is a form of negative potential vorticity (PV) instability (Hoskins537

1974; Jones and Thorpe 1992; Thomas et al. 2013; Bachman and Taylor 2014; Yu et al. 2019)538

which occurs in the surface mixed layer when the potential vorticity of fronts is decreased through539

the action of surface wind stresses or diabatic cooling. Because frontal PV can be written as540
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(assuming geostrophic fronts)541

𝑞 = 𝑓 (Z + 𝑓 )𝑏𝑧 − |∇𝑏 |2 (34)

fronts with stronger buoyancy gradients are more likely to undergo SI. In the event that strong542

fronts do develop negative PV due to the action of surface forcing the front undergoes SI (referred543

specifically as forced SI), transferring energy to three-dimensional fine scalemotions (i.e. a forward544

energy flux) through the vertical flux term Πℓ
𝑣 (more specifically the vertical flux term with the545

geostrophic coarse scale vertical shear, or the geostrophic shear production, GSP) in the process546

bringing the frontal PV to zero and restratifying the mixed layer.547

Unlike the frontal forward mechanism demonstrated in this manuscript, SI is not a generic548

mechanism and depends crucially on the strength of fronts and the local surface forcing therein.549

For example a surface wind stress can generate negative PV fluxes through the so-called Ekman550

buoyancy fluxes but are strongly contingent on the direction of the wind stress relative to the front551

alignment; downfront winds being most favorable for inducing forced SI (Thomas and Lee 2005).552

Furthermore, the boundary layer turbulence mediated ageostrophic secondary circulation, also553

referred to as a turbulent thermal wind (TTW) balance (McWilliams et al. 2015; Wenegrat and554

McPhaden 2016; McWilliams 2017; Crowe and Taylor 2018), acts as a source of PV in the surface555

mixed layer which could potentially offset SI at oceanic fronts (Wenegrat et al. 2018). Given that556

the TTW mechanism is pervasive in submesoscale-resolving ocean models (McWilliams et al.557

2015; Wenegrat et al. 2018; Barkan et al. 2019), this could be a relevant offsetting mechanism for558

SI. In our present model runs, the vertical flux, Πℓ
𝑣 is on average 4 times smaller than Πℓ

ℎ
as is559

evident in Fig. 14a. Πℓ
𝑣 also has a rather different structure than Πℓ

ℎ
(Fig. 5a) with a forward flux560

close to the surface and a near-surface upscale flux. The spatiotemporally averaged geostrophic561

shear production,562

Πℓ
𝑣𝑔 = −(𝜏𝑢𝑤�̄�𝑧,𝑔 + 𝜏𝑣𝑤 �̄�𝑧,𝑔) , (35)

where (𝜏𝑢𝑤, 𝜏𝑣𝑤) ≡ (𝑢𝑤 − �̄��̄�, 𝑣𝑤 − �̄��̄�) are the vertical momentum fluxes and the coarse-scale567

geostrophic shear is (�̄�𝑧,𝑔, �̄�𝑧,𝑔) ≡ (−�̄�𝑦, �̄�𝑥)/ 𝑓 . Πℓ
𝑣𝑔 is plotted as a function of ℓ in Fig. 14b and568

is largest at frontal scales but is upscale instead of downscale as might be expected if SI was a569

dominant process on average at these scales in our 500 m model run during winter. Note that570

this does not preclude the local importance of SI at strong density fronts with favorable wind571
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Fig. 14. Spatiotemporally averaged a) vertical shear energy flux, Πℓ
𝑣 [m2s−3] and b) the geostrophic shear

production, Πℓ
𝑣𝑔, (defined in (35)) for the 500 m resolution run during winter months. Note that the colorbar

ranges are 4 times smaller than the corresponding horizontal flux figures in the rest of this study. i.e. Πℓ
𝑣 is on

average 4 times smaller than Πℓ
ℎ
.

563

564

565

566

stress. The structure of Πℓ
𝑣 (Fig. 14a) is likely a consequence of interactions between mesoscale572

and submesoscale eddies and IGWs (Barkan et al. 2021) and are not like the cascade processes that573

determine the structure of Πℓ
ℎ
. While IGWs in the present class of runs are rather weak, some level574

are likely present through the interaction of currents with bottom topography and the projection of575

the daily forced wind stress onto inertial motions. In the presence of wind and tide-generate IGWs,576

however, Πℓ
𝑣 is of similar order to Πℓ

ℎ
(Barkan et al. 2021).577

Recently Dong et al. (2021b) studied an idealized front forced by downfront wind that subse-578

quently underwent SI. They found that in the absence of a SI-specific paramterization (Bachman579

et al. 2017) supplementing the surface boundary layer parameterization (in their case, as in ours,580

KPP) SI is suppressed and the GSP term is underestimated. We expect a similar lack of SI in our581

model results given the lack of an SI parameterization, an issue that we expect to remedy in future582

studies. Also, another recent paper (Dong et al. 2021a) used a global submesoscale permitting583

model solution to estimate the horizontal scale of SI in the ocean which would also correspond584

to the horizontal resolution at which SI could be potentially resolved in ocean models. They find585
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that in general, the resolutions required are below 100 m in a majority of the ocean, consideraly586

higher than the 500 m model used here. Although, concurrent work by (Jing et al. 2021) did find587

evidence for SI along the fronts flanking the mesoscale eddies that formed part of the subtropical588

countercurrent (STCC) during the summer (when the STCC eddies are most energetic) in the589

Northwest Pacific, in a 500 m horizontal resolution model run. Because the STCC is a zonal590

current, favorable downfront winds make the presence of SI in the summer in that region likely.591

Whether such favorable surface forcing conditions exist in this region and their role in triggering592

SI remains to be examined. Also of importance is the role of the mechanism of frontogenesis - in593

summer mesoscale strain-induced frontogeneris is more likely to be important (as in the case of594

STCC) whereas in winter mixed-layer instability in conjunction with TTW is more plausible; as595

explained above, TTW can offset SI.596

7. Summary597

In this study we examine the flux of kinetic energy across spatial and temporal scales in subme-598

soscale resolving simulations of the North Atlantic Ocean, focusing on the Iceland basin region.599

Instead of the traditionally used spectral energy flux approach, we use the coarse-graining method600

to compute the fluxes (Aluie et al. 2018). The coarse-graining approach involves a decomposition601

of the flow into slow (large) and fast (small) components using a temporal (spatial) smoothing filter;602

the equations for the kinetic energy of the coarse (large or slow) and fine (small or fast) components603

are then written and the terms corresponding to the energy exchange (or equivalently the energy604

flux from coarse to the fine scales) between the two components are identified. Following recent605

work (Aluie et al. 2018; Schubert et al. 2020; Barkan et al. 2021), we analyze the cross-scale energy606

flux in two ways. First, we average the flux over the horizontal domain and over the analysis time607

period (here the winter months of January to March) and examine the average flux as a function608

of filterscale and depth. Second, for specific filter scales and at a specific depth (here, near the609

surface) we visualize the spatial structure of the flux and examine its patterns relative to observed610

flow structures like mesoscale and mixed-layer eddies and submesoscale fronts. Our objective here611

is to identify the nature of the cross-scale energy flux at O(1-10) km length scales, that typically612

correspond to submesoscale currents in the ocean, comprising mixed-layer eddies (MLEs) and613
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fronts that are generally limited to the near-surface mixed layer and particularly strong in the winter614

months due to the presence of deep mixed layers.615

A plethora of studies over the past two decades, starting from Capet et al. (2008b) have found that616

submesoscales have a dual cascade of energy, an inverse cascade to mesocale eddies and a forward617

energy cascade to dissipation scales. Recent work by Schubert et al. (2020) also employing the618

coarse-graining approach used here, were able to show that MLEs undergo an inverse cascade of619

energy to mesoscales, in particular providing a visual demonstration of the ‘absorption’ of MLEs620

into mesoscale eddies. They also highlighted a forward energy flux at fronts without providing a621

physical explanation for this phenomenon. In this study we provide the mechanism for the frontal622

forward cascade through model-based analysis and by extending a recently proposed asymptotic623

theory for frontogenesis (Barkan et al. 2019).624

In order to shed light on the mechanism of the frontal forward flux we pursue two concurrent625

approaches building on the coarse-graining framework. First we decompose the flow field into626

rotational and divergent components i.e. a Helmholtz decomposition. We then compute the627

cross-scale flux purely due to the rotational velocity components. This rotational flux is found,628

on spatio-temporal averaging, to be almost entirely upscale (i.e. an inverse cascade) in the upper629

ocean. The difference between the total flux and the rotational flux is found to be, on average,630

entirely downscale (i.e. a forward cascade). In other words the Helmholtz decomposition neatly631

decomposes the inverse and forward energy flux components of the flow.632

Concurrently, we write the cross-scale energy flux in the principal strain coordinates, where the633

coarse (or smoothed by the filter) field strain tensor is diagonalized. This allows the flux to be634

written in a simple sum of two components where the first component is proportional to the coarse635

strain, �̄� and the second component is proportional to the convergence (i.e. negative divergence) of636

the coarse field, −𝛿, where (·̄) denotes the filter-based smoothing operator. Calculating these two637

components in the model data, we find that the �̄� component consists (on average) of most of the638

inverse energy flux but the total forward flux is equipartioned between the �̄� and 𝛿 components. We639

then use the asymptotic theory of frontogenesis proposed by Barkan et al. (2019) to theoretically640

demonstrate the equipartition of the forward energy flux at fronts between the �̄� and 𝛿 terms641

(Section 5) for fronts. But this equipartion also means that, because the 𝛿 component of flux642

is proportional to the convergence, −𝛿, so is the �̄� component and consequently so is the total643
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energy flux at fronts (which is just a sum of the two components). Note that because fronts are644

convergent flows (𝛿 < 0), this essentially provides a theoretical and numerical basis for the forward645

energy flux at fronts. Furthermore, in the asymptotic theory of frontogenesis by Barkan et al.646

(2019), a crucial result was that the Lagrangian rate of change (i.e. 𝐷/𝐷𝑡) of frontal quantities647

like vorticity, divergence and buoyancy gradient were all proportional to −𝛿 which at fronts is648

positive. This causes a finite time singularity in the convergence and correspondingly in the other649

frontal quantities i.e. frontogenesis. The fact that the rate of change of the fine scale kinetic energy,650

i.e. the cross-scale energy flux is also proportional to −𝛿 allows us to infer that the cause of the651

forward energy flux at fronts is actually frontogenesis (noting that 𝛿 and 𝛿 are similar when the652

coarse-graining scale is around frontal scales). Heuristically this is because the sharpening of653

fronts due to frontogenesis essentially transfers the frontal energy to smaller scales resulting in a654

forward energy flux.655
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