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Abstract

Hydrologic models are essential tools to understand and plan for the effect of changing climates; however, they are known

to underperform in transitory climate conditions. Research to date identifies the inadequacy of models to perform during

prolonged drought, but falls short on pinpointing how and which specific aspects of model performance are affected. Here, we

study five conceptual rainfall-runoff models and their performance in 155 Australian catchments which recently experienced

a 13-year long dry period, with a focus on a wide range of performance metrics. We show that model performance degrades

extensively during the drought across most metrics, with overestimation of flow volumes driving the decline and representation

of shape and variability of the hydrograph and the flow-duration curve being more resilient to the prolonged dry climate. This

indicates that the overestimation is not linked to specific flow regimes, but is the result of proportional flow decline throughout

the hydrograph, suggesting engagement of multiple catchment processes in determining the changes in flow during the drought

across high and low flow periods as well as through faster and slower flow routes. Additionally, we show that in most cases model

performance does not recover after the end of the drought and that the multi-annual nature of the drought is the likely reason

for exacerbated performance decline due to accumulation and aggravation of errors over subsequent dry years. By promoting

detailed investigation of models’ shortcomings, we hope to foster the development of more resilient model structures to improve

applicability within climate change scenarios.
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Abstract13

Hydrologic models are essential tools to understand and plan for the effect of changing14

climates; however, they are known to underperform in transitory climate conditions. Re-15

search to date identifies the inadequacy of models to perform during prolonged drought,16

but falls short on pinpointing how and which specific aspects of model performance are17

affected. Here, we study five conceptual rainfall-runoff models and their performance in18

155 Australian catchments which recently experienced a 13-year long dry period, with19

a focus on a wide range of performance metrics. We show that model performance de-20

grades extensively during the drought across most metrics, with overestimation of flow21

volumes driving the decline and representation of shape and variability of the hydrograph22

and the flow-duration curve being more resilient to the prolonged dry climate. This in-23

dicates that the overestimation is not linked to specific flow regimes, but is the result24

of proportional flow decline throughout the hydrograph, suggesting engagement of mul-25

tiple catchment processes in determining the changes in flow during the drought across26

high and low flow periods as well as through faster and slower flow routes. Additionally,27

we show that in most cases model performance does not recover after the end of the drought28

and that the multi-annual nature of the drought is the likely reason for exacerbated per-29

formance decline due to accumulation and aggravation of errors over subsequent dry years.30

By promoting detailed investigation of models’ shortcomings, we hope to foster the de-31

velopment of more resilient model structures to improve applicability within climate change32

scenarios.33

1 Introduction34

Hydrological modelling is crucial for climate change assessment and adaptation stud-35

ies. Atmospheric and climatic changes modify rainfall and temperature patterns, affect-36

ing water availability for humans and natural ecosystems, as well as the frequency and37

intensity of extreme hydroclimatic events (Milly et al., 2008). Future climate conditions38

are expected to deviate from observed historical records in many regions of the world39

(Hewitson et al., 2014) and hydrological models are a useful tool to assess risks associ-40

ated with such changing climates as well as strategies and opportunities for adaptation41

and mitigation (Xu, 1999). Nevertheless, it is known that hydrological models under-42

perform in changing climate conditions (Seibert, 2003; Peel & Blöschl, 2011). These lim-43

itations of contemporary hydrologic modelling are particularly evident under drying cli-44
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mate conditions, especially during multiyear drought (Coron et al., 2012; Deb & Kiem,45

2020; Li et al., 2012; Vaze et al., 2010).46

Drought is the most impactful and widespread natural disaster, threatening half47

of the earth’s land surface (Mishra & Singh, 2010). In recent decades severe drought con-48

ditions have been reported in the Amazon (2005, 2010), Australia (1997–2009), Califor-49

nia (2011–2014), Chile (2010–2018), China (2009–2011), Europe (2003, 2005), and the50

Horn of Africa (2011), amongst others (Feyen & Dankers, 2009; Sun & Yang, 2012; van51

Dijk et al., 2013; Mann & Gleick, 2015; Rowell et al., 2015; Marengo & Espinoza, 2016;52

Garreaud et al., 2020). Despite high levels of uncertainty in determining trends from changes53

in historical patterns of drought and attributing them to anthropogenic climate change54

(Dai & Zhao, 2017; Cook et al., 2018), the IPCC’s sixth assessment report projects ex-55

acerbated risks of agricultural, ecological and hydrological drought in several regions of56

the world under future climate scenarios, driven by changed precipitation patterns, re-57

duced soil moisture and increased potential evapotranspiration (Douville et al., 2021; Senevi-58

ratne et al., 2021). Because of this, the study of historical droughts as large-scale nat-59

ural experiments can provide a unique insight into future climates of many drought-prone60

regions worldwide, which can inform scientific advancement and political action towards61

more farsighted climate adaptation strategies.62

In particular, authors have studied the relationships between rainfall and stream-63

flow anomalies during south-eastern Australia’s Millennium drought, ca. 1997–2009, and64

discovered that during persistent drought, annual rainfall-runoff relationships shifted sig-65

nificantly in many of the catchments studied; causing reductions in streamflow dispro-66

portionate to the meteorological anomaly (Potter et al., 2010; Chiew et al., 2014; Saft67

et al., 2015, in preparation). In this context, the annual rainfall-runoff relationship is used68

to characterise a catchment’s response to precipitation and any change in relationship69

over time can be symptomatic of a modification of a catchment’s underlying hydrolog-70

ical behaviour through changes in its underlying processes or their relative prominence,71

affecting rainfall partitioning (Saft et al., 2015, in preparation). Very similar shifts in rainfall-72

runoff relationships during prolonged drought were more recently observed also in China73

(Gao et al., 2016; Tian et al., 2018; Zhang et al., 2018), California (Avanzi et al., 2019)74

and Chile (Alvarez-Garreton et al., 2021). Furthermore, the latest research out of south-75

eastern Australia suggests that the end of the dry spell is not always sufficient for catch-76

ments to recover and many catchments can persist in a low-flow state for several years77
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after the drought, despite a return to pre-drought precipitation (Saft et al., in prepara-78

tion; Peterson et al., 2021).79

Such changes in hydrological response at the catchment level affect the reliability80

of hydrologic models’ projections of streamflow and water availability. The aforemen-81

tioned Millennium drought (MD), which affected an area of south-eastern continental82

Australia in excess of 1× 106 km2 between 1997–2009 (Verdon-Kidd & Kiem, 2009; van83

Dijk et al., 2013), exhibited these limitations of hydrologic modelling and calibration frame-84

works. As mentioned, the MD impacted on the hydrological behaviour of many catch-85

ments in the region, causing a shift in the long-term rainfall-runoff relationships of 50 %86

to 70 % of catchments in the southern Australian state of Victoria, many of which are87

still yet to recover (Saft et al., in preparation; Peterson et al., 2021). For these reasons,88

it has served as a case study for a number of studies aimed either at demonstrating the89

shortcomings of model structure and/or calibration methods in changing conditions (e.g.90

Vaze et al., 2010; Coron et al., 2012; Saft et al., 2016; Fowler et al., 2020) or suggesting91

methods to diagnose and improve modelling and calibration methods in nonstationary92

conditions (e.g. Fowler et al., 2016; Fowler, Coxon, et al., 2018). The results of these stud-93

ies show a consistent degradation of hydrologic model performance when models cali-94

brated on pre-MD data are forced with MD data (Coron et al., 2012), concentrating in95

catchments where a change in rainfall-runoff relationship had been observed (Saft et al.,96

2016). Such underperformance was shown to be mostly due to bias rather than variabil-97

ity, underlining that in conditions of systematic behavioural change, model ensembles98

are not an effective method to reduce uncertainty, and precision in simulated series isn’t99

an indicator of low uncertainty (Saft et al., 2016).100

In some cases, models can achieve more satisfactory calibration efficiency if they101

are shown both pre-MD and MD conditions by using a multi-objective approach to the102

calibration optimisation (Fowler et al., 2016). This seems to indicate that models are not103

structurally incapable of reproducing conditions before and during the drought and that104

better calibration strategies with different objective functions could help produce more105

reliable simulations in such changing climate conditions (Fowler, Peel, et al., 2018). How-106

ever, the identification of a set of parameters able to perform over a range of climates,107

does not necessarily imply adequacy of the model to properly represent the underlying108

processes, but merely its ability to reproduce the observed hydrograph well enough (Fowler,109

Peel, et al., 2018; Fowler et al., 2020). Fowler et al. (2020) demonstrated this, by show-110
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ing that none of the models tested were able to plausibly reproduce observed slow dry-111

ing conditions observed in groundwater heads during the MD, either because they utilised112

the entire available storage variability in the pre-drought period, or because they failed113

to show any downward trend in their storage altogether (Fowler et al., 2020).114

Previous research identified the inadequacy of hydrological models to perform dur-115

ing prolonged drought. However, due to their focus on only a couple of performance met-116

rics (typically one overall goodness-of-fit measure and the volumetric bias), these stud-117

ies largely fail to identify modes and reasons of such underperformance. This research118

aims at complementing existing research and providing a better understanding of how119

the Millennium drought affected the performance and behaviour of hydrological mod-120

els. In order to address this goal, we look at a number of performance metrics useful to121

distinguish the ability of five hydrologic models to reproduce different portions of the hy-122

drograph of 155 catchments in the southern Australian state of Victoria before, during123

and after the Millennium drought. We specifically aim to:124

1. identify aspects of the flow regime that are more or less problematic for models125

to reproduce during and after the MD (when calibrated on pre-MD data); and126

2. estimate how the performance of models during the years of the MD (and after)127

compares to their performance in individual years of similar dryness in the period128

before the drought.129

Together with the focus on a more comprehensive set of performance metrics and ad-130

dressing the issue of post-drought recovery by analysing model performance in the post-131

MD period, this study differentiates itself from previous ones by providing fairer and less132

biased estimates of model performance degradation by comparing MD and post-MD per-133

formance to a pre-MD evaluation benchmark, instead of the calibration performance.134

2 Methods135

The crux of the methods used to achieve the two objectives specified above is con-136

tained in section 2.5. Before that, we describe spatial and temporal extents of the anal-137

ysis (§2.1) and the sources of data used (§2.2) and specify the settings used for calibra-138

tion of hydrological modelling and their rationale (§2.3). In section 2.4, we describe the139

performance metrics used for this analysis, including reasoning for their use in this con-140

text.141
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2.1 Study extent142

The spatial extent of this study is the state of Victoria. Victoria covers an area of143

approximately 230 000 km2 in south-east Australia and is where some of the strongest144

impacts of the Millennium drought were felt (van Dijk et al., 2013). The catchments in-145

cluded in the research are the 155 catchments already used by Saft et al. (in prepara-146

tion). Those catchments had been selected as mostly unimpaired by human influences147

on their flow regimes including regulation, known diversions, and land use changes (Saft148

et al., in preparation). The vast majority of catchments also have little to no ground-149

water extraction. The catchments included cover the width of Victoria from west to east150

on both sides of the Great Dividing Range. Climatically almost all catchments fall in151

the Cfb type according to the Köpper-Geiger classification, having a temperate climate,152

with no dry season and warm summers (Peel et al., 2007). Topographically they can broadly153

be divided between the eastern mountainous catchments, with headwaters on the Aus-154

tralian Alps, higher elevations and steeper slopes; and the western catchments, laying155

on flatter and lower ground. As seen in Figure 1c the former have generally higher an-156

nual precipitation than the latter. In the years of interest for this research, this set of157

catchments experienced a range of climatic and hydrological anomalies with several al-158

ternating periods of low and high rainfall and flow (Fig. 1a,b). All catchments experi-159

enced unusually persistent negative rainfall and streamflow anomalies during the Mil-160

lennium drought; in many cases the streamflow deficits persisted after the end of the drought,161

despite a return to approximately average climatic conditions including a few wet years.162

Figure 1 also shows that western catchments experienced the highest reductions in stream-163

flow during the drought, despite the rainfall anomalies being comparable between all catch-164

ments, this is consistent with findings from previous studies (Saft et al., 2015; Fowler et165

al., 2020).166

The temporal extent of the analysis encompasses the period of available stream-167

flow data in each catchment, typically starting in the 1960’s (33.5 % of catchments) or168

1970’s (27.1 %). In the 29 catchments where streamflow data is available prior to 1950,169

1950 is picked as the starting time for the analysis in order to ensure a more concurrent170

period of observation across the catchments. All but fifteen catchments have streamflow171

data running up to the end of the 2019 water year. Due to March and April typically172

being the driest months, hydrological or water years in this region conventionally start173
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Figure 1. (a, b) Annual rainfall (a) and streamflow (b) anomalies for each of the catchments

in this study. Each line represents a catchment. Catchments are arranged by the clockwise angle

from the south axis created by connecting their centroid to the centre of Port Phillip Bay (point

X in (c)). Catchments A, B, C and D are marked in (c) for reference. The vertical black lines

indicate the extent of the Millennium drought. (c) Map of the catchments in this study with

their mean annual rainfall. Each dot represent one catchment.
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at the beginning of Autumn on 01 March and end on the last day of February of the sub-174

sequent year (Peterson et al., 2021).175

The research period for each catchment is divided into three periods of interest:176

the pre-MD period, up to 1996; the MD, between 1997 and 2009; and the post-MD pe-177

riod, between 2010 and 2019 (or end of record). While there is some contention about178

the starting year of the drought (e.g. Kiem & Verdon-Kidd, 2010), these are generally179

the most accepted dates (CSIRO, 2012). Note that, in contrast to previous studies (e.g.180

Saft et al., 2015), the temporal extent of the MD in this study is not determined on a181

per-catchment basis.182

2.2 Data sources183

Gridded daily rainfall data are from the Australian Gridded Climate Data (AGCD)184

collection, formerly known as Australia Water Availability Project (AWAP). This dataset185

contains daily rainfall records interpolated from point measurements at a resolution of186

0.05°×0.05° (Jones et al., 2009). Gridded temperature (maximum and minimum) records,187

also interpolated from point measurements, as well as Morton’s wet-environment poten-188

tial evapotranspiration (Morton, 1983) data, both at the same resolution as the rainfall189

data, are from the SILO database (Jeffrey et al., 2001). Catchment average daily data190

were extracted for each of the catchments in this study. All the gridded climate data are191

complete at a daily timestep for the extent of this research.192

The dataset of daily streamflow used for this research was collated, quality checked,193

infilled and used by Saft et al. (in preparation), from the WMIS portal of the Victorian194

Department of Environment, Land, Water and Planning (Saft et al., in preparation). As195

the dataset compiled by Saft et al. (in preparation) ended in 2016, it was updated for196

this study to extend to the end of the 2019 water year (i.e. 29 February 2020) with daily197

streamflow data gathered from the same source and following the same quality checks198

and procedures described by Saft et al. (in preparation) for consistency.199

2.3 Hydrological modelling200

Five conceptual, spatially lumped hydrological models are used in this study, namely201

IHACRES (Jakeman et al., 1990; Croke & Jakeman, 2004), GR4J (Perrin et al., 2003),202

SimHyd (Chiew et al., 2002), Sacramento (Burnash, 1995) and HBV (Lindström et al.,203
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Table 1. Characteristics of the hydrological models used in this study (Knoben, Freer, Fowler,

et al., 2019)

Model name Parameters Stores Routing functions

IHACRES 7 1 Soil moisture (deficit) 2

GR4J 4 2 Soil moisture

Routing store

2

SimHyd 7 3 Interception

Soil moisture

Groundwater

0

Sacramento 11 5 Soil moisture (5) 0

HBV 15 5 Snow store (2)

Soil moisture (3)

1

1997). These models were chosen to cover a range of complexities (see Table 1) and be-204

cause of their widespread application in hydrological studies in and outside Australia,205

including in the same area and period of this study (Saft et al., 2016; Fowler et al., 2016,206

2020). All models used were implemented within the MARRMoT modelling framework207

(Knoben, Freer, Fowler, et al., 2019; Trotter et al., in preparation).208

Models were calibrated using the Covariance Matrix Adaptation Evolution Strat-209

egy, or CMA-ES (Hansen & Ostermeier, 1996; Hansen et al., 2003). CMA-ES is a widely210

used optimisation algorithm that performs favourably in hydrological model calibration211

in comparison to other algorithms (Arsenault et al., 2014). Additionally, it has been used212

successfully to calibrate models within the same geographical and temporal scope of this213

analysis (Fowler et al., 2016; Fowler, Coxon, et al., 2018) and it has also been applied214

in tandem with the MARRMoT modelling framework (Knoben et al., 2020).215

The objective function used for the calibration is designed to ensure that models216

are able to reproduce both aspects of the high-flow and the low-flow portions of the hy-217

drograph as well as ensure minimal volumetric bias (eq. 1).218

E =
1

2

(
KGEQ +KGEQ0.2

)
− 5 · | ln(B + 1)|2.5 (1)
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The model efficiency (E) in equation 1 is the combination of two additive parts. The first219

is the mean of two Kling-Gupta efficiencies, KGE (Gupta et al., 2009), one calculated220

using direct flows and one using their fifth root. The use of the fifth root of flows pro-221

vides stronger weighing to small flows (Chiew et al., 1993) and is better suited to zero-222

flow conditions than the more common inverse or log transformations. The second ad-223

dend of the model efficiency contains a bias penalisation, reducing the value of the ef-224

ficiency as the volumetric bias (B) between simulated and observed streamflow deviates225

from 0 (Viney et al., 2009; Vaze et al., 2010). The use of a bias penalisation factor is mo-226

tivated by the observation from previous studies that models applied to Millennium drought227

data showed a strongly biased response (Saft et al., 2016) and therefore it is desirable228

to minimise bias over the calibration period so that any bias in independent evaluation229

cannot be traced back to a similar error during calibration (Vaze et al., 2010). Models230

that did not achieve a calibration efficiency of at least 0.80 in a given catchment were231

calibrated a second time.232

In order to reach the research goals set out in the introduction, models are calibrated233

on the even year of the available record in the pre-MD period. Model performance on234

pre-MD odd years is then used as a benchmark for MD and post-MD performance. The235

use of interlocking calibration and benchmarking periods is designed to expose models236

to the entire range of climate variability of the pre-MD period while striving to main-237

tain climate conditions as similar as possible between calibration and benchmark. Kolmogorov-238

Smirnov tests were conducted to assess whether distributions of annual rainfall and po-239

tential ET in the two periods are significantly different. The p-values of the tests on rain-240

fall (potential ET) data, adjusted using the false discovery rate method to account for241

the multiplicity of tests, are above 0.85 (0.5) for all catchments indicating that no sig-242

nificant difference in the distribution of rainfall (potential ET) exists between odd and243

even years in the pre-MD period. The model performance during the pre-MD odd years244

effectively represents how models would be expected to perform in evaluation had the245

climate remained stable.246

2.4 Performance metrics247

The metrics used to evaluate model performance are summarised in Table 2. This248

set of metrics is designed to assess the ability of models to reproduce different aspects249

of the hydrograph and they are grouped accordingly. Many of the metrics use biases to250
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Table 2. Model performance indicators used in this study. Equations S1 to S12 are given in

the supporting information text S1.

Group Metric Description eq.

Fit OF Objective function used for calibration. 1

Fit KGE Kling-Gupta efficiency (Gupta et al., 2009). S1

Fit KGElo Kling-Gupta efficiency (Gupta et al., 2009)

of fifth root of streamflows.

S2

Volumes Q* Volumetric bias. S3

Volumes Qbase* Bias in baseflow volumes (Tallaksen & Van

Lanen, 2004).

S4

Volumes Qlo* Bias in low-flow portion of the FDC (Yilmaz

et al., 2008).

S5

Volumes Qhi* Bias in high-flow portion of the FDC

(Yilmaz et al., 2008).

S6

Shape BFI* Bias in the annual baseflow index (Tallaksen

& Van Lanen, 2004).

S7

Shape FDCslp* Bias in the slope of the mid-section of the

annual FDC (Yilmaz et al., 2008).

S8

Shape sd* Bias in the annual standard deviation. S9

Shape r Pearson’s correlation coefficient. S10

Zeros pc0* Bias in the percentage of zero-flows. S11

Zeros TPR0 True positive rate of zero flows. S12

assess differences in statistical or hydrological properties of the observed and simulated251

timeseries. Note that the term bias here and throughout the text indicates a percent-252

age difference between any observed and simulated quantity and is not limited to vol-253

umetric streamflow bias.254

Performance metrics in the fit group are common performance metrics in hydro-255

logical modelling and represent summary goodness-of-fit measures to assess overall model256

performance. The form of the objective function (OF ) and the use of the fifth-root trans-257

formation in KGElo have already been discussed. The volumetric bias (Q* ) is also a stan-258
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dard hydrological performance index and it is useful to assess the ability of a model to259

reproduce the water balance (Yilmaz et al., 2008). Whereas Q* indicates differences in260

the mean or central tendency between observed and simulated timeseries, sd* indicates261

differences in their variability. Note that Q* and sd*, albeit in their slightly different form262

of ratios instead of biases, are, together with r, components of KGE (Gupta et al., 2009).263

Biases in the baseflow volume (Qbase* ) and in the baseflow index (BFI* ) tell how264

well a model simulates the delayed routing of flow and the speed of the hydrological re-265

sponse of a catchment respectively. Baseflow is the delayed portion of the hydrograph,266

associated with groundwater and other lagged sources of flow (Tallaksen & Van Lanen,267

2004). Daily baseflow was obtained from the simulated and the observed hydrographs268

through the algorithm described by Tallaksen and Van Lanen (2004), using minimal flows269

of non-overlapping periods of 7 days. The baseflow index is the ratio of baseflow to flow270

and is an indicator of the hydrological response of the catchment: the smaller the index,271

the flashier the catchment (Tallaksen & Van Lanen, 2004).272

The three metrics calculated from the flow-duration curve (i.e. Qhi*, Qlo* and FDCslp* )273

are suggested by Yilmaz et al. (2008). The flow-duration curve (FDC) is also an indi-274

cator of the hydrological regime of a catchment (Westra et al., 2014). It has strong di-275

agnostic power associated with dynamics of water storage and release within a catch-276

ment (Westra et al., 2014; McMillan, 2020). Here, we use the volumetric biases in the277

high-flow (exceedance < 0.02) and low-flow (exceedance > 0.7) portions of the FDC278

to assess the ability of models to reproduce the height of the peaks in the hydrograph279

and the volume in the low-flow periods respectively. The bias in the slope of the mid-280

section (0.2 < exceedance < 0.7) is a measure of the way a model reproduces the vari-281

ability of the midrange flows and hence the speed of the transition from low- to high-282

flow conditions.283

Finally, performance metrics in the zero group are included to evaluate the abil-284

ity of models to reproduce cease-to-flow conditions. Low-flows, ephemerality and cease-285

to-flow conditions are intrinsic to Australia’s hydrology (McMahon & Finlayson, 2003);286

nevertheless, models are especially deficient in their ability to reproduce such conditions287

(e.g. Ye et al., 1997). Metrics in this group are only calculated in 56 out of the original288

155 catchments where the percentage of observed zero-flows in each of the three eval-289

uation periods is at least 1 %. With regards to model simulations, daily flows below 5× 10−4 mm/day290
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are treated as zeros to match the precision of the observed streamflow data. pc0* is an291

indicator of how models simulate the overall number of zero-flows in a given period; whereas292

TPR0 represent the percentage of observed zeros actually modelled as such.293

2.5 Data analysis294

With 155 catchments, 5 models, 3 evaluation periods and 13 performance metrics,295

we find ourselves with upwards of 30 000 performance values to interpret. The follow-296

ing two sections describe the statistical methods used to analyse these data and achieve297

the two objectives stated in the introduction. In the next section, we describe the use298

of matched-pairs rank-biserial correlation coefficients to estimate changes in model per-299

formance in a consistent and comparable way, allowing us to identify which aspects of300

the flow regime are harder for models to reproduce during and after the drought (i.e. which301

metrics degrade most from their pre-MD values). In section 2.5.2, we describe the use302

of linear regressions to identify changes in the relationship between annual model per-303

formance and annual rainfall anomaly. We use an indicator variable to allow the linear304

models to shift their intercept at the onset and the end of the drought and use t−tests305

to evaluate whether the shift is significant.306

2.5.1 Comparison of model performance across metrics and periods307

Matched-pairs rank-biserial correlation is used to compare how model performance308

during and after the Millennium drought changes from the pre-MD evaluation period309

across the set of performance metrics. Matched-pairs rank-biserial correlation is a mea-310

surement of effect size for Wilcoxon’s signed-ranks test (Wilcoxon, 1945) of statistical311

differences between two dependent samples (King & Minium, 2003). In the context of312

this research, the dependent samples in question are the levels of model performance in313

each catchment during each of the three evaluation periods: before, during and after the314

drought.315

For each model, period of interest τ ∈ {MD, post-MD}, and performance met-316

ric E, the matched-pairs rank-biserial correlation coefficient rc across all catchments was317

calculated following the four-step procedure below (King & Minium, 2003; Kerby, 2014).318

Except for the last step, this is identical to the calculation of Wilcoxon’s test statistics.319
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1. For each catchment i, obtain the difference in performance between τ and pre-MD320

as Eτ,i − Epre-MD,i.321

2. Rank the absolute values of the differences from smallest to largest, and compute322

signed ranks by multiplying the signs of the differences to the ranks. Catchments323

where the difference in performance is zero are removed and the ranks of ties are324

averaged.325

3. Sum the absolute values of the positive and negative ranks.326

4. Calculate rc as327

rc =
R+

S
− R−

S
, S =

1

2
n(n+ 1) (2)

where R+ and R− are the sums of the ranks of the positive and negative differ-328

ences respectively, calculated in step 3; and S is the total sum of ranks, which is329

computed from n, the number of catchments in the sample reduced by the num-330

ber of catchments where the change in performance was zero.331

Confidence intervals around rc were calculated using the quantile method on 999 boot-332

straps. rc is considered significantly different from zero, indicating that model perfor-333

mance did significantly shift from the pre-MD benchmark, if its two-sided 95 % confi-334

dence interval did not cross the zero.335

Like other correlation metrics, the range of rc is between −1 and 1. Interpretation336

of rc is also similar to that of other correlation coefficients. A value of rc = 1 (−1) in-337

dicates that all the differences Eτ,i −Epre-MD,i are positive (negative) and hence that338

for the given model the value of E is higher (lower) during τ than during the benchmark-339

ing period in all catchments. A value of rc = 0 indicates that the ranks of the positive340

and negative differences in model performance between τ and pre-MD balance out over341

all the catchments.342

The use of ranked differences allows comparison of changes in model performance343

across different performance metrics regardless of their range or sensitivity. This is a nec-344

essary requirement for this study, given that the set of metrics laid out in Table 2 have345

a variety of ranges and even the ones that share the same endpoints and optimal values346

are not 1-to-1 comparable. However, in order for the comparison to be meaningful it re-347

quires that the sign of the differences of all metrics have the same meaning (i.e. a pos-348

itive difference is an improvement and a negative difference is a deterioration of perfor-349
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mance). To comply with this requirement, all of the performance metrics based on bias350

are transformed by taking the opposite of their absolute values.351

The use of ranked differences, while removing the need of distributional assump-352

tions and allowing for comparison between metrics on different scales, carries the assump-353

tion that differences of metric values can be meaningfully ranked (King & Minium, 2003).354

Whether this assumption is fulfilled or not is somewhat subjective and dependent on the355

scale of the metric (e.g. Knoben, Freer, & Woods, 2019): is a drop in KGE from 1 to 0.5356

comparable to a drop from −100 to −100.5? Should they be ranked in the same way,357

as the procedure to calculate rc would? Most people familiar with the use of KGE to358

evaluate model performance would probably say that the former is a worse drop in per-359

formance than the latter, but they would also likely fail to quantify by how much: what360

is a drop in KGE from 1 to 0.5 comparable to when the starting point is as low as −100?361

For the purpose of this study, we have tested the influence of this assumption and con-362

cluded that it is unlikely to have significant impact on the results. Details are given in363

the supporting information text S2.364

2.5.2 Comparison of annual model performance365

The second aim of this study, as stated in the introduction, is to estimate how an-366

nual performance of models during the drought compares to their performance in pre-367

MD years of comparable wetness. Linear regressions of (transformed) annual performance368

metric as a function of annual rainfall anomaly are used, similarly to the procedure used369

by Saft et al. (2015) to identify significant changes in rainfall-runoff relationships on the370

same set of catchments.371

For each catchment, (hydrologic) model, performance metric E and period τ ∈ {MD, post-MD},372

the model used for the regression is373

BC(Ẽ) = β1 · Pa + β2 · I + β0 + ε. (3)

Where BC(Ẽ) is a Box-Cox transformation (Box & Cox, 1964) of the annual values of374

the performance metric; Pa is the annual rainfall anomaly, relative to the average pre-375

MD annual rainfall; and I is an indicator variable set to 0 for the years in pre-MD and376

1 for the years in τ . Since the Box-Cox transformation requires strictly positive data,377

the annual performance was further transformed as Ẽ = |E∗ − E|, where E∗ repre-378

sents the perfect score for each metric (i.e. 0 for the biases and 1 for all other metrics).379
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Figure 2. Model performance in the pre-MD period: comparison of all metrics between cali-

bration (odd years) and evaluation (even years). Showing interquartile range, median and mean

of performance across catchments. See Table 2 for the meaning of the performance metrics.

Ẽ is therefore the distance from the perfect score and an increase in Ẽ (and equally in380

BC(Ẽ)) represents a decrease in performance.381

Parameter β2, associated with the indicator variable marking the period of inter-382

est from the benchmark, represents a shift in the intercept. We tested for the significance383

of this shift using a t-test (α = 0.05) against the null-hypothesis that β2 = 0. The out-384

come of the t-test was corrected with the false discovery rate approach (Benjamini & Hochberg,385

1995) to control for the multiplicity of tests performed. Appropriate tests to check for386

normality and (lack of) autocorrelation were conducted on the residuals of the linear re-387

gressions (Haan, 2002).388
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3 Results389

3.1 Model performance before the MD390

All models perform very similarly during calibration, except for GR4J which has391

a lower calibration performance across most metrics. Models’ average (median) calibra-392

tion efficiency range from SimHyd’s 0.80 (0.82) to Sacramento’s 0.85 (0.86, same as HBV),393

with the exception of GR4J, which on average only reaches a value of the objective func-394

tion of 0.70 (median = 0.72). As shown in Figure 2, the same pattern can be seen across395

the range of performance metrics, with the exception of the ones in the zero group, where396

GR4J’s performance in the calibration period is in line with the other models. The dif-397

ference in calibration performance between GR4J and the other models is most marked398

in the peak flow bias (Qhi* ), the FDC slope bias (FDCslp* ) and the correlation coef-399

ficient (r), this seems to indicate that GR4J performs worse than the other models in400

its ability to reproduce high flows. The same can be concluded by noticing that the dif-401

ference between GR4J and the other models is larger for the standard KGE than for its402

transformed version. Reasons for the differences between GR4J and the other models403

are discussed in section 4.2.404

Performance degradation from pre-MD calibration to pre-MD evaluation is limited405

and mostly occurs in volumetric bias and summary metrics, prioritising high flow met-406

rics (i.e. OF and KGE ). Although increments of change are not directly comparable across407

metrics, it is true that the changes were minor relative to the spread observed across all408

catchments, for most metrics under consideration. Figure 2 displays this in terms of ag-409

gregate (across catchments) model performance and is a confirmation that models are410

able to reproduce a range of aspects of the flow regime of an unseen hydrograph, given411

no significant changes in the underlying climate. The biggest changes to model perfor-412

mance from calibration to evaluation, relative to the spread of the data, occur in the sum-413

mary performance metrics (the ones in the fit group, which are in the top row of Fig.414

2) and in the volumetric bias (Q* ). By this indicator, median KGE values decreased be-415

tween 3.65 % (IHACRES) and 7.33 % (SimHyd), slightly less than the decrease in ob-416

jective function median values (5.26 % to 9.59 %, Sacramento and SimHyd, respectively).417

Comparatively, median values of the transformed KGE decreased the least: only by be-418

tween 1.38 % (GR4J) and 3.67 % (IHACRES) of the spread of KGElo values in calibra-419

tion. In terms of volumetric bias, median values did not actually increase extensively (up420
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to 2.0 % for Sacramento and GR4J, and nearly zero for all other models), but the size421

of the interquartile range increased by at least 2.9 (HBV) and up to 8.3 (GR4J) times.422

This is due to the bias penalisation in the objective function. Inasmuch as the distribu-423

tions shown in Figure 2 come from dependent samples, the same method and metric de-424

scribed in section 2.5.1 can be used to assess changes in performance from calibration425

to evaluation while taking in consideration changes in individual catchments. Values of426

rc for this comparison are shown in Figures S1 and S2. They indicate that while there427

is some diversity between models (see for example the changes in the bias of the stan-428

dard deviation, sd* ), the dataset-level conclusions above stand.429

3.2 Effects of MD on performance430

The matched-pairs rank-biserial correlation coefficients for each model and perfor-431

mance metric are shown in Figure 3. For each hydrologic model, the performance met-432

rics are ordered from lowest to highest rc during the MD period (round markers). Note,433

the bars here relate to the uncertainty in the chosen metric of rank-biserial correlation,434

which is different to the previous plot where the bars related to the range of values across435

the set of catchments. Performance metrics with the lowest (highest) rc are the ones that436

degraded (improved) from the benchmark in the highest number of catchments. rc val-437

ues calculated across all models are shown in Figure S3. When looking at the order and438

extent of degradation from the benchmark of these metrics from Figures 3 and S3, it should439

be kept in mind that a lot of these metrics are not independent, especially the ones in440

the fit group as well as Q*, sd* and r, which make up the KGE and hence objective func-441

tion, can be highly correlated. Correlation matrices for all metrics across all evaluation442

periods and models are shown in Figure S4.443

For all the five models, overall model performance, as quantified by the summary444

performance metrics in the fit group, degrades during the drought in almost all catch-445

ments. rc values for this group of metrics are always lower than −0.856 (IHACRES, KGE )446

for the comparison of MD performance to pre-MD evaluation performance. In terms of447

number of catchments, this results from models performing worse than the benchmark448

in between 129 and 151 catchments (or 83.2 % to 97.4 % of 155) depending on the met-449

ric and the model. On average models performed worse than they did in the benchmark450

period in 146 (94.3 %), 148 (95.5 %), and 137 (88.5 %) catchments for OF, KGE and KGElo451

respectively. With the exception of GR4J, model performance as measured by the trans-452
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Figure 3. Changes in individual models performance from pre-MD evaluation (benchmark)

to each of MD and post-MD. rc = −1 (+1) indicate that the model performance according to

that metric degrades (improves) from the benchmark in all catchments. Ranges indicate 95 %

confidence intervals, points are faded when the CI crosses the zero. For each model, metrics are

ordered from lowest to highest rc for the MD period (round markers).
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formed KGE (which gives greater weight to low flows) always degrades in more catch-453

ments than the performance measured in terms of untranformed KGE, resulting in lower454

rc values.455

Degradation of overall performance (as described above) is driven in large part by456

overestimation of the water balance. Amongst the other performance metrics, the only457

one whose rc is consistently as low as the rc of the fit metrics discussed above is the vol-458

umetric bias (Q* ). Values of rc for Q* are always below −0.861 (IHACRES, MD) for459

all models and both periods of interest. This number is based on the negative absolute460

value of the bias and therefore only takes into consideration its distance from 0, in ei-461

ther direction. In reality the degradation of model performance in terms of water bal-462

ance estimation is overwhelmingly driven by overestimation of streamflow: the average463

volumetric bias across all models and catchments during the benchmark period was 4.30 %,464

and it was positive (i.e. streamflow overestimated) in 110 catchments on average; dur-465

ing the drought, the average bias jumps to 67.8 % and the average number of catchments466

with overestimated streamflow become 130; even after the end of the drought, the av-467

erage bias remains at 42.1 % (with 138 catchments with bias > 0, on average).468

Compared to the volumetric bias, metrics representing the ability of models to re-469

produce hydrograph shape are less affected by the drought. The other two components470

of the KGE other than the bias are said to be indicators of the ability of a model to re-471

produce the shape of the hydrograph in terms of spread of flows (sd* ) and hydrograph472

timing (r) (Gupta et al., 2009; Yilmaz et al., 2008). The rc values for these two metrics473

are always higher than those of Q*, indicating that their performance degrades less con-474

sistently. Nevertheless, overall the bias in the standard deviation degrades in 115 to 134475

catchments (or 74.2 % to 86.5 %) in the MD compared to the benchmark. After the drought,476

the number of catchments with sd* worse than before the drought remains 98 to 133,477

depending on the model. In the pre-MD benchmark, the average value of sd* was −1.42 %478

(i.e. slight underestimation), during (after) the drought the average becomes 48.7 % (55.9 %),479

with overestimation of the standard deviation of the flow occurring on average in 115480

(121) catchments. The extent of degradation of the linear correlation coefficient between481

observed and simulated flows is smaller, with 98 to 116 catchments having worse r dur-482

ing the drought than in the benchmark period. Additionally, r is the only metric to re-483

cover after the drought based on its value of rc. On individual models, r after the drought484

is found to be equivalent or better than during the benchmark period in 3 out of 5 mod-485
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els, and significantly less degraded than during the MD (non-overlapping 95 % confidence486

intervals) in 4 out of 5 models.487

Overestimation of the water balance during and after the drought affects both high488

and low flows, driving down model performance. With respect to biases in the high- and489

low-flow portions of the flow duration curve (Qhi* and Qlo* ), model performance degra-490

dation both during and after the drought is, just like in the case of the overall bias, driven491

by overestimation of flow amounts. This is most evident when looking at the volumes492

of the peak flow: in most catchments, models mildly underestimate it in the pre-MD bench-493

mark period (−6.1 % to 0.0 %, on average for most models, −18.4 % for GR4J), but over-494

estimate it during and after the drought (17.1 % to 89.8 % and 10.9 % to 26.6 %, on av-495

erage respectively). In terms of absolute values (i.e. distance from the objective, 0), this496

overestimation causes a degradation in performance in at least two third of the catch-497

ments during the MD for all models (102 to 124), resulting in values of rc between −0.614498

(GR4J) and −0.792 (Sacramento). After the drought, rc and extent of performance degra-499

dation in terms of Qhi* are very similar for each model to their values during the MD;500

with the exception of GR4J. GR4J underestimates peak volumes before the drought in501

the majority of catchments (135 or 87.1 %). Therefore, the increase in the volumes es-502

timated after the drought results in improved performance in most catchments, bring-503

ing GR4J’s rc for this metric in the post-MD period to be slightly positive and not sta-504

tistically different from zero. The performance degradation in terms of volume estimates505

of the low-flow portion of the FDC is driven by the same mechanisms. Here the initial506

values of pre-MD bias are more varied from model to model (−19.7 % to 39.7 %) and the507

increase in percentage overestimation are much higher: on average higher than 130 % for508

each model and period with the exception of IHACRES, MD. However, the resulting val-509

ues of rc are similar to those for the peak flows.510

The models’ ability to reproduce the FDC shape is more resilient to the drought511

than their ability to reproduce volumes. The bias in the slope of the FDC’s mid-section512

(FDCslp* ) degrades from pre-MD to MD (post-MD) in 90 to 114 (64 to 108) catchments,513

depending on the model. This results in values of rc higher and closer to the zero than514

for Qhi* and Qlo*, indicating that this indicator tends to degrade less during and af-515

ter the drought. Additionally, while with Qhi* and Qlo* there exists a clear increase in516

overestimation during the drought, the signal for FDCslp* is less strong and while on517

average most models do overestimate the slope of the FDC during each of the three eval-518
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uation periods (simulating catchments with a flashier behaviour than in reality), the change519

in bias of FDC slope from pre-MD to MD is an increase in overestimation in only 48.6 %520

of catchment-model pairs; this value reduces to 33.5 % after the drought. Similarly to521

the bias in the slope of the FDC, the bias in the volume of baseflow and in the baseflow522

index (Qbase* and BFI* ), indicators of a model’s ability to reproduce catchments’ flow523

regimes, were always amongst the least affected metrics during and after the drought in524

terms of rc.525

Finally, the two metrics of the zeros groups are consistently the least degraded dur-526

ing the drought, especially with regards to the estimation of the number of cease-to-flow527

days (pc0* ). This value is on average overestimated before the drought in all models,528

with average pre-MD values of pc0* ranging from Sacramento’s 1.0 % to HBV’s 72.6 %.529

pc0* is on average underestimated both during and after the drought (−1.5 % to −50.4 %,530

IHACRES, MD and SimHyd post-MD, respectively), as the number of zero-flow days531

increases. This results in an improvement in the estimation of the number of zero-flow532

days from pre-MD to MD (post-MD) in 21 to 39 (21 to 37) of the 56 catchments across533

which these metrics are calculated which causes rc for this metric to never be significantly534

below the zero. With respect to TPR0, the percentage of zero-flow days actually mod-535

elled as such, rc is significantly negative for three out of five models in the MD and for536

all models in the post-MD and it is the only metric consistently showing higher degra-537

dation after the drought compared to during the drought. Nevertheless, models’ perfor-538

mance and performance changes according to this metric vary quite extensively and it539

is hard to establish generalisable patterns.540

3.3 Annual model performance541

Here we investigate model performance on interannual scale to separate the impact542

of multi-annual dry periods from impacts due to isolated dry years. For this, we fit the543

linear model in equation 3 to each combination of catchment, model, performance met-544

ric and period of interest: resulting in a total of 20 150 regressions. We use the fit to eval-545

uate whether the relationship between model performance and annual rainfall anomaly546

changed significantly during each period of interest from the pre-drought evaluation bench-547

mark. Figure 4 shows the percentage of catchments in each class of statistical significance548

for this change. In Figure 4 and in the next paragraphs, we present results only for some549

selected metrics from Table 2, namely the KGE, the volumetric bias and the biases of550
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Figure 4. Changes in the relationship between annual model performance and annual rainfall

anomaly, showing percentages of catchments in each class of statistical significance. Statistical

significance is assessed with a t-test on the least-squares fitting of the period-specific intercept β2

of the linear regression model in eq. 3.

standard deviations and the baseflow index. Results from the remainder of the metrics551

can be seen in figure S5. In the catchments represented in the red bars, the least-squares552

fitting on the linear model in eq. 3 resulted in β̂2 > 0, indicating that the model per-553

formance in the years of the drought or post drought (I = 1) is worse (i.e. further from554

the objective, in absolute value) than in the pre-MD evaluation years with a compara-555

ble rainfall anomaly. Conversely, regression models in the blue bars are where the fit-556

ting resulted in β̂2 < 0. Finally, the shading indicates the level of statistical significance557

of the value of β̂2 against the null-hypothesis that β2 = 0.558

During the drought, the change of KGE-to-anomaly relationship is individually sig-559

nificant and negative in between 40.0 % (Sacramento) and 45.8 % (SimHyd) of catchments560

for most model, with GR4J alone surpassing this and reaching 62.2 %. After the drought,561

these percentages increase, with nearly all models surpassing the threshold of half of the562

catchments with significantly degraded annual performance for a given P anomaly. GR4J563
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is again exceptional, whereas it is the only model whose performance significantly de-564

grades after the drought (again, for a given P anomaly) in less catchments than during565

the drought, bringing its behaviour in line to that of the other models in the post-MD566

period. Conversely, the number of catchments where the relationship changes significantly567

for the better (i.e. annual KGE is higher during or after the drought to expected from568

pre-MD years of similar P anomaly) is never above 3 (1.9 %). This results in the fact that,569

even if during the drought the results of this analysis actually show a non-significant change570

in the majority of catchments for most models, amongst the catchments where the shift571

is significant, it is overwhelmingly towards a degradation: at least 98.6 % of catchments572

with significant shifts during the drought and at least 95.7 % after the drought.573

Similarly to what has been observed regarding overall performance degradation,574

degradation in the relationship between model performance and rainfall anomaly is driven575

in large part by errors in water balance estimation rather than hydrograph shape. The576

points made in the previous paragraph refer to model performance in terms of KGE, but577

the percentages and patterns described apply almost identically to the bias (Q* ) as well.578

The relationship between bias and rainfall anomaly shifts significantly and negatively579

in 30.3 % to 41.8 % of catchments for most model, with again GR4J being the outlier with580

67.7 %. Similarly as with the KGE, these percentages increase to at least 50.0 % after581

the drought for all models and decrease for GR4J. Amongst the catchments where the582

change in Q-to-anomaly relationship is significant, again the change is overwhelmingly583

towards a degradation: always at least 94.0 % of these catchments.584

Whereas some of the patterns described above for KGE and Q* (namely the re-585

lationships between GR4J and the other models, and relationship between MD and post-586

MD) are also similar for the bias of the standard deviations (sd* ), the actual number587

of catchments where the change in perfomance-to-anomaly relationship is significant is588

lower (roughly halved in terms of global significance) than when performance is calcu-589

lated in terms of KGE. Finally, with respect to the ability of models to estimate the base-590

flow index, the results show that in the greatest majority of catchments this was the same591

during and after the drought than it was in pre-MD years of similar rainfall anomaly.592

Here the results of the change analysis are non-significant in at least 128 (82.6 %, Sacra-593

mento, MD) and up to 144 (92.9 %, SimHyd, MD) catchments. Nevertheless, compar-594

ing the number of catchments within the same level of significance, we see again that the595
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catchments where a degradation in performance occurs usually outnumber, albeit some-596

times marginally, those where the performance is improved.597

4 Discussion598

In the introduction to this research, we set out to identify aspects of the flow regime599

and the hydrograph which are more or less problematic for models to reproduce when600

parameters calibrated on long-term average conditions are used to force a model using601

data from a period of drought. Additionally, we were interested in isolating the effects602

of the multi-annual drought from that of the drier conditions in individual years. Our603

results show extensive performance degradation during the years of the drought across604

catchments and models driven by overestimation of flow volumes. Replication of the shapes605

of the hydrograph and the flow duration curve is much more resilient to the drier climate.606

The analysis of performance in individual years and its relationship with annual rain-607

fall anomaly shows that performance degradation cannot alone be attributed to drier con-608

ditions in individual years. In the metrics where most of the performance degradation609

occurred (i.e. summary performance metrics and volumetric biases), this is exacerbated610

by accumulation and aggravation of errors over the several subsequent dry years.611

4.1 Relationship with existing literature612

We show that degradation of model performance during the Millennium drought613

is largely driven by overestimation of flow volumes. This finding is in line with findings614

from previous studies on model performance during the Millennium drought (e.g. Saft615

et al., 2016) but the analysis here is considerably more in depth. Many of the catchments616

in this dataset experienced significant changes in their annual rainfall-runoff relationship617

(Saft et al., 2015, in preparation), these are essentially changes in water-balance and wa-618

ter partitioning and therefore intrinsically linked to streamflow volume. The overesti-619

mation of flow volumes and degradation of model performance shown here seems to be620

more widespread than the 50 % to 70 % of catchments shifted according to Saft et al. (2015)621

and Peterson et al. (2021). However, the numbers in those studies refer only to catch-622

ments where the shift in hydrologic response was found to be statistically significant, whereas623

here statistical significance is evaluated across all catchments. Systematic overestima-624

tion of streamflow indicates that models’ mechanisms to delay flow and remove water625

from the system before it reaches the stream are not able to reproduce the decrease in626
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streamflow observed during the drought. Previous research also showed that many mod-627

els (including 4 of the 5 tested here) fail to realistically reproduce multi-annual declines628

in water stored during the drought (Fowler et al., 2020).629

Failure to reproduce the long, slow dynamics described by Fowler et al. (2020) is630

also evident in the results of the annual performance analysis. The results presented point631

to the multi-year nature of the drought as a driver of the degradation of model perfor-632

mance and especially of the overestimation of flow volumes, caused by accumulation and633

aggravation of model errors as the dry spell persists over multiple years. This is supported634

by studies indicating the length and persistence of the Millennium drought as one cause635

of its disproportionate effects on hydrological systems (e.g. Murphy & Timbal, 2008; Pot-636

ter et al., 2010) and by the observation that models are unsuited to reproduce multiyear637

drying conditions as they often deplete their entire storage variability within a single 1-638

year cycle (Fowler et al., 2020). However, the ability of models to reproduce the base-639

flow index during drought years is almost never different to their ability to estimate it640

during pre-drought years with a similar rainfall anomaly. This signals that flows gen-641

erated via fast and slow mechanisms are similarly affected by drought, and models strug-642

gle to reproduce them both in a similar way. Their ratio, i.e. the baseflow index, is there-643

fore less altered by drought and not affected by the same carry-over effect from year to644

year, which allows model to reproduce it better even after several subsequent dry years.645

4.2 Exceptionalism of GR4J646

There are some relevant differences in the ways models in this study behave. GR4J,647

in particular, was often flagged as an outlier. Contrary to previous studies (e.g. Saft et648

al., 2016; Fowler et al., 2016), GR4J’s calibration performance (and performance before649

the drought, in general) is here lower than the performance of all the other models. Note650

that such studies used NSE (Saft et al., 2016) and KGE (Fowler et al., 2016) for cali-651

bration; the use of a different objective function here makes it impossible to compare per-652

formance across studies and only allows comparison across models within individual stud-653

ies. Fowler et al. (2016) showed that GR4J calibrated similarly to other models within654

a single objective; however, it struggled more than the other models in finding good pa-655

rameter sets to compromise between conflicting objectives (Fowler et al., 2016). This may656

play a role in reducing GR4J’s calibration performance here, given that the objective func-657

tion for this study requires models to consider high and low flows as well as bias. Ad-658
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ditionally, it is possible that the difference in calibration performance seen here between659

GR4J and the other models has more to do with the latter performing better than they660

would normally do, rather than GR4J underperforming. This may be due to the use in661

this study of the MARRMoT implementation of each of these models. Amongst its de-662

sign considerations, MARRMoT uses logistic smoothing of storage thresholds and a nu-663

merically stable timestepping scheme to reduce discontinuities in the response function664

and improve the calibration performance (Knoben, Freer, Fowler, et al., 2019). Compared665

to the other models, GR4J is less likely to benefit from such implementation, given that666

smoothing mechanisms are built into its constituting equations (Perrin et al., 2003).667

The smaller flexibility of GR4J seen by Fowler et al. (2016) is also shown in the668

way it degrades more than the other models at the onset of the drought. Differently from669

the other models, GR4J contains a mechanism to regulate fluxes of water leaving (or en-670

tering) the system via a groundwater exchange. Albeit unrealistic within the Australian671

context, such a mechanism improves the performance of GR4J (Hughes et al., 2015) by672

de facto compensating for actual ET fluxes, which are dominant in these catchments (Fowler673

et al., 2021). However, GR4J’s groundwater exchange is regulated by its parameter x2,674

fixed throughout the simulation from its pre-MD calibration value, giving GR4J little675

flexibility to adapt this important water balance mechanism to a shifted hydrologic regime676

mid-simulation. This also makes GR4J more susceptible to errors due to accumulation677

of moisture deficits over multiple annual periods (Fig. 4). After the end of the drought,678

however, this mechanism might be what makes it easier for GR4J to recover some of the679

performance lost during the drought, compared to other models.680

4.3 Post-drought recovery681

According to most performance metrics, model performance does not recover af-682

ter the end of the drought. Peterson et al. (2021) showed that a lot of the catchments683

where a hydrological shift occurred during the drought have not recovered to their pre-684

drought behaviour even years after the end of the dry spell. If the drop in performance685

is attributable at least in part to this changed hydrological behaviour, it is expected for686

the performance not to recover as long as rainfall-runoff relationships remain altered. Ad-687

ditionally, given that rainfall anomalies are by definition closer to their long-term aver-688

age in this period, this also results in less of the models’ performance degradation after689

the drought that is explainable alone by the climate anomaly, and hence the negative690
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effect on the relationship between performance and anomaly in more catchments than691

during the drought (Fig. 4).692

The fact that the correlation coefficient between observed and simulated stream-693

flow is the only metric that consistently returned to pre-MD values after the drought is694

likely an indication that the dependency of streamflow on precipitation (and hence the695

ease with which models simulate streamflow timing from rainfall inputs) degrades dur-696

ing the drought and restores after the drought is finished, possibly thanks to restored697

near-surface soil moisture patterns. Additionally, it must be noted that amongst the many698

low (and zero) flows of the drought period, the correlation coefficient can be severely af-699

fected by the ability of models to simulate the timing of spells of above-average flow. Af-700

ter the end of the drought, with a more regular flow regime in many catchment, the cor-701

relation is likely to be less affected by individual high-flow outliers (Kim et al., 2015).702

4.4 Limitations and further studies703

Values of the matched-pairs rank-biserial correlation coefficients presented in the704

result section come from averaging model performance changes across the diversity of705

the catchments in the study. This makes non-extreme values of rc hard to interpret, but706

it is the necessary cost of prioritising comparability of performance degradation across707

metrics. For example, consider the apparent resilience of the models to the drought ac-708

cording to the zeros metrics. Given the high diversity of performance for all models in709

this respect during calibration and the benchmark (Fig. 2), the fact that rc often returns710

non-significant values does not actually entail that all models perform equally to the bench-711

mark, but it’s more likely a reflection of the volatility of model performance with respect712

to cease-to-flow conditions and may be the result of averaging model behaviour across713

catchments where they perform (and where their performance changes) very differently.714

Another important limitation of such a large-sample approach is that it compli-715

cates general interpretation of the results in terms of model diagnostic and remedial ac-716

tions. Whereas large-sample studies have immense value in the development of hydro-717

logical theories and models (Addor et al., 2019), model performance can be very catchment-718

specific and within a large set of catchments, it’s rare for a single model to outperform719

all others across the landscape (e.g. Knoben et al., 2020). In this context, it is likely that720

the focus on aggregate results of this study obscures opportunities for remedial action721
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and model improvement within specific (sets of) catchments. Nonetheless, our results722

uphold the call for model architectures to include longer memory components to keep723

track of moisture deficits across multiple annual cycles (Fowler et al., 2020) as well as724

more realistic representations of moisture removal mechanisms able to adapt to chang-725

ing catchment conditions.726

In this analysis, we present an easily generalisable methodology to assess and eval-727

uate changes in model performance across periods and landscapes. We hope with this728

study to inspire further research in this space to expand our findings to additional mod-729

els and regions affected by changing climates. Additionally, application to an even wider730

set of metrics, including metrics derived from hydrological signatures with specific links731

to catchment processes (see McMillan, 2020), would prove beneficial to estimate and di-732

agnose models’ realism in the face of changing hydrological behaviour. Within the scope733

of this study, we have already identified a shortcoming in the assessment of model per-734

formance in the face of cease-to-flow conditions. Given that there exists a relationship735

between ephemerality and drought-induced changes in catchment behaviour (see Saft et736

al., in preparation), we believe that ability of models to reproduce timing and extent of737

zero-flows during the drought should be further and better investigated with more ap-738

propriate and specifically designed metrics and indices.739

5 Conclusions740

In this study, we evaluated the effect of prolonged drought on hydrologic model per-741

formance. For this, we used 13 metrics of performance for five conceptual rainfall-runoff742

models, calibrated and run using data from 155 catchments in the Australian state of743

Victoria that experienced prolonged drought conditions. By using matched-pairs rank-744

biserial correlation to explore model performance changes across the performance met-745

rics in a unified and comparable way, we observed extensive model degradation induced746

by the drought affecting all models tested. Particularly, we demonstrated that perfor-747

mance drops because of overestimation of flow volumes, whereas the ability of models748

to reproduce the shapes of the hydrograph and the flow duration curve is more resilient749

to the drought.750

Additionally, we studied the relationship between annual model performance and751

rainfall anomaly and demonstrate that in many catchments, annual changes in catch-752
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ment wetness during the drought cannot alone explain the degradation in model perfor-753

mance. This suggests that performance degradation is exacerbated by accumulation and754

aggravation of model errors as the rainfall anomaly persists over multiple years. In this755

context, we amplify calls from other researchers on the need to improve realism of model756

structures as a tool to improve applicability within climate change scenarios, especially757

with regards to multi-annual memory components.758

Overall, the study presented testifies to the complexity of the challenges faced by759

hydrologists as they engage in simulation and analysis in nonstationary climate condi-760

tions. The extent of model performance degradation caused by ill-estimated volumes of761

streamflow is particularly concerning in the context of water availability studies for al-762

location and planning purposes. This is especially disquieting considering that models763

overestimate flow volumes, hence producing overly optimistic estimates of water avail-764

ability during drought. In their current form and with common calibration methods, con-765

ceptual rainfall-runoff model simulations are not reliable for these objectives during ex-766

tended drought.767

Open Research768

Model input data is described by Saft et al. (in preparation) and currently stored769

at https://cloudstor.aarnet.edu.au/plus/s/A2M7Vqp6CU52SzU. Model outputs and770

the rest of the data described in the supporting information text S3 is currently stored771

at https://cloudstor.aarnet.edu.au/plus/s/GzcJ8ROItX9okdO. The version of MAR-772

RMoT used for this study is described by Trotter et al. (in preparation) and currently773

stored at https://github.com/ltrotter/MARRMoT. These are temporary locations for774

the purpose of peer review, both datasets and the software package will be uploaded to775

an appropriate repository and shared via a DOI before acceptance and publication of776

this article.777
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Introduction

Text S1. In this section, we provide the formulas used to calculate the performance

metrics in Table 1.

KGE = 1−
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (S1)

KGElo = 1−
√

(rr5 − 1)2 + (αr5 − 1)2 + (βr5 − 1)2 (S2)
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Q∗ =

N∑
t=1

Qst

N∑
t=1

Qot

− 1 (S3)

Qbase∗ =

N∑
t=1

b(Qs)t

N∑
t=1

b(Qo)t

− 1 (S4)

Qlo∗ =

∑
t∈Ls

Qst∑
t∈Lo

Qot
− 1 (S5)

Qhi∗ =

∑
t∈Hs

Qst∑
t∈Ho

Qot
− 1 (S6)

BFI∗ =

∑
y∈Y

(∑
t∈y b(Qs)t∑
t∈yQst

)
∑
y∈Y

(∑
t∈y b(Qo)t∑
t∈yQot

) − 1 (S7)

FDCslp∗ =

∑
y∈Y

(
log({Qst∈y}80)− log({Qst∈y}30)

)
∑
y∈Y

(
log({Qot∈y}80)− log({Qot∈y}30)

) − 1 (S8)

sd∗ =

∑
y∈Y

σ(Qst∈y)∑
y∈Y

σ(Qot∈y)
− 1 (S9)

r =
1

N − 1

N∑
t=1

(
Qst − µ(Qs)

σ(Qs)

)(
Qot − µ(Qo)

σ(Qo)

)
(S10)

pc0∗ =
n({t|Qst < 5× 10−4})

n({t|Qot = 0})
− 1 (S11)

TPR0 =
n({t|Qst < 5× 10−4 ∧Qot = 0})

n({t|Qot = 0})
(S12)
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Where:

• Qo and Qs are observed and simulated streamflow, respectively;

• µ(·) and σ(·) are mean and standard deviation of the quantity in parentheses;

• in eq. S1, r comes from eq. S10, α = µ(Qs)
µ(Qo)

, and β = σ(Qs)
σ(Qo)

;

• in eq. S2, rr5, αr5, and βr5 retain the same definitions, with flows transformed to

their fifth root;

• t indicates a timestep and N is the total number of timesteps with valid observations;

• b(·) indicates the algorithm described by Tallaksen and Van Lanen (2004) to calculate

baseflow;

• Hs = {t|Qst > {Qs}98} and Ho = {t|Qot > {Qo}98} are the sets of timesteps where

Qs and Qo have exceedance probability < 0.02, respectively;

• Ls = {t|Qst < {Qs}30} and Lo = {t|Qot < {Qo}30} are the sets of timesteps where

Qs and Qo have exceedance probability > 0.7, respectively;

• {·}p indicates the p−th percentile of the quantity in the curly brackets;

• y is a (water) year, and Y is the set of years with less than 15 missing observations;

• n(·) denotes the cardinality of the set in parentheses.

Text S2. It is impossible to definitively determine whether the assumption of meaningful

rankability of differences is fulfilled for the performance metrics in this study. Therefore,

we assess the applicability of the matched-pairs rank biserial correlation coefficient (rc),

which requires this assumption, by evaluating how its value changes when a monotonous

transformation is applied to the performance metrics. Specifically, we take all the un-

bounded metrics (E) and bound them to the interval [−1, 1], using the following trans-
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formation:

Ebnd =
E

2± E
(S13)

where the sign at the denominator is − for the metrics whose original range was (−∞, 1]

(i.e. the two KGEs and the objective function), and + for all the biases, whose original

range was [−1,∞). The bounding performed by eq. S13 was proposed by Mathevet,

Michel, Andréassian, and Perrin (2006) to bound the Nash-Sutcliffe efficiency metric and

is extended here to the biases by changing the sign at the denominator. Using the example

of the KGE, the effect of this transformation on the performance differences is to give more

weight (i.e. higher rank) to changes in KGE closer to 1 compared to those of the same

magnitude in the negative realm. This is arguably a better encoding for the differences

in KGE performance. However, our aim here is not to discuss or prove this, but to assess

what impact this transformation has on rc values and orders for this specific dataset

and set of performance metrics and hence evaluate the importance of the assumption of

meaningful rankability.

The result of this comparison are shown as scatter plots in figure S6. These plots

show the value of rc for each metric in its unbound (x-axis) and bound (y-axis) versions.

While there are a few changes in the order of the metrics, the only metric whose values

of rc calculated with the two methods are not compatible within their 95 % confidence

intervals is pc_0 and only in GR4J and HBV and only in the Post-MD period. These

differences suggest that the level of degradation of the metrics in the zeros groups may

be underestimated, especially after the drought. However, the results and findings of our

study are not affected by the transformation, hence supporting the use of rc to quantify
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metric degradation regardless of the assumption of meaningful rankability of metrics’

differences.

Text S3. The dataset provided with this publication contain the following:

1. calibrated parameter sets for each model and catchment in the study;

2. timeseries of model simulated streamflow for each catchment and model;

3. values of each performance metric in Table 1 for each catchment and model combina-

tion during calibration, each evaluation period and each individual year in the evaluation

period;

4. values of matched-pairs rank-biserial correlation coefficient (rc) for each performance

metric and model (see §2.5.1); and

5. results of the annual linear regression for each metric and model (see §2.5.2).
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Figure S1. Changes in individual model performance from calibration to Pre-MD evaluation.

See Fig. 3 for details.
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Figure S2. Changes in all models performance from calibration to Pre-MD evaluation. See

Fig. 3 for details.

KGEKGE

KGEloKGElo

rr

OFOF

Q*Q*

Qbase*Qbase*

Qhi*Qhi*

Qlo*Qlo*

BFI*BFI*

FDCslp*FDCslp*

sd*sd*

pc0*pc0*

TPR0TPR0

−1.0 −0.5 0.0 0.5 1.0
Matched−pairs rank−biserial correlation coefficient (rc)

MD

Post−MD

a

a

a

a

Shape

Volumes

Zeros

Fit

*negative
absolute
bias
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Figure S5. Percentages of catchments in each class of statistical significance of the change in

the relationship between annual model performance and annual rainfall anomaly.
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Figure S6. Comparison of the values of rc using bounded or unbounded versions of the

performance metrics.


