
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
99
84
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

This Looks Like That There: Interpretable neural networks for

image tasks when location matters

Elizabeth A. Barnes1,1, Randal J Barnes2,2, Zane K Martin1,1, and Jamin K Rader1,1

1Colorado State University
2University of Minnesota

November 30, 2022

Abstract

We develop and demonstrate a new interpretable deep learning model specifically designed for image analysis in earth system

science applications. The neural network is designed to be inherently interpretable, rather than explained via post hoc methods.

This is achieved by training the network to identify parts of training images that act as prototypes for correctly classifying unseen

images. The new network architecture extends the interpretable prototype architecture of a previous study in computer science

to incorporate absolute location. This is useful for earth system science where images are typically the result of physics-based

processes, and the information is often geo-located. Although the network is constrained to only learn via similarities to a small

number of learned prototypes, it can be trained to exhibit only a minimal reduction in accuracy compared to non-interpretable

architectures. We apply the new model to two earth science use cases: a synthetic data set that loosely represents atmospheric

high- and low-pressure systems, and atmospheric reanalysis fields to identify the state of tropical convective activity associated

with the Madden-Julian oscillation. In both cases, we demonstrate that considering absolute location greatly improves testing

accuracies. Furthermore, the network architecture identifies specific historical dates that capture multivariate, prototypical

behaviour of tropical climate variability.

1

Generated using the official AMS LATEX template v6.1

This Looks Like That There: Interpretable neural networks for image tasks1

when location matters2

Elizabeth A. Barnes,a Randal J. Barnes,b Zane K. Martin,a and Jamin K. Rader,a3

aDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USA.4

b Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, MN, USA.5

Corresponding author: Elizabeth A. Barnes, eabarnes@colostate.edu6

1

ABSTRACT: We develop and demonstrate a new interpretable deep learning model specifically

designed for image analysis in earth system science applications. The neural network is designed to

be inherently interpretable, rather than explained via post hocmethods. This is achieved by training

the network to identify parts of training images that act as prototypes for correctly classifying

unseen images. The new network architecture extends the interpretable prototype architecture of a

previous study in computer science to incorporate absolute location. This is useful for earth system

science where images are typically the result of physics-based processes, and the information is

often geo-located. Although the network is constrained to only learn via similarities to a small

number of learned prototypes, it can be trained to exhibit only a minimal reduction in accuracy

compared to non-interpretable architectures. We apply the new model to two earth science use

cases: a synthetic data set that loosely represents atmospheric high- and low-pressure systems, and

atmospheric reanalysis fields to identify the state of tropical convective activity associated with

the Madden-Julian oscillation. In both cases, we demonstrate that considering absolute location

greatly improves testing accuracies when compared to a location-agnostic method. Furthermore,

the network architecture identifies specific historical dates that capture multivariate, prototypical

behaviour of tropical climate variability.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2

SIGNIFICANCE STATEMENT: Machine learning models are incredibly powerful predictors,23

but are often opaque “black boxes”. The how-and-why themodelmakes its predictions is inscrutable24

—themodel is not interpretable. We introduce a newmachine learningmodel specifically designed25

for image analysis in earth system science applications. The model is designed to be inherently26

interpretable and extends previous work in computer science to incorporate location information.27

This is important because images in earth system science are typically the result of physics-based28

processes, and the information is often map based. We demonstrate its use for two earth science use29

cases and show that the interpretable network exhibits only a small reduction in accuracy compared30

to black box models.31

1. Introduction32

Machine learning has been identified as an innovative, under-explored tool for furthering under-33

standing and simulation of the Earth system (Balmaseda et al. 2020; Irrgang et al. 2021; National34

Academies of Sciences Engineering and Medicine 2020). Artificial neural networks (as a type of35

supervisedmachine learning) have emerged as a powerful tool for extracting nonlinear relationships36

amidst noisy data, and thus are particularly suited to this endeavor. However, a major criticism of37

the use of neural network models for scientific applications is that they are “black boxes.” Scientists38

typically want to know why the model reached the decision that it did. The benefit of explaining39

the decision-making process of a model goes beyond that of satisfying curiosity: explanation can40

assist users in (1) determining if the model is getting the right answers for the right reasons (e.g.41

Lapuschkin et al. 2019), (2) controlling and improving the machine learning approach (e.g. Keys42

et al. 2021), and (3) discovering new science (e.g. Toms et al. 2020; Barnes et al. 2020). Effective43

explanations also increase user confidence.44

Because researchers are driven by the desire to explain the decision-making process of deep45

learning models, a large variety of post hoc explainability methods have been developed (e.g.46

Buhrmester et al. 2019; Barredo Arrieta et al. 2020; Samek et al. 2021). By post hoc, we mean47

methods in which a deep learning model has already been trained and the user attempts to explain48

the predictions of the black box model after the predictions have been made. Although post hoc49

explainability methods have demonstrated success across many scientific applications (including50

earth system science, e.g. McGovern et al. (2019); Toms et al. (2020); Davenport and Diffenbaugh51

3

(2021)), they are not without their drawbacks. Post hoc explainability methods do not exactly52

replicate the computations made by the black box model. Instead, through a set of assumptions and53

simplifications, these methods quantify some reduced version of the model (e.g. Montavon et al.54

2018) and, thus, do not explain the actual decision-making process of the network. Furthermore,55

the explanations are not always reliable (Kindermans et al. 2019). Different explanation methods56

can produce vastly different explanations of the exact same black boxmodel (Mamalakis et al. 2021,57

2022). Even if the explanation is reliable, at times the output of the explainability method itself58

requires extensive deciphering by the scientist to understand the result (e.g. Mayer and Barnes59

2021; Martin et al. 2021; Barnes et al. 2020). Rudin (2019) discusses in detail many of these60

potential issues with explainable machine learning methods and suggests that we should instead61

be using machine learning models that are inherently “interpretable”. That is, instead of trying62

to explain black box models, we should be creating models where the decision-making process is63

interpretable by design.64

Chen et al. (2019) present an example of one type of interpretable neural network, the prototypical65

part network (ProtoPNet). The ProtoPNet hinges on training a neural network to identify patches66

of the training images that act as “prototypes” for correctly classifying unseen images. The idea67

for the ProtoPNet stems from the need to define a form of interpretability that works the way a68

scientist might describe their way of thinking. In their specific application, Chen et al. (2019)69

focus on classifying images of birds by their species. A scientist may classify a new bird image70

by comparing it to representative examples of each species (i.e. species prototypes) and choosing71

the prototype that most resembles the image, i.e this looks like that. In this way, the network is72

inherently interpretable in that the actual decision-making process can be linked to specific features73

of the bird in the input image and their similarity to a relatively small number of species-specific74

prototypes that are directly drawn from the training set. For bird species identification, Chen et al.75

(2019) demonstrate that the ProtoPNet learns prototypes that represent distinguishing features such76

as the red head of a red-bellied woodpecker, or the bright blue wing of a Florida jay.77

Images in earth system science are typically the result of physics-based processes, and the78

information is often geo-located. Thus, unlike the ProtoPNet of Chen et al. (2019) which does not79

care where the bird’s wing is in the image, the location of specific earth system features can be80

critical to the final task (although this is certainly not always the case, e.g. identification of cloud81

4

types from satellite imagery; Rasp et al. (2019)). For example, the mere presence of a low-pressure82

system on a weather map is not enough to know where it will rain. Instead, the location of the low83

— where it is — is also vital for this task. Similarly, identifying the presence of a strong El Niño84

requires not only warm sea-surface temperatures, but specifically warm sea-surface temperatures85

in the tropical equatorial east Pacific (e.g. Philander 1983). Here, we extend the ProtoPNet of Chen86

et al. (2019) to consider absolute location in the interpretable prototype architecture, which we87

call the ProtoLNet (“Prototypical Location Network”). We demonstrate that considering absolute88

location greatly improves the network accuracy (ProtoLNet rather than ProtoPNet) for two earth89

science use cases. The first use case, the idealized quadrants use case (Section 3), applies the90

ProtoLNet to a synthetic data set that loosely represents high- and low-pressure systems where the91

need for location information is readily apparent. The second use case applies the ProtoLNet to92

over 100 years of atmospheric reanalysis fields to identify the state of tropical convective activity93

associated with theMadden-Julian oscillation (MJO;Madden and Julian 1971, 1972; Zhang 2005).94

The MJO use case (Section 4) provides a real, geophysical example of how the ProtoLNet relies95

on location information to make its predictions and demonstrates how the learned prototypes can96

be viewed as prototypical behaviour of transient climate phenomena.97

2. Network Design & Training98

As discussed in the introduction, the ProtoLNet is largely based on the ProtoPNet of Chen et al.99

(2019). We describe the network architecture below, highlighting where our ProtoLNet diverges100

from the ProtoPNet of Chen et al. (2019). We then describe the training procedure in detail.101

a. ProtoLNet architecture102

The ProtoLNet is designed to classify images by comparing latent patches of the input image103

to prototypical latent patches learned from the training set, all while explicitly considering the104

location within the image of the similar latent patches. Throughout, we use the word “patch”105

to refer to a group of neighboring pixels within the input image, and “latent patch” to refer to a106

latent representation of a patch that is computed via a series of convolutional and pooling layers107

within the convolutional neural network. In this section, we first provide a general overview of108

5

the ProtoLNet architecture from start to finish, and then go into more detail about each step in109

subsequent paragraphs, ending with the training process.110

The ProtoLNet architecture (Fig. 1) is very similar to that of the ProtoPNet, and starts with a114

base convolutional neural network (CNN) chosen by the user that takes-in an image as input. As115

discussed more in Section c, this base CNN may be a pre-trained network, or a newly initialized116

network with randomized weights. The CNN is followed by two 1×1 convolutional layers that act117

to restructure the dimensions of the CNN output to be consistent with the subsequent prototype118

layer. It is within the prototype layer that the interpretable learning is done. The network is119

trained to learn representative latent patches within the training set specific to each class, termed120

prototypes, which provide evidence for the image belonging to a particular class. That is, when121

the input image has a patch whose latent representation looks like that prototype, it is labeled as122

belonging to the prototype’s associated class. This is done by computing the similarity of each123

prototype to the latent patches of the input image. Unique to our ProtoLNet, these similarity scores124

are scaled by a learned, prototype-specific location scaling grid so that similarities to the prototypes125

are only important for certain locations within the input image. The maximum scaled similarity126

score across the latent patches for each prototype is then computed. These scores are connected to127

the output via a fully connected layer, and the weighted scores are summed for each output class to128

produce a total number of “points” for each class. The class with the highest number of points is129

then identified as the predicted class.130

As will be discussed in detail in Section c, the ProtoLNet learns the convolutional kernels within131

the two 1× 1 convolution layers, the prototypes, the location scaling grid, and the final fully132

connected weights (pink components in Fig. 1). The user must specify the number of prototypes133

specific to each output class. For the use cases presented here, we choose an equal number of134

prototypes for each class, so if there are = classes and ? prototypes per class, then there are< = =∗ ?135

total prototypes. A critical aspect of the architecture is that each prototype is assigned to only one136

class since it is used as evidence that a particular sample belongs its class.137

Each sample is pushed through the extended CNN, which results in an output “quilt” of latent138

patches. To introduce some general notation, the quilt has shape 0 × 1 ×�, where 0 × 1 is the139

new image shape after undergoing pooling in the base CNN, and � corresponds to the number of140

convolutional kernels chosen by the user. Each prototype vector (p) then has shape 1×1×�. To141

6

Fi
g.

1.
Sc
he
m
at
ic

de
pi
ct
in
g
th
e
Pr
ot
oL

N
et

ar
ch
ite
ct
ur
e.

Ex
am

pl
e
an
d
in
te
rn
al
ly

co
ns
ist
en
td

im
en
sio

ns
of

th
e
te
ns
or
s
at

ea
ch

ste
p
ar
e
gi
ve
n
in

gr
ey

br
ac
ke
ts,

al
th
ou
gh

th
e
sp
ec
ifi
c
di
m
en
sio

ns
va
ry

fo
re

ac
h
us
e
ca
se
.
Pi
nk

co
lo
rs
de
no
te
co
m
po
ne
nt
so

ft
he

ne
tw
or
k
th
at
ar
e
tra

in
ed

(le
ar
ne
d)
,w

hi
le
gr
ay

an
d
bl
ac
k
co
lo
rs
de
no
te
co
m
po
ne
nt
st
ha
ta
re

di
re
ct
ly

co
m
pu
te
d.

Th
e
w
ei
gh
ts
w
ith

in
th
e
ba
se

CN
N
(b
lu
e
sh
ad
in
g)

ca
n
ei
th
er

be
tra

in
ed

or
fro

ze
n.

11
1

11
2

11
3

7

simplify our discussion, from here forward we will drop the general notation and instead use the142

specific dimensions (denoted in gray) of the example shown in Fig. 1. That is, 0 = 2, 1 = 3, and143

� = 64.144

For the example in Fig. 1, a latent patch has shape 1× 1× 64, and the quilt of latent patches145

output by the extended CNN has shape 2×3×64. Because the input image has already potentially146

undergone multiple convolutional and pooling layers within the extended CNN, these latent patches147

do not represent a single pixel of the input image, but instead are a latent representation of some148

larger patch within the input image. Similar to the latent patches, each of the < learned prototypes149

are a latent representation of some larger region of the input image. Each prototype has the same150

shape as a latent patch: 1× 1× 64. The similarity score for a prototype p and a latent patch z151

is computed as a function of the distance between these two vectors (i.e. the !2 norm of the152

difference). The greater the distance between, the lower the similarity score. Following Chen et al.153

(2019), we compute154

SimilarityScore = log

(
‖z−p‖22 +1
‖z−p‖22 + n

)
≈ log

(
1+ 1
(distance)2

)
(1)155

where ‖ ‖22 is the squared !2 norm and n is a small number, there to guard against divide-by-zero156

problems. Applying this similarity metric to a quilt of latent patches results in < 2×3 similarity157

grids, one for each prototype. The values within these grids thus quantify how much that latent158

patch of the input looks like each prototype.159

In the original ProtoPNet, at this point the maximum similarity within each similarity grid is160

computed for each prototype. However, unique to our ProtoLNet — and indeed the novelty of161

this work — is that we scale each prototype’s similarity grid by a location-specific value learned162

by the network. This step rescales the similarities such that similarities in certain locations are163

accentuated and similarities in other locations are muted. To follow this paper’s title, it isn’t enough164

for this latent patch (at any location) to look like that prototype. Instead, this latent patch must look165

like that prototype in only specific locations — there. This results in < location-scaled similarity166

grids, one for each prototype.167

Once again following the architecture of the original ProtoPNet, we apply max pooling to each168

scaled similarity grid to obtain a single score for the maximum similarity (scaled by the location169

8

scaling) between a prototype and the input image. These scores are then connected to the output170

layer via a fully connected layer with learned weights but zero bias. The choice of zero bias in the171

final fully-connected layer is essential for interpreting the prototypes as providing evidence for a172

particular class. With a zero bias, the final points contributing to each class are comprised only of173

a sum of location-scaled similarity scores multiplied by a final weight. The final weights layer is174

trained separately from the rest of the network. The layer is trained in such a way as to keep weights175

connecting prototypes with their associated class large, while minimizing the weights connecting176

prototypes with their non-class output units (see Section c). Finally, as is standard with a fully177

connected layer, the output values (weighted scores) contributing to each output unit are summed178

to produce a total number of points for each class. The class with the highest number of points is179

identified as the predicted class.180

In the original ProtoPNet, there was no location scaling. Without this location scaling, the181

network is agnostic to where the input image looks most like each prototype. That is, the only182

thing of import is that the image looks like the prototype somewhere. Returning to the example of183

classifying bird images (as explored in Chen et al. (2019)), a prototype may correspond to a latent184

representation of the red head of a red-bellied woodpecker. The original ProtoPNet does not care185

whether a red head is found in the upper left or the upper right of the input image. Rather, the186

ProtoPNet just considers whether a red head is present at all. For our ProtoLNet presented here,187

the network is designed to take into consideration not only that a red head is found, but also where188

within the image the red head occurs. As we will show, this consideration of location can be highly189

beneficial in geophysical applications.190

b. Choosing the base CNN191

We envision three main approaches to choosing a base CNN. The first takes an existing CNN that192

has been previously trained to perform classification tasks. This CNN may already be performing193

well, but interpretability is desired. The user removes the output layer and fully connected layers of194

their existing CNN and then use the result as their base CNN for the ProtoLNet. In this approach,195

the ProtoLNet is used purely for interpretability of the original CNN.196

The second approach to choosing a base CNN is to, once again, take a pre-trained CNN, remove197

the output and fully connected layers, and then use the result as the base CNN for the ProtoLNet.198

9

Fig. 2. The three different stages of training the ProtoLNet.

The difference is that now the user allows the weights within the base CNN to be further refined199

during the ProtoLNet training in order to optimize the performance of the ProtoLNet. Allowing200

the base CNN weights to be updated implies that the user is no longer interpreting the same base201

CNN with which they started. However, if the goal is to create an interpretable network that is202

as accurate as possible, this may be a good approach. Furthermore, for image classification tasks,203

one might choose to use a CNN previously trained on a large dataset, e.g. VGG-19 (Simonyan and204

Zisserman 2014), as done by Chen et al. (2019).205

The third approach to choosing a base CNN applies when no suitable pre-trained base CNN206

exists. In this case, the user must train the interpretable network from scratch. In this instance,207

there are two main choices. A separate base CNN could be trained, stripped of its final output and208

fully connected layers, and then appended to the ProtoLNet (as discussed above). Alternatively,209

one could initialize the base CNN with random initial weights and train it directly within the210

ProtoLNet architecture. We have tried both methods for the use cases explored here and found211

that they produced similar accuracies (although we acknowledge this may not always be the case).212

Here, we present results where we first pre-train a base CNN and then append it to the ProtoLNet,213

in order to provide a base accuracy with which to compare our ProtoLNet results.214

c. ProtoLNet training215

The training of the ProtoLNet is done in triads of stages (Fig. 2), largely following the original216

training approach of Chen et al. (2019). The first stage of training involves learning the prototypes217

by training the 1×1 layers, prototypes, location scaling grid, and the base CNN (if desired by the218

user; see Section b) at the same time. The final weights are frozen during this stage. The second219

stage of training involves replacing each prototype with the nearest latent patch within the training220

10

samples of the same class. That is, stage 1 allows the network to learn any form of the prototype221

latent patch, and stage 2 replaces this prototype with the most similar training latent patch from222

the same class. In this way, the prototypes always directly correspond to a latent patch in one223

particular training sample. In the third stage of training, we freeze all elements of the ProtoLNet224

except for the fully connected final weights (pink arrows in Fig. 1), and the network learns them225

alone. These three stages are then cycled through multiple times (for our use cases, up to 5 times)226

for full training of the ProtoLNet.227

Initialization: Prior to stage 1, the two 1× 1 convolutional layers are initialized with random228

values drawn from a truncated normal distribution (He et al. 2015). The prototypes are initialized229

with random values drawn from a uniform distribution between 0.0 and 1.0, and the location scaling230

grid is initialized with ones everywhere (see Appendix B for additional details). The final weights231

(F) that connect a prototype with its assigned class are given an initial value of 1.0, and all other232

final weights are initialized to -0.5. The initialization of the base CNN was already discussed in233

Section b.234

Stage 1: Training is performed via stochastic gradient descent with the Adam optimizer and235

batch size of 32. For the quadrants use case, the learning rate is set to 0.01 for every stage 1236

cycle. For the MJO use case, the learning rate is also initially set to 0.01 but is reduced by an237

order of magnitude for the third cycle of stage 1 and every cycle thereafter. The network is trained238

with the standard cross-entropy loss (e.g. Géron 2019) added to two additional loss terms: the239

ClusterCost and SeparationCost. The cross-entropy loss penalizes the network for misclassifying240

the training samples. The ClusterCost encourages the network to construct prototypes such that241

training images have at least one latent patch with high similarity to a prototype of the correct242

class. The SeparationCost discourages the network from constructing prototypes such that training243

images have any latent patches with a high similarity to prototypes of the incorrect classes. Thus,244

the full stage 1 loss function takes the form245

Loss = CrossEntropy+ V1ClusterCost− V2SeparationCost (2)246

where V1 and V2 are coefficients chosen by the user. Full forms of the ClusterCost and Separa-247

tionCost, along with their coefficient values, are provided in Appendix C. For all use cases, we248

train in stage 1 for 10 epochs before moving to stage 2 of training.249

11

Stage 2: This stage does not involve any iterative training but instead is direct computation.250

Specifically, the similarity scores are computed between each learned prototype from stage 1 and251

every latent patch of every training image of the same class. The prototype is then replaced by252

the training latent patch with the highest similarity. Note that this replacement process will nearly253

always reduce the accuracy of the network because it replaces the stage 1-optimized prototypes254

with something from the training set. However, this step is central to the interpretability of the255

ProtoLNet. By cycling through all three training stages multiple times, the network learns to256

perform well using the replaced prototypes from the training set.257

Stage 3: The final weights F:, 9 connecting prototypes of class : to the output class 9 are learned258

via convex optimization, since all other layers are frozen. As a reminder, all F:, 9 for : = 9 are259

initialized to 1.0, and the rest, F:, 9 for : ≠ 9 , are initialized to -0.5. The weights are frozen for260

stages 1 and 2 of training. In stage 3, all other free parameters in the ProtoLNet are frozen, and the261

weights alone are trained to minimize the cross-entropy loss of the final output plus an additional262

!1 regularization term evaluated on the weights F:, 9 for : ≠ 9 . This additional loss term provides263

sparsity to the final model, i.e. F:, 9 ≈ 0 for : ≠ 9 , which reduces the use of negative reasoning by264

the network (“this does not look like that”). See Singh and Yow (2021) for an exploration of the265

consequences when this sparsity requirement is relaxed. For the idealized quadrants use case, we266

set the regularization parameter to 0.5. For the MJO use case, it is set to 0.1. For all use cases, we267

train in stage 3 for 10 epochs. At that point, we either end training completely (i.e. we have the268

fully trained ProtoLNet), or we cycle through stages 1-3 again.269

3. Use Case: Idealized Quadrants270

As a first demonstration of the ProtoLNet, we construct an idealized synthetic test set to loosely271

represent the horizontal (latitude by longitude) spatial structures of geophysical anomalies. For272

example, the synthetic fields (or images) could represent idealized low- and high-pressure circu-273

lations. The anomaly fields are 100x100 pixels in size and are constructed by first initializing the274

field with random Gaussian noise. We then randomly add an additional anomaly value (uniformly275

distributed between 2 and 15) to the center of one or more of the four quadrants of each square276

field. Finally, we smooth each field with a Gaussian filter with standard deviation of 7 to make277

12

Fig. 3. The top three panels (a-c) show composites of all samples by class label for the idealized quadrants

use case. The bottom three panels (d-f) exhibit one example sample for each class.

280

281

the fields look more like typical tropospheric pressure anomalies. Example samples are shown in278

Fig. 3.279

The fields in the idealized data set are assigned labels based on the sign of the anomalies in each282

of the four quadrants of the sample (Fig. 3). Specifically, fields with negative anomalies in both the283

second and fourth quadrants are labeled class 0, fields with positive anomalies in both the second284

and third quadrants are labeled class 1, and all other fields are labeled class 2 (Fig. 3a-c). Fig. 3d-f285

show example samples for each class. As designed, sample #230 (labeled class 0) has negative286

anomalies in the second and fourth quadrants, sample #78 (labeled class 1) has positive anomalies287

in the second and third quadrants, and sample #153 (labeled class 2) does not achieve either of the288

requirements of classes 0 or 1. As will become clear, this idealized data set was designed such that289

the location of the different anomalies matters.290

The synthetic data set has equally balanced classes by construction, with 3,000 samples for each291

of the three classes (9,000 samples total). This set is then randomly split such that 7,200 samples292

are used for training and 1,800 for testing. Prior to training, the input images are standardized by293

subtracting the mean and dividing by the standard deviation over all training pixels.294

We task the ProtoLNet with ingesting a single input field and classifying it into one of the295

three classes, as depicted in Fig. 4. The network cannot simply identify the existence of negative296

13

Fig. 4. Prediction setup for the idealized quadrants use case.

anomalies (in the case of class 0) or the existence of positive anomalies (in the case of class 1).297

Instead, it must consider the existence of different signed anomalies and their location within the298

input field. To illustrate this point, we trained a ProtoPNet where location is not considered (i.e.299

learning of the location scaling grid is turned off) and — unsurprisingly — the network fails with300

an accuracy of 32%, no better than random chance (i.e. 33%).301

We first train a standard CNN to perform the classification task and act as our base CNN for302

the ProtoLNet. Details of the CNN architecture and training parameters are provided in Appendix303

A. Once the CNN is trained, we remove the final fully connected layer and output layer, and304

append the result to the ProtoLNet to become the base CNN (see Fig. 1). We assign 5 prototypes305

(with � = 128) to each output class, for a total of 15 prototypes. Using more prototypes than306

this yielded prototypes that rarely provided points for any sample. We cycle through the three307

stages of ProtoLNet training (Fig. 2) five times, freezing the base CNN for the first cycle of stage308

1 but allowing it to train for all subsequent cycles of stage 1. Once fully trained, the ProtoLNet309

achieves an accuracy of 96%, a significant improvement over random chance and the ProtoPNet.310

For comparison, the base CNN achieves an accuracy of 98%. The ProtoLNet is not designed to311

outperform all alternative approaches. Instead, it is designed to provide interpretability with a312

minimal loss in accuracy.313

The power of the ProtoLNet is that once trained, its decision-making process can be interpreted318

by the user. Three example predictions are shown in Fig. 5, along with their two “most winning”319

prototypes (i.e. prototypes that gave the most points to the winning class in each example) and the320

associated location scaling grids. To avoid any confusion, we want to clearly state that the “pro-321

totypes” outlined in colored boxes in Fig. 5(i),(iii) are not the prototypes themselves. The actual322

14

Fig. 5. Three example predictions by the network for the idealized quadrants use case, along with the two

winning prototypes for each sample and the associated location scaling grid. For each of the three samples, there

are two prototypes shown along with their associated location scaling grids. These are indexed as (i,iii) and

(ii,iv), respectively.

314

315

316

317

15

prototypes are vectors of latent patches of size 1×1×128 and would likely be incomprehensible323

since they capture the output of a series of complex convolutions, poolings, and nonlinear activa-324

tions. Instead, we visualize the group of neighboring pixels of the training field that contribute325

to the prototype latent patch, often termed the “receptive field”. In contrast, the location scaling326

panels in Fig. 5(ii),(iv) display the actual grids used in the prototype layer computation, which is327

why the squares are much larger than the pixels in the input field (i.e. the dimensions have been328

reduced to 25×25).329

Consider Sample 230 (Fig. 5a), which the ProtoLNet correctly labeled as class 0. Prototypes 2330

and 4 contributed the most points to a class 0 prediction, giving 8.8 and 5.2 points, respectively.331

Prototype 2 was drawn from training sample 6 and, more specifically, Prototype 2 represents a332

latent patch from the purple-boxed region of training sample 6 (Fig. 5(ai)). The location scaling333

grid for Prototype 2 (Fig. 5(aii)) shows that this prototype is highly relevant only when found in334

the upper-left corner of the field (dark gray and black pixels). Thus, the ProtoLNet identified high335

similarity between Prototype 2 and an upper-left patch of Sample 230. Or in other words, the336

ProtoLNet identified that sample 230 looks like that prototype there.337

Prototype 4 (Fig. 5(aiii),(iv)) also contributed points to the correct prediction of class 0. Note that338

Prototype 4 was also drawn from training sample 6; coincidentally the same sample as Prototype339

2. Looking at Prototypes 2 and 4 together, one can interpret that the network’s decision-making340

strategy is to look for blue anomalies in the upper-left and bottom-right quadrants of the image341

— which is exactly how class 0 is defined. A similar interpretation can be found for sample 78342

(Fig. 5b) with a class label of 1. The network identifies the class 1 sample by looking for positive343

anomalies in the upper-left and bottom-left quadrants.344

The network’s decision-making strategy is particularly interesting for Sample 153 with a label of345

class 2 (Fig. 5c). Prototype 13 corresponds to features associated with a weakly positive anomaly346

in the upper-left or bottom-right quadrants. From this, it appears that the network is ruling out347

a class 0 sample, which exhibits negative anomalies in these quadrants. Similarly, Prototype 14348

corresponds to features associated with a weakly negative anomaly in the upper-left or bottom-left349

quadrants. That is, the network rules out a class 1 field that exhibits strong positive anomalies350

in these two quadrants. Fig. 5(cii),(iv) nicely demonstrates that the location scaling grid can351

highlight multiple locations throughout the field for the same prototype. The interpretability of the352

16

ProtoLNet prediction thus allows for identification of the patches of the input field that were used353

to make the prediction, i.e. the patches whose latent representation most looks like class-specific354

prototypes learned during training.355

One interesting observation is the sparsity of the location scaling grids in (Fig. 5) despite no356

explicit sparsity requirement in the loss function. This comes about due to the SeparationCost (Eq.357

2) pushing the values of the location scaling grid to lower values in unimportant areas. Since the358

SeparationCost is subtracted in the loss function, and the location scaling values (B:) appear in359

the denominator of the SeparationCost, the gradient of the loss function ultimately favors small360

location scaling values for unfavorable prototypes.361

4. Use Case: MJO Phase Classification362

We next apply the ProtoLNet architecture to earth system reanalysis fields. Specifically, the net-363

work is tasked with ingesting maps of atmospheric fields in the tropics and predicting the current364

phase of theMadden-Julian oscillation (MJO). TheMJO is a large-scale, eastward propagating cou-365

pling between tropical wind and convection that oscillates on subseasonal (30-60 day) timescales366

(Madden and Julian 1971, 1972; Zhang 2005). Canonical MJO events form in the Indian Ocean,367

and propagate east into the western Pacific: the “phase” of the MJO describes roughly where it is368

in this life cycle.369

The task of classifying the current phase of the MJO from maps of the tropics is chosen370

here to demonstrate the utility of our method to a relatively straightforward climate science task.371

Classification ofMJO phase requires the network to identify coherent, multivariate tropical patterns372

on a particular (planetary) spatial scale, and the MJO’s eastward propagation also requires the373

network to take advantage of spatial location in its decision making. Thus, while straightforward374

from a scientific perspective, the task of classifying MJO phase is well-suited as a demonstrative375

use-case for the ProtoLNet methodology. Toms et al. (2021) classified the state of the MJO to376

explore the utility of explainability methods, in contrast to our interpretable method, for earth377

system science applications.378

We define MJO activity and phase using the “Real-time Multivariate MJO index” (RMM;379

Wheeler and Hendon (2004)). RMM is derived through an empirical orthogonal function (EOF)380

analysis of three variables: outgoing longwave radiation (OLR), 200 hPa zonal wind (u200) and381

17

850 hPa zonal wind (u850). Each variable in RMM is pre-processed by removing the seasonal cycle382

(i.e. the all-time mean and first three harmonics of the annual cycle on each calendar day), and the383

previous 120-day mean of each day (to remove variability associated with longer timescales than384

the MJO). Variables are averaged from 15N-15S, and the leading two modes of the EOF analysis385

are used to define the MJO through two daily time series. Plotted on a 2-dimensional plane, the386

distance of a point from the origin represents the strength of the MJO (often called the RMM387

amplitude), and the phase angle describes the phase of the MJO, or where it is in its life cycle.388

Following Wheeler and Hendon (2004), when the MJO is active (e.g. above a certain amplitude389

threshold) we divide the RMM phase space into octants. Phases 1 and 2, for example, correspond390

to active MJO convection in the Indian Ocean. Phases 3 and 4 are associated with activity around391

the Maritime Continent, etc.. If the MJO is not active, we label it as Phase 0.392

Wedefine and track theMJOusing ERA-20C reanalysis data (Poli et al. 2016), a reanalysis dataset393

than spans the entire twentieth century and provides a larger sample size than the observational394

record. From ERA-20C, we use daily OLR, u850, and u200 data fromMay 1, 1900 until December395

31, 2010 to calculate the RMM index. RMM is calculated from the ERA-20C data following the396

methodology inWheeler and Hendon (2004) discussed above, except that the full ERA-20C period397

is used to define the climatology, and the processed data are projected onto the observed EOF398

modes from Wheeler and Hendon (2004) (as opposed to the EOFs from the ERA-20C data). Over399

the period when the observed RMM index overlaps with our ERA-20CRMM index, the two indices400

have a correlation of approximately 0.9, indicating very good agreement in how the RMM index is401

formed.402

The network input is composed of three channels of 17 latitudes by 105 longitudes of u200,403

u850, and OLR, representing the three geophysical variables that go into the computation of the404

MJO index (see Fig. 6). Thus, a single sample has shape 17×105×3. The labels are set to be the405

phase of the MJO, with phase 0 representing days where the amplitude of the MJO is less than 0.5.406

We choose to train on all available data; thus, the classes are not equally balanced across phases407

(see Supp. Fig. S1), although they are similar.408

Given that there is memory of the MJO phase from one day to the next, we divide the 1900-409

2010 data into training and testing via distinct years. Specifically, the testing data is all calendar410

days within the 22 randomly selected years: 1902, 1903, 1907, 1912, 1916, 1917, 1918, 1923,411

18

Fig. 6. Prediction setup for the MJO use case.

1935, 1937, 1941, 1945, 1946, 1949, 1953, 1961, 1965, 1976, 1992, 2007, 2008, and 2010. The412

training years comprise the remaining 89 years. (Results for other combinations of training/testing413

accuracies are given in Supp. Table S1.) This results in 32,387 training samples and 8,035 testing414

samples. The three input fields (channels) are converted to anomalies prior to analysis following a415

similar pre-processing as for the RMM computation. That is, the time-mean calendar-day seasonal416

cycle is subtracted from each gridpoint, and the mean of the previous 120 days is removed. Each417

variable is individually normalized by dividing it by its tropics-wide standard deviation. Then,418

immediately prior to training, the inputs are further standardized by themean and standard deviation419

across all gridpoints and channels of the training set (via flattening the input fields).420

We first train a standard CNN to perform the classification task and act as our base CNN for the421

ProtoLNet. Details of the CNN architecture and training parameters are provided in Appendix A.422

Once the CNN is trained, we remove the final fully connected layer and output layer, and append423

the result to the ProtoLNet to become the base CNN (see Fig. 1). We assign 10 prototypes (with424

� = 64) to each output class, which results in a total of 90 prototypes. Fewer than 90 reduced the425

accuracy, while using more than 90 did not improve the predictions. We cycle through the three426

stages of ProtoLNet training (Fig. 2) five times, freezing the base CNN for the first cycle of stage427

1, but allowing it to train on all subsequent cycles of stage 1. Once fully trained, the ProtoLNet428

achieves a testing accuracy of 73% for classifying the phase of the MJO into one of nine classes429

19

(random chance is approximately 11%), which is similar to the accuracy found in Toms et al.430

(2021) using a black box neural network. Supp. Fig. S2 shows that the ProtoLNet exhibits testing431

accuracies between approximately 70-80% across phases. A ProtoPNet, which does not consider432

location, never achieves an accuracy above 30%.433

Interestingly, the base CNN upon which our ProtoLNet was trained converged to an accuracy of434

58%, much lower than that of the subsequent ProtoLNet. We believe that the improved accuracy of435

the ProtoLNet is due to the regularizing nature of the prototype architecture. That is, the prototype436

approach constrains the network to focus on only a few latent features for phase identification,437

allowing it to converge on an appropriate decision-making strategy when the training data is438

limited (see discussion of additional experiments in Section 5). We believe that this may be an439

additional benefit of the prototype approach that is worthy of further investigation. With that said,440

Supp. Table S1 shows accuracies for the base CNN and ProtoLNet for six additional random seeds441

that set the model initialization and training/testing split. The ProtoLNet accuracies are incredibly442

robust across all seeds. While in two of the cases the base CNN achieved lower accuracies than443

the ProtoLNet (as in the setup shown here), the base CNN more often achieved a slightly higher444

accuracy than the ProtoLNet. Thus, it appears that the original accuracy of the base CNN does not445

solely dictate the resulting accuracy of the ProtoLNet.446

An example of the interpretability of the ProtoLNet’s prediction for testing sample 7591 is shown454

in Fig. 7. This sample corresponds to phase 2 of the MJO on October 14, 2008, and the three455

input fields (u200, u850, and olr) are displayed across the top row for that day. All anomalies are456

shown, but the shading outside of the prototype receptive field is muted in color. Note that the457

large-scale, enhanced convection of the western Indian Ocean (Fig. 7c) is a classic indication of a458

phase 2 MJO event, corresponding with a coupled wind response that shows upper-level easterlies459

(Fig. 7a), and lower-level westerlies (Fig. 7b) in the same region.460

The network correctly classifies this sample as phase 2, and we can use the interpretability of461

the ProtoLNet to further explore why. Although multiple prototypes contributed to the winning462

number of points for the classification of sample 7591, it can be insightful to investigate the winning463

prototype (i.e. the prototype that contributes the most points). With multiple channels as input,464

the winning prototype for this sample (Prototype #20) is visualized as three different fields, one465

for each input variable (i.e. u200, u850, olr), as shown in Fig. 7d-f. Prototype 20 is a latent466

20

Fig. 7. One example prediction (testing sample 7591) by the ProtoLNet for the MJO use case, along with

the winning prototype (prototype 20) and associated location scaling grid. The three columns denote the three

input fields (i.e. u200, u850, olr). All anomalies are shown in panels (a)-(c) but the shading outside of the

prototype patch is muted in color. The color scales are dimensionless with red shading denoting positive values

and blue shading denoting negative values. The bottom middle panel show the points given to each class by each

prototype, with the sum (i.e. total points) displayed along the top. Colored dots denote prototypes associated

with the same class, and white dots denote contributions from prototypes of other classes.

447

448

449

450

451

452

453

patch corresponding to the state of the western Indian Ocean on November 18, 1914. The location467

scaling grid associated with Prototype 20 (Fig. 7g) highlights that similarities to this prototype are468

only heavily weighted when found at these longitudes. Thus, we see that the anomaly fields on469

October 14, 2008, for sample 7591 look a lot like those of Prototype 20, with upper-level easterlies,470

lower-level westerlies and enhanced convection over the western Indian Ocean. This provides471

evidence for why the network classified this sample as MJO phase 2.472

Fig. 8 shows three additional (correctly predicted) testing samples and their winning prototypes,475

displaying only one geophysical field for each prediction to simplify the figure. Sample 2523 on476

November 28, 1918, is classified as phase 1, in part because its upper-level easterlies look like477

those of Prototype 33 from January 2, 1920 over the eastern Pacific (Fig. 8a,d). The lower-level478

westerlies over the Indian Ocean on March 5, 1912, look like those of phase 4 Prototype 49 from479

March 23, 1988 (Fig. 8b,e). Enhanced convection as seen by the OLR field east of the Maritime480

Continent on September 23, 1902 looks like that of phase 6 Prototype 61 (Fig. 8c,f).481

As a summary of the MJO classification results, Fig. 9 displays the most frequently winning484

prototype for each phase of the MJO. A hallmark feature of the MJO is its eastward propagation,485

and Fig. 9 reveals the eastward progression of the prototypes (and associated location scaling486

21

Fig. 8. As in Fig. 7, but for three additional example testing samples (one per column) displaying only one

geophysical field for each.

473

474

Fig. 9. The most frequently winning prototype for correctly classified testing samples by MJO phase. Each

column represents a different input variable; the fourth column displays the associated location scaling.

482

483

grids) starting in phase 2 and continuing to phases 7 and 8. That is, the ProtoLNet, with its487

location-specific focus, has learned representative prototypes that move eastward with the known488

progression of the MJO. Phase 1, however, does not appear to behave this way. Prototype 16 is489

often the most-winning prototype for phase 1, but it is focused over the mid-Pacific rather than490

22

Fig. 10. The frequency that each prototype is the winning prototype (i.e. contributes the most points to the

predicted class) for each correctly classified testing sample. Each phase has 10 possible prototypes; however,

there are some prototypes that are never a winning prototype. They have frequency of zero.

495

496

497

the western Indian Ocean as one might expect (this is true for most of the Phase 1 prototypes; see491

Supp. Fig. S5). The reason why phase 1 prototypes tend to focus on this region is not clear, but we492

hypothesize the network may be focusing on wind signals in this region associated with a phase 1493

event forming or a previous MJO event decaying. Further investigation is needed.494

Fig. 10 shows a breakdown of how often (i.e. for how many testing samples) each prototype498

was the winning prototype. For example, Prototype 49 from March 23, 1988, is the most-winning499

prototype for phase 4, and it is the winning prototype for 98% of all correctly classified phase 4500

testing samples. This suggests that this prototype is highly indicative of phase 4 MJO events. On501

the other hand, phase 7 has multiple prototypes that frequently earn the title of winning prototype.502

Thus, Prototype 70 (displayed in Fig. 9) should be interpreted as only one possible indicator of503

phase 7.504

All 10 learned prototypes for each phase are provided in the Supp. Fig. S4-S12. Careful505

inspection shows that some of the learned prototypes come from the same training sample, indi-506

cating a particularly prototypical event. However, in cases where the prototypes come from the507

same training sample and have similar location scaling grids, there could be concern that this is508

a repeated prototype. Chen et al. (2019) discuss an additional “pruning” step in their ProtoPNet509

methodology, although it could also be that the CNN is identifying different aspects of the image510

that are prototypical. Either way, for this MJO use case the Supp. Fig. S4-S12 specify how often511

23

Fig. 11. Number of learned prototypes for MJO phases 1-8 (excluding phase 0, so out of 80 prototypes total)

binned by month of the year of the training sample from which the prototype was drawn.

514

515

a particular prototype was the “winning” prototype and in all cases it is one specific prototype that512

wins-out over the rest which is why we are confident showing Fig. 10.513

Fig. 11 shows the breakdown of the monthly distribution for all prototypes for active MJO phases516

1-8. The network preferentially chooses prototypes from November-March when the MJO is517

known to be most active, however, prototypes fromMay and July are also learned, likely to capture518

the differences in MJO behavior across seasons (Zhang 2005). The monthly seasonality for all519

prototypes, including those for MJO phase 0, are shown in Supp. Fig. S3.520

5. Discussion521

The value of the ProtoLNet design is that interpretation of the network’s decision-making process522

is baked into the architecture itself, rather than performed post-hoc likemost explainableAImethods523

(Buhrmester et al. 2019; Barredo Arrieta et al. 2020; Samek et al. 2021). Although the network524

is constrained to only learn via similarities to a small number of learned prototypes, multiple use525

cases demonstrate that it can be trained to exhibit only a small reduction in accuracy compared to526

non-interpretable architectures (Chen et al. 2019; Singh and Yow 2021). Moreover, for our MJO527

use case, the ProtoLNet actually improved in accuracy over its base CNN. We hypothesize that this528

is because the ProtoLNet greatly reduces the search space possibilities, which allows the network529

to converge on a good prediction strategy given a limited sample size. One might think of this as530

a form of regularization, or instead, a form of physics-guided constraint (e.g. Beucler et al. 2021)531

24

that forces the network to learn physically realizable evidence for each class. To further explore this532

hypothesis, we trained additional ProtoLNets for the idealized quadrants use case (Section 3), but533

with a much smaller training size (only 1,400 samples for training). In all cases, the ProtoLNets534

obtained higher testing accuracies — sometimes significantly higher — than their respective base535

CNNs (see results in Supp. Fig. S13). This is not to say that the ProtoLNet is categorically more536

accurate than a standard CNN. A more thorough exploration of the hyperparameter space could537

bring the base CNN accuracy up to that of the ProtoLNet. Instead, we just wish to highlight that538

with minimal tuning, the ProtoLNet was able to consistently achieve high accuracies with limited539

training data.540

In addition to being interpretable, the ProtoLNet provides the benefit of learning a small subset541

of prototypical parts from the training set that reflect identifiable features for each output class.542

That is, each prototype is found “in the wild” and, thus, has a direct connection to a sample that543

has occurred. This should be distinguished from more standard architectures that learn complex544

latent representations and features that may never occur in reality. For the case of MJO phase545

classification, this means that the network can learn particular example MJO events that generalize546

across the observational record and reflect identifiable features for each specific MJO phase.547

Thus, although predicting the current phase of the MJO is routine from a scientific perspective,548

the ProtoLNet allows us to look back and identify specific dates that exhibit prototypical MJO549

phase behaviour, as shown in Fig. 9 and Fig. 11. Furthermore, it is straightforward to extend the550

interpretable ProtoLNet setup of Fig. 6 to ingest current atmospheric fields and predict the MJO551

phase at some lead time into the future.552

As we have used it here, the ProtoLNet design learns localized prototypes from the input that553

provide evidence for a particular output class. This should be distinguished from the standard554

climate approach that composites the input fields over many samples for a single class, and thus555

results in a smooth averaged field (assuming there are enough samples to average out the noise).556

Such a composite field is computed pixel by pixel and as such, does not capture shared gradients or557

higher-level features that can be learned by the convolutional layers of the ProtoLNet. Finally, as558

discussed above, the ProtoLNet identifies prototypical behavior that has been realized in a training559

sample, while the composite field provides a smoothed, idealized picture that will likely never be560

observed.561

25

The ProtoLNet is based on the ProtoPNet of Chen et al. (2019) which uses positive reasoning,562

i.e. this looks like that, to predict the correct class of an input image. Singh and Yow (2021)563

introduce a variation, the NP-ProtoPNet, which additionally includes negative reasoning, i.e. this564

does not look like that. Their argument is that by allowing negative reasoning, the network is able565

to better rule out incorrect classes and achieve accuracies on-par with the best performing black box566

models. It is straightforward to apply our location-scaling grid to a NP-ProtoPNet, which mainly567

involves relaxing the sparsity requirement of the final weights layer. However, by allowing both568

positive and negative reasoning, interpreting the model’s decision making process may become569

significantly more difficult due to competing negative and positive point contributions to the final570

output classes. Thus, we chose to focus on positive reasoning for this study.571

6. Conclusions572

Driven by the desire to explain the decision-making process of deep learning models, a large573

variety of post hoc explainability methods have been developed (e.g. Buhrmester et al. 2019;574

Barredo Arrieta et al. 2020; Samek et al. 2021). However, these explainability methods come with575

their own challenges (Kindermans et al. 2019; Mamalakis et al. 2021) and recent work by Rudin576

(2019) and Chen et al. (2019) suggest that instead of trying to explain black box models, we should577

be creating models where the decision-making process is interpretable by design.578

Here, we extend the interpretable ProtoPNet of Chen et al. (2019) to consider absolute location579

in the interpretable prototype architecture, which we term the ProtoLNet. The results of our580

work can be summarized by three main conclusions. (1) Considering absolute location in the581

ProtoLNet architecture greatly improves accuracy for the geophysical use cases explored here. (2)582

The ProtoLNet is interpretable in that it directly provides which prototypes are similar to different583

patches of an input image (i.e. this looks like that), and where these prototypes matter (i.e. there).584

(3) The network is able to learn specific historical dates that serve as multivariate prototypes of the585

different Madden-Julian oscillation phases.586

This work serves as one example of an interpretable deep learning model specifically designed587

for earth system science applications (see also Sonnewald and Lguensat 2021). There is much588

more research to be done on the topic. For example, the incorporation of negative reasoning589

and extension to regression tasks could be beneficial for its use in earth science. Furthermore,590

26

the interpretation and utility of the learned prototypes themselves, apart from the prediction task,591

leaves much to be explored. Thus, this work should be seen as merely a step in the direction of592

interpretable deep learning for earth science exploration.593

27

Acknowledgments. This work was funded, in part, by the NSF AI Institute for Research on594

Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) under NSF grant ICER-595

2019758. ZKM recognizes support from the National Science Foundation under Award No.596

2020305. JKR recognizes support from the U.S. Department of Energy, Office of Science, Office of597

Advanced Scientific Computing Research, Department of Energy Computational Science Graduate598

Fellowship under Award No. DE-SC0020347.599

Data availability statement. Once published, the code will be made available to the community600

via a permanent DOI on Zenodo. For peer-review, the code is available at https://github.com/601

eabarnes1010/tlltt. The ERA-20C is publically available at https://www.ecmwf.int/en/602

forecasts/datasets/reanalysis-datasets/era-20c.603

APPENDIX A604

Base CNN architectures and training605

The base CNN for the idealized quadrants use case (Section 3) has two convolutional layers of 32606

kernels each. Every convolutional layer is followed by an average pooling layer with kernel size607

2×2 and a stride length of 2. The output of the final average pooling layer is flattened, and then608

fed into a final dense layer of 64 units which is fed into the final output layer of 3 units. The final609

output layer contains the softmax activation function which convert the outputs into confidences610

that sum to 1.0. The final dense layer is trained with dropout (Srivastava et al. 2014) at a rate of611

0.4 to reduce overfitting. When the base CNN is appended to the ProtoLNet, the dropout rate is612

set to zero. That is, dropout is only used to reduce overfitting during the pre-training of the base613

CNN. The base CNN is trained with a fixed learning rate of 5e-5 for 12 epochs.614

The base CNN for the MJO use case (Section 4) has three convolutional layers of 16 kernels615

each. Every convolutional layer is followed by an average pooling layer with kernel size 2×2 and616

a stride length of 2. The convolutional layers are trained with dropout at a rate of 0.4 to reduce617

overfitting. The output of the final average pooling layer is flattened, and then fed into a final dense618

layer of 32 units that is fed into the final output layer of 9 units. The final output layer contains619

the softmax activation function which converts the outputs into confidences that sum to 1.0. The620

final dense layer is trained with dropout at a rate of 0.2. When the base CNN is appended to the621

ProtoLNet, the dropout rates are set to zero. That is, dropout is only used to reduce overfitting622

28

during the pre-training of the base CNN. The base CNN is trained with a fixed learning rate of623

0.00017548 for 23 epochs.624

The hyperparameters for these networks were explored using KerasTuner. We did not find the625

results to be overly sensitive to these choices.626

APPENDIX B627

Learning location scaling exponents628

The location scaling values must be non-negative. Subsequently, we use a trick from Duerr et al.629

(2020) and learn the exponents of the location scaling, rather than the values themselves. That is,630

if B: denotes the location scaling value for prototype p at latent patch : then631

B: = 4
W: , (B1)632

where the free parameter W: is learned by the network during training. Thus, at initialization, all633

W: values are initialized to zero so that the location scaling grid (all B: values) is initialized to a634

grid of ones.635

APPENDIX C636

Stage 1 loss function637

The Stage 1 loss function is given by Equation 2. There are three components: the usual CrossEn-638

tropy, plus a ClusterCost, and minus a SeparationCost.639

Consider a set of input samples and associated class labels {(x8, H8) : 8 = 1,2, . . . , #}. The output640

from the extended CNN given sample x8 is a quilt of latent patches z8: , where : indexes the latent641

patches. For the architecture shown in Figure 1, : ∈ {1,2, . . . ,6} because the quilt is 2×3. Let B:642

denote the current location scaling value associated with latent patch : , and PH8 denote the set of643

all prototypes belonging to class H8. The ClusterCost is given by644

ClusterCost =
1
#

#∑
8=1

[
min
p∈PH8

min
:

‖z8: −p‖22
B: + n

]
(C1)645

29

where ‖ ‖22 is the squared !2 norm and n is a small number, there to guard against divide-by-zero646

problems.647

The ClusterCost encourages training images to have at least one latent patch with high similarity648

to a prototype of the same class. The computation is based on Chen et al. (2019), but incorporates649

the location scaling grid introduced in this paper.650

The SeparationCost discourages training images from having high similarity to prototypes be-651

longing to the incorrect class. The computation is almost identical to that of the ClusterCost. The652

difference is that we minimize over the set of all prototypes that do not belong to class H8.653

SeparationCost =
1
#

#∑
8=1

[
min
p∉PH8

min
:

‖z8: −p‖22
B: + n

]
(C2)654

For the idealized quadrants use case, we set the ClusterCost coefficient V1 ≈ 0.17 (see code for655

all digits) and the SeparationCost coefficient V2 = V1/10. For the MJO use case V1 = 0.2 and656

V2 = V1/10. Note the negative sign in front of the SeparationCost term in Equation 2 encourages657

the network to have larger separation (lower similarity) between samples and the prototypes from658

incorrect classes.659

References660

Balmaseda, M., and Coauthors, 2020: NOAA-DOE precipitation processes and predictability661

workshop. Tech. Rep. DOE/SC-0203; NOAA Technical Report OAR CPO-9., U.S. Department662

of Energy and U.S. Department of Commerce NOAA.663

Barnes, E. A., B. Toms, J. W. Hurrell, I. Ebert-Uphoff, C. Anderson, and D. Anderson, 2020:664

Indicator Patterns of Forced Change Learned by an Artificial Neural Network. Journal of665

Advances in Modeling Earth Systems, n/a (n/a), e2020MS002 195, https://doi.org/10.1029/666

2020MS002195.667

Barredo Arrieta, A., and Coauthors, 2020: Explainable artificial intelligence (XAI): Concepts,668

taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 58, 82–115,669

https://doi.org/10.1016/j.inffus.2019.12.012.670

30

Beucler, T., M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine, 2021: Enforcing analytic671

constraints in neural networks emulating physical systems. Phys. Rev. Lett., 126 (9), 098 302,672

https://doi.org/10.1103/PhysRevLett.126.098302.673

Buhrmester, V., D. Münch, and M. Arens, 2019: Analysis of explainers of black box deep neural674

networks for computer vision: A survey. arXiv, 1911.12116.675

Chen, C., O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su, 2019: This looks like that: Deep learning676

for interpretable image recognition. Advances in Neural Information Processing Systems, Curran677

Associates, Inc., Vol. 32.678

Davenport, F. V., and N. S. Diffenbaugh, 2021: Using machine learning to analyze physical causes679

of climate change: A case study of U.S. midwest extreme precipitation. Geophys. Res. Lett.,680

https://doi.org/10.1029/2021gl093787.681

Duerr, O., B. Sick, and E. Murina, 2020: Probabilistic Deep Learning: With Python, Keras and682

Tensorflow Probability. MANNING PUBN.683

Géron, A., 2019: Hands-onMachine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly684

UK Ltd.685

He, K., X. Zhang, S. Ren, and J. Sun, 2015: Delving deep into rectifiers: Surpassing Human-Level686

performance on ImageNet classification. 2015 IEEE International Conference on Computer687

Vision (ICCV), 1026–1034, https://doi.org/10.1109/ICCV.2015.123.688

Irrgang, C., N. Boers, M. Sonnewald, E. A. Barnes, C. Kadow, J. Staneva, and J. Saynisch-689

Wagner, 2021: Towards neural earth system modelling by integrating artificial intelligence in690

earth system science. Nature Machine Intelligence, 3 (8), 667–674, https://doi.org/10.1038/691

s42256-021-00374-3.692

Keys, P. W., E. A. Barnes, and N. H. Carter, 2021: A machine-learning approach to human693

footprint index estimation with applications to sustainable development. Environ. Res. Lett.,694

16 (4), 044 061, https://doi.org/10.1088/1748-9326/abe00a.695

Kindermans, P.-J., S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan, and696

B. Kim, 2019: The (un)reliability of saliency methods. Explainable AI: Interpreting, Explaining697

31

and Visualizing Deep Learning, W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-698

R. Muller, Eds., Springer International Publishing, Cham, 267–280, https://doi.org/10.1007/699

978-3-030-28954-6_14.700

Lapuschkin, S., S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.-R. Müller, 2019:701

Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun.,702

10 (1), 1096, https://doi.org/10.1038/s41467-019-08987-4.703

Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind704

in the tropical pacific. Journal of Atmospheric Sciences, 28 (5), 702 – 708, https://doi.org/705

10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2, URL https://journals.ametsoc.org/706

view/journals/atsc/28/5/1520-0469_1971_028_0702_doadoi_2_0_co_2.xml.707

Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics708

with a 40-50 day period. Journal of Atmospheric Sciences, 29 (6), 1109 – 1123, https://doi.org/709

10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2, URL https://journals.ametsoc.org/710

view/journals/atsc/29/6/1520-0469_1972_029_1109_dogscc_2_0_co_2.xml.711

Mamalakis, A., E. A. Barnes, and I. Ebert-Uphoff, 2022: Investigating the fidelity of explainable712

artificial intelligence methods for applications of convolutional neural networks in geoscience.713

2202.03407.714

Mamalakis, A., I. Ebert-Uphoff, and E. A. Barnes, 2021: Neural Network Attribution Methods715

for Problems in Geoscience: A Novel Synthetic Benchmark Dataset. arXiv, 2103.10005, 2103.716

10005.717

Martin, Z. K., E. A. Barnes, and E. D.Maloney, 2021: Using simple, explainable neural networks to718

predict themadden-julian oscillation.Earth and Space Science Open Archive, 42, https://doi.org/719

10.1002/essoar.10507439.2, URL https://doi.org/10.1002/essoar.10507439.2.720

Mayer, K. J., and E. A. Barnes, 2021: Subseasonal forecasts of opportunity identified by an721

explainable neural network. Geophys. Res. Lett., https://doi.org/10.1029/2020gl092092.722

McGovern, A., R. Lagerquist, D. John Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer,723

and T. Smith, 2019: Making the black box more transparent: Understanding the physical724

32

implications ofmachine learning.Bull. Am.Meteorol. Soc., 100 (11), 2175–2199, https://doi.org/725

10.1175/BAMS-D-18-0195.1.726

Montavon, G.,W. Samek, andK.-R.Müller, 2018: Methods for interpreting and understanding deep727

neural networks. Digit. Signal Process., 73, 1–15, https://doi.org/10.1016/j.dsp.2017.10.011.728

National Academies of Sciences Engineering and Medicine, 2020: Earth System Predictability729

Research and Development: Proceedings of a Workshop–in Brief. The National Academies730

Press, Washington, DC, https://doi.org/10.17226/25861.731

Philander, S. G. H., 1983: El niño southern oscillation phenomena. Nature, 302 (5906), 295–301,732

https://doi.org/10.1038/302295a0.733

Poli, P., and Coauthors, 2016: Era-20c: An atmospheric reanalysis of the twentieth century.734

Journal of Climate, 29 (11), 4083 – 4097, https://doi.org/10.1175/JCLI-D-15-0556.1, URL735

https://journals.ametsoc.org/view/journals/clim/29/11/jcli-d-15-0556.1.xml.736

Rasp, S., H. Schulz, S. Bony, and B. Stevens, 2019: Combining crowd-sourcing and deep learning737

to understand meso-scale organization of shallow convection. arXiv, 1906.01906.738

Rudin, C., 2019: Stop explaining black box machine learning models for high stakes decisions and739

use interpretable models instead. Nature Machine Intelligence, 1 (5), 206–215, https://doi.org/740

10.1038/s42256-019-0048-x.741

Samek, W., G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller, 2021: Explaining742

deep neural networks and beyond: A review of methods and applications. Proc. IEEE, 109 (3),743

247–278, https://doi.org/10.1109/JPROC.2021.3060483.744

Simonyan, K., and A. Zisserman, 2014: Very deep convolutional networks for Large-Scale image745

recognition. arXiv, 1409.1556.746

Singh, G., and K.-C. Yow, 2021: These do not look like those: An interpretable deep learning747

model for image recognition. IEEE Access, 9, 41 482–41 493, https://doi.org/10.1109/ACCESS.748

2021.3064838.749

33

Sonnewald, M., and R. Lguensat, 2021: Revealing the impact of global heating on north atlantic750

circulation using transparent machine learning. J. Adv. Model. Earth Syst., 13 (8), https://doi.org/751

10.1029/2021ms002496.752

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014: Dropout: a753

simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15 (1), 1929–1958.754

Toms, B. A., E. A. Barnes, and I. Ebert-Uphoff, 2020: Physically Interpretable Neural Networks755

for the Geosciences: Applications to Earth System Variability. Journal of Advances in Modeling756

Earth Systems, https://doi.org/10.1029/2019MS002002.757

Toms, B. A., K. Kashinath, D. Yang, and Prabhat, 2021: Testing the reliability of interpretable758

neural networks in geoscience using the Madden–Julian oscillation. Geosci. Model Dev., 14 (7),759

4495–4508, https://doi.org/10.5194/gmd-14-4495-2021.760

Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate mjo in-761

dex: Development of an index for monitoring and prediction. Monthly Weather Review,762

132 (8), 1917 – 1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;763

2, URL https://journals.ametsoc.org/view/journals/mwre/132/8/1520-0493_2004_132_1917_764

aarmmi_2.0.co_2.xml.765

Zhang, C., 2005: Madden-julian oscillation. Reviews of Geophysics, 43 (2),766

https://doi.org/https://doi.org/10.1029/2004RG000158, URL https://agupubs.onlinelibrary.767

wiley.com/doi/abs/10.1029/2004RG000158, https://agupubs.onlinelibrary.wiley.com/doi/pdf/768

10.1029/2004RG000158.769

34

Supplementary Information for
This Looks Like That There: Interpretable neural networks for
image tasks when location matters
Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022)

Elizabeth A. Barnes
E-mail: eabarnes@colostate.edu

This PDF file includes:

Figs. S1 to S13
Table S1

Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022) 1 of 15

Table S1. MJO use case validation accuracy of the ProtoLNet and its associated base CNN for seven different random
seeds. The random seeds set the training/validation split of the different years as well as the network initialization. The bold
row (random seed 30) is the ProtoLNet shown in the main text.

random seed base CNN ProtoLNet
28 81% 74%
29 60% 75%
30 58% 73%
31 77% 74%
32 82% 75%
33 81% 76%
34 74% 73%

2 of 15 Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022)

Fig. S1. Number of samples per MJO phase in training and testing sets.

Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022) 3 of 15

Fig. S2. Testing accuracy as a function of MJO phase.

4 of 15 Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022)

Fig. S3. Number of learned prototypes (out of 90 total) binned by month of the year of the training
sample from which the prototype was drawn.

Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022) 5 of 15

Fig. S4. All prototypes for MJO phase 0, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

6 of 15 Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022)

Fig. S5. All prototypes for MJO phase 1, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022) 7 of 15

Fig. S6. All prototypes for MJO phase 2, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

8 of 15 Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022)

Fig. S7. All prototypes for MJO phase 3, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022) 9 of 15

Fig. S8. All prototypes for MJO phase 4, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

10 of 15 Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022)

Fig. S9. All prototypes for MJO phase 5, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022) 11 of 15

Fig. S10. All prototypes for MJO phase 6, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

12 of 15 Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022)

Fig. S11. All prototypes for MJO phase 7, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022) 13 of 15

Fig. S12. All prototypes for MJO phase 8, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.

14 of 15 Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022)

Fig. S13. Testing accuracy comparison for the idealized quadrants use case with a reduced training
size of 1,400 samples. When training the base CNN, random seeds 10-30 (purple) use a dropout
rate of 0.0 on the fully connected layer, random seeds 35-55 (peach) use a dropout rate of 0.2, and
random seeds 60-80 (teal) use a dropout rate of 0.5. Dropout is not used when training the associated
ProtoLNet. In all instances, the ProtoLNet exhibits improved accuracy over the base CNN when
evaluated on 3,000 testing samples.

Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin and Jamin K. Rader (2022) 15 of 15

