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Abstract

Enhanced water management systems depend on accurate estimation of hydraulic properties of subsurface formations. This

is while hydraulic conductivity of geologic formations could vary significantly. Therefore, using information only from widely

spaced boreholes will be insufficient in characterizing subsurface aquifer properties. Hence, there is a need for other sources

of information to complement our hydro-geophysics understanding of a region of interest. This study presents a numerical

framework where information from different measurement sources is combined to characterize the 3-dimensional random field

representing the hydraulic conductivity of a watershed in a Multi-Fidelity estimation model. Coupled with this model, a

Bayesian experimental design will also be presented that is used to select the best future sampling locations. This work draws

upon unique capabilities of electrical resistivity tests as well as statistical inversion. It presents a Multi-Fidelity Gaussian

Processes (Kriging) model to estimate the geological properties in Upper Sangamon Watershed in east central Illinois, using

multi-source observation data, obtained from electrical resistivity and pumping tests. We demonstrate the accuracy of Co-

Kriging that is dependent on the locations and the distribution of both the high- and low-fidelity data, and also discuss its

comparison with Single-High-Fidelity Kriging results. The uncertainties and confidence in the measurements and parameter

estimates are then quantified and are in turn used to design future cycles of data collection to further improve the confidence

intervals.
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Abstract 10 

Enhanced water management systems depend on accurate estimation of hydraulic properties of subsurface 11 

formations. This is while hydraulic conductivity of geologic formations could vary significantly. 12 

Therefore, using information only from widely spaced boreholes will be insufficient in characterizing 13 

subsurface aquifer properties. Hence, there is a need for other sources of information to complement our 14 

hydro-geophysics understanding of a region of interest. This study presents a numerical framework where 15 

information from different measurement sources is combined to characterize the 3-dimensional random 16 

field representing the hydraulic conductivity of a watershed in a Multi-Fidelity estimation model. Coupled 17 

with this model, a Bayesian experimental design will also be presented that is used to select the best future 18 

sampling locations. This work draws upon unique capabilities of electrical resistivity tests as well as 19 

statistical inversion. It presents a Multi-Fidelity Gaussian Processes (Kriging) model to estimate the 20 

geological properties in Upper Sangamon Watershed in east central Illinois, using multi-source observation 21 

data, obtained from electrical resistivity and pumping tests. We demonstrate the accuracy of Co-Kriging 22 

that is dependent on the locations and the distribution of both the high- and low-fidelity data, and also 23 

discuss its comparison with Single-High-Fidelity Kriging results. The uncertainties and confidence in the 24 

measurements and parameter estimates are then quantified and are in turn used to design future cycles of 25 

data collection to further improve the confidence intervals. 26 
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Highlights: 27 

• A Multi-Fidelity Kriging model was designed to estimate the geological properties by different 28 

sources of data. 29 

• Bayesian experimental design is used to select the best future sampling locations. 30 

• We investigated how a more accurate model can "learn" from new sensors using probabilistic 31 

statistical tools. 32 

1 Introduction 33 

Reliable prediction of hydraulic properties of subsurface formations is a crucial step in improving 34 

water management systems.  There are various testing approaches to obtain information from the area of 35 

interest. Among others, electrical methods such as electrical resistivity (ER) and electromagnetic induction 36 

(EMI) are broadly used in hydro-geophysics investigations (Lesmes, et al., 2005). These tests can be used 37 

individually or in combination with frequencies ranging from direct current (DC) to >1GHz to provide 38 

information about the subsurface (Lesmes, et al., 2005). Several studies have examined factors influencing 39 

relations between electrical resistivity and hydraulic properties of aquifers and aquifer materials (Kelly, 40 

1977; Mazáč, et al., 1985). There are also studies in direct and inverse relationships between hydraulic 41 

conductivities, rock resistivities and the role of the distribution of hydraulic conductivity on dynamics of 42 

pollution spreading in rock medium (Mazáč, et al., 1990).  43 

Hydraulic conductivity of geologic formations could vary by orders of magnitude over relatively 44 

small spatial scales, hence characterizing subsurface aquifer properties using just the information acquired 45 

from widely spaced boreholes is challenging (Lesmes, et al., 2005). One method employed by  (Lesmes, et 46 

al., 2005) is to use an integrated exploration approach in which borehole and geophysical data sets are 47 

jointly interpreted. A closer look in the literature on predicting hydraulic properties of subsurface 48 

formations in watersheds still reveals a number of outstanding questions, e.g., How many field tests need 49 
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to be conducted to achieve the desired accuracy of our estimation? Where should be the location of the 50 

future tests, and how does the cost associated with different tests affect future test designs?  51 

There are a number of studies on how to build groundwater models using information at different 52 

levels of fidelity (Asher, et al., 2015; Zhang, et al., 2018). Specifically, these Multi-Fidelity (MF) models 53 

combine both Low-Fidelity (LF) data with lower associated cost and accuracy with High-Fidelity (HF) 54 

data and approximate the output with an accuracy that is better than that offered by a Single-Fidelity (SF) 55 

model (Peherstorfer, et al., 2018; Fernández-Godino, et al., 2016). In general, in building MF models, one 56 

fits different Surrogate Models (SMs), to available data points obtained from sensors with different noise 57 

levels. SM approximations are models with minimal computational cost that can effectively offer estimation 58 

and prediction without the need to obtain a large number of expensive tests or to run expensive numerical 59 

simulations (Forrester, et al., 2007) (Fernández-Godino, et al., 2016).  60 

Among the surrogate models, Gaussian Process Regression (Kriging) approach have been more 61 

widely used in MF groundwater modeling (Zaytsev, et al., 2017). Kriging properties facilitates the usage 62 

of MF models which combine HF function, a more accurate but expensive representation of a physical 63 

phenomenon, and a LF function, a less accurate but inexpensive representation of a physical phenomenon, 64 

while constructing a surrogate model (Zaytsev, et al., 2017). Review papers by (Asher, et al., 2015) and 65 

(Fernández-Godino, et al., 2016) extensively surveyed several data-driven methods of combining fidelities 66 

with the main focus on MF surrogate models among which Kriging has become a very popular surrogate 67 

particularly for MF applications. This is particularly due to the fact that Kriging entails an uncertainty 68 

structure that readily lends itself to MF modeling (Fernández-Godino, et al., 2016). Moreover, a recent 69 

research by (Zheng, et al., 2018) employed MF Gaussian surrogate to propose an adaptive MF ensemble 70 

smoother for data assimilation to reduce the high computational cost for characterization of model 71 

parameters in ensemble-based methods.  72 

In a more recent study (Menberg, et al., 2020), authors have used MF approach to Bayesian 73 

parameter estimation in subsurface heat and fluid transport models for the first time. The study includes 74 
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information from a few physically more accurate (HF) but expensive parametric model outputs and a larger 75 

number of evaluations from a less accurate, less expensive LF model. They concluded that the results from 76 

the analytical and numerical model which combine low resolution model with the data from only a few 77 

runs of a higher resolution model substantially improved the posterior distribution results (Menberg, et al., 78 

2020). 79 

In this study, we have made the following contributions. We present a quantitative MF framework 80 

and for the first time combine information from Electrical Earth Resistivity (EER) tests and pumping tests 81 

(as two tests with different accuracies) to enhance the understanding about the geological and hydrological 82 

characteristics. Also, for the first time, we investigated how future tests with different fidelities should be 83 

conducted to optimally enhance our understanding about the hydraulic properties of a region.  Specifically, 84 

we studied an intensively managed area located in the Upper Sangamon Watershed in Central Illinois, 85 

U.S.A., and generated 2D maps of hydraulic conductivity over a large-scale region with quantified 86 

uncertainties in different depth layers. In doing so, we made use of low cost, small-scale measurements 87 

obtained from the EER together with more accurate, more expensive pumping tests in a calibration 88 

framework based on Kriging. We also investigated how a more accurate model can "learn” from new 89 

sensors using probabilistic statistical tools, and how the best locations for future data collection can be 90 

selected.  91 

Our approach is based on the Bayesian experimental design, which selects the best locations, out 92 

of a set of candidate locations, based on the value of information that each location is expected to offer 93 

(Norberg, et al., 2006). By relating the expected value of information from each location to the present 94 

levels of uncertainties in the MF Kriging model, we form and solve the experimental design problem.  The 95 

proposed method can serve as a quantitative decision support framework to optimally conduct tests with 96 

different cost and accuracy levels. 97 
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The remainder of this paper is organized as follows. In Section 2, we provide the technical 98 

background, which includes detailed information about site selection, observation data, Lognormal 99 

Ordinary Kriging (LOK), MF Lognormal Ordinary Co-Kriging, and optimal Bayesian experimental design. 100 

In Section 3, we show the topography of the Upper Sangamon Watershed and discuss how the EER and 101 

pumping test data were obtained, and how the multi-source data were used in SF Kriging with multiple data 102 

sources and MF Co-Kriging. Discussions are provided in Section 4 for the effect of fidelity on the estimated 103 

field and the estimation accuracy followed by comments on the cost associated with the LF and HF data. 104 

Also, the application of optimal Bayesian experimental design for obtaining optimal future sampling 105 

locations is presented. Conclusions are provided in section 5. 106 

 107 

2 Method 108 

2.1 Site Selection 109 

 The Sangamon River is a major tributary to the Illinois River with the confluence near 110 

Chandlerville in Cass County. The drainage area of the Sangamon River at the Decatur dam is 925 square 111 

miles. The headwaters of the Sangamon River are in McLean County near the town of Ellsworth. The 112 

watershed lies across seven counties in east-central Illinois: Champaign, Christian, Dewitt, Ford, Macon, 113 

McLean, and Piatt. The major urban areas within the watershed are Decatur, Monticello, Mahomet, 114 

Rantoul, and Gibson City. 115 

This watershed is intensively managed for soybean and corn production and is among the five 116 

watersheds in Illinois that are identified as most in need of attention for water supply planning and 117 

management (Mattia, et al., 2018). The predominant land use in the watershed is row crop agriculture, 118 

which composes nearly 90 percent of the land area (Keefer, et al., 2005). As one of the Intensively Managed 119 

Landscapes (IMLs), this region is at risk for deterioration of land as well as water systems in our 120 
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environment. Hence, more observations are needed to understand and predict the behavior of natural 121 

services (ecological, hydrological, and climatic services) which support basic human needs such as water, 122 

food, and energy.  123 

The geological formation of our study area consists of Glacial and other related deposits which 124 

are grouped into four major lithostratigraphic units (from oldest to youngest); 1-Banner Formation which 125 

is divided into three units; a lower, middle, and upper unit. The lower and middle Banner are typically 126 

considered as one unit since the sediments of the lower Banner are not clearly distinguished from the 127 

sediments of the middle Banner Formation. Sand and gravel deposits in the Mahomet Bedrock Valley and 128 

those in the Mackinaw Bedrock Valley are the predominant sediments in the two bedrock valleys , 2- the 129 

Glasford Formation which primarily consists of till deposits, 3- the Wedron Group which predominantly 130 

consists of till deposits and 4- the Mason Group which primarily includes sand and gravel deposits 131 

(Roadcap, et al., 2011).  132 

Moreover, Hydro-geologic framework of Quaternary deposits in east-central Illinois consists of Mahomet 133 

aquifer; aquifers in the upper Banner Formation; aquifers in the lower Glasford Formation; aquifers in the 134 

upper Glasford Formation; Shallow and surficial aquifers (Soller, et al., 1999).    135 

2.2 Data Description 136 

Two field observation data, Electrical Earth Resistivity (EER) measurement and pumping test, are 137 

used as different fidelity data sources to estimate hydraulic conductivity of USRW (see Figure 1 for the 138 

data locations). The pumping test involves pumping from a test well at a controlled rate and monitoring the 139 

flow rate through the drawdown at different locations along the radial axis from the test well. Hydraulic 140 

conductivity values of aquifer material as determined from pump tests and aquifer tests will vary spatially 141 

but wouldn’t change much temporally. Repeated pump tests may show changes in hydraulic conductivity 142 

at the well skin of production wells (or within gravel packs immediately surrounding well screens) but 143 

repeated long-duration aquifer tests would give us similar values through time. The method is well 144 
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recognized as one of the most reliable ways of measuring soil hydraulic conductivity with HF. However, 145 

due to the high cost of drilling a well, limited data can be collected. EER measurement has also been widely 146 

applied to estimate hydraulic conductivity of the subsurface based on a two-dimensional resistivity model 147 

of the relations between aquifer hydraulic and electrical properties (Kelly, et al., 1985); (Slater, 2007); 148 

(Khalil, et al., 2009); (Tizro, et al., 2010). The measurement relies on testing with dipole-dipole electrode 149 

configuration in a vertical two-dimensional plane of the field to infer the hydraulic conductivity, whose 150 

accuracy depends on the equipment precision. It has lower cost, but also lower fidelity compared to the 151 

pumping test. In general, EER values are known to vary. The greatest variability is due to changes in 152 

saturation conditions. Within the Upper Sangamon River Watershed, water table is within a few meters of 153 

the ground surface except in areas of very steep slopes and very coarse materials. This is usually a small 154 

percentage of the entire area and is neglected at the scale of this study. There is some variation due to 155 

temperature, but we neglect this as being small within the context of this generalized study. 156 

The EER measurement provides a continuous estimation of hydraulic conductivity in a small 157 

vertical plane (~800 m long and ~80 m deep). A recent study done by (Lu, et al., 2019) shows that the 158 

relationship between soil’s hydraulic conductivity, 	𝐾 , and Electrical Conductivity, 𝜎$% , follows an 159 

exponential function form as: 𝐾 = 𝑎𝑒)*+,- + 𝑐, where the parameters a, b and c can be estimated using 160 

the calculated 𝜎$%  in soil layers which is the inverse of the resistivity data captured by EER test. According 161 

to (Lu, et al., 2019) when K is a dependent variable, the given best fitted empirical parameters can be 162 

obtained by fitting to a comprehensive data set: 163 

0			
𝑎 = 299.6𝑒)5.556678+,- + 157

𝑏 = 0.2061𝑒)5.5556>?>+,- + 0.004299
𝑐 = 7.996𝑒)5.5556AB7+,- + 0.6567

                       (1) 164 

In this study, the horizontal mean value was set as the representative value in each depth for the LF data 165 

input in MF Co-Kriging model. The equipment uncertainty of EER measurement is of the order of 1 (ohm-166 

m), giving the initial variance of 𝐾  as 10-3 (cm/s) (Kelly, et al., 1985), which was set as the nugget value 167 

for the EER data in the Co-Kriging model. The pumping tests were conducted at specific locations with 168 
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different depths. Unlike EER measurement that provides continuous vertical information, pumping test 169 

gives point information of subsurface properties from the measurement of flow velocities within soil pores. 170 

It offers higher accuracy of hydraulic conductivity, which is later set as the HF data source in Co-Kriging. 171 

In this study we had EER data at 15 locations with continuous depth and pumping test data at 68 locations 172 

with specific depth for each one. The EER and pumping tests were conducted by Illinois State Geological 173 

Survey and Illinois State Water Survey, and the locations of the tests were originally selected to aid in 174 

Quaternary mapping projects and to develop communities’ water supply planning and management.  175 

 176 

Figure 1. Locations for data in the USRW in Illinois, USA. The Black dashed line represents Sangamon 177 

River Watershed. Blue circle markers represent the pumping test data locations. Black cross markers 178 

represent the EER data locations. 179 
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 180 

2.3 Lognormal Ordinary Kriging 181 

Lognormal Ordinary Kriging (LOK) is a popular geostatistical procedure that generates an 182 

estimated mapping of geo-properties from a scattered set of points with scalar values based on a logarithmic 183 

transformation of the estimators (Balaban, et al., 2018). Compared to the traditional Ordinary Kriging (OK) 184 

model, LOK model can reduce the data variance and improve the calculation of statistics and weighted 185 

averages that avoid negative or extreme estimated values (Roth , 1998). As shown in Figure 2, the positively 186 

skewed distribution of K can be observed in both pumping test data and EER data under a normal scale. 187 

However, after we transformed the data on a log scale, the data looks more symmetric and the variance is 188 

greatly reduced. 189 

 190 

Figure 2. Histogram of the measured hydraulic conductivities from the pumping test under (a) normal scale 191 

and (b) log scale; from the EER test under (c) normal scale and (d) log scale. 192 
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The LOK model algorithm follows the structure of Gaussian Processes: 193 

𝑙𝑛(𝒚) = 𝑓(𝒙)~𝐺𝑃(0,𝑲)  (2) 194 

where 𝒙＝{𝑥Q} represents the locations of the data points, 𝒚＝{𝑦Q} represents the measured hydraulic 195 

conductivity corresponding to the locations 𝒙, 𝑲 = {𝐾QT} is a symmetric matrix, which is constructed by 196 

the Kriging function 𝑘V𝑥Q, 𝑥T; 𝜃Y with exponential variogram through the following equation: 197 

𝐾QT = 𝑘V𝑥Q, 𝑥T; 𝜃Y = 𝑛 + 𝑠[1 − 𝑒)
]^_`^a]
b/d e  (3) 198 

where 𝜃 = (𝑛, 𝑠, 𝑟) are the Kriging parameters, namely Nugget (𝑛), Sill (𝑠), and Range (𝑟). Nugget is 199 

usually specified according to the observation errors, while Sill and Range can be obtained by fitting the 200 

sample variogram according to the Kriging function.  201 

Given the observation data {𝒙, 𝒚},  the semivariance, 𝛾, of LOK model can be expressed as: 202 

𝛾V𝑑QTY =
6
A
𝐸j𝑙𝑛(𝑦Q) − 𝑙𝑛V𝑦TYk

A
  (4) 203 

where 𝑑QT = l𝑥Q − 𝑥Tl  and E(. )  is the expectation operator that returns the mean value. Then for the 204 

estimations at a set of new locations of points 𝒙∗, normal distribution is applied: 205 

o𝑓
(𝒙∗)
𝑓(𝒙) p~𝑁 r𝟎, o𝑘

(𝒙∗, 𝒙∗; 𝜃) 𝑘(𝒙∗, 𝒙; 𝜃)
𝑘(𝒙, 𝒙∗; 𝜃) 𝑲 pt  (5) 206 

According to the resulting conditional distribution, estimations at a given point is given by 207 

𝑓(𝒙∗|𝒙)~𝑁(𝝁𝒍, 𝝈𝒍	)  (6) 208 

where 209 

𝝁𝒍 = 𝑘(𝒙∗, 𝒙; 𝜃)𝐾)6𝒚   (7) 210 

𝝈𝒍 = 𝑘(𝒙∗, 𝒙∗; 𝜃) − 𝑘(𝒙∗, 𝒙; 𝜃)𝐾)6𝑘(𝒙, 𝒙∗; 𝜃)  (8) 211 
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Since 𝑓(𝒙∗) is in logarithmic scale, in order to estimate the parameter of interest (in our case the hydraulic 212 

conductivity), we need to convert the logarithmic values, 𝝁𝒍 and 𝝈𝒍, back to the actual mean and standard 213 

deviation values according to: 214 

𝝁∗ = 𝑒𝑥𝑝 z𝝁𝒍 +
𝝈𝒍{

A
|  (9) 215 

𝝈∗ = }[𝑒𝑥𝑝(𝝈𝒍A) − 1]𝑒𝑥𝑝(2𝝁𝒍 + 𝝈𝒍A)  (10) 216 

 217 

2.4 Multi-Fidelity Lognormal Ordinary Co-Kriging 218 

To combine the observation data from EER measurement and pumping test, the MF Lognormal 219 

Co-Kriging model is used to perform a two-dimensional hydraulic conductivity mapping in different depth 220 

layers with smooth and continuous fusion of information from two sources with different fidelity/precision. 221 

The Co-Kriging algorithm follows the structure proposed by (Kennedy, et al., 2000) (Forrester, et al., 2007), 222 

assuming that 223 

𝑢�(𝒙)~𝐺𝑃V0, 𝑘�(𝒙, 𝒙; 𝜃�)Y  (11) 224 

𝑢�(𝒙)~𝐺𝑃V0, 𝑘�(𝒙, 𝒙; 𝜃�)Y  (12) 225 

are two independent kriging functions. Then, the LF and HF LOK functions can be modeled as 𝑓�(𝒙) =226 

𝑢�(𝑥) and 𝑓�(𝒙) = 𝜌𝑢�(𝒙) + 𝑢�(𝒙), respectively, which can be expressed as a multi-output LOK: 227 

o𝑓�
(𝒙)

𝑓�(𝒙)
p~𝐺𝑃r0, o 𝑘��

(𝒙, 𝒙; 𝜃�) 𝑘��(𝒙, 𝒙; 𝜃�, 𝜌)
𝑘��(𝒙, 𝒙; 𝜃�, 𝜌) 𝑘��(𝒙, 𝒙; 𝜃�, 𝜃�, 𝜌)

pt  (13) 228 

where 229 

𝑘��(𝒙, 𝒙; 𝜃�) = 𝑘�(𝒙, 𝒙; 𝜃�)  (14) 230 

𝑘��(𝒙, 𝒙; 𝜃�, 𝜌) = 𝑘��(𝒙, 𝒙; 𝜃�, 𝜌) = 𝜌𝑘�(𝒙, 𝒙; 𝜃�)  (15) 231 

𝑘��(𝒙, 𝒙; 𝜃�, 𝜃�, 𝜌) = 𝜌A𝑘�(𝒙, 𝒙; 𝜃�) + 𝑘�(𝒙, 𝒙; 𝜃�)  (16) 232 
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where 𝑘� and 𝑘� are the Kriging functions (Equation (3)) for the LF and HF data, respectively, and 𝜌 is the 233 

MF constant. 234 

Given the observation LF and HF data, {𝒙𝑳, 𝒚𝑳} and {𝒙𝑯,𝒚𝑯}, the Kriging parameters 𝜃� and 𝜃� 235 

can be fitted by the sample variogram according to the Kriging functions of the LF and HF data, 236 

respectively. To obtain the optimized 𝜌, normal distribution is applied: 237 

f���(𝒛)~𝑁(0,𝑲)  (17) 238 

where 239 

𝒛 = oln
(𝒚𝑳)

ln(𝒚𝑯)
p  (18) 240 

𝑲 = o 𝑘��(𝒙𝑳, 𝒙𝑳; 𝜃�) 𝑘��(𝒙𝑳, 𝒙𝑯; 𝜃�, 𝜌)
𝑘��(𝒙𝑯, 𝒙𝑳;𝜃�, 𝜌) 𝑘��(𝒙𝑯, 𝒙𝑯; 𝜃�, 𝜃�, 𝜌)

p  (19) 241 

and the optimized constant 𝜌 can be trained by minimizing the negative log marginal likelihood (NLML): 242 

𝑁𝐿𝑀𝐿(𝜃�, 𝜃�, 𝜌) =
6
A
𝒚𝑻𝐾)6𝒚 + 6

A
𝑙𝑛|𝑲| + �

A
𝑙𝑛(2𝜋)  (20) 243 

where 𝑁 is the total number of the data points. In this study, we use TNC, a truncated Newton algorithm 244 

minimization method (Nash, 1984) to obtain the optimized constant 𝜌. For the estimations at a new set of 245 

points 𝒙∗, we first construct the joint distribution: 246 

�𝑓�(𝒙
∗)

𝒛
�~𝑁 r0, o𝑘��(𝒙

∗, 𝒙∗; 𝜃�, 𝜃�, 𝜌) 𝒒�
𝒒 𝑲 pt  (21) 247 

where 248 

𝒒� = [𝑘��(𝒙∗, 𝒙𝑳; 𝜃�, 𝜌), 𝑘��(𝒙∗, 𝒙𝑯; 𝜃�, 𝜃�, 𝜌)	]  (22) 249 

Like the SF LOK model, according to the resulting conditional distribution, predictions can be estimated 250 

by 251 

𝑓�(𝒙∗|𝒛)~𝑁(𝝁𝒎, 𝝈𝒎	)  (23) 252 
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where 253 

𝝁𝒎 = 𝒒�𝑲)6𝒚  (24) 254 

𝝈𝒎 = 𝑘��(𝒙∗, 𝒙∗) − 𝒒�𝑲)6𝒒  (25) 255 

Finally, we back transform the mean 𝝁𝒎 and the standard deviation 𝝈𝒎 of the MF model back into normal 256 

domain: 257 

𝝁∗ = 𝑒𝑥𝑝 z𝝁𝒎 +
𝝈𝒎{

A
|  (26) 258 

𝝈∗ = }[𝑒𝑥𝑝(𝝈𝒎A) − 1]𝑒𝑥𝑝(2𝝁𝒎 + 𝝈𝒎A)  (27) 259 

 260 

2.5 Optimal Bayesian Experimental Design 261 

Our experimental design concerns the problem of identifying the best locations for future tests or 262 

data collections. These locations are identified based on the value of information that each location is 263 

expected to offer (Norberg, et al., 2006). For instance, in the context of hydraulic property estimation for 264 

aquifers, measurements that are collected from locations that are closely spaced, will provide much less 265 

information compared to those obtained from locations that are sufficiently apart. In establishing a 266 

quantitative framework that captures these facts, a Bayesian experimental design procedure can be used. 267 

This begins by quantifying the value of information. Specifically, the value of information is defined as the 268 

information gain conditioned on the design variables. The information gain is formally defined to be the 269 

Kullback-Leibler (KL) divergence from the posterior distributions of the model parameter to prior 270 

(Chaloner, et al., 1995). The best experiment, among the ensemble of candidates is the one that maximizes 271 

the information gain, taken to be the Kullback-Leibler (KL) divergence from posterior to its prior. Solving 272 

this optimization problem is numerically complicated, as the evaluation of KL divergence requires samples 273 

from the prior and posterior of the parameters. In what follows, we provide the technical background for 274 

this experimental design approach combined with the MF Co-Kriging model. 275 
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Using Bayesian inference, the posterior distribution of model parameters 𝑝(𝜽|𝒅, 𝑠)  can be 276 

expressed as 277 

𝑝(𝜽|𝒅, 𝑠) = �(𝜽|�)�(𝒅|𝜽,�)
�(𝒅|𝒔)

  (28) 278 

where 𝑝(𝜽|𝑠) is the prior distribution, 𝑝(𝒅|𝜽, 𝑠) is the likelihood, 𝑝(𝒅|𝒔) is the evidence, which can be 279 

considered as a normalizing constant  280 

𝑝(𝒅|𝑠) = ∫𝑝(𝒅|𝜽, 𝑠) 𝑝(𝜽|𝑠)𝑑𝜽  (29) 281 

In this study, 𝜽 is the sampled Kriging parameters, including n, s, and r. n and s are considered as constant 282 

values according to the MF model, while r is considered as Gaussian distributed samples based on the fitted 283 

LF and HF range, 𝑟� and 𝑟�, with 𝜎� = 0.01𝑟� and 𝜎� = 0.01𝑟� . 𝒅 is the sampled observation data whose 284 

probability distribution can be assumed Gaussian-like with the model-estimated 𝜇 and 𝜎. 𝑠 represents the 285 

designed future sampling location. Since the prior knowledge of 𝜽 is not affected by 𝑠, the prior distribution 286 

𝑝(𝜽|𝑠) = 𝑝(𝜽)  (30) 287 

The expected utility in Bayesian experimental design can be expressed as (Lindley, 1956) 288 

𝑈(𝑠) = ∫𝑢(𝑠, 𝒅, 𝜽)𝑝(𝜽,𝒅|𝑠)𝑑𝜽𝑑𝒅  (31) 289 

where 𝑢(𝑠, 𝒅, 𝜽) is the utility function. Following the algorithm proposed by (Zhang, et al., 2015), the 290 

relative entropy from the prior to the posterior is chosen as the utility function (Lindley, 1956), which 291 

considers the expected gain in Shannon information (Shannon, 1948) given by the experiment 292 

𝑢(𝑠, 𝒅,𝜽) = ∫ 𝑝(𝜽|𝒅, 𝑠) ln	[�
V𝜽l𝒅, 𝑠Y
�V𝜽l𝑠Y ]𝑑𝜽  (32) 293 

According to Bayes’ theorem and Monte Carlo approach, the integral in Equation (31) can be approximated 294 

by the sum of the discrete values 295 

𝑈(𝑠) ≈ 6
�
∑ {𝑙𝑛[𝑝(𝑑Q|𝜃Q, 𝑠)] − 𝑙𝑛[𝑝(𝑑Q|𝑠)]}�
Q¡6   (33) 296 
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where 𝑑Q is each of the sampling data point, and 𝑁 is the total number of the sampling data points. From 297 

Equation (29) and (30), the evidence 𝑝(𝑑Q|𝑠) can also be approximated by the Monte Carlo approach 298 

𝑝(𝑑Q|𝒔) = ∫𝑝(𝑑Q|𝜽, 𝑠) 𝑝(𝜽)𝑑𝜽 ≈
6
�
∑ 𝑝V𝑑Q|𝜃T, 𝑠Y�
T¡6   (34) 299 

where the likelihood 𝑝V𝑑Q|𝜃T, 𝑠Y cas be expressed by a radial basis, exponential decaying function with the 300 

MF Co-Kriging model G: 301 

𝑝V𝑑Q|𝜃T, 𝑠Y = exp	(− 6
A
(𝑑Q − 𝐺(𝜃T, 𝑠))A)   (35) 302 

Combining Equation (33), (34), and (35), the optimal sampling location 𝑠∗ can be obtained by maximizing 303 

the expected utility 𝑈(𝑠) over the design domain 𝐷, which can be achieved by minimizing the negative 304 

𝑈(𝑠) 305 

𝑠∗ = 𝑎𝑟𝑔max
�∈ª

[𝑈(𝑠)] = 𝑎𝑟𝑔min
�∈ª

[−𝑈(𝑠)]  (36) 306 

The results of sequential Bayesian experimental design application for future sampling locations will be 307 

demonstrated in Section 4.3. 308 

 309 

3 Results 310 

3.1 Topography Investigation 311 

We used the LiDAR data from the U.S. Geological Survey National Elevation Dataset (USGS 312 

NED) for USRW along with the EER and pumping test data. The LiDAR data is uniformly distributed in 313 

the rectangular region of USRW as shown in Figure 1. Multi-quadratic radial basis function with Euclidean 314 

distance was used to interpolate the elevation between the LiDAR data points. Figure 3 (a) shows that the 315 

topography of the watershed is generally flat, which is on average within a range of 210 m ~ 230 m. There 316 

is only a relatively low region in the southeastern region (~180m). The flat topography suggests that a 317 

reasonable approach would be to represent the domain in a Cartesian Coordinate system (x-y-z) denoting 318 
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z-coordinate by depth (distance from the surface), thus ignore the surface variation and set all the locations’ 319 

surface as zero in depth for the z-value. 320 

 321 

Figure 3. (a) The surface elevation map of the rectangular region of USRW shown in Figure 1. Red dots 322 

represent the LiDAR data. Blue circle markers represent the locations of EER data. Black cross markers 323 

represent the locations of pumping test data. Champaign city, IL (40°06′54″N, 88°16′22″W) is set as the 324 

origin point (x = 0 km, y = 0 km). (b) Sketch of the vertical layers setup, where k is the layer number. 325 

 326 

3.2 Single-Fidelity Kriging Results with Multiple Data Sources 327 

The USRW is a typical glaciated Midwest River Basin, which shows characteristic low-relief 328 

landscapes and reflects glacial deposition patterns, except for regions modified by stream processes in 329 

valleys. Hence, soil deposition patterns are expected to be a layer-by-layer distribution. The watershed 330 

contains mostly sand and gravel deposits concentrated in different layers which are typically 15 m thick 331 

(Selkregg, et al., 1958). Hence, we divided the 75 m thick domain region into five 15 m thick layers, where 332 

EER and pumping test data are located in a range between 10 m to 85 m deep from the surface as shown in 333 

Figure 3 (b). Within the same layer, soil and hydraulic properties (e.g., hydraulic conductivity) are similar 334 

and correlated across different locations. We constructed a two-dimensional (horizontal) Kriging model in 335 

different layers to construct a multi-layer mapping of hydraulic conductivity. 336 
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SF Kriging with multiple data sources was conducted as the reference to compare with the MF Co-337 

Kriging model. In the SF Kriging model, the data sources were treated equally, ignoring their different 338 

fidelity. The exponential function-based variogram is used to fit the semivariance data (Equation 4) 339 

including both EER and pumping test data on the sample variogram (Oliver, et al., 1990). The python-based 340 

fitting tool, using a non-linear least squares algorithm is applied for curve fitting. The fitted Kriging 341 

parameters of s = 0.61 and r = 14.36 by setting n = 0, assuming there is no initial uncertainty range from 342 

the measurement. The exponential model one of the most commonly used models, which suggests that data 343 

spatial autocorrelation decreases exponentially with increasing distance based on prior knowledge of the 344 

phenomenon (Oliver, et al., 2015).  345 

When measurements are done at irregular grid-points, setting a bandwidth, lag-tolerance, and angle 346 

tolerance to account for the directional influence (anisotropic effects) can be helpful to statistically quantify 347 

and analyze sample contributions in different ranges depending on the direction. However, since there is 348 

limited number of the representative observation data from EER and pumping tests, we assumed isotropic 349 

contribution from all the measurements without setting a bandwidth and tolerance to ensure enough data 350 

points in the sample variogram. 351 

 In Figure 4, the SF Kriging result shows a relatively uniform distribution of mapped hydraulic 352 

conductivity, 𝐾, in the first three layers (depth < 50 m), while some peak values can be observed in the last 353 

two layers (depth > 50 m). This suggests more varying soil properties exist in the deeper layers of the 354 

watershed. The uncertainty in the estimated properties is presented by the standard deviations, 𝜎. 355 
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 356 

Figure 4. Single-Fidelity Kriging of the hydraulic conductivity and the corresponding standard deviation 357 

in the USWR in different depth layers. a) layer k = 1, depth = 17.5 m. b) layer k = 2, depth =32.5 m. c) 358 

layer k = 3, depth = 47.5 m. d) layer k = 4, depth = 62.5 m. e) layer k = 5, depth = 77.5 m. The value of 359 

depth shown on top of each panel is the center z-location in each layer (Figure 3 (b)). Blue circle markers 360 

represent the EER data locations. Black cross markers represent the pumping test data locations. 361 

 362 

3.3 Multi-Fidelity Co-Kriging Results 363 
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The SF Kriging model didn't account for the fact that data are from different sources, and therefore, 364 

they are considered with the same uncertainty. However, since different data sources typically have 365 

different uncertainty/error ranges due to equipment, methods, and human factors, the fidelity of these data 366 

sources should also be incorporated into the model. This makes MF Co-Kriging models a more accurate 367 

approach compared to the Single Kriging model, when multiple sources of data are available. Hence, not 368 

much confidence can be placed on the SF Kriging result shown in Figure 4. Data with different fidelity 369 

should also be treated separately in the sample variogram for two sets of fitted Kriging parameters. 370 

In MF Co-Kriging model, we treat EER and pumping test data separately when Kriging parameters 371 

are obtained from each sample variogram. The fitted Kriging parameters based on the exponential function-372 

based variogram are: s = 0.18 and r = 1.93 by setting n = 9.9 × 10)> for EER; s = 1.35 and r = 12.45 by 373 

setting n = 0 for pumping test. For the EER test, n = 9.9 × 10)> was set according to the natural log variance 374 

of the initial variance (10-3 (cm/s)) of K from the equipment error.  375 

Figure 5 shows the Multi-Fidelity Co-Kriging result of the hydraulic conductivity and the 376 

corresponding standard deviation in the USRW. Compared to the Single Kriging result shown in Figure 5, 377 

Multi-Fidelity Co-Kriging puts more weight on the HF data (shown by circle markers). Hence, it can be 378 

seen that the estimated 𝐾 and 𝜎 distribution patterns generally follow the distribution of the pumping test 379 

data. It can also be seen that regions near the HF data points (blue circles in Figure 5) have lower standard 380 

deviation. This means that the model assesses higher confidence in the estimates in those regions. The LF 381 

data (shown by cross markers), however, do not help reduce uncertainty levels in a large area, but 382 

nonetheless provide local hydraulic information in regions far away from the HF data locations. 383 
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 384 

Figure 5. Multi-Fidelity Co-Kriging of the hydraulic conductivity and the corresponding standard deviation 385 

in the USRW in different depth layers. a) layer k = 1, depth = 17.5 m. b) layer k = 2, depth =32.5 m. c) 386 

layer k = 3, depth = 47.5 m. d) layer k = 4, depth = 62.5 m. e) layer k = 5, depth = 77.5 m. The value of 387 

depth shown on top of each panel is the center z-location in each layer (Figure 3 (b)). Blue circles represent 388 

the High-Fidelity data locations. Black cross markers represent the Low-Fidelity data locations. 389 

 390 
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4 Discussion 391 

4.1 Fidelity Effect on the Predicted Field 392 

In Multi-fidelity Co-Kriging, pumping test data was selected as High-fidelity data source due to it being a 393 

more reliable measurement method compared to EER data. Hence, the estimated 𝐾 and 𝜎 values based on 394 

MF Co-Kriging (Figure 5) are mostly dominated by the HF data (pumping test data). To further study the 395 

fidelity effect, we exclude the LF data and only consider the HF data in the Kriging model (Figure 6) to 396 

compare with the MF results (Figure 5). Figure 6 shows that in regions near the HF data, both the estimated 397 

𝐾 and 𝜎 values are similar as that in Figure 5. However, in regions far from the HF data points, the models 398 

provide much different 𝐾 and 𝜎  estimates, especially in the first three layers (depth < 50 m) where HF data 399 

points are scarce. The higher 𝜎 estimations are due to the additional information provided by the LF data. 400 

However, the higher estimated 𝜎 does not mean that the LF data provides wrong information, instead, the 401 

different estimations of 𝐾  suggest that LF data do provide valuable information about the hydraulic 402 

conductivity properties for regions where expensive HF tests are not available or economically not feasible. 403 

We will test the accuracy of the estimated 𝐾 between MF Co-kriging and Single-High-Fidelity (SHF) 404 

Kriging in the following subsection (Section 4.2). 405 



manuscript submitted to Water Resources Research 

 22 

 406 

Figure 6. Single High-Fidelity Kriging of the hydraulic conductivity and the corresponding standard 407 

deviation in the USRW with only High-Fidelity data (pumping test data) in different depth layers. a) layer 408 

k = 1, depth = 17.5 m. b) layer k = 2, depth =32.5 m. c) layer k = 3, depth = 47.5 m. d) layer k = 4, depth 409 

= 62.5 m. e) layer k = 5, depth = 77.5 m. The value of depth shown on top of each panel is the center z-410 

location in each layer (Figure 3 (b)). Blue circles represent the locations of HF data. 411 

 412 

4.2 Fidelity Effect on the Estimation Accuracy 413 
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To evaluate the estimated 𝐾 values in the MF Co-Kriging model, we focus on the last two layers 414 

(depth > 50 m) and remove HF data points in each layer from the estimation model. We then use these 415 

removed data points as the validation data to be compared with the estimated values. In Figure 7, the red 416 

circles show the locations of the removed HF data points in each layer. The removed data points were 417 

selected based on their locations. Specifically, we preferred HF locations that were close to a LF data 418 

location in order to assess the accuracy of LF data contributions. It can be seen that the calculated standard 419 

deviation values do not differ significantly between MF model and SHF model. More HF data can increase 420 

the confidence levels in both cases. However, we do see the difference on the estimated 𝐾 value in these 421 

figures.  422 

The removed HF data points provide a reference value of 𝐾 = 0.078	𝑐𝑚/𝑠 in the 4th layer and 𝐾 =423 

0.081	𝑐𝑚/𝑠 in the 5th layer at the data locations. After the data points were removed, the MF model 424 

provided a prediction of 𝐾 = 0.081	𝑐𝑚/𝑠 in the 4th layer and 𝐾 = 0.107	𝑐𝑚/𝑠 in the 5th layer at the data 425 

location, while the SHF model provided an estimate of 𝐾 = 0.052	𝑐𝑚/𝑠  in the 4th layer and 𝐾 =426 

0.086	𝑐𝑚/𝑠 in the 5th layer at the data location. The above result provides an estimated accuracy. Let us 427 

now use a more precise measure of accuracy, defined as 428 

𝑎¯ = 1 − (𝐾�°±² − 𝐾°±³)/𝐾°±³  (37) 429 

where 𝐾�°±²  is the predicted 𝐾 from the MF or SHF model, 𝐾°±³  is the reference 𝐾, i.e., the removed HF 430 

data. For the MF model, the accuracy is 96% in the 4th layer and 68% in the 5th layer, while for the SHF 431 

model, the accuracy is 67% in the 4th layer and 94% in the 5th layer. In the 4th layer, the removed points are 432 

far away from the other HF data points. Under this condition, LF data provides important information to 433 

enhance the estimation of the Kriging model. However, in the 5th layer, the removed points are relatively 434 

close to the other HF data points. Hence, LF data is not necessary and might provide information with 435 

higher variance due to its LF information compared to the surrounding HF information. 436 
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As a result, the accuracy of MF model depends on the locations and the distribution of both the LF 437 

and HF data. When HF data points are scarce and far away from the LF data points, the information 438 

provided from LF data becomes important and can enhance the model performance and accuracy. 439 

 440 

Figure 7. Comparisons between Multi-Fidelity Co-Kriging and Single-High-Fidelity Kriging with specific 441 

points removal. a) and d) Multi-Fidelity Co-Kriging of the hydraulic with all data points in the last two 442 

layers. b) and e) Multi-Fidelity Co-Kriging of the hydraulic with specific point removals in the last two 443 

layers. c) and f) High-Fidelity Kriging of the hydraulic conductivity with specific point removals in the last 444 

two layers. Blue circle markers represent the High-Fidelity data locations. Black cross markers represent 445 

the Low-Fidelity data locations. Red circles highlight the removed High-Fidelity data points. 446 

Next, in order to further investigate the fidelity effect, we choose the deepest (5th) layer as the test 447 

case and consecutively remove HF data points one by one within or close to the LF data points. Figure 8 448 

shows the estimated hydraulic conductivity field by MF Co-Kriging and SHF Kriging under four different 449 

point-removal scenarios: keep all the HF data, remove point 1, remove points 1 and 2, and remove points 450 

1, 2, and 3. Comparing the results of MF Co-Kriging versus SHF Kriging, it can be seen that as more data 451 

points are removed, SHF Kriging shows a relatively lower and more uniform estimated 𝐾 field. However, 452 
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since LF data still provides the surrounding information in MF Co-Kriging, it provides estimated 𝐾 values 453 

closer to the original estimates where all the data points were present. 454 

 455 

Figure 8. Comparisons between Multi-Fidelity Co-Kriging and Single-High-Fidelity Kriging in the last 456 

layer (depth >70 m) with three consecutive points removal. Multi-Fidelity Co-Kriging of the hydraulic 457 

conductivity with a) all data points. b) 1 point removal. c) 2 points removal. d) 3 points removal. Single-458 

High-Fidelity Kriging of the hydraulic conductivity with e) all data points. f) 1 point removal. g) 2 points 459 

removal. h) 3 points removal. Blue circles represent the High-Fidelity data locations. Black cross markers 460 

represent the Low-Fidelity data locations. Red circles highlight the removed High-Fidelity data points, and 461 

the nearby red numbers in a) and e) show the removal order of the points.  462 

Using the definition in Equation (37), Figure 9 shows the accuracy of K estimates at points 1, 2, 463 

and 3 under MF Co-Kriging and SHF Kriging when zero data point, one data point, two data points, and 464 

three data points are removed. When all the points are present, the accuracy is 100% at all three points. 465 

When point 1 is removed, the accuracy remains 100% at points 2 and 3, but at point 1, the SHF Kriging 466 

shows a greater accuracy compared to MF Co-Kriging, because of the far distance between point 1 and the 467 

LF data points as discussed in Figure 7. When both data at points 1 and 2 are removed, MF Co-Kriging 468 

shows higher accuracy both at points 1 and 2, while point 3 remains at 100% accuracy. When all three 469 

points are removed, MF Co-Kriging shows obviously higher accuracy at all the points' locations compared 470 
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to SHF Kriging. The results reconfirm that when HF data becomes scarcer, the information provided by LF 471 

data becomes more critical in MF Co-Kriging and can lead to better estimation of hydraulic conductivity. 472 

 473 

Figure 9. The accuracy of (a) point 1, (b) point 2, and (c) point 3 under Multi-Fidelity Co-Kriging and 474 

Single-High-Fidelity Kriging when removing 0 point, 1 point, 2 points, and 3 points. The removed points 475 

location is shown in the top-right panel, and the points’ removing order follows the denoted number of the 476 

points. 477 

 478 

4.3 Future Data Collection Using Bayesian Experimental Design 479 

In this section, we apply the Bayesian experimental design along with the MF Co-Kriging model to 480 

determine the future sampling locations for the HF data (pumping test) measurement. We chose the deepest 481 

(5th) layer, which has more uniform distribution of both LF and HF data points. Five optimal sampling 482 

locations for future pumping test data were estimated one by one with the initial guesses of the sampling 483 

location uniformly assigned in the simulation domain (Figure 1). Once the current optimal point was 484 
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obtained, the hydraulic conductivity value was then predicted by the MF Co-Kriging model at that location. 485 

The current estimated optimal point with its predicted hydraulic conductivity was then put back to the MF 486 

Co-Kriging model as one of the synthetic measurement data point to update the model and train the new 487 

optimized constant 𝜌 for the next optimal sampling location. 488 

The final optimal result is shown in Figure 10. The optimal locations are shown by the red triangles 489 

with the numbers indicating the sequential order. The sampling points are located in the region where 𝜎 is 490 

high, indicating the need of future measurements to enhance the confidence of the prediction and 491 

understanding of the region of interest. We can see that the future sampling points provide more information 492 

to the region nearby the suggested locations, where variances are greatly reduced. Variances are slightly 493 

increased in regions far away from the suggested locations due to the unbalanced information entered into 494 

the model. However, according to Bayesian Experimental Design, those regions are relatively less efficient 495 

for future measurements compared to the suggested locations when considering the expected gain in 496 

Shannon information (see Section 2.5). 497 

The Bayesian experimental design model can be carried out for both pumping test data and EER 498 

data. However, because the pumping test data (HF data) is dominant in the MF Co-Kriging model and the 499 

pumping test is more expensive thus more limited, the appropriate future optimal locations are more critical 500 

than EER test locations from an economical perspective. Therefore, in this study, we performed the 501 

Bayesian experimental design to infer the optimal locations for future pumping tests, which can provide 502 

more valuable information, as suggested by the model. This work can be the first step of future studies on 503 

developing a more robust optimization framework that incorporates both the data cost and fidelity and can 504 

uncover their complex interplay. 505 
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 506 

Figure 10. The suggested sequential optimal sampling locations using Bayesian experimental design with 507 

the Multi-Fidelity Co-Kriging model for the deepest (5th) layer. (a) Initial Kriging result. (b) Updated mean 508 

and variance with the 1st observation point. (c) Updated mean and variance with the 1st and 2nd observation 509 

points. (d) Updated mean and variance with the 1st, 2nd, and 3rd observation points. (e) Updated mean and 510 

variance with the 1st, 2nd, 3rd, and 4th observation points. (f) Updated mean and variance with all 5 optimal 511 

observation points. Blue circle markers represent the High-Fidelity data locations. Black cross markers 512 

represent the Low-Fidelity data locations. Red triangles represent the suggested optimal future sampling 513 

locations. The red numbers represent the order of the samplings. 514 
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 515 

5 Conclusions 516 

This work presents a robust approach to exploit multi-source data to estimate the 3-dimensional 517 

random field of hydraulic conductivities.  In particular, for the first time we demonstrated how this 518 

framework can use the combination of pumping test data from boreholes, which are expensive and more 519 

accurate, with observation data from a less expensive and less accurate test, namely the EER test. This 520 

approach offers a cost-effective approach to reliably characterize the hydraulic conductivity properties in 521 

under-sampled sites and can be particularly used in obtaining large-scale parameter maps for a region using 522 

small-scale measurements in an efficient way. The estimated values suggest that the accuracy of MF Co-523 

Kriging depends on the locations and the distribution of both the LF and HF data. When HF data points are 524 

sparse and far away from the LF data points, the information provided from the LF data becomes crucial, 525 

and can greatly enhance the model accuracy.  526 

HF data can provide more information to the model compared to the LF data. However, HF data 527 

are generally more costly to obtain, mainly due to their more precise testing process. For example, in this 528 

study, pumping tests require drilling wells into the ground, which roughly costs $11,000 for each 80 m well. 529 

However, the EER test is conducted completely on the surface, with no need for drilling. This makes the 530 

cost of EER test much lower, to be approximately at only $600 for a 80 m deep continuous data. There is a 531 

trade-off between deciding on the HF versus LF measurements. We observed through this work that LF 532 

data can also provide useful information to greatly enhance the parameter estimation, especially in regions 533 

where data points are sparsely-distributed. This work also includes optimal sensor placement, where the 534 

best locations for future data collection are selected by considering the current confidence levels estimated 535 

by the Kriging model, which is related to the expected value of information from future sensor data. In 536 

order to rigorously inform the decision as to what should be the combination of LF and HF measurements, 537 

our plan for a future study is to develop a more holistic optimization framework that incorporates both the 538 

data cost and fidelity and can uncover their complex interplay.  539 
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