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Abstract

It is now widely accepted that cumulus cloud size distributions follow power-laws, at least over part of the cloud size spectrum.

Providing reliable fits to empirical size distributions is however not a simple task, and this is reflected by the large spread

in power-law exponents reported in the literature. Two well-documented idealized high-resolution numerical simulations of

convective situations are here performed and analyzed in order to gain a clearer understanding of cumulus size distributions.

Advanced statistical methods, including maximum likelihood estimators and goodness-of-fit tests, are employed to produce the

most accurate fits possible. Various candidate distributions are tested including exponentials, power-laws and other heavy-tail

functions. Size distributions estimated from clouds identified just above cloud base are found to be best modeled by exponential

distributions. If one considers instead clouds identified from an integrated condensed water path, robust power-law behaviors

start to emerge, in particular when deep convection is involved. In general however, these empirical distributions are best

represented by alternative heavy-tail distributions such as the Weibull or cutoff power-law distributions. In an attempt to

explain these results, it is suggested that exponential size distributions characterize a population where clouds interact only

weakly, whereas heavy-tail distributions are the manifestation of a cloud population that self-organizes towards a critical state.

1



P
os
te
d
on

18
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
98
98
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

2



P
os
te
d
on

18
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
98
98
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

3



P
os
te
d
on

18
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
98
98
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

4



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Convective cloud size distributions in idealized cloud1

resolving model simulations2

Julien Savre1, and George Craig1
3

1Meteorological Institute, Physics Department, Ludwig-Maximilians-Universität, Munich, Germany4

Key Points:5

• Advanced statistical methods are used to fit cloud size distributions from two6

simulated convective cloud ensembles7
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• Clouds identified from an integrated condensed water criterion exhibit clear10
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• These results are consistent with the hypothesis that the cloud ensemble self-12

organizes towards a critical state13
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Abstract14

It is now widely accepted that cumulus cloud size distributions follow power-laws, at15

least over part of the cloud size spectrum. Providing reliable fits to empirical size16

distributions is however not a simple task, and this is reflected by the large spread in17

power-law exponents reported in the literature. Two well-documented idealized high-18

resolution numerical simulations of convective situations are here performed and ana-19

lyzed in order to gain a clearer understanding of cumulus size distributions. Advanced20

statistical methods, including maximum likelihood estimators and goodness-of-fit tests,21

are employed to produce the most accurate fits possible. Various candidate distribu-22

tions are tested including exponentials, power-laws and other heavy-tail functions. Size23

distributions estimated from clouds identified just above cloud base are found to be24

best modeled by exponential distributions. If one considers instead clouds identified25

from an integrated condensed water path, robust power-law behaviors start to emerge,26

in particular when deep convection is involved. In general however, these empirical27

distributions are best represented by alternative heavy-tail distributions such as the28

Weibull or cutoff power-law distributions. In an attempt to explain these results, it is29

suggested that exponential size distributions characterize a population where clouds30

interact only weakly, whereas heavy-tail distributions are the manifestation of a cloud31

population that self-organizes towards a critical state.32

Plain Language Summary33

[Clouds constitute an important element of the climate system by reflecting in-34

coming solar radiation back to space and emitting infra-red radiation that heats the35

atmosphere. The net radiative impact of clouds however depends on many factors in-36

cluding their size. It is thus of prime importance to characterize the size of clouds, in37

particular convective clouds, and understand the underlying processes shaping them.38

In this study, a numerical model is used to simulate two idealized convective situa-39

tions at horizontal resolutions providing a fine description of all cloud processes. After40

defining and calculating the size of individual simulated clouds, advanced statistical41

methods are employed to characterize how clouds are distributed in size. It is shown42

that the distributions of cloud sizes measured near cloud base are close to exponential43

functions. In contrast, cloud size distributions as measured from above (similar to44

what satellite imagery would do) resemble power-law functions with a cut-off at large45

sizes. It is suggested that these results can be explained by a combination of basic46

physical principles and complex interactions organizing the cloud population.]47

1 Introduction48

The first Landsat satellite launched in 1972 provided high-resolution data that49

allowed the first large-scale analysis of cloud properties and their radiative impact on50

our climate. It was later recognized that spatial inhomogeneities in individual cloud51

scenes are an important factor determining cloud radiative properties. It quickly ap-52

peared that an essential step towards better predicting the radiative impact of broken53

cloud fields (cumulus and stratocumulus) consisted in understanding the large-scale54

structure and organization of such cloud fields, as well as the small-scale characteristics55

of individual clouds (including their fractal shapes and size distributions) (Wielicki &56

Welch, 1986; Welch et al., 1988; Kuo et al., 1988).57

Earlier observational studies have suggested that cloud size distributions could be
fitted using various functional forms including exponential (Wielicki & Welch, 1986)
and log-normal (Lopez, 1977; Houze Jr. & Cheng, 1977) distributions. In the late
80’s, Parker et al. (1986), Welch et al. (1988) and Kuo et al. (1988) have introduced
the power-law as the functional form that best represents cumulus and stratocumulus
cloud size distributions. Accordingly, the number of clouds n having a certain size L
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obeys:

n (L) ∝ L−b, (1)

where ∝ should be read ”scales as”, and b is a constant characterizing the power-law.58

Since then, power-laws (or derived forms thereof like power-laws with an exponential59

cutoff) have been universally recognized as the best functions to model cloud size60

distributions obtained from either satellite imagery (Welch et al., 1988; Sengupta61

et al., 1990; Kuo et al., 1993; Benner & Curry, 1998; Zhao & Di Girolamo, 2007;62

Koren et al., 2008; Wood & Field, 2011; Bley et al., 2017; Senf et al., 2018), aircraft63

measurements (Benner & Curry, 1998; Jiang et al., 2008; Wood & Field, 2011), or64

high-resolution simulations (Neggers et al., 2003; Xue & Feingold, 2006; Jiang et al.,65

2008; Dawe & Austin, 2012; Heus & Seifert, 2013; Rieck et al., 2014; Senf et al., 2018).66

Being able to accurately characterize cloud size distributions and recognize them67

as power-laws (or any other functional form) is not just a matter of satisfying our68

curiosity. Doing so may indeed be of prime importance for the development of improved69

cumulus parameterizations, and may give crucial indications on how clouds organize.70

If we first consider the parameterization issue, knowing the precise distribution71

of cumulus clouds may help constrain spectral schemes (Arakawa & Schubert, 1974)72

for which the subgrid variability associated with convection can be described using a73

size-resolved cloud population. By explicitly introducing information on cloud sizes,74

such schemes can easily be made scale-aware (Neggers, 2015) and therefore provide75

interesting solutions to parameterizing convection in the ”grey zone” (that is at model76

resolutions equivalent to the characteristic convective length scale). Following this77

idea, Neggers (2015) and Brast et al. (2018) introduced and tested an extension of78

the Eddy Diffusivity Mass-Flux scheme (EDMF, (Siebesma et al., 2007)) in which the79

cloud population is assumed to be distributed in size following a power-law like Eq. (1).80

The model was found to yield promising results (Brast et al., 2018) by providing a81

gradual transition between fully resolved and fully parameterized convection across the82

”grey zone”, although this transition was found to be too sharp compared to coarse83

grained data. This points to the necessity to further improve the representation of84

cloud size distributions is models.85

Besides, as mentioned earlier, knowing that cloud sizes are power-law distributed86

may give indications on the mechanisms controlling the organization of cumulus cloud87

ensembles. Over the years, numerous generative mechanisms and hypotheses have88

indeed been put forth to explain power-law behaviors often found in social sciences,89

natural sciences, economics or physics (Newman, 2005; Sornette, 2006; Marković &90

Gros, 2015). Among these, self-organized criticality (SOC) (Bak et al., 1988; Jensen,91

1998; Marković & Gros, 2015) has been frequently invoked to rationalize the emergence92

of power-law cumulus and rain cluster size distributions (Peters & Neelin, 2006; Peters93

et al., 2009, 2010; Yano et al., 2012; Teo et al., 2017; Windmiller, 2017). Systems dis-94

playing SOC properties are dynamical systems that are slowly driven towards a critical95

point marking the transition between two distinct states. However, SOC systems are96

also characterized by a quick relaxation of their internal energy when criticality is97

reached such that the system is effectively attracted towards the critical point. The98

emergence of SOC generally does not depend on the details of the system or driving99

mechanism, it does not require tuning (it self-organizes), and it can be described by100

scale-invariant properties that show up as power-law distributions. A priori, these101

propositions agree well with what we know from convective cloud ensembles.102

Despite the large number of studies reporting power-law cloud size distributions,103

it should be stressed that unambiguously identifying scale-free behaviors in empirical104

distributions is not a simple task. This is reflected by the large spread in power-law105

exponents reported in the literature, varying between ∼ 1 (Benner & Curry, 1998) to106

more than 3 (Bley et al., 2017; Senf et al., 2018) (with most reported values lying in107
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the 1.7 − 2.4 range). As argued by Goldstein et al. (2004) and Clauset et al. (2009),108

relying solely on the apparent constant slopes of empirical distributions in log-log co-109

ordinates may introduce large biases when estimating the exponent b in Eq. (1). In110

particular, linear regression requires the subjective determination of the range over111

which the power-law holds (and is sensitive thereof), and it is known to be generally112

too sensitivity to the noise in the distributions tails. These limitations may in part113

explain the range of cloud size distribution exponents mentioned previously. Conse-114

quently, Clauset et al. (2009) proposed an alternative fitting procedure dedicated to115

power-law distributions and making use of a combination of robust statistical meth-116

ods among which maximum likelihood estimation and goodness-of-fit tests. Although117

the procedure has previously been applied to fit rain cluster size distributions (Peters118

et al., 2010; Traxl et al., 2016), we wish to emphasize here following Clauset et al.119

(2009) that the use of such advanced statistical methods should always be preferred120

over simple linear regression techniques when estimating power-law best fits to cloud121

size distributions.122

In this work, we analyze cloud size distributions obtained from Cloud Resolving123

Model (CRM) simulations of two well-documented idealized convective situations: a124

diurnal transition from shallow to deep convection over land (Grabowski et al., 2006),125

and a case of maritime shallow convection in the trade-winds region (vanZanten et126

al., 2011). These cases were selected as they are representative of cloud populations127

evolving at different spatial and temporal scales. Besides, the degree of idealization128

adopted facilitates our analysis by suppressing variability introduced by large-scale129

transport or heterogeneous surface conditions. The main objective is then to adapt130

the methodology proposed by Clauset et al. (2009) to identify power-laws in empirical131

cloud size distributions, evaluate the goodness of these fits, and test possible alterna-132

tives. Thanks to the robustness of the fitting procedure, our results are later used to133

identify and analyze systematic behaviors (organization) in the cloud ensembles.134

The paper is organized as follows. In section 2, we give details on the numerical135

setups used to extract cloud size distributions as well as on the statistical methods136

forming the basis of our fitting algorithm. Results from the procedure, testing both137

the power-law and exponential hypotheses, are presented in section 3. Various alterna-138

tive distributions are then evaluated in section 4 and possible generative mechanisms139

explaining the simulated empirical cloud size distributions are discussed in section 5.140

Finally, we give our conclusions in section 6.141

2 Methods142

2.1 Numerical experiments143

The first selected numerical experiment is based on the Large-scale Biosphere-144

Atmosphere (LBA) intercomparison study Grabowski et al. (2006), with modifications145

similar to Böing et al. (2012) and Savre (2021). The initial potential temperature146

profile was taken from Grabowski et al. (2006), while the initial moisture content was147

modified with a relative humidity held constant and equal to 80% between the surface148

and 2.5 km, and decreasing linearly to 15% up to 18 km. Horizontal winds were149

initially set to 0 m s−1 everywhere. Although a diurnal cycle is imposed through time150

dependent surface fluxes in the original case description, we chose here to adopt fluxes151

constant in time, equal to 161/343 W m−2 (sensible and latent fluxes respectively)152

following Böing et al. (2012). The numerical model is doubly periodic, uses a constant153

horizontal grid spacing of 100 m with 1024 × 1024 grid points. The domain extends154

vertically to 14250 m with 180 grid points.The vertical grid spacing is held constant155

and equal to 25 m below 2 km, and increases geometrically above. A Rayleigh damping156

layer with characteristic time scale of 2 h was prescribed above 12 km, and horizontal157
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winds were nudged everywhere to their initial value with a time scale of 6 h. The158

simulation was run for a total of 10 h, but the first 4 h were discarded.159

The second case follows the Rain In Cumulus over the Ocean (RICO) model in-160

tercomparison (vanZanten et al., 2011), as simulated for example by Dawe and Austin161

(2012); Heus and Seifert (2013). The overall setup follows closely the description given162

by vanZanten et al. (2011), with similar initial potential temperature, total water mix-163

ing ratio, horizontal wind, and large scale forcing profiles. Here again, no interactive164

radiation is employed. Instead, net radiative cooling is accounted for in the prescribed165

forcing. Surface fluxes are computed using bulk formula with a prescribed surface166

temperature of 299.8 K, and surface water vapor assumed to be at saturation. The167

numerical domain spans 20 km2 in the horizontal, with a homogeneous grid spacing of168

26 m (768×768 grid points). This is similar to the setup employed by Heus and Seifert169

(2013) despite a slightly smaller domain (25 km2 in Heus and Seifert (2013)). The do-170

main extends vertically up to 3.9 km with a constant spacing of 26 m. A Rayleigh171

damping layer with characteristic time scale of 2 h was also used above 3.2 km. The172

simulation was run for 16 h, and the results analyzed after 8 h.173

The LBA simulation exhibits a fast transition from shallow to deep, precipitating174

convection, with clouds reaching 10 km in altitude. This transition occurs within a few175

hours, although a little bit slower than in the original configuration from Grabowski176

et al. (2006). The cloud population then continues to evolve under the influence of177

subcloud layer organization (Böing et al., 2012), with clouds continuously deepening178

and eventually forming anvils. In contrast, the RICO case is mostly driven by the179

large-scale forcing held constant during the course of the simulation. This results in a180

very slowly evolving cloud population (Heus & Seifert, 2013), with clouds remaining181

relatively shallow (maximum depth on the order of 2 km) and light drizzle at the182

surface. These two simulations, driven by mechanisms operating at different time183

scales, result in cloud populations presenting widely different characteristics.184

Both experiments were carried out using the MISU-MIT Cloud and Aerosol185

(MIMICA) model solving anelastic governing equations for potential temperature, to-186

tal water mass mixing ratio and momentum (Savre et al., 2014; Savre, 2021). The187

numerical methods employed in both cases are similar: scalar advection uses a flux-188

limited version of the Lax-Wendroff scheme, momentum advection uses 4th order cen-189

tral finite differences, and time integration is performed using a 2nd order Runge-Kutta190

method. Turbulent mixing was parameterized using the Smagorinsky-Lilly closure,191

whereas no interactive radiation was necessary in either case. Different microphysical192

schemes were employed for the LBA and RICO simulations. In the first case, we used193

the simple one-moment microphysics from Grabowski (1998) which only distinguishes194

between precipitating and non-precipitating cloud particles, and partitions liquid and195

ice based on a linear function of the temperature. In the second case, the warm part of196

the more advanced two-moment microphysics scheme from Seifert and Beheng (2006)197

was used.198

2.2 Cloud identification199

The first step towards estimating cloud size distributions is to define cloud objects200

and extract their properties. To do so, horizontal slices are first extracted at 2000 m201

and 1200 m in the LBA and RICO cases respectively. Two different criteria are then202

used to identify cloud objects: a cloud water mixing ratio q exceeding 0.01 g kg−1, or203

a Condensed Water Path (CWP, including both liquid and ice particles) exceeding 50204

g m−2 in the LBA case, or 5 g m−2 in the RICO case (different thresholds were chosen205

to accommodate the different cloud depths). In both situations, clouds are simply206

identified as clusters of connected grid boxes respecting either criterion above. Only207

four point connectivity is considered here, that is connected grid boxes must at least208
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share a face. Clusters consisting of a single grid points were discarded. Once cloud209

objects are identified, their equivalent sizes are calculated as L =
√

∆x∆yNpts, with210

Npts the number of grid points covered by a cloud.211

The distinction between clouds identified from q and CWP criteria is justified212

by the fact that both definitions correspond to distinct situations commonly met in213

atmospheric sciences. The CWP criterion allows the identification of clouds as seen214

from above, and in particular as retrieved from satellite imagery. In contrast, the q215

criterion is relevant in the context of convection parameterizations since these latter216

are mostly concerned with cloud properties near their base and as they develop in the217

lower free troposphere.218

2.3 Fitting size distributions219

2.3.1 Theoretical distributions220

Four kinds of theoretical distributions are evaluated: power-law, exponential,221

Weibull and power-law distributions with an exponential cutoff (cutoff power-laws).222

These can be written:223

pPL (L) = CPLL
−α (2)

pE (L) = CE exp (−λL) (3)

pW (L) = CWL
β−1 exp

(
−ηLβ

)
(4)

pPE (L) = CPEL
−ν exp (−µL) , (5)

where L is the cloud size, pX are the theoretical distribution functions and CX are224

appropriate normalizing factors. α, λ, β, η, µ and ν are the parameters characterizing225

each distribution that we seek to estimate. Log-normal distributions have also been226

considered as possible alternative distributions, but they generally yielded worse fits227

than any other function and were therefore ruled out as viable choices.228

The corresponding complementary cumulative distribution functions (CCDFs)
are defined from pX (L) as:

PX (L) =

∫ Lmax

L

pX (L∗) dL∗, (6)

where L varies from Lmin to Lmax (the size bounds over which the fits are performed),229

and PX (L) represents the probability that a given cloud has a size larger than L. This230

yields, for the four tested distributions:231

PPL (L) =
L1+α − L1+α

max

L1+α
min − L

1+α
max

(7)

PE (L) =
exp (−λL)− exp (−λLmax)

exp (−λLmin)− exp (−λLmax)
(8)

PW (L) =
exp

(
−ηLβ

)
− exp

(
−ηLβmax

)
exp

(
−ηLβmin

)
− exp

(
−ηLβmax

) (9)

PPE (L) =
Γ (1 + ν, µL)− Γ (1 + ν, µLmax)

Γ (1 + ν, µLmin)− Γ (1 + ν, µLmax)
(10)

with Γ the upper incomplete gamma function defined by:

Γ (a, b) =

∫ +∞

b

xa−1e−xdx. (11)

Theoretical distributions are here defined over a finite size range Lmin − Lmax fol-232

lowing Deluca and Corral (2013) (what is called ”truncated distributions”). The use233
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of truncated functions appears as a necessity since in most cases the maximum cloud234

sizes remain small and the power-law scalings are relatively narrow (at most an order235

of magnitude).236

Let’s stress that the advantage of using and plotting CCDFs instead of standard237

frequency distributions is twofold. First, calculating cumulative distributions does238

not require binning the data. Second, when plotted, heavy-tailed distributions often239

appear noisy, especially in the tail, while their cumulative counterparts are smoother.240

As a result, linear regression in log-log coordinates generally introduces important241

biases when fitting frequency distributions (a 40% error can be expected for a power-242

law with α = 2.5) (Goldstein et al., 2004; Clauset et al., 2009).243

2.3.2 The Clauset et al. method244

Clauset et al. (2009) proposed a detailed procedure to identify power-law dis-245

tributions in empirical data and estimate their exponents with great precision. The246

suitability and precision of the whole procedure were tested thoroughly by Clauset et247

al. (2009) for many classical empirical distributions exhibiting power-law behaviors.248

In the following, a modified version of the method proposed by Deluca and Corral249

(2013); Peters et al. (2010) is described and used. The modifications introduced allow250

the application of the procedure to truncated distributions for which both the lower251

and upper bounds of validity must be simultaneously estimated. The procedure can252

be summarized as follows (each method is described in detail in section 2.3.3):253

1. Best fit power-law exponents α̂ are estimated using Maximum Likelihood Esti-254

mation (MLE) for all possible values of Lmin and Lmax;255

2. The goodness-of-fit between the empirical and theoretical distributions is cal-256

culated for each triplet {α̂, Lmin, Lmax} using a Kolmogorov-Smirnov (KS)257

goodness-of-fit test;258

3. The best fit triplet is the one that maximizes the ratio r = Lmax/Lmin, while259

maintaining the computed KS statistics (D) below an arbitrary threshold set260

to 0.05. The p-value associated with the KS statistics for the retained triplet261

is then computed using Monte-Carlo sampling. The fit is accepted only if the262

p-value is below an arbitrarily chosen confidence level of 5%;263

4. The power-law fit can finally be compared to alternative distributions over the264

same range Lmin − Lmax using the likelihood ratio (LR) test.265

Although the method was originally designed to estimate power-law fits only, we266

will also employ it to determine best fits to the alternative distributions introduced in267

section 2.3.1. The mathematical foundation behind the application of the technique268

to distributions other than power-laws may be weaker, we are considering it for the269

sake of comparison.270

2.3.3 Statistical methods271

The procedure described above makes use of several statistical methods briefly
summarized below, starting with MLE. Let’s assume a set of empirical data x =
(xmin, ..., xmax) that we wish to approximate by a known distribution pX|Θ described
by N parameters Θ = (θ1, ..., θN ). Defining the log-likelihood function as:

` (Θ,x) = ln

xmax∏
x=xmin

pX|Θ (x) , (12)

the set of parameters Θ̂ yielding the best fit is the one that maximizes ` (Θ,x). For272

numerous standard distributions such as non-truncated power-law and exponential273
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distributions, the optimal parameters maximizing ` (Θ,x) can be found analytically274

by letting ∂` (Θ,x) /∂Θ = 0. In the more general case however, and in particular for275

the truncated distributions introduced in section 2.3.1 for which {Lmin, Lmax} ∈ Θ,276

Θ̂ cannot be reduced to a simple analytical formula. In this situation, Θ̂ is obtained277

from the numerical maximization of the log-likelihood function `.278

Once optimal parameters Θ̂ have been found, the KS statistics D is computed to
give an estimate of how good the fit it. D is simply defined by the maximum absolute
distance between the empirical and theoretical CCDFs between xmin and xmax:

D = sup
xmin<x<xmax

∣∣∣Pe (x)− PX|Θ̂ (x)
∣∣∣ , (13)

where Pe and PX|Θ̂ denote the empirical and theoretical cumulative distributions.279

Whereas lower D values intuitively indicate better fits, the statistical significance280

of this quantity depends strongly on the number of data points considered. For this281

reason, the statistics must be complemented by a p−value computed from the prob-282

ability density function (PDF) of D, indicating the probability that the underlying283

hypothesis should be rejected. In the situation where D is calculated for a theoreti-284

cal distribution whose parameters are estimated, Monte-Carlo sampling must be used285

(Clauset et al., 2009; Deluca & Corral, 2013). First, n points (n being the number of286

points in the empirical data set) are drawn randomly from the estimated theoretical287

distribution pX|Θ̂. New values for the best fit parameters are then obtained for the288

simulated data, and the associated KS statistics is computed. Repeating the procedure289

a sufficiently large number of times (500 in our case), a D PDF can be constructed,290

and if the probability of occurrence of the original D value is equal to or lower than a291

predefined threshold (here set to 0.05), the test is rejected.292

Finally, to compare power-law distributions to other plausible hypotheses an
alternative goodness-of-fit test is employed, the LR test. More generally, best fits
obtained for any distribution pX can be compared to any other alternative hypothesis
by means of the LR test. For any best fit distribution pX|Θ̂ determined over the range

xmin− xmax, and any alternative distribution pX|Φ̂ described by a set of parameter Φ̂
fitted over the same x range, the log-likelihood ratio is defined by:

LR = −2 ln
L
(

Θ̂,x
)

L
(

Φ̂,x
) = −2

[
`
(

Θ̂,x
)
− `
(

Φ̂,x
)]

(14)

where L is the standard likelihood function. Because larger ` values indicate a higher293

probability for the data to be drawn from the hypothesized distribution, a negative like-294

lihood ratio LR < 0 means that the null hypothesis is more likely than the alternative295

hypothesis. In contrast, a positive LR value means that the alternative hypothesis296

is more likely. In practice, LR must be sufficiently negative (respectively positive)297

for the null hypothesis (respectively the alternative hypothesis) to be unambiguously298

identified as the better hypothesis.299

3 Power-law and exponential fits300

We are initially interested in fitting simulated cloud size distributions to power-301

law and exponential functions only. These two functions are the simplest among those302

presented in section 2.3 as they only depend on a single degree of freedom. Besides,303

power-laws are the most common functions used to fit empirical cloud size distri-304

butions, while exponentials are ubiquitous in natural sciences and physics, including305

atmospheric sciences (Craig & Cohen, 2006).306
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3.1 Visual inspection307

Cumulative Cloud Size Distributions (or CCSDs) extracted at three different308

times into the LBA and RICO simulations are shown in figures 1 and 2 respectively.309

At this point, we are only concerned with the empirical distributions depicted as solid310

grey lines. In the LBA simulation, starting at 4 h, clouds identified using a CWP311

threshold are generally bigger and twice as numerous as those determined from a q312

threshold (∼ 6000 with CWP as opposed to ∼ 3200 with q). At this time, most clouds313

remain indeed relatively shallow and do not reach an altitude of 2000 m where they314

can be identified using the q criterion. At later times, the largest clouds now reach315

about 2 km and 4 km when determined based on q and CWP thresholds respectively.316

The number of clouds identified using CWP is also largely reduced to ∼ 3500. The317

emergence of much bigger clouds indicates the development of convective outflows and318

the possible merging of cloud objects as convection becomes deeper. After 10 h, a319

clear linear scaling in log-log coordinates between 200 m and 3000 m is visible, and the320

largest clouds reach up to 9 km in size. Despite the narrower overall cloud size range,321

a power-law scaling between 250 m and 1500 m is also visible on the CCSD obtained322

from a q threshold.323

As expected, CCSDs extracted from the RICO simulation (Figure 2) do not show324

the same evident temporal evolution as the ones obtained from the LBA case. The325

total number of clouds identified based on the q criterion is relatively constant at∼ 220,326

but the biggest clouds in the domain get bigger over time (from 700 m to 1200 m). No327

power-law scaling can be identified here. Again, many more clouds can be identified328

using a CWP threshold (between 600 and 700), with cloud objects reaching up to 3.3329

km in size after 16 h. Again, no clear power-law behavior is evident at first sight.330

Note however that the visual determination of power-law behaviors is here biased by331

the fact that truncated power-law CDFs do not necessarily appear as straight lines in332

log-log coordinates. This is a direct consequence of the way the truncated function333

PPL (L) is defined in equation 7.334

3.2 Estimated power-law and exponential best fits335

The procedure introduced in section 2.3.2 is now applied to the CCSDs described336

in the previous section. At the moment, we only focus on finding best fits to both337

truncated power-law and exponential distributions.338

Figure 3 shows the temporal evolution of the best fit power-law exponents α339

and exponential rate parameters λ in the LBA and RICO simulations. In the LBA340

case, our algorithm was not able to find reliable fits to power-law distributions early in341

the analysis period. From 5.5 h, considering only clouds defined based on CWP, α is342

relatively constant in time, taking values between 2.05 and 2.13, with an average of 2.07343

between 6 h and 10 h. To evaluate the robustness of these estimates, Root Mean Square344

Errors (RMSE) can be computed for each fit using a standard bootstrapping procedure.345

The method involves resampling the empirical data with replacement, computing the346

corresponding best fit parameters for the resampled data, and repeating the operation347

a sufficient number of times (here 5000 times) to calculate reliable statistics. The348

average RMSE (represented by error bars on Figures 3) computed between 6 h and349

10 h for the considered case remains low at about 0.04, indicating that the identified350

power-law scalings are a robust feature of these distributions. More variability is found351

for α values obtained for clouds identified from q, with estimates ranging between 2.1352

and 2.9, and associated RMSE averaging to 0.075 between 6 h and 10 h.353

Best fit λ values in the LBA case are seen to decrease continuously with time.354

λ is indeed directly related to the inverse of the mean cloud size and is thus expected355

to decrease as clouds get bigger. Early in the simulation, both CWP and q thresholds356

yield precisely the same λ estimates which suggests that clouds interact only weakly357
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in the shallow cumulus phase. After 6 h, λ values obtained for clouds computed based358

on CWP decrease abruptly below 0.002 as the exponential best fit range shifts from359

the bulk to the tail of the distributions (see section 3.3). At this time, clouds suddenly360

get wider and deeper, and deep convective outflows develop. In contrast, cloud sizes361

calculated from a q criterion yield λ values relatively constant in time. Again, RMSE362

calculated for all λ values remain small, giving us confidence into our λ estimates.363

In the RICO case, best fit α values obtained for both cloud definitions show364

stronger temporal variability compared to the LBA case. Only after 12 h do the365

estimated α seem to stabilize, with mean values of 2.1 and 1.35 for clouds identified366

based on CWP and q thresholds respectively. The corresponding mean RMSE is367

also larger than in the LBA case with values of 0.085 and 0.13 respectively. That368

the power-law best fit estimates are here less reliable than in the LBA case is likely369

a consequence of the smaller cloud samples available in each RICO scene. Similar370

remarks can be made regarding best fit exponential parameters for RICO. Compared371

to the LBA case, λ remains on average constant in time, but display larger temporal372

variability and larger RMSE.373

The mean α estimates discussed previously are in relatively good agreement with374

power-law exponents reported in the literature where values ranging between ∼ 1 to375

∼ 3.3 can be found depending on the case. Considering deep convection, exponents376

between ∼ 1.7−1.9 (Kuo et al., 1993; Rieck et al., 2014) to ∼ 2.6−3.3 (Bley et al., 2017;377

Senf et al., 2018) were reported from high-resolution simulations and satellite imagery.378

Considering maritime shallow convection, our average α estimate is somewhat smaller379

than the value of 2.42 given by Heus and Seifert (2013) for simulations performed380

under similar conditions, but generally larger than values reported for other similar381

cases between 1.7 (Neggers et al., 2003) and 1.9 (Dawe & Austin, 2012). Satellite382

retrieval yields a broader range of exponents, from 1.6 to 2.2 (Benner & Curry, 1998;383

Zhao & Di Girolamo, 2007; Koren et al., 2008; Wood & Field, 2011).384

3.3 Power-law and exponential best fit ranges385

Figure 4 displays the calculated best fit size ranges obtained for the LBA and386

RICO simulations. In the LBA case, when clouds are identified based on a q threshold,387

the power-law range remains very narrow (less than a decade), and is always narrower388

than the exponential range. This latter frequently extends up to the biggest clouds in389

the domain, especially before 8 h. In contrast, the power-law range for clouds deter-390

mined from CWP increases over time as clouds get deeper and wider, with a cloud size391

ratio r reaching 23.5 at 10 h. A clear transition can be seen at 6.5 h, with the power-392

law fits becoming valid over an increasingly broader size range, and the exponential393

fits shifting to the distributions tails. Interestingly, the power-law fits are also found394

to extend up to the largest clouds identified, something made possible by the use of395

truncated functions. Judging goodness-of-fit based on the fit range only, CCSDs com-396

puted based on a q criterion are best represented by exponential distributions, whereas397

those obtained from CWP are best modeled by power-law distributions (especially in398

the deep convection regime after 6 h).399

Considering the RICO simulation, exponential distributions generally produce400

best fits valid over a broader range than power-laws for clouds computed from q. That401

best fits rarely extend to the biggest clouds identified may be a consequence of the402

relatively small cloud samples available. Considering clouds identified from a CWP403

threshold, both power-law and exponential best fits extend over about one order of404

magnitude at almost all times (r ranging between 9 and 20). Contrary to the LBA405

case, exponential best fits are generally valid over broader size ranges than power-406

laws, and preferentially cover the bulk of the empirical CCSDs. This suggests that407

exponential distributions may be the best choice to represent all CCSDs from RICO.408
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3.4 Comparison to linear regression409

To evaluate biases introduced when fitting power-laws using linear regression410

in log-log coordinates, power-law exponents were recomputed with this technique for411

all empirical CCSDs analyzed previously. The results are compared to our best fit412

estimates in Figure 5. Linear regression was here applied over size ranges determined413

visually from the distributions plotted in Figures 1 and 2.414

Linear regression generally tends to overestimate power-law exponents obtained415

by MLE in both LBA and RICO cases. In the LBA case, linearly regressed exponents416

differ only moderately from the MLE ones with α values averaged between 6 h and 10417

h of 2.24 and 2.85 (to be compared to the MLE estimates of 2.07 and 2.52). The cor-418

responding relative errors computed for clouds identified from CWP and q thresholds419

amount to 23% and 35% respectively. In contrast, estimates from linear regression420

computed for the RICO simulation show a large spread around the MLE ones, with421

mean errors reaching almost 100% with both cloud identification criteria.422

The somewhat erratic power-law exponents obtained by linear regression can be423

directly attributed to the difficulty of clearly identifying the range over which the fits424

must be performed. As an illustration, best fit exponents for CWP clouds at time425

10 h in the LBA case were recomputed using lower and upper size bounds varying426

from 200 m to 500 m, and from 1000 m to 3000 m respectively (Figure 6). α is427

found to increase systematically with increasing Lmin and Lmax such that the smallest428

estimated exponent of 2.05 is found in the range 200−1000 m, and the largest exponent429

of 2.32 in the range 500− 3000 m. This sensitivity can be explained by the fact that430

linear regression tends to be overly sensitive to the few, noisy points located in the431

distributions tails where the slope is steeper.432

Overall, these results indicate that the use of linear regression may explain some433

of the largest exponent estimates reported in the literature. Lower estimates may in434

turn be explained by the subjective choice of fitting ranges biased towards smaller435

cloud sizes where distributions are generally flatter.436

4 Alternative distributions437

4.1 Visual impression and direct goodness-of-fit438

Figures 1 and 2 allow us to visually compare best fits obtained for all distributions439

proposed in section 2.3.1. Fits were obtained applying the procedure described in440

section 2.3.2 to all distributions. Corresponding best fit parameters are reported in441

tables 6 and 6. In both the LBA and RICO cases, the exponential and power-law442

functions only irregularly extend to the largest cloud sizes, whereas the Weibull and443

cutoff power-law distributions consistently provide excellent fits to the distributions444

tails with minimal errors. Large differences are also obtained for smaller clouds where445

both exponential and power-law distributions generally provide poorer fits.446

A more objective way to compare the different models is given by the range447

Lmin − Lmax over which each fit is valid (see Figures 7). Note that since D depends448

implicitly on the size range, it cannot be used here to draw a fair comparison between449

fits obtained over different ranges. First considering the LBA case (top panels), the450

size ranges indicate that exponential distributions provide better fits than power-laws451

for CCSDs calculated from a q threshold, while the opposite is true for CCSDs com-452

puted from a CWP threshold. The Weibull and cutoff power-law distributions are453

generally valid over comparable size ranges, these being systematically broader than454

those obtained with both the exponential and pure power-law. In the RICO case (bot-455

tom panels), conclusions consistent with our previous analysis can be drawn, with the456

exponential distribution being a better model for CCSDs calculated from q (broader457
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Lmin−Lmax range). The results are more contrasted for CWP clouds, with the expo-458

nential distribution being perhaps again the better choice. As in the LBA case, both459

alternative distributions are valid over similar size ranges being broader than those460

obtained with the exponential and pure power-law functions.461

Consistent with our visual inspection, this analysis suggests that in all situations,462

both the Weibull and cutoff power-law distributions provide the best representations463

of our empirical CCSDs. However, the two hypotheses can’t be easily differentiated464

without further analyses.465

4.2 Likelihood ratio tests466

As mentioned in sections 2.3.2 and 2.3.3, the LR test constitutes a more robust467

tool to assess the goodness of various hypotheses. The strength of the LR test resides468

in the fact that different hypotheses can be compared over the same ranges. Matrices of469

LR values for each possible combination of null and alternative hypotheses are shown470

on Figures 8 and 9. Null hypotheses (the reference) are shown on the horizontal axes,471

while alternative hypotheses can be read on the vertical axes. If a matrix element472

corresponding to given null and alternative distributions is blue (respectively red),473

corresponding to a negative (resp. positive) LR, the reference (resp. alternative)474

distribution can be regarded as the better fit. Grey squares indicate that no reliable475

fit could be found with the corresponding alternative distribution.476

Focusing first on the LBA simulation (Figure 8), the LR test confirms that the477

cutoff power-law is the distribution yielding the best fits in all cases. This can be478

deduced from the positive LR values obtained when the cutoff power-law is used as479

the alternative distribution (red squares in the top rows), and from the negative LR480

values obtained when it is used as the reference distribution (blue squares in the481

rightmost columns). Both exponential (at earlier times) and Weibull (at later times)482

distributions are also found to yield reasonable fits in certain situations. In contrast,483

the power-law appears to be constantly outperformed by other alternatives (red squares484

in the leftmost columns, and grey or blue squares in the bottom rows).485

In the RICO case (Figure 9), both exponential and power-law fits are outper-486

formed by the two alternative distributions at any time and with any cloud definition.487

For clouds identified from a q threshold, the Weibull and cutoff power-law distributions488

generally result in equally good fits (low LR values), with a slight advantage to the489

cutoff power-law. For clouds based on a CWP threshold, the two alternative distribu-490

tions again perform similarly well, although the Weibull distribution now emerges as491

the better choice.492

In summary, the cutoff power-law distribution generally constitutes the best op-493

tion to approximate CCSDs estimated from the LBA simulation, while the cutoff494

power-law, Weibull and exponential distributions may all be regarded as the better495

model in the RICO case depending on the situation. None of the estimators used here496

suggest that power-laws should be the preferred option to model empirical CCSDs.497

5 Physical interpretation and generative mechanisms498

5.1 Interpreting exponential fits499

Using arguments from statistical physics, Craig and Cohen (2006) predicted that500

the mass flux distribution of a convective cloud ensemble should follow an exponential501

distribution. This result was obtained assuming that the system is in equilibrium,502

that clouds do not interact, and that the mass flux associated with individual clouds503

is an independent and identically distributed (i.i.d.) random variable. This result is504

consistent with the maximum entropy principle, according to which the exponential505
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distribution is the distribution with specified mean, supported on the interval [0,+∞)506

that maximizes the information entropy. In other words, the exponential distribution507

is the most likely model to represent cloud mass fluxes in a non-interacting cloud508

ensemble.509

Following the same line of thought, the maximum entropy principle applied to510

cloud sizes (having a finite mean and being supported on the open interval [0,+∞))511

predicts that the most likely model describing CCSDs is the exponential distribution.512

This is again valid only as long as clouds do not interact strongly. Deviations from513

this principle may explain why empirical distributions are only loosely represented by514

pure exponential distributions.515

It is interesting to note that only clouds identified from a q threshold appear516

to preferentially follow exponential distributions. Clouds determined from a CWP517

threshold are indeed more likely to be subject to complex interactions, merging and518

possibly overlapping at various altitudes. This may also be true for clouds developing519

in presence of strong self-organization (for example in the LBA case at 10 h). In this520

situation, the probability that a cloud forms at a particular location is not uniform but521

depends strongly on the underlying dynamics (clouds are for example known to develop522

preferentially at the intersection of propagating cold pool fronts (Haerter et al., 2019)).523

The emergence of power-law scalings in CCSDs may therefore be a manifestation of524

strong self-organization, cloud clustering and cloud merging. Conversely, exponential525

CCSDs may indicate an absence of self-organization.526

5.2 Power-laws and heavy-tailed distributions527

In general, cloud size distributions were found to be better approximated by528

Weibull or cutoff power-law distributions, a characteristic already noted by Windmiller529

(2017) and van Laar et al. (2019). More than just a coincidence, this general feature530

might give us clues regarding the mechanisms organizing the cloud ensemble.531

A distinctive property of the Weibull and cutoff power-law distributions is that
they are expressed as the product of a power-law and an exponential. This is reminis-
cent of the characteristic distributions found for sub-critical percolating (Stauffer &
Ahaorny, 1994) and SOC (Bak et al., 1988; Jensen, 1998) systems:

p (s) = s−τG (s/s0) (15)

with s a characteristic size, s0 a correlation length, τ a critical exponent and G a scaling532

function. In a system of finite size, the correlation length is related to the system size533

L via s0 ∝ Ld, with d a critical exponent. Note that the pure power-law behavior534

is only recovered asymptotically as the correlation length diverges. For s0 sufficiently535

small, finite-size scaling will affect the power-law pre-factor and critical exponents.536

By analogy, several authors have proposed SOC as a possible explanation to537

describe convective cloud and rain cluster ensembles (Peters & Neelin, 2006; Peters538

et al., 2009, 2010; Teo et al., 2017; Yano et al., 2012). For a system to exhibit SOC,539

it is generally believed that certain conditions have to be fulfilled (Bak et al., 1988;540

Jensen, 1998): 1) an external force drives the system slowly towards an unstable state,541

2) a threshold exists beyond which avalanches are triggered, 3) there exists a strong542

scale separation between the slow external force and the fast relaxation following each543

avalanche (relaxation is key to ensure that energy is conserved). All three criteria are544

generally met in our simulations and, more generally, in convective situations.545

Following these ideas, a simple model of the convective atmosphere can be de-546

signed. Here, atmospheric moisture plays the role of the control parameter, as sug-547

gested by Peters and Neelin (2006); Peters et al. (2009, 2010), and the following548

principles apply:549
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1. The atmosphere is slowly driven towards instability by surface fluxes of energy550

and moisture. Convective thermals originating from the surface induce local551

bursts of moisture similar to grains being added one by one in the sandpile552

model from Bak et al. (1988).553

2. When one of these thermals becomes supersaturated, that is when the system’s554

critical threshold is exceeded, a cloud forms, that is an avalanche is triggered.555

3. Entrainment and detrainment mix the cloud with its environment leading to556

moisture being diffused to nearest neighbors. The avalanche grows as long as557

these neighbors become supersaturated. An avalanche may thus spread to other558

critical sites nearby, just like clouds may merge with their neighbors.559

4. The cloud eventually dissipates, having moistened its environment. A new cycle560

may then start again.561

Note that, as explained by Marković and Gros (2015), systems apparently show-562

ing critical behaviors may in fact not reach criticality at all. This applies notably563

to non-conservative systems as well as when small variations are introduced in clas-564

sical SOC models. In such situations, the resulting characteristic distributions may565

differ from equation 15. In non-conservative SOC systems, energy is dissipated each566

time an avalanche is triggered which provides a stabilizing mechanism that constrains567

avalanches (clouds) to be of finite sizes even in virtually infinite systems. This state568

was termed ”self-organized quasi-criticality” (SOqC) (Bonachela & Muñoz, 2009) as569

the system seems to approach criticality without ever reaching it. Going back to the570

previous analogy between a convective cloud ensemble and SOC, large-scale drying571

through compensating subsidence in the environment may play the role of the stabiliz-572

ing factor by removing moisture. It is thus suggested here that SOqC might be a more573

appropriate model than SOC to describe and explain convective cloud ensembles.574

Note that whereas Weibull distributions are generally not considered to be an575

emerging feature of SOC systems, it has been shown that they often provide excellent576

fits to empirical distributions exhibiting power-law scalings with quickly decaying tails577

(Laherrere & Sornette, 1998). As mentioned by Laherrere and Sornette (1998), the578

Weibull distribution could stem from the superposition of finite-size scaling (pure ex-579

ponential decay), and deviations from a pure power-law. This is particularly relevant580

in the RICO case for which the sample size and overall cloud size range are small. In581

addition, deviations in the tail of the simulated empirical distributions may also be582

accentuated by dynamical feedbacks constraining the size of the biggest clouds, and583

possibly being affected by the size of the numerical domain (Heus & Seifert, 2013).584

From this perspective, the Weibull distribution is not necessarily inconsistent with the585

SOC hypothesis, and is perhaps a manifestation of natural deviations from the general586

form represented by equation 15.587

5.3 Transition from exponential to power-law scaling588

In the quickly organizing LBA simulation, a clear transition from an exponential589

behavior at earlier times to heavy-tailed cloud size distributions at later times could590

be identified (see Figure 4). As suggested in sections 5.1 and 5.2, exponential cloud591

size distributions characterize cloud ensembles where individual clouds only weakly592

interact, whereas a power-law scaling is a manifestation of self-organized states where593

short-range interactions prevail. Following this idea, we can expect cloud clustering594

and cloud merging to become more frequent during the transition.595

Cloud clustering can be visualized on Figure 10a where, following Nair et al.596

(1998), the simulated nearest-neighbour cumulative distribution functions (NNCDF)597

for CWP clouds in the LBA case are plotted against theoretical NNCDF obtained598

for randomly distributed clouds. The simulated NNCDFs constantly lie above the599

diagonal line suggesting that clustering happens at all times (Nair et al., 1998). The600
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earlier NNCDFs (blue lines) indicate however that the cloud ensemble is still close to601

spatial randomness before 5 h. As time progresses, clustering becomes stronger and602

peaks at the end of the simulation.603

Clustering can alternatively be quantified by means of the Iorg parameter (Tompkins604

& Semie, 2017) which is proportional to the NNCDF integral with respect to the di-605

agonal line in Figure 10a. Consistent with the displayed NNCDFs, Iorg increases with606

time (Figure 10b), from a value slightly above 0 (clouds being randomly distributed607

in space) at 4 h, to 0.12 at 10 h. A break in the slope of the Iorg time evolution at 6608

h reveals a change in the behavior of the cloud ensemble. This change coincides with609

the emergence of a clear power-law scaling in the empirical CCDFs. Although this610

is insufficient to conclude on a causal relationship between clustering and power-law611

CCDFs, it is here hypothesized that the two are intimately connected.612

Figure 10b displays the time evolution of the mean number of active cores within613

each identified cloud. To determine active cores, local w maxima were first identified614

within each cloud object using windows of 5 × 5 pixels. Only distinct maxima larger615

than 3 m s−1 were then counted as independent, and clouds with no such local max-616

imum were counted as having a single core. Overall, the number of cores per cloud617

increases throughout the simulation indicating that individual clouds are more likely618

to contain several cores, or that individual clouds are made up of an increasingly large619

number of cores. This suggests that as clouds organize and cluster (increasing Iorg),620

they are also more likely to merge. As a result, the very large clouds constituting the621

tail of the empirical CCSDs (in particular after 6 h) are in fact formed by a collection622

of several individual cores that have merged in regions of strong clustering.623

6 Conclusion624

In order to provide more robust fits to cumulus cloud size distributions, and625

therefore permit unbiased interpretations of the properties and organization of a cloud626

ensemble, an advanced fitting algorithm, inspired by the works of Clauset et al. (2009),627

was described and applied to simulated convective situations. The method is based628

on the following principles: 1) smooth cumulative distributions are used instead of629

the more noisy frequency distributions; 2) a robust maximum likelihood estimator is630

employed to determine best fits to predefined theoretical distributions; 3) a goodness-631

of-fit test is employed to find the optimal size range over which these fits hold. In632

addition, the described algorithm also permits direct comparisons between best fits ob-633

tained with various distributions including exponential, power-law, Weibull and cutoff634

power-law functions. Overall, the method directly addresses some of the main issues635

generally associated with fitting techniques based on linear regression.636

The algorithm was demonstrated using two cloud resolving model simulations637

representative of the diurnal shallow-to-deep convection transition over land, and mar-638

itime shallow cumuli in the trade-winds region. In addition, two criteria were tested639

to identify cloud objects: the first is based on a condensed water content (q) thresh-640

old, and the second on condensed water path (CWP). For clouds identified based on641

q, empirical size distributions were generally reasonably well approximated by expo-642

nential distributions, although alternative distributions (Weibull and cutoff power-643

law) frequently yielded better fits. Clear power-law scalings were identified for CWP644

based cloud size distributions. However, despite these robust estimates, the alternative645

heavy-tail functions tested were found to unequivocally be the best models representing646

the simulated distributions.647

Two main mechanisms were invoked to explain the emergence of both exponential648

and heavy-tail cloud size distributions in our simulations. Exponential distributions649

can be derived from the maximum entropy principle: the exponential is the most650
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Table 1. Best fit parameters estimated from the CCSDs obtained in the LBA simulation.

Cloud objects are identified based either on a q threshold at z = 2000 m (top rows), or a CWP

threshold (bottom rows).

Time λ̂ r α̂ r η̂-β̂ r µ̂-ν̂ r

10 h 3.26× 10−3 6.5 −2.34 6.4 0.15-0.47 11.1 1.27× 10−3-1.16 11.1
7 h 3.64× 10−3 8.6 −2.90 3.4 0.042-0.66 7.5 3.0× 10−3-0.36 8.6
4 h 5.71× 10−3 3.1 - - 0.26-0.44 3.5 6.71× 10−3-−0.92 5.3

10 h 0.84× 10−3 7.5 −2.05 23.5 1.39-0.20 34.8 2.1× 10−4-1.71 34.8
7 h 1.66× 10−3 6.7 −2.06 9.1 0.21-0.42 17.1 7.1× 10−4-1.37 17.1
4 h 5.68× 10−3 3.0 - - 0.04-0.66 7.2 3.37× 10−3-0.11 7.2

probable size distribution model as long as clouds interact only weakly and do not651

organize (random occurrence). In contrast, the emergence of power-law scalings was652

suggested to be the manifestation of self-organized criticality (SOC) or, to be more653

precise, self-organized quasi-criticality (SOqC). A direct analogy between convective654

cloud ensembles and a typical (non-conservative) SOC model could indeed be drawn655

where water vapor plays the role of the control parameter, and clouds correspond to656

avalanches triggered when water vapor locally exceeds a critical threshold (saturation).657

Note however that as attractive as the concept may be, a more careful evaluation658

of convective cloud ensembles and their characteristics should be conducted before659

concluding on the relevance of SOC.660

The two mechanisms mentioned here were shown to be consistent with the tran-661

sition observed in the continental convection case from an exponentially distributed662

cloud population at earlier times (when shallow clouds prevail), to heavy-tail cloud size663

distributions at later times (deep convective regime). As the transition takes place, it664

was indeed shown that both cloud clustering and cloud merging increase, thus support-665

ing the fact that exponentials characterize weakly interacting clouds, while heavy-tail666

functions are a manifestation of self-organization.667

The two cases analyzed in this study yielded comparable power-law exponents668

of about 2.1 (when applicable), a value consistent with most estimates reported in the669

literature, and with the theoretical critical exponent of 2 expected from relevant SOC670

models. Note however that previously published best fit exponents take values ranging671

between ∼ 1 to > 3, a variability that can only in part be explained by the use of672

unsuitable fitting techniques. While we can expect the proposed method to increase673

the confidence associated with best fit exponent estimates, other factors are likely674

responsible for much of the variability. For example, it has been shown previously675

that exponent values may vary as clouds become more mature. It was also suggested676

that boundary layer properties influence the size of the biggest clouds in a cloud scene,677

and possibly the power-law scaling. Overall, this suggests that more efforts should be678

put into trying to understand the factors influencing scaling exponents of cumulus size679

distributions.680

Finally, it should be stressed that our analysis of empirical cloud size distributions681

may be affected by sub-sampling biases. If the cloud sample available is too small,682

we may indeed expect errors in the distribution tails as the largest clouds become683

under-represented. Ultimately, the best solution to minimize these biases and yield684

reliable fits remains to use very large samples obtained from long-term, large domain685

simulations.686
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Figure 1. CCSDs calculated for the LBA diurnal cycle case, at three different times into

the simulation. From top to bottom: at 4 h, 7 h and 10 h. Left column: clouds are identified

based on a condensed water content q threshold of 0.01 g.m−3 at 2000 m. Right column: clouds

are identified based on a CWP threshold of 50 g m−2. Best fits obtained with power-law, ex-

ponential, Weibull and cutoff power-law functions are also plotted. The corresponding best fit

parameters are collected in Table 6).

Table 2. Same as table 6 but for the RICO simulation.

Time λ̂ r α̂ r η̂-β̂ r µ̂-ν̂ r

12 h 7.93× 10−3 11.0 −1.34 7.5 0.029-0.78 11.0 5.61× 10−3-0.47 11.0
8 h 9.18× 10−3 8.6 −1.97 4.9 0.17-0.51 5.3 7.72× 10−3-0.14 5.8
4 h 8.08× 10−3 7.0 −1.75 7.5 0.037-0.75 10.4 5.75× 10−3-0.59 10.4

12 h 7.01× 10−3 12.0 −2.18 19.2 0.10-0.56 43.0 2.2× 10−3-1.05 43.0
8 h 5.40× 10−3 14.3 −2.24 9.0 0.078-0.59 26.7 2.55× 10−3-0.93 26.7
4 h 6.24× 10−3 17.1 −2.12 9.1 0.073-0.6 23.5 2.63× 10−3-0.9 23.5
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Figure 2. Same as Figure 1 for the RICO case. From top to bottom: at 8 h, 12 h and 16 h.

The corresponding best fit parameters are collected in Table 6).
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Figure 3. Time series of estimated power-law exponents α, and exponential scales λ esti-

mated in the LBA (left, panels a and c) and RICO (right, panels b and d) cases. Uncertainty

bars corresponding to the root mean square errors computed directly from bootstrapping (see

text) are also depicted. Estimates that do not satisfy the p−value condition are omitted.
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Figure 4. Time evolution of power-law (blue) and exponential (red) best fit size ranges com-

puted for the CWP and q CCSDs (left and right column respectively). Top row: LBA case;

bottom row: RICO case.
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Figure 5. Estimated power-law exponents as plotted on figures 3 for the LBA and RICO

simulations, against equivalent best-fit estimates obtained using linear regression.

Figure 6. Sensitivity of linearly regressed exponents to the lower and upper size bounds in

the LBA case for CWP clouds at 10 h.
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Figure 7. Size ranges (∆L = Lmax − Lmin) over which best-fits with power-law (blue), ex-

ponential (red), Weibull (green) and cutoff power-law (cyan) distributions were obtained. Only

three different times for both the LBA (top row) and RICO (bottom row) simulations are shown.

Size ranges for CWP and q based CCSDs are on the left and right respectively.
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Figure 8. Results from likelihood-ratio tests applied to clouds identified based on q (top row)

and CWP (bottom row) thresholds in the LBA simulation. The LR test is applied to all possible

combinations of reference and alternative distributions. In each subplot, the reference distribu-

tion is read on the horizontal axis, and it is tested against an alternative distribution read on the

vertical axis. The color code should be understood as follows: negative values in blue indicate

that the reference distribution provides a better fit than the alternative distribution over its opti-

mal size range; positive values in red indicate that the alternative distribution is a better fit than

the reference one. Grey cells indicate that no acceptable fit could be found with the alternative

distribution.
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Figure 9. Same as figure 8 but for cloud distributions from the RICO simulation.

Figure 10. Clustering indices plotted as a function of time for the LBA case: a) NNCDF dis-

tributions (see text for further information) with lines colored according to time, from 4 h (blue)

to 10 h (dark red), b) Iorg and mean number of cores (w > 4 m s−1) per cloud object.
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