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Abstract

Bangladesh is an extremely flood-prone country due to its geographical location at the downstream end of the Ganges, Brahma-
putra and Meghna (GBM) river basin. Flood destroys agricultural products of large areas and causes loss of lives and damage
to infrastructures. Heavy rainfall during the monsoon season is the major cause of flooding in this region which occurs almost
every year. However, the lack of observations of rainfall in the upper catchment areas outside Bangladesh makes flood forecast-
ing challenging in this region. In addition, errors in rainfall forecasts and lack of high-resolution bathymetry and topographic
data put major constraints to flood forecasting in Bangladesh through hydrologic and hydrodynamic models. Currently Flood
Forecasting and Warning Centre (FFWC) of Bangladesh Water Development Board (BWDB) is producing short-range flood
forecasts with a lead time of up to three days. However, medium-range (3 to 5 days) forecasts are crucial for reducing flood-
related losses as they provide more time for decision making and preparation compared to short-range forecasts. In this study,
a flood forecast model based on Artificial Neural Network (ANN) has been developed for the Kushiyara river which is one of the
major rivers of the northeastern region of Bangladesh. Rainfall data from the fifth generation European Centre for Medium-
Range Weather Forecasts Reanalysis (ERA5), daily Terrestrial Water Storage (TWS) from the Global Land Data Assimilation
System with the Gravity Recovery and Climate Experiment Data Assimilation (GRACE-DA) and daily Surface Soil Moisture
data from Soil Moisture Active Passive (SMAP) have been used as input to the model. The model shows reasonable accuracy
in forecasting the water level of the Kushiyara river at Sheola station with a lead time of up to seven days. For 1-day lead time,
the correlation coefficient (R) between the observed and simulated water levels is 0.97. The performance of the model is also
promising for a medium-range forecast (R=0.93 for 7-day lead time). This study indicates that the release of daily GRACE

gravity field solutions in near-real-time may enable us to forecast and monitor high volume flood events in this region.
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THIS PRESENTATION WILL FOGUS ON

Necessity of Flood

Forecasting in Bangladesh
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Ferecast using ANN

> Evaluation of forecasts
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WHAT CAUSES FLOOD IN BANGLADESH?

1.72 million sq. km of the Ganges,
Brahmaputra and the Meghna
basin drains out through
Bangladesh

PAKISTAN

Precipitation in this large GBM
basin causes extreme flood in
Bangladesh

MYANMAR

[ | Ganges Basin 1,087,300 sq. km
] Brahmaputra Basin 552,000 sq. km
] Meghna Basin 82,000 sq. km

|

Md. Monowar Hossain et. al., Climate change impact on the discharge of Ganges-Brahmaputra-Meghna (GBM) basin and Bangladesh, 2015
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Frequent floods in north-eastern region
of Bangladesh causes damages to lives
and property

A reliable forecast with a significant lead
time can help minimize these losses

SCIENGE
i#SOCIETY

https.//www.tribuneindia.com/news/world/over-700-000-marooned-as-flash-floods-wreak-havoc-in-bangladesh-112858
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https:// www.dhakatribune.com/bangladesh/nation/2017/08/28/rice-production-fall-floods-
deluge-farmland

In 2020 alone, Floods caused a damage worth around
155 million USD in crops, destroying crops in 392,440
acres of land

https://give2asia.org/2020-bangladesh-flood-response/
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OUR STUDY AREA
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LIMITATION OF EXISTING FLOOD FORECAST SYSTEM

Lack of Rainfall Data

Long Term data unavailable for suited Hydrologic model

Use of Inaccurate forecast data
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S0 HOW DID WE MANAGE T0 GET DATA?

N

5t Generation ECMWF Reanalysis (ERA5) |:> [ Precipitation }

Terrestrial Water Storage (tws) <:| Global Land Data Assimilation System with the Gravity Recovery
and Climate Experiment Data Assimilation (GRACE-DA)

\
L Soil Moisture Active Passive (SMAP) — [ Surface Soil Moisture }

E Water Level and Discharge }<:: Bangladesh Water Development Board (BWDB) W SCIENCE
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MORE INFORMATION ON OUR DATA
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SO WHAT DID WE DO WITH ALL THESE DATA?

T

ANN Model

Soil Moisture Levenberg Marquadt

Algorithm

errestrial’\Water Storage (tws:

p

o

Water
Level
forecast

)
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AN ARTIFICIAL NEURAL NETWORK MODEL WAS TRAINED TO PREDICT WATER LEVELS

The Levenberg Marquadt
Algorithm was chosen to find a
correlation between our input
data and target water levels to
help predict water levels at 1-day,
3-day, 5-day and 7-day lead times

Input Layer

Hidden Layer

Output Layer
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Correlation Coefficient,

FINALLY, WE HAVE SOME RESULTS —

O Data

12

For a Lead Time of 7-days, we observed a Correlation of 0.94

between the input parameters and water level 7 days later i

This is what the generated time series looks like:

Simulated Water Level, SWL
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EVALUATION OF FORECAST MODEL FOR DIFFERENT LEAD TIMES

The Correlation values for different lead times look like this:

Correlation Coefficients for different Lead times
(Higher is better)

g 098 0968

g 097 0.966 :
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EVALUATION OF FORECAST MODEL FOR DIFFERENT LEAD TIMES

Actual WL and Simulated WL (5day lead)
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THEN WE USED ANOTHER INPUT PARAMETER TO OUR MODEL

() 0)
A
4 )
Soil Moisture ANN Model
Water
Lavenberg-Marquadt Level
: Forecast
Algorithm
\§ J
HIStOYICal DISCharee!
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WE NOTICED A SIGNIFICANT IMPROVEMENT IN THE RESULTS IF WE INCLUDE

HISTORICAL DISCHARGE DATA INSTEAD OF TWS IN THE MODEL

Correlation Coefficients

1.02
1.00
0.98
0.96
0.94
0.92
0.90

Correlation Coefficients for Different Lead times
(higher is better)

0.996
0.985

0.966 0.968
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Lead Time (days)

E Rainfall, tws and soil moisture input

i Rainfall, Soil Moisture and Discharge input
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COMPARISON OF FORECAST FROM THE TWO MODELS WITH DIFFERENT INPUT
PARAMETERS

Actual WL and Simulated WL (7day lead)
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COMPARISON OF FORECAST FROM THE TWO MODELS WITH DIFFERENT INPUT
PARAMETERS

Actual WL and Simulated WL (3day lead)
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IN CONGLUSION,

r N
A somewhat reliable medium range (5-7 days) forecast is possible using SMAP retrieved Soil
moisture data and tws data retrieved from GRACE-DA datasets.

- y,

e \
Use of GRACE data is unsuitable for flood forecast due to its latency

. J

-

.

Incorporating Discharge data as input can help improve the results even further.
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