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Abstract

This paper discusses the mathematical aspects of band fitting and introduces the mathematics of the Asymmetric Gaussian

shape and its tangent space for the first time. First, we derive an equation for an Asymmetric Gaussian shape. We then use this

equation to derive a rule for the resolution of two Gaussian shaped bands. We then use the Asymmetrical Gaussian equation to

derive a Master Equation to fit two overlapping bands. We identify regions of the fitting space where the Asymmetric Gaussian

fit is optimal, sub optimal and not optimal. We then demonstrate the use of the Asymmetric Gaussian to fit four overlapping

Gaussian bands, and show how this is relevant to the olivine spectral complex at 1 ?m. We develop a new model of the olivine

family spectrum based on previous work by Runciman and Burns. The limitations of the asymmetric band fitting method and

a critical assessment of three commonly used numerical minimization methods are also provided.
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Abstract

This paper discusses the mathematical aspects of band fitting and introduces the mathematics of the 
Asymmetric Gaussian shape and its tangent space for the first time. First, we derive an equation for an 
Asymmetric Gaussian shape. We then use this equation to derive a rule for the resolution of two Gaussian 
shaped bands. We then use the Asymmetrical Gaussian equation to derive a Master Equation to fit two 
overlapping bands. We identify regions of the fitting space where the Asymmetric Gaussian fit is optimal, 
sub optimal and not optimal. We then demonstrate the use of the Asymmetric Gaussian to fit four 
overlapping Gaussian bands, and show how this is relevant to the olivine spectral complex at 1 ?m. We 
develop a new model of the olivine family spectrum based on previous work by Runciman and Burns. 
The limitations of the asymmetric band fitting method and a critical assessment of three commonly used 
numerical minimization methods are also provided.



Introduction

This paper addresses three mathematical aspects of band fitting: 1.) the standard equations of 
Asymmetric Gaussian shapes and applications of the tangent or derivative space of the 
Asymmetric Gaussian shapes and 2.) resolution of two overlapping Gaussian shapes and fitting 
with a single Asymmetric Gaussian and 3.) estimation of differences for an extreme case of four 
overlapping bands, which is required for the case of the Olivine family in the visible and near 
infrared region.

Causes of Asymmetrical spectral bands. The Franck-Condon principle states that the most 
probable kinetic state of an electron when it transfers between quantum states is to retain its prior
kinetic energy and direction1. In its most perfect realisation, this results in a delta function 
distribution for band transitions.  However this principle can be broken in several directions by 
conditions in the real world of observational spectroscopy. For example:

1.) Under low pressures, collisions between molecules result in symmetric bell-shaped Gaussian 
absorption curves whose width depends on the density of the gas. Under higher pressure, 
absorption bands will broaden due to adiabatic collisions2. In wavelength space, this Gaussian 
band will become asymmetric.

2.) A common cause of asymmetry in Gaussian bands is the lack of instrumental resolution to 
resolve two nearby bands. This effect will occur for any spectrometer attempting to measure 
Gaussian bands that partially overlap, but with too few spectral channels across the band to 
resolve the two shapes. 

3.) A less common cause of asymmetrical bands is the case of a spin-forbidden band borrowing 
energy from a spin-allowed that it is crossing. The combination of the two will create an 
asymmetric shape that varies with the difference in energy between the bands3.

The result of all these processes is an asymmetric Gaussian curve, and the methods discussed in 
this paper are appropriate for determining further information vis-a-vis said asymmetric band. 
We will also discuss the limiting conditions of when two shapes can be resolved, and what 
happens when they cannot.

The original understanding of atomic spectroscopy was attained using a Group theoretic4 
approach; its success motivated the search for a deeper understanding of molecular spectra, 
which introduced a further degree of complexity over atomic spectra5, as might be expected. 
Finally, measurement of reflectance spectra of crystals led to the development of crystal field 
theory which was used successfully on transition metal (3d) spectra. Again, group theory and 
ligand theory are required for these spectra to be interpreted, including point groups, space 
groups to understand the optical properties of crystals in the visible and near infrared. Additional 
selection rules such as the spin selection, Laporte rule (differing parity) and the Jahn-Teller 
effect6 all play a part in determining the colour of the transition metal bearing rocks.

Figure 1 presents a crystal model for the Forsterite (Mg) endmember of the olivine family. In this
paper, we will use this general model and the Fayalite (Fe) endmember of the family where all 
the Mg atoms are replaced by Fe. We do not deal with questions of preferred location of cation in
this paper, but the reader is referred to many prior research studies that do7–9.
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Figure 1 - Olivine family structure showing M1 and M2 octahedral sites, Si tetrahedral sites and M2 planes.

Rationale for Asymmetric Gaussian analysis. An easily appreciated rationale for favouring an 
Asymmetric Gaussian shape over multiple Gaussian shapes10, is the parameter count. For the 
Asymmetric Gaussian shapes discussed here, the parameter count is constant at 4 (per shape). 
For a standard run of the Modified Gaussian Method (MGM), which uses multiple Gaussian 
curves, the parameter count is 3 per curve, or 9 when fitting the olivine family band complex at 1
?m with 3 standard Gaussian shapes. This is more than double the Asymmetric Gaussian 
parameter count. For the inclusion of each Gaussian band in a fitting routine, the count scales 
linearly as 3n. The benefits of being able to encapsulate or collapse the results of the fitting into 
one extra parameter is obvious. It even makes possible the analysis of entire hyperspectral 
images from drill cores11 or planetary orbital datasets12,13.

However, two reasonable questions then arise - 1.) How far apart do Gaussian bands have to be 
to resolve overlapping Gaussian bands from one another? and 2.) Are there differences for the 
endmembers of the olivine family in the asymmetric shape? This paper uses a mathematical 
approach to tackle these questions - How much is sacrificed for the gain of using a single 
parameter in hyperspectral band fitting? It is readily acknowledged that this is only a start to this 
assessment process.

Standard Asymmetric Gaussian shape

3

https://www.zotero.org/google-docs/?tfYakW
https://www.zotero.org/google-docs/?oviUHP
https://www.zotero.org/google-docs/?WinVII


Equation (1) gives a standard Gaussian shape that for example has been used to map 
hyperspectral absorption bands in previous work14.

(1)

The three parameters of this equation are the height, , the half width at half maximum, , the 

centroid, . The area under the standard Gaussian curve is . 

The Asymmetric Gaussian shape as proposed in a previous study15 is given as the function :

if ,

else if , (2)

The Asymmetric Gaussian shape is identical to the Gaussian shape, but for the addition of the 
asymmetry parameter  which is inserted on one side as a multiplier of the denominator of the 
exponent. Effectively, this parameter is unbounded, and can have any value on the positive real 
number line ℝ+. When  is 1, we have a standard Gaussian shape. When it is less than 1, the 
shape has right asymmetry. When  is greater than 1, the shape possesses left asymmetry (Figure
2).

To further examine the effect of the asymmetry parameter , we shall calculate the half width 
half maximum (HWHM) of the Asymmetric Gaussian shape. 

We wish to find the solution to equation (2) at the half maximum value, where :

Dividing out  and taking  on both sides:

So calling the left and right  values  and  and subtracting them from each other, we obtain:

Therefore the effect of the asymmetry parameter is to change the width of the band to the same 
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order as the width parameter .

For the Gaussian side of the shape, the asymmetry parameter is 1.

Figure 2 - Asymmetric Gaussian shape showing left asymmetry. Eqn (2) was used to construct the curve, parameters
are λ0=200, ?=1, ? =50, ?=3.

Resolution of Gaussians using the Tangent approach

The derivative of a standard Gaussian shape is :

(3)

Therefore the derivative of the Asymmetric Gaussian shape is :

if ,

else if (4)

Figure 3a demonstrates the relative difficulty of resolving two Gaussian shapes from each other, 
as their centroids move apart. To construct the figure, we have used what we call the tangent 
approach to determining the resolvability of two Gaussian shapes. We have used the values of 
equation (4) at the centroid of the smaller Gaussian shape as a measure of resolvability.
This metric works because when the two shapes are completely separate from each other, the 
tangent value should be zero. As the two shapes interfere, the value of the tangent increases.
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The tangent of the Gaussian shape is given in equation (3). This shows that as the half width 
grows, the tangent will decrease. As the amplitude grows, the tangent grows.

a b

Figure 3 - Resolution of Gaussian shapes using the tangent approach. (a) .gif movie of the tangent space reaction to 
a Gaussian with centroid running from 1 to 900. The other Gaussian at 500. (b) This plot shows the variation of the 
tangent metric with the delta (difference between centroids) and the width of the larger Gaussian shape.

Figure 3b demonstrates several aspects of the resolution of the Gaussians problem. In a first 
order analysis, the figure shows a large diagonal maximum across the figure, which demonstrates
that when the difference is similar to the width, the resolution is difficult.

Second order effects are just as important and highlight the interesting nature of this separation 
problem. First, there is an area of low values in the top left corner of the plot, indicating that for 
low delta values, the Gaussians are still resolvable, if the width of the larger Gaussian is large 
enough.

In addition, and the final aspect of the plot we will discuss, is that the broad maximum in the 
middle of the plot decreases as the width and the delta increase. The interpretation of this 
observation is that if the width and delta are similar, it is generally harder to resolve the 
Gaussians for lower delta and width, and easier to resolve them as they increase together.

Multiple Gaussian curves fit with a single Asymmetric Gaussian

In this section is provided a simulation of multiple Gaussian shapes being fit by a single 
Asymmetric Gaussian curve, in order to provide an appreciation for the Asymmetric band fitting 
method.

Let’s begin with the case of two Gaussian curves being fit by one Asymmetric Gaussian. In 
Figure 3a is plotted a test spectrum of two Gaussian functions in energy space and the finite 
difference of this curve. Also plotted in Figure 3a is the tangent space obtained using finite 
derivatives.

The situation in Figure 3a can be represented by the following equation for the sum of two 
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overlapping Gaussian shapes:

(6)

Subtracting the Asymmetric shape in equation (2), we obtain our Master Equation for this study:

(7)

where if , =1. We can then explore the stability of equation (7) by using a minimization 
scheme to best approximate the four parameters of the equation.

Stability and accuracy of the fitting scheme for two Gaussians. Let us pause for a moment to 
discuss the stability and our choice of fitting scheme. Figure 4 shows the results of a least 
squares fitting approach to our Master Equation (7). These three images show the presence of 
strong minima that demonstrates the stability of the minimization scheme. To obtain these plots, 
we hold the parameters of the two Gaussian shapes constant, and vary the Asymmetric Gaussian 
shape and record the value of our Master Equation. Table 1 displays the parameter space we have
explored to create the plots in Figure 4. Essentially we have fixed the amplitude so one Gaussian 
shape is twice as high as the other and fixed the width of the smaller Gaussian to be half that of 
the taller Gaussian. We have fixed the difference between the two centroids (λ1-λ0) to be 100. We 
call these the Target parameters in the Table.

We then ran a minimization routine using a Levenberg-Marquardt routine to find the optimal 
parameters for the Asymmetric Gaussian shape, and held these other values constant at those best
fit values while each of the three parameters was varied against the centroid to create the contour
plots. We call these the Best fit asymmetric parameters in the Table.

Target parameters Best fit asymmetric parameters

?0/?1 ?0/?1 λ1-λ0 ? λ2 ?2 ?2

2 2 100 0.587 428.229 238.108 1.3817

Table 1. Parameter space explored for the two Gaussian minimization problem.
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a b c

Figure 4. Minimization results for the Master Equation (a) Contour plot showing minimization result for variation of
the centroid and asymmetry parameter (c) Contour plot showing variation of centroid versus width (c) Contour plot 
showing variation of centroid versus amplitude.

Figure 4 is designed to give an assessment of the sensitivity of each of the parameters to the 
varied parameters, and to give an assessment of the solution landscape. In each of the three plots,
the global minimum has been reached, and although there are some local minima visible in 
surrounding regions.

State of the fitting scheme. In a two Gaussian fitting situation, we can imagine a situation in 
which the curve smaller in amplitude and smaller in width (the opposite situation will have an 
inverse result) starts at the same centroid as the larger Gaussian, and is pulled away in a series of 
steps, until they are no longer in contact. This process was shown in Figure 3a. We now wish to 
examine that situation from the point of view of how suitable an Asymmetric Gaussian approach 
would be at different stages as two Gaussians are pulled apart from each other.

Figure 5 shows this situation graphically, showing the error of the fitting distance versus the 
distance between the two centroids of the Gaussians. Table 1 contains the parameters for this run.

 We will now split this situation up into three states and discuss each individually.

State 1 -> Optimal. In the optimal region, we can see that the minimum error is achieved in the 
region as wide as the distance between the Gaussian shapes (100 in this case, see Table 1). Up 
until that point, the minimum error shrinks at a weak rate and is approximately linear. This can 
be envisaged as the region in Figure 3a where the choice of the asymmetric fit is optimal, the 
bands are not yet separated and an individual peak of the second Gaussian is not yet apparent. 
This is the easiest shape to fit with an Asymmetric Gaussian.

State 2-> Suboptimal. As the smaller Gaussian continues to peel away from the larger, the state 
of the fit enters the suboptimal stage. For the situation depicted in Figure 5, this results in an 
approximately linear ramp from the optimal error, starting at about the width of the larger 
Gaussian, followed by a flattened region again the same width as the larger Gaussian.

State 3-> Not Optimal. As the smaller Gaussian breaks entirely free of the larger, the Not 
optimal region is entered. At this stage, the fit increases at a higher rate than the previous ramp. 
In this region, the two Gaussians should be separate Gaussian shapes. The Asymmetric Gaussian 
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approach is then Not Optimal for this situation.

Figure 5. State plot for variations of centroid distance (Δ) showing Optimal, Suboptimal and Not Optimal regions of 
the field.

Figure 6 demonstrates the error “energy space” plot for three different minimization approaches. 
Some fitting schemes require a gradient for the next iteration for fast convergence16. The tangent 
space is often put to use for variants on Newton’s method for fitting a curve, and we will 
compare two such methods in this paper to the Nelder-Mead method, which requires no 
derivatives. The first is the Levenberg17-Marquardt18 method, and second is the Broyden19 
Fletcher20 Goldfarb21 Shanno22 (BFGS) method, which is termed a Quasi-Newton method.

We also point out that we have used the Nelder-Mead approach in past work13, however we 
found that it was capable of producing a higher number of singularities when the difference 
between the centroids λ1-λ0 was close to zero. Although this is a challenging fitting case that is 
not a normal situation, we also found that the BFGS Quasi-Newton scheme was quicker than the 
Nelder-Mead and Levenberg-Marquadt schemes and fewer singularities appeared in the results, 
as can be seen from a comparison of Fig. 7 a, b and c.
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a b c

Figure 6. Error plots for three types of fit - a) Nelder Mead, b) Levenberg-Marquardt and c) Quasi 
Newton. The x-axis is the width of the first Gaussian shape, the y-axis is the width of the second Gaussian
shape, which is half as large as the first.

Figure 6 also shows that for all three fitting routines, the errors were slightly more sensitive to 
the width of the second highest peak than that of the highest peak. This can be seen by the higher
errors in the y-axis (second width), compared to lower errors in the x-axis (first width)  of Figure
6. The reason for this asymmetry of sensitivity is because the amplitude of the first Gaussian is 
double that of the second Gaussian (Table 1). If the two shapes were the same height, the 
asymmetry would disappear.

Parameter tuning by singularities. Figure 6 demonstrates graphically the relative performance of
the fitting systems. We also used this potential surface to choose the correct initial conditions for 
the minimization routine – the presence of singularities throughout the potential surface allowed 
us to fine tune the fit parameters, especially in the case of the Nelder-Mead system which is 
almost too flexible, and is sensitive to the fitting parameters. These initial conditions were varied 
until the singularities in the phase space were minimized.

Olivine 1 ?m multiband complex
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Finally, we address the case of the representation of four overlapping Gaussian curves. This 
system is relevant to the case of the electronic bands of olivine, which overlap in the 1 ?m 
region. Figure 7 shows a possible example of this set up for an olivine electronic transition7. As 
we have previously discussed, we can use information from the tangent space to separate 
Gaussian bands. This suggests to us that the bands will not be separable if they are closer than 
the full width half maximum of the largest band.

As previously established by the work of Burns, the Crystal Field Theory applied to the olivine 
(Mg2+,Fe2+)2SiO4 structure gives us four olivine absorption bands in the 1 ?m region. Our task is 
to generate spectra from the following model.

The Olivine family has an orthorhombic space group23 with a Hermann-Marguin crystallographic
space group of Pbnm (No. 62) and Schoenflies space group of V16

h. Olivine’s optical constants 
have previously been derived24,25 and the electronic structure has been studied using multiple 
instrumental techniques26–28. Of interest to us here is the fact that the transition metals in olivine 
(here we consider Mg and Fe) are placed in two orthrhombic structural cages called M1 and M2 
(Figure 1) and this results in a splitting of the crystal (or ligand) field energy.  The point group of 
the M1 site is Ci and the M2 site has Cs symmetry, as first proposed and discussed by Runciman 
et al29.

In order to achieve our goal of modeling the 1 ?m region of the Mg-Fe olivine family, we use the
dataset of Burns et al30 which provides tables of the centroid of four bands and maps their 
changes as the Mg-Fe content is varied. Sunshine and Pieters10 Table 2 showed that the two Y 
bands in Burns et al30 have a band width of about 3000cm-1 and the Z band has a half width of 
about 1600cm-1. We use these values for our band widths of the Z band and Y bands. Sunshine 
and Pieters point out they could not resolve the X band and so they ignored that band in their 
study. Figure 7 shows the X band runs parallel and very close to the bottom of the largest Y band 
and is very difficult to resolve for this reason if polarized measurements are not available. We 
use the four band approach here.

Figure 7a shows the error in fitting the four band olivine complex at 1 ?m. It demonstrates that 
the case of Fayalite (Fo10) is more difficult to fit than Forsterite (Fo100). The reason for this 
behaviour is that the Fayalite spectrum is more asymmetric than the Forsterite spectrum. This 
fact is born out by simple observations of the two end members which are given in Figure 7b.
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a b

c d e  

Figure 7(a) Olivine family energy level splitting diagram, modified from Runciman et al.31 (b) Plot showing the 
movement of X, Y Y, Z bands between Fayalite and Forsterite endmembers, from Burns et al.30 (c-d) Example Fo 
and Fa endmembers (e) Error of fitting of the Fa and Fo endmembers. 

Conclusions

This paper has highlighted the following new findings regarding the fitting of absorption bands 
with an asymmetric shape:

1.) We demonstrated several aspects of the resolution of the Gaussians problem (Figure 3). In a 
first order analysis, the figure shows a large maximum diagonally across the figure, which 
demonstrates that when the delta is similar to the width, it is difficult to resolve the two 
Gaussians. A second order effect is that for low delta values, the Gaussians are still resolvable, if 
the width of the larger Gaussian is large enough. Finally we established that if the width and 
delta are similar, it is more difficult to resolve the Gaussians for lower delta and width, and easier
to resolve them as they increase together.

2.) Three local minimization/fitting methods were quantitatively tested for the fitting process 
(Figure 4-6). Singularities of the fitting process were identified and used as guidance for the 
initial conditions of the fitting parameters. We found that:

a.) QuasiNewton achieved the best fits, followed by Levenburg-Marquardt and then 
Nelder-Mead.

b.) The QuasiNewton method was fastest, followed by Levenburg-Marquardt and 
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then Nelder-Mead.

3.) The three fitting methods were found to be stable outside of a narrow range of the widths of 
the first and second Gaussian shapes. All methods struggled as the width of the band became 
more like a delta function (Figure 5-6)

4.) We found the fitting routines were slightly more sensitive to the width of the second highest 
peak than that of the highest peak (Figure 6).

5.) We established for the first time that the Asymmetric Gaussian shape can be used to map a 
parameterised 4 Gaussian shape based on the olivine 1 ?m multiband complex. We demonstrated 
that it is more difficult to fit a Fayalite (Fa) spectrum than a pure Forsterite spectrum, because the
Fo spectrum is more symmetric than a Fa spectrum.

The findings of this paper will be used to inform future studies of the olivine visible and near 
infrared spectrum, and we have shown the utility of the Asymmetric Gaussian shape to elucidate 
information on the shape of this olivine complex. Future work will assess the pyroxene 1 and 2 ?
m bands.
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