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Abstract

Reservoir Computing (RC), a simplified form of recurrent neural network , is composed with the Fourier Transform to produce

data-driven prediction of multi-scale coupled quasi-geostrophic flows. Experiments are conducted using the Modular Arbitrary-

Order Ocean-Atmosphere Model (MAOOAM) [10], a coupled quasi-geostrophic model that includes a 2-layer atmosphere (fast

dynamics) and 1-layer ocean (slow dynamics). The Fourier Reservoir Computing (FRC) approach produces forecasts that

extend the skillful forecast horizon beyond a comparable RC model trained on data in physical grid space. The FRC approach

can be enhanced by applying localization in physical space, which extends the skillful forecast horizon further and facilitates

practical application to high-dimensional geophysical problems. Plain Language Summary The science of predicting changes in

weather and climate is typically enabled using a combination of idealized physical models and instrument measurements. Here,

we offer a contribution as part of a growing community that is attempting to advance the use of machine learning for weather

and climate prediction. We use a simplified coupled atmosphere-ocean model to generate synthetic ‘observa-tions’, and show

that reliable forecast models can be generating using machine learning applied to these observation data alone. We also provide

an approach for scaling this method for use in more realistic operational weather prediction scenarios.
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Abstract

Reservoir Computing (RC), a simplified form of recurrent neural net-
work, is composed with the Fourier Transform to produce data-driven
prediction of multi-scale coupled quasi-geostrophic flows. Experiments are
conducted using the Modular Arbitrary-Order Ocean-Atmosphere Model
(MAOOAM) [10], a coupled quasi-geostrophic model that includes a 2-
layer atmosphere (fast dynamics) and 1-layer ocean (slow dynamics). The
Fourier Reservoir Computing (FRC) approach produces forecasts that ex-
tend the skillful forecast horizon beyond a comparable RC model trained
on data in physical grid space. The FRC approach can be enhanced by
applying localization in physical space, which extends the skillful forecast
horizon further and facilitates practical application to high-dimensional
geophysical problems.

Plain Language Summary

The science of predicting changes in weather and climate is typically enabled
using a combination of idealized physical models and instrument measurements.
Here, we offer a contribution as part of a growing community that is attempting
to advance the use of machine learning for weather and climate prediction. We
use a simplified coupled atmosphere-ocean model to generate synthetic ‘observa-
tions’, and show that reliable forecast models can be generating using machine
learning applied to these observation data alone. We also provide an approach
for scaling this method for use in more realistic operational weather prediction
scenarios.
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1 Introduction

Weather and climate science research relies on large volumes of historical obser-
vational data, computer models that integrate idealized equations constructed
from fundamental principles of physics, and large-scale high performance com-
puting [31]. Machine learning (ML) methods have been gaining increasing at-
tention for their ability to process large volumes of data while taking advantage
of new hardware architectures with relative ease. In general, ML techniques
can be categorized as types of nonlinear optimization or regression methods
that can extract useful information from large quantities of data. There have
been groundbreaking successes with ML in a wide variety of fields, such as
speech recognition [23] and autonomous driving [3], as well as the emulation
and prediction of chaotic systems and fluid mechanics [4].

Our aim here is to make an incremental step toward the use of ML for
real-time weather forecasts. We follow the history of numerical weather pre-
diction (NWP) by considering the quasi-geostrophic (QG) equations, which are
approximations of the shallow water equations with small Rossby number [5].
This is of particular relevance to atmospheric and oceanic dynamics, which in
the mid-latitudes are largely determined by the balance of pressure forces and
Coriolis forces. The QG equations were one of the first simplifications of the
primitive equations of atmospheric motion to be used successfully for NWP [6].
Thus, we posit that the accurate emulation of QG dynamics would provide an
indication that ML methods are capable of extracting the essential dynamical
features needed for synoptic scale NWP.

As a practical objective, we ultimately seek to produce accurate forecasts
directly from the historical record of atmospheric or oceanic data. Example
sources of such data include direct observations, retrieval products, or reanaly-
sis products. Thus, we generate a simulated historical record using an idealized
2-layer atmosphere / 1-layer ocean coupled QG model. Although the spectral in-
formation is sometimes accessible for idealized models, in many cases the source
data are only available in gridded form. To ensure our method is applicable for
most circumstances, our goal is to provide an effective data-driven prediction
method based on gridded data of atmosphere and ocean.

In this work, we employ reservoir computing (RC), a simplified form of
recurrent neural network (RNN), as our ML method for prediction. The RNN
is a class of artificial neural networks where connected neurons form a directed
graph along a time series. This structure has a natural dynamical character, and
allows RNNs use their hidden states to capture the target dynamical behavior.
RNNs first appeared in the 1980’s [17; 26], and were further advanced in the early
1990’s [9; 16]. Owing to its simplified structure, RC has the advantage of reduced
training times [18; 22], which is a useful characteristic for transitioning to large
scale applications. Moreover, RC has been shown to be effective for predicting
chaotic dynamics such as Lorenz systems [29] and the Kuramoto-Sivashinsky
equation [24], and positive results in short-term forecast horizons (e.g. less
than 12 hours) have been obtained by applying RC to a more realistic gridded
atmospheric dataset from the European Centre for Medium-Range Weather
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Forecasts (ECMWF) [2]. In these previous examples, ML methods were applied
directly to data represented in a physical grid space. We will show that that our
RC approach using Fourier decomposition yields improved prediction quality
for multi-scale coupled QG dynamics, and extends skillful forecasts to longer
forecast horizons (in some cases over 72 hours).

Due to numerical advantages, the spectral-transform approach is frequently
utilized in the modeling of earth systems, from QG models to more realis-
tic model systems such as the Integrated Forecasting System (IFS) used by
ECMWF. The spectral decomposition has also been useful in practical applica-
tions such as signal processing, especially in speech understanding [25; 14]. For
example, the Fourier transform has been applied with architectures such as fully
connected neural networks [32], Long-Short Term Memory [8], and Transformer
[20]. In this work, we explore the RC approach with the Fourier decomposi-
tion for the prediction of QG models. However, we should point out that since
the QG equations retain only the balanced components and eliminate interac-
tions between the balanced and higher order modes, they potentially reduce
predictability, which was observed in [11] for a simple case of the shallow water
equation.

While we focus on RC, particularly for its potential for scaling up to higher-
dimensional systems, we note that there are other ML architectures that may
be effective for problems in dynamical prediction and modeling. For example, a
Long-Short Term Memory (LSTM) RNN [16] was used for forecasting dynamical
systems with extreme events [30] and hydrologic prediction [21; 13]. A gener-
ative adversarial network (GAN) [15] was explored for simulation of turbulent
dynamics [19]. We save investigation of these more complex RNN architectures
for future work.

2 Data and Methodology

2.1 Data: Numerical solutions of coupled QG model dy-
namics

We use the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM)
[10] for our experiments. It describes a two-layer QG atmosphere, coupled
thermally and mechanically to a QG shallow-water ocean layer by a system of
spectral equations. The target observables include the atmosphere barotropic
stream function ψa, the ocean stream function ψo, and the change of tempera-
ture δTa in atmosphere and δTo in ocean with respect to climatological reference
temperatures. MAOOAM allows arbitrary truncation of the spectral modes of
atmosphere and ocean variables. In this work we fix the spectral resolution at
4x−4y [10], which results in a total of 104 spectral modes for the whole system.

There are many cases where only physical space gridded datasets are avail-
able. To simulate this situation with QG dynamics, the spectral modes are
transformed to physical space by the multiplications with its corresponding ba-
sis functions, and then sampled uniformly to produce a 20×20 gridded dataset.
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The largest Lyapunov exponent λ1 of our MAOOAM configuration is estimated
to be 0.3 using the numerical procedure based on QR decomposition [1]. The
Lyapunov time, defined as λ−1

1 , therefore corresponds to approximately 3.33
days.

2.2 MAOOAM

The coupled QG dynamics represented by MAOOAM [10] are described by the
evolution of atmospheric barotropic stream function ψa, ocean stream function
ψo, atmospheric temperature Ta, and ocean temperature To. The simulated
data are governed by the QG vortex and thermal equations, considering both
mechanical and thermal mechanisms. The atmospheric barotropic stream func-
tion ψa is set to be the average of the stream function fields of the lower atmo-
spheric level ψ1 at 250 hPa and upper atmospheric level ψ2 at 750 hPa. That
is, ψa = (ψ1 + ψ2)/2. The equations of motion of ψ1 and ψ2 are,

∂

∂t
∇2ψ1 + J

(
ψ1,∇2ψ1

)
+ β

∂

∂x
ψ1 = −k′d∇2(ψ1 − ψ2) +

f0
∆p

dp

dt
, (1)

∂

∂t
∇2ψ2+J

(
ψ2,∇2ψ2

)
+β

∂

∂x
ψ2 = k′d∇2(ψ1−ψ2)−

f0
∆p

dp

dt
−kd∇2(ψ2−ψo). (2)

The parameters f0 and β provide representation of the Coriolis effect. The
parameter k′d corresponds to the friction between two atmosphere layers, and
kd corresponds to the friction between the ocean and lower atmosphere layers.
The term p represents pressure, and the pressure difference ∆p is 500 hPa.
Similarly, the equation of motion for the ocean stream function ψo is,

∂

∂t

(
∇2ψo − ψo/L

2
)
+ J

(
ψo,∇2ψo

)
+ β

∂

∂x
ψo = r∇2ψo + C1∇2(ψ2 − ψo), (3)

where L is the baroclinic Rossby radius of deformation. The parameter r is the
friction at the bottom of the active ocean layer. The last term represents the
impact of the wind stress, with the drag coefficient of the mechanical ocean-
atmosphere coupling C1.

The time evolution of the atmospheric temperature Ta and ocean tempera-
tures To is governed by,

γa

(
∂

∂t
Ta + J (ψa, Ta)−

dp

dt
σρaTa

)
= −λ(Ta − To) + ϵaσBT

4
o − 2ϵaσBT

4
a +Ra,

(4)

γo

(
∂

∂t
To + J (ψo, To)

)
= −λ(To − Ta)− σBT

4
o + ϵaσBT

4
a +Ro. (5)

γa and γo are the heat capacities of the atmosphere and ocean layer. λ is
the heat transfer coefficient at the ocean–atmosphere interface. σ is the static
stability of the atmosphere. ϵa is the emissivity of the grey-body atmosphere
and σB the Stefan–Boltzmann constant. ρa is the density of atmosphere.
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The QG equations of motion constitute a complex coupled system of partial
differential equations (PDEs). Spectral models, such as MAOOAM [10], con-
sider the Fourier expansions of stream functions and temperature. Specifically,
the temperatures in MAOOAM are linearized around spatially uniform temper-
atures T 0

a and T 0
o , and decomposed as Ta = T 0

a + δTa and To = T 0
o + δTo. Note

that by the hydrostatic relation and the ideal gas relation, one can derive the
spatially dependent atmospheric temperature δTa = f0(ψ1 − ψ2)/R, where R
is the ideal gas constant. With the linearization, the system can be reduced
to the streamfunction fields ψa, ψo, and the spatially dependent temperatures
δTa and δTo. The Fourier expansions of these four variables are considered, and
this transforms the PDE system in physical space into an ordinary differential
equation (ODE) system in Fourier space. More precisely, the Fourier coefficients
ηi of all variables satisfy a coupled ODE system, which can be formulated in
the following form:

dηi
dt

=
∑
j

∑
k

Ti,j,k ηj ηk, (6)

for some tensor Ti,j,k. We refer to [28] for the detailed derivation. Roughly
speaking, the derivation from the original system to the system of spectral equa-
tions includes several approximations, including the finite difference method,
linearization in temperature, eigenfunction expansion, and spectral modes trun-
cation [28]. Many earlier relevant works, for example [7], also employed these
numerical techniques for the QG system.

2.3 Reservoir Computing (RC)

2.3.1 Network structure

Traditional artificial neural networks can be viewed as function approximators,
taking an input and giving a corresponding predicted output. RNNs incorporate
an element of temporal consistency by maintaining a hidden state vector that
effectively stores information about past states. Through a training process,
the RNNs define dynamics for this hidden state by training a set of connection
weights within the RNN architecture. The intent is for the RNN dynamics to
emulate the dynamics of the training data.

RC simplifies the RNN by assigning the recurrent weights within most of the
network randomly. Only the final ‘readout’ layer of the network is trained. For
RC, the high-dimensional hidden state is known as the reservoir state. During
training, the RC receives two input signals: (1) the reservoir state, and (2) the
observed data. The reservoir state is propagated using the random dynamics
of the network, but includes time dependent forcing from the observed data
signal. Over a typically short transient period, the reservoir state becomes
synchronized with the input signal. The output mapping is then learned to
determine a functional relationship between the evolution of the reservoir and
the observed data. After the output mapping is learned, the input forcing can be
replaced with the RC prediction of the observable, and the RC model becomes
a self-contained dynamical system.
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We use the following RC structure: Given two randomly chosen matrices
W ∈ RNr×Nr ,Win ∈ RNr×Nu , the input u(t) is converted into the reservoir
state s(t+ 1) by the following relation:

s(t+ 1) = ℓ tanh(W · s(t) +Win · u(t)) + (1− ℓ) s(t), (7)

where ℓ is the ‘leaky reservoir’ constant having values between 0 and 1. The
dimension Nr of reservoir states is normally much higher than inputs, so that
complex temporal features can be represented. The reservoir state s(t + 1) is
then transformed to the forecast v(t+ 1) by

v(t+ 1) = Wout · s(t+ 1). (8)

2.3.2 RC training and prediction

The RC is trained by utilizing the observational history and applying a least-
squares regression for the ‘readout’ mapping Wout by solving

U = Wout(S · ST + λI), (9)

where S ∈ RNr×Nt is a matrix whose columns are the reservoir state vectors,
I ∈ RNr×Nr is the identity matrix, U ∈ RNu×Nt is a matrix whose columns are
the target (truth) states in the original system space, and λ ≥ 0 serves as the
Tikhonov parameter for regularization [27]. More complicated readout map-
pings used in [24; 2] include squared-terms s(t)2 of reservoir states. However,
we do not see improvement from the use of squared-terms for the emulation of
QG dynamics, and so retain the classical structure (8).

After training process, the readout mapping is fixed and the prediction is
made by the Reservoir Computing relations (7) and (8).

2.4 Fourier Reservoir Computing (FRC)

Assuming we are provided with data on a geospatial grid, the Fourier Reservoir
Computing (FRC) applies a type of encoder/decoder operation so that the RC
can be applied to the Fourier modes. For our experiments, we assume a long
evolution of QG dynamics has been recorded on a uniform grid, providing a
discrete representation of two-dimensional fields that contain the values of the
observables measured at each grid point. The gridded data are first encoded
into Fourier space using the two-dimensional Fast Fourier transform (2D-FFT)
in space. Precisely, the data xt

n,m at each fixed time t are transformed to the
frequencies x̂t

k1,k2
. We then take the inputs u(t) of the RC to be the time-

dependent coefficients x̂t
k1,k2

of the Fourier modes, and produce a prediction of
the evolution of the modes using RC as described by (7) and (8). The RC output
v(t) is then decoded by the inverse 2D-FFT to produce our final prediction in
the physical space (See Figure 1).

Unless otherwise stated, the configuration of RC networks are as follows:
the entries are uniformly distributed on [−0.5, 0.5], and the reservoir matrix
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dataset prediction 

Physical space Physical space 
Fourier      
space 

Fourier      
space 

2D-FFT 
inverse 

2D-FFT 

Figure 1: FRC approach for dynamical prediction. The dataset is transformed
by 2D-FFT, and utilized in RC training. RC then produces a prediction for
Fourier coefficients, which are later transformed back to physical space by in-
verse 2D-FFT.

W is further specified as a sparse matrix. The reservoir dimension is set at
Nr = 7000. The values of the sparsity and spectral radius (i.e. the absolute
value of the largest eigenvalue) of the reservoir adjacency matrix W are tuned
between 0 and 1. We fix the leak parameter as ℓ = 0.95 and Tikhonov parameter
as λ = 0.0001.

2.4.1 Implementation of FRC

In this section, we use bold uppercase letters to denote matrices, bold lowercase
for vectors, and regular lowercase for scalars. For convenience, we say a vector
v has flattened entries vn,m if v is a vector of dimension N ×M obtained from
flattening a N by M matrix V with entries vn,m. Precisely, the i-th entry of v
is vni,mi

where (ni,mi) = (a, b), where i = a ×M + b, a, b ∈ N ∪ {0}. Given
a two-dimensional historical gridded time sequence {xn,m(t)} from t = 0 to T ,
where 0 ≤ n ≤ N−1 and 0 ≤ m ≤M−1. The FRC in our work is implemented
to predict future dynamic for t > T as follows:

1. Perform two-dimensional Fast Fourier transform (2D-FFT) on {xn,m(t)}
to obtain a time sequence of gridded data {x̂k1,k2(t)} in the Fourier space,
where

x̂k1,k2(t) =

N−1∑
n=0

M−1∑
m=0

xn,m(t) exp(−i2πnk1/N) exp(−i2πmk2/M), (10)

for any 0 ≤ k1 ≤ N − 1, 0 ≤ k2 ≤ M − 1, and t ≤ T . N and M are the
total grid numbers in the x and y direction respectively.

2. Randomly initiate an Nr ×NM input matrix Win and an Nr ×Nr reser-
voir matrix W, where Nr is the reservoir dimension. All entries of both
matrices are uniformly distributed in [−0.5, 0.5]. To tune the parameters
sparsity and spectral radius, one can set a certain proportion of randomly
chosen entries zero and perform a scaling for the whole matrix. Compute
the reservoir (hidden) state s(t) by

s(t) = ℓ tanh (W · s(t− 1) +Win · x̂(t− 1)) + (1− ℓ) s(t− 1), (11)
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where x̂(t) has flattened entries x̂k1,k2(t) for all t ≤ T and tanh(·) is
performed element-wised. We note that the resulting reservoir state s(t)
is a vector of dimension Nr for each fixed t. ℓ is commonly called the leak
rate of RC, and is set at 0.95 for our experiments.

3. Compute the NM ×Nr readout matrix Wout:

WT
out = (S · ST + λI)−1 · S · X̂, (12)

where X̂ is a T ×NM matrix with entries xt,i set as the i-th entry of the
flattened vector x̂k1,k2(t), S is a Nr × T matrix with entries si,t set as the
i-th entry of s(t) computed in the last step. The matrix I is the identity
matrix of dimension Nr, and λ is the Tikhonov regularization parameter,
which is set at 0.0001 in our experiments.

4. Predict future dynamic through RC. We compute the future reservoir state
s(t+ 1) and project it to the prediction p̂ of Fourier modes by the Wout

matrix: For t ≥ T,

s(t+ 1) = ℓ tanh(W · s(t) +Win · p̂(t)) + (1− ℓ) s(t). (13)

p̂(t) = Wout · s(t), (14)

where p̂(t) has flattened entries p̂k1,k2(t) and s(t) is the reservoir state
vector of dimension Nr at each t.

5. Obtain the dynamical forecast pn,m(t) at the grid point (n,m) and time t
by inverse 2D-FFT entrywisely:

pn,m(t) =

N−1∑
n=0

M−1∑
m=0

p̂k1,k2(t) exp(i2πnk1/N) exp(i2πmk2/M), (15)

for all n ≤ N , m ≤M and t ≥ T .

For the results shown in this work, the training dataset has in total 50000
time steps. It takes roughly 12 minutes to train a RC network with 7000 reservoir
dimension for each trial on one CPU with 16 GB memory. We also note that all
entries of the training dataset were scaled into values between 0 and 1, by first
subtracting the minimum and then dividing the maximum over time. Precisely,

xsn,m(t) =

(
xn,m(t)− min

t∈[0,T ]
xn,m(t)

)
/ max
t∈[0,T ]

xn,m(t),

where xsn,m(t) is the data at grid (n,m) and time t after xn,m(t) is scaled.

2.5 Scaling to higher-dimensions: FRC with spatial local-
ization

The FRC method can be applied globally on the entire domain or locally on in-
dependent or partially overlapping patches. For more realistic high-dimensional
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NWP model applications, it is necessary to decompose the model grid into
multiple subdomains to enable parallel computation. To apply localization, we
similarly divide the gridded data in physical space into several disjoint local
patches and apply the FRC method to each subdomain. Each subdomain has
its own reservoir computing training and prediction, which is performed inde-
pendently of other subdomains. We present results using both the global and
localized FRC approaches. Other approaches are possible for localization. For
example, [24] and [2] used the same disjoint local patches for training, but ap-
plied interacting boundary points during prediction. It is also possible to do
localization in the frequency space after applying the Fourier transform. We
attempted both of these approaches, but found that the interacting boundary
points did not improve prediction skill with the FRC, while localization in the
frequency space degraded prediction skill.

Because we apply the Fourier transform on a spatial localization of the grid-
ded field, we must be careful of artifacts such as the Gibbs phenomena or ring-
ing, that may be introduced due to the non-periodicity of the original function.
This issue can be avoided by extending the local spatial patch (in square-based
grids) with a uniform-valued narrow neighborhood. With the same value on the
boundary of the local patch, the function in each local patch can be considered
as a periodic function when performing a discrete Fourier transform, because
we can extend the local function periodically to the whole space with its own
copies infinite times. In this way, the Fourier transform of the local function
is equivalent to the usual Fourier transform of a continuous periodic function
without the jump discontinuities that can cause artifacts.

Even though the Fourier basis is utilized with RC in this work, we emphasize
that the localization is only performed in spatial space, not in Fourier space.
Nevertheless, we should point out that a natural local Fourier basis exists due to
our setting. In fact, after applying spatial localization extended with a uniform-
valued boundary, the function in each local patch is considered as a periodic
function when performing discrete Fourier transform. Owing to the periodicity,
a natural finite frequency band is guaranteed even though we do not perform
an additional cut-off in Fourier modes for experiments.

We utilize above FRC to obtain prediction and further investigate the effect
of localization on our method. For localization, we divide the 20 × 20 gridded
data into four disjoint 10×10 patches and our approach is applied independently
on each subsystem. Our results suggest that RC has difficulty learning the
QG dynamics directly from the gridded data set in physical space, and can be
improved greatly by Fourier decomposition.

3 Results

We apply the FRC method to the gridded data recording the forecasts for the
coupled QG dynamics, and compare the results to the RC in physical space as
previously applied by [24; 2]. A total of 10 trials with different initial conditions
are performed for each experiment, and the normalized root mean square error
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(NRMSE) is computed as follows:

NRMSE(t) = (⟨(prediction(t)− truth(t))2/σ2⟩)1/2, (16)

where ⟨·⟩ indicates the average over all entries, and σ2 is the variance over
time. The FRC results in lower NRMSE than the RC applied in physical space
(Figure2). The NRMSE of the physical space RC grows to around order 1 after
1 day. On the other hand, the NRMSE produced by Fourier space RC is around
2×10−1 for atmosphere observables and 5×10−3 for ocean for over 1 Lyapunov
time.

To our best knowledge, there is no previous work investigating RC predic-
tion of QG dynamics and the effect of Fourier decomposition in the setting of
gridded dataset originated from spectral models. We note that [2] also applied
RC to data that were originally generated by a spectral transform model, but
it was analyzed in physical space. While our experimental setting is unique
without benchmarks, our RC implementation was tested on Lorenz 96 systems
and capable of reasonable performance.

The target evolution and prediction error by the FRC approach are presented
in Figure 3. From top to bottom, each column contains the two-dimensional
target surface, and the error surfaces of FRC as well as Localized FRC on each
day. We note that when applied in the physical space, the prediction errors for
RC reach a magnitude over 0.15 for ψa, 0.08 for δTa, 4× 10−5 for ψo and 0.026
for δTo, within 1 Lyapunov time. The forecast errors for both the global and
local FRC are significantly smaller than the physical space RC, as indicated in
Figure 2.

Although the values of sparsity and spectral radius in the construction of RC
are commonly tuned for the best outcome, we note that our results above are
fairly robust to these two hyperparameters. In Figure 4, the NRMSE curves by
FRC are shown for different combinations of sparsity and spectral radius. The
NRMSE curves behave similarly, with small standard deviation around 10−2 for
atmosphere, and 10−3 for ocean around 1 Lyapunov time.

On the other hand, a sufficiently large reservoir dimension is particularly
important for RC performance. In general, a higher reservoir dimension pro-
vides more capacity to capture dynamical complexity and hence leads to more
accurate forecasts. Moreover, we also observe better robustness in prediction
with larger reservoir dimensions. Our experiments test reservoir dimensions of
3000, 5000, and 7000, with the sparsity and spectral radius tuned for each case.
As MAOOAM is a spectral model, we also perform RC directly on the native
model space to provide a reference target performance skill. As a metric to
compare the forecast skill of each method, we define the valid prediction time
(VPT) by:

V PT = argmax
t

{NRMSE(t) < ϵ} . (17)

We take the maximal error by the RC applied in the physical grid space as
a baseline, and consider VPT as the first time when NRMSE exceeds 5% of
this maximal error. In Figure 5, the results show for all target observables, the
prediction is improved by transforming the data from physical space to Fourier
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Figure 2: NRMSE comparison between methods. The black line represents the
NRMSE by RC in physical space, blue line by RC in Fourier space, and red by
Fourier RC with localization.
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Figure 3: Prediction of stream function (left) and temperature (right) for at-
mosphere (top) and ocean (bottom). (a) target for each day. (b) target minus
prediction by RC in Fourier space. (c) target minus prediction by Fourier RC
with localization.
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Figure 4: NRMSE results using FRC with 9 different combinations of sparsity
and spectral radius chosen from {0.2, 0.5, 0.8}. The colors from light to dark
correspond to the increase of radius from 0.2 to 0.8. We use different markers
for different sparsity. Specifically, ▼ represents the case with sparsity 0.2, • with
0.5, and ■ with 0.8.
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space, as well as by increasing the reservoir dimension. For example, using the
same size reservoir the VPT for the atmosphere is doubled when applying FRC,
and nearly tripled when applying the localized FRC. Alternatively, the FRC
can attain nearly identical performance in the atmosphere and approximately
4x longer VPT in the ocean using a reservoir of less than half the size of the
physical space RC. Furthermore, the superior performance of RC applied to
the original spectral modes supports the assertion that the spectral information
plays a key role in the successful prediction of QG dynamics.

From our observation, Fourier encoding leads to improved performance can
be related to the data structure originated from the system of ordinary dif-
ferential equations in spectral modes, which describes the wave-like type of
dynamics in physical space derived from the diffusion effect. ML methods can
be considered as nonlinear regression methods that approximates desired target
dynamics with a certain function structure, which in our case here is the RC
network. The result improvement obtained from moving data from physical to
Fourier space, shows that plain RC networks encounter a noticeable degree of
difficulty of capturing wave-like dynamics. This issue however can be nicely
resolved by Fourier decomposition, which transform gridded physical positions
into frequency channels.

We note that even though both spectral RC and FRC predict Fourier mode
dynamics, the input datasets are of different accuracy. The input of the spectral
RC is the time series of ‘perfect’ coefficients of the Fourier basis used by the
original MAOOAM model. For the FRC, the input is a set of physical variables
that have been translated to a discretized grid. In this process of discretization,
there are errors introduced into the system and hence the input data provided
to the FRC has degraded quality. The results of both the FRC and the ideal-
ized spectral RC experiments indicate that the RC-based ML approach is more
effective for predicting QG dynamics when applied to data represented in the
Fourier space than when applied to data represented in a physical grid space.

It is worth pointing out that the resolution of gridded data also affects the RC
prediction. Although use of higher resolutions generally increases the complexity
of target dynamics and thus requires a larger reservoir dimension for reasonable
prediction, we notice the projection to lower resolutions (e.g. truncated to less
modes) can also degrade RC performance as measured by the VPT. We found
that for our idealized coupled QG application, RC and FRC are capable of
better prediction when more information is provided. For example, increasing
the resolution (of the physical grid representation) or increasing the number of
Fourier modes (by using a higher order truncation) are both helpful in extending
the VPT, assuming a sufficiently large reservoir dimension is provided.

4 Conclusions

We have applied a type of machine learning method called reservoir comput-
ing (RC) to a coupled atmosphere-ocean system to produce accurate short to
medium-range forecasts. Further, we introduced the use of the fast Fourier
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Figure 5: The Valid Prediction Time (VPT) obtained with different reservoir
dimensions (3000, 5000, 7000) is compared between methods. The results are
averaged over 10 different initial conditions, to ease initial condition dependence.
We use ‘RC’ to refer to the control case in which the RC model takes as input
the dataset in the physical grid space, ‘FRC’ for the case in which the dataset
is transformed by the 2D-FFT, and ‘Local FRC’ for the case in which the
FRC approach is applied with localization. ‘Spectral RC’ represents the case
when the RC takes as input the original spectral mode coefficients generated
by MAOOAM. The Spectral RC cases provide target performance levels for the
RC models that are trained on data provided on a physical grid.
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transform (FFT) and inverse FFT as an encoder/decoder step in the RC train-
ing and prediction operations as an effective tool for the emulation and predic-
tion of quasi-geostrophic (QG) dynamics. We term this composition of Fourier
transform and RC Fourier Reservoir Computing (FRC).

In general, ML methods can be considered as nonlinear regression methods
that approximate desired target data with a specified function structure, which
in our case is the RC network. A common approach for atmospheric models is
to formulate the dynamics using a Fourier basis, as atmospheric motions can
be largely described by wavelike dynamics. For this reason we developed and
applied the FRC encoder/decoder. This transforms gridded datasets of physical
states into frequency channels using the FFT. We found that this approach
extends the skillful forecast horizon of RC model forecasts. The improvement
obtained by transforming data from physical to Fourier space indicates that
conventional RC networks may encounter a noticeable degree of difficulty in
resolving wavelike dynamics.

Experimental results indicate that for identical reservoir sizes, the FRC is
effective at doubling the skillful forecast horizon in the atmosphere while increas-
ing the skillful forecast time in the ocean many times over. Applying localization
to the FRC further extends the skillful forecast horizon for both the atmosphere
and ocean. In addition, localization also provides a practical mechanism to scale
the FRC to higher-dimensional geophysical problems, which will be a focus of
future work.
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5 Data availability statement

For clarification and the reproducibility of this work, the software used to carry
out ML experiments can be found at:
https://github.com/hsinyilin19/Fourier-Reservoir-Computing. The datasets
used in this work were generated using the Modular Arbitrary-Order Ocean-
Atmosphere Model (MAOOAM) [10], available at: https://github.com/Climdyn/qgs,
with further details provided by [12]. The generated data used for the experi-
ments in this work can be found at: https://zenodo.org/record/4609483#.YFGLVUNKjEl.
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