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Abstract

Sinkholes are the most abundant surface features in karst areas worldwide. Understanding sinkhole occurrences and character-

istics is critical for studying karst aquifers and mitigating sinkhole-related hazards. Most sinkholes appear on the land surface

as depressions or cover-collapses and are commonly mapped from elevation data, such as digital elevation models (DEMs).

Existing methods for identifying sinkholes from DEMs often require two steps: locating surface depressions and separating

sinkholes from nonsinkhole depressions. In this study, we explored deep learning to directly identify sinkholes from images of

DEMs and DEM derivatives. We used an image segmentation model, U-Net (a type of convolutional neural networks (CNNs)),

to locate sinkholes. We trained separate U-Net models based on four input images of elevation data: a DEM image, a slope

image, a DEM gradient image, and a DEM shaded relief image. We also explored an aerial image as a model input. Three

normalization techniques (Global, Gaussian, and Instance) were applied to improve the model performance. Model results

suggest that deep learning is a viable method to identify sinkholes directly from images of elevation data. In particular, DEM

gradient data provided the best input for CNN-based image segmentation models to locate sinkholes. The model using the

DEM gradient image with Gaussian normalization achieved the best performance with a sinkhole intersection over union (IoU)

of 45.38% on the unseen test set. Aerial images, however, were not useful in training deep learning models for sinkholes as the

models using an aerial image as input achieved sinkhole IoUs below 3 %.
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Abstract

Sinkholes are the most abundant surface features in karst areas worldwide. Under-
standing sinkhole occurrences and characteristics is critical for studying karst aquifers
and mitigating sinkhole-related hazards. Most sinkholes appear on the land surface as
depressions or cover-collapses and are commonly mapped from elevation data, such as
digital elevation models (DEMs). Existing methods for identifying sinkholes from DEMs
often require two steps: locating surface depressions and separating sinkholes from non-
sinkhole depressions. In this study, we explored deep learning to directly identify sink-
holes from images of DEMs and DEM derivatives. We used an image segmentation model,
U-Net (a type of convolutional neural networks (CNNs)), to locate sinkholes. We trained
separate U-Net models based on four input images of elevation data: a DEM image, a
slope image, a DEM gradient image, and a DEM shaded relief image. We also explored
an aerial image as a model input. Three normalization techniques (Global, Gaussian,
and Instance) were applied to improve the model performance. Model results suggest
that deep learning is a viable method to identify sinkholes directly from images of ele-
vation data. In particular, DEM gradient data provided the best input for CNN-based
image segmentation models to locate sinkholes. The model using the DEM gradient im-
age with Gaussian normalization achieved the best performance with a sinkhole inter-
section over union (IoU) of 45.38 % on the unseen test set. Aerial images, however, were
not useful in training deep learning models for sinkholes as the models using an aerial
image as input achieved sinkhole IoUs below 3 %.

Plain Language Summary

Sinkholes are very common in areas with limestone rocks. Sinkholes can damage
roads, buildings, and other infrastructure and sometimes even cost human lives. Sink-
hole maps are needed for land use planning and hazard mitigation. Because sinkholes
often occur in large numbers, often in the thousands, accurately mapping each of them
manually is expensive and laborious. In this study, we applied deep learning, a form of
artificial intelligence, to build computer models to automatically locate sinkholes from
images created from elevation data. These models used the image segmentation tech-
nique to label every pixel in an image as either sinkhole or non-sinkhole. We used im-
ages of elevation, slope, elevation gradient, and shaded relief as inputs to models. Model
results suggested that deep learning offered a viable way to automatically locate sink-
holes from elevation data. In particular, models using elevation gradient information per-
formed the best. We also evaluated aerial imagery to train the models and found that
aerial images were not useful in training deep learning models for sinkhole identification.

1 Introduction

Approximately 15 % of the world’s ice-free land surface is underlain by carbonate
rocks, and a recent estimate suggests that 1.3 billion people lived on these rocks in 2019
globally (Goldscheider et al., 2020). Almost all the carbonate rock areas have developed
karst, a landscape characterized by sinkholes, sinking streams, springs, and caves (Monroe,
1970). Sinkholes are the most abundant surficial features in karst and are formed when
soil or other overburden material subsides or collapses into subsurface voids created by
the dissolution of soluble rocks. Hydrologically, sinkholes collect rainfall and drain it in-
ternally to the subsurface, serving as fast recharge routes for karst aquifers. More com-
monly, sinkholes are known as a geohazard. Sinkholes, especially suddenly occurring col-
lapse sinkholes, cause significant damag to homes, buildings, highways, and other infras-
tructure (Weary, 2015). Therefore, knowledge of detailed distribution and characteris-
tics of sinkholes is essential for protecting karst aquifers and mitigating sinkhole-related
hazards in karst areas.
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Most sinkholes appear on the land surface as depressions or cover-collapses, and
are traditionally mapped from topographic maps. In the United States, the topographic
maps used for mapping sinkholes are low in resolution and were mostly created prior to
the 1970s. As a result, many small or newly formed sinkholes were missed (Zhu et al.,
2014). The increasing availability of high-accuracy and high-resolution remote sensing
data, especially LiDAR (Light Detection and Ranging), has led to the discovery of sig-
nificantly more sinkholes in many karst areas (Rahimi & Alexander, 2013; Zhu et al., 2014;
Wu et al., 2016, e.g.). For instance, using LiDAR data, Zhu et al. (2014) found three times
more sinkholes than previously identified from topographic maps in Floyds Fork water-
shed, central Kentucky. Inconveniently, sinkholes are not the only surficial features show-
ing as depressions on the surface. Many nature features such as stream channels, me-
ander cutoffs, and more commonly man-made structures such as farm ponds, road cul-
verts, and swimming pools, also appear as depressions. Processing LiDAR data to lo-
cate sinkholes also extracts these non-sinkhole depression features, so separating sink-
holes from non-sinkhole depressions becomes a necessary step. While this step can be
done using a manual process of visual inspection and classification of each depression (Zhu
et al., 2014), the manual process can be laborious and time-consuming because 1) thou-
sands of surface depressions can be extracted from LiDAR data in a small area and 2)
sinkholes are an only small portion of the extracted depressions. Finding efficient meth-
ods to separate sinkholes from other depressions remains a challenge.

Machine learning is a branch of artificial intelligence that constructs computer-based
systems that improve automatically through training experience (Jordan & Mitchell, 2015).
Machine learning methods have been applied to automatically identify sinkholes or eval-
uate sinkhole hazards (Miao et al., 2013; Zhu & Pierskalla, 2016; Taheri et al., 2019; Kim
et al., 2019; Zhu et al., 2020, e.g.). These studies applied conventional, or shallow ma-
chine learning methods that rely on feature datasets to train because the conventional
machine learning methods have limited ability to process raw data (LeCun et al., 2015).
These feature datasets are created by extracting feature variables deemed relevant to a
problem of interest from available data; therefore, the extracted variables are often sub-
jective, depending on a researcher’s experience and their understanding of the original
data. For instance, Kim et al. (2019) used topographic variables, such as elevation, as-
pect, and curvature, to train a logistic regression sinkhole model. Zhu et al. (2020) used
morphometric variables of the depressions, such as surface area, depth, and circularity,
to train machine learning methods for sinkhole identification. Deep learning methods,
on the other hand, can directly learn from images, text, videos, and sounds through mul-
tiple processing layers to learn representations with multiple levels of abstraction (LeCun
et al., 2015). Convolutional neural networks (CNNs) are the most widely used deep learn-
ing methods for image classification. Because of their tremendous success in classifying
conventional photographic images, CNNs have also been applied for landscape classifi-
cations recently (Hu et al., 2015; Buscombe & Ritchie, 2018; Li et al., 2020, e.g.). These
studies used mainly multispectral remote sensing images in which different landscape fea-
tures are easily discernible. Elevation data are not commonly used for landscape clas-
sification. Li et al. (2020) found remote sensing images provide best information in loess
landform classification while digital elevation models can help distinguish ridges and hills.
Sinkholes, on the other hand, are small-scale topographic features that are difficult to
see from multispectral remote sensing images. In this study, we trained a convolutional
neural network to perform image segmentation on LiDAR elevation data and their deriva-
tive images to locate sinkholes. We also tested multispectral remote sensing images in
finding sinkholes.

2 Study Area and Input Images

The study area is located in the Inner Bluegrass Region of central Kentucky, a ma-
ture karst environment developed on the Middle Ordovician Lexington Limestone (Cressman
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& Peterson, 1986). The region features gently rolling topography with numerous sink-
holes across the landscape (Paylor & Currens, 2004). The climate is temperate with an
average annual temperature of 13.0 °C and an average precipitation of 1170 mm. The land
use is mainly agricultural with some urban and suburban regions (University of Kentucky
College of Agriculture Food and the Environment, 2011). Sinkholes in the region have
been mapped from LiDAR data (Kentucky Geological Survey, n.d.). In this study, we
selected a rectangular area of 625 km2 in the region to generate input images (Figure 1).
This area covers part of Fayette, Franklin, Scott, and Woodford Counties and is 21.74 km
long in the x direction (west-east) and 28.83 km long in the y direction (south-north).
There are 2177 sinkholes mapped in the rectangular area.

The input data for the deep learning models consist of three images: a LiDAR-derived
digital elevation model (DEM) image, an aerial image, and a binary label image (Fig-
ure 2). All the images are 14 268× 18 851 pixels and each pixel is 1.524 m× 1.524 m (5 ft× 5 ft)
in size. The DEM and the aerial image are downloaded from Kentucky’s Elevation Data
and Aerial Photography Program (KyFromAbove, n.d.). The DEM image has one chan-
nel with values ranging from 158 m – 308 m (518 ft – 1003 ft). The aerial image is a four
channel National Agriculture Imagery Program (NAIP) image from 2018. The original
NAIP image is in 0.610 m (2 ft) resolution and is resampled to 1.524 m (5 ft) resolution
to have the same resolution as other input images. The binary label image was created
using the sinkhole mapping results (Kentucky Geological Survey, n.d.). Any pixel located
inside a sinkhole is valued as 1 and as 0 otherwise. Note that only 2 % of pixels are val-
ued as 1 because even though sinkholes are widespread, their areas are so small that they
only occupy a small fraction of the total land surface.

In addition to directly using the DEM image as input, we also prepared three im-
ages derived from the elevation data: a slope image, a DEM gradient image, and a shaded
relief image (Figure 3). The slope image was created from the DEM using ArcGIS Pro’s
Planar Slope method, which calculates the slope as the maximum rate of change in el-
evation from a cell to its immediate neighbors. The slope image has one channel with
values ranging from 0 – 85 degrees. The slope as calculated in ArcGIS Pro is the max-
imum slope among the neighboring cells. The DEM gradient image is calculated using
central difference and it has two channels, one for elevation gradient in the x direction
and the other for elevation gradient in the y direction. Therefore, the two-channel DEM
gradient image preserves directional slope information otherwise lost in the traditional
slope image. The shaded relief image is a single illumination hillshade with an azimuth
of 315 degrees and an altitude of 45 degrees. The shaded relief image is prepared as an
RGB image with three channels. We created the shaded relief image because sinkholes
are highly visible on the shaded relief of DEMs (Zhu et al., 2014).

3 Methods

There are several formulations for the task of image recognition. Image classifica-
tion is the task of assigning one label for the entire image. On the other hand, image seg-
mentation is the task of assigning a class label to every pixel. While image segmenta-
tion provides more detailed output, this formulation requires more labeling effort. Since
we have dense labels for sinkholes, derived from LiDAR, we formulate the task as a seg-
mentation problem. Our task is a binary segmentation task that classifies every pixel
as sinkhole or non-sinkhole. We use convolutional neural networks (CNNs) for the task
of image segmentation. The input to the segmentation model is a smaller patch of size
400× 400 pixels. However, the model can be used for arbitrarily large regions, as shown
in Figure 1, by feeding a batch of such patches to the model and stitching the results back.
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Figure 1: Study area. Blue lines depict mapped sinkholes
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Figure 2: Input data: (a) DEM, (b) NAIP, and (c) sinkhole label. Data splits are illus-
trated in the DEM image: training set in blue, validation set in green, and test set in red.
Axis labels on (a) DEM are in pixels.
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(a) Slope (b) DEM gradient X (c) DEM Gradient Y (d) Shaded Relief

Figure 3: Images derived from DEM data: (a) Slope, (b) DEM gradient X direction, (c)
DEM gradient Y direction, and (d) Shaded relief.

3.1 Data Normalization

Images often are stored in various formats resulting in different input ranges. For
instance, our DEM image has a range of 518 – 1003 ( elevation in ft) while our shaded
relief image and aerial image has a range of 0 – 255 in each channel. It is a standard prac-
tice to normalize pixel values to a small range to improve training by gradient descent (LeCun
et al., 2012). We evaluated three alternative normalization methods:

• Global [0, 1] normalization: we normalized all values in the range [0, 1] based on
the maximum and minimum values. This normalization was done based on the
statistics of the training data.

• Gaussian whitening: for an input channel x, the normalized value was given by:

x̂ =
x− µ
σ

where µ and σ are mean and standard deviation of the training data.

• Instance normalization: we normalized every patch separately into the range [0,
1]. As opposed to the Global normalization, in this case the normalization was per-
formed on every patch.

Figure 4 shows a visualization of the three normalization methods on the DEM.

DEM Global [0, 1] Gaussian Instance

Figure 4: Visualization of three normalization methods on a DEM patch. Axis labels are
in pixels. Note that the different ranges are defined for the colormap of each image.
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3.2 Network Architecture

Many CNN architectures have been proposed for image segmentation ranging from
FCN (Long et al., 2015) to DeepLabV3+ (Chen et al., 2018) and HR-Net (Wang et al.,
2020). While these networks achieve state-of-the-art results for urban scenes and indoor
images, for medical and remote sensing images, U-Net (Ronneberger et al., 2015) often
performs better. We modified the U-Net for our task of binary segmentation based on
the number of input channels we have for different input image types. In our case, the
size of the output is the same as the input, which is not the case in the original U-Net
model. The output layer has two channels: one for sinkhole pixels and the other for non-
sinkhole pixels.

The network architecture is shown in Figure 5. The input is patch of spatial size
I (400× 400 pixels in our case). There are several convolutional layers, each having a
filter size of 3 × 3, followed by a BatchNorm layer (Ioffe & Szegedy, 2015). For every
convolutional layer, there are different numbers of filters - in our implementation, we use
1/4 the number of filters than the original U-Net (Ronneberger et al., 2015). For exam-
ple, the first block has two convolutional layers, each with 16 filters. The left half of the
network, also referred to as the encoder, feature maps are reduced in spatial size by ap-
plying MaxPool (Nagi et al., 2011). The feature maps are reduced to the size I

16 , i.e.,
1/16th the spatial size of input patch I, in the bottleneck section, shown in the middle
in Figure 5. The right side of the network, also known as the decoder, increases the spa-
tial size of feature maps. In the decoder, at each level, the feature maps from the encoder
are copied over as input, as shown by arrows on the top. All layers use ReLU (Nair &
Hinton, 2010) as the activation function except the last layer. In the last layer, we have
a two-channel output, one for sinkhole and the other for non-sinkhole. We apply the Soft-
max activation function that results in a proper probabilistic prediction (also called soft
prediction): the score for sinkholes is ŷ and the score for non-sinkholes prediction is 1−
ŷ.

1616 I

32 32 I/
2

64 64 I/
4

128 128 I/
8

256 256 I/
16

Bottleneck Conv

128 128 128 128 I/
8

64 64 64 64 I/
4

32 32 32 128 I/
2

16 16 16 16 I

Softmax

Figure 5: The U-Net architecture used for sinkhole segmentation. Here, I denotes the
spatial size of the input image patch. Visualization generated using (Iqbal, 2018).

3.3 Loss Function

For training, it is common to use the cross entropy loss function

l(ŷ, y) = − log (ŷ)− [(1− y) log (1− ŷ)] , (1)

where ŷ is the prediction, y is the target label indicating non-sinkhole (0) or sinkhole (1)
pixel. The sinkhole label image is highly imbalanced with 98 % pixels belonging to the
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non-sinkhole category and only 2 % belonging to the sinkhole category. A network treat-
ing both categories equally will result in a trivial local minimum such that the network
only predicts the majority class (non-sinkhole region) and gets a very low loss. To ad-
dress this, we use different loss weighting factors for non-sinkhole and sinkhole pixels:

l(ŷ, y) = −wsy log (ŷ)− [wn(1− y) log (1− ŷ)] , (2)

where ws and wn are the loss weights for sinkhole and non-sinkhole pixels, respectively.
We use a higher weight for sinkhole, wn to encourage the network to make better sink-
hole predictions. We found that using ws = 1.0 and wn = 0.05 gives better results than
other weight ratios.

3.4 Implementation Details

We implemented our approach using PyTorch (Paszke et al., 2019), which is a freely
available software library. Please see https://mvrl.github.io/SinkSeg/ for the source
code, installation instructions, access to the image dataset, and scripts for training and
inference. The image dataset can be also downloaded directly from https://doi.org/

10.5281/zenodo.5789436. For training and evaluation, we used a patch of size 400× 400
pixels. We randomly cropped patches from training images as a data augmentation strat-
egy because it can generate a large number of unique examples for training. For valida-
tion and testing, we made non-overlapping patches that covered the respective region
completely. We can run our trained model on arbitrarily large regions by sequentially
feeding batches of non-overlapping smaller patches to the model and stitching the results
back. In total, we had 644 patches for training, 161 for validation, and 840 for testing.
For training, we used a batch size of 14 and trained all models for 100 epochs using an
L2 regularization of 1× 10−6. We set the initial learning rate of 5× 10−4 and reduced
the learning rate by a factor of 0.9 after every 3 epochs. During training, we saved the
model checkpoint with the lowest loss on the validation set as the best model and used
that for evaluation. Training one epoch (of the area approximately 239 km2) of our model
took around 14 seconds on a single NVIDIA Titan RTX GPU. A trained model can be
used for inference on validation data (having an area around 60 km2) in 2 seconds and
on the test set (having an area around 312 km2) in 7 seconds using the same GPU.

4 Evaluation and Results

Using the five different types of input images and three normalization methods, we
trained 15 image segmentation sinkhole identification models. We also trained three ad-
ditional models with non-normalized images of DEM, slope, and gradients. We did not
train non-normalized shaded relief and aerial images because they are regular RGB im-
ages and normalization is standard for these images in deep learning. We then evaluated
and compared these 18 models to find the best data and normalization method as de-
scribed below.

4.1 Evaluation Metrics

We report several commonly used metrics for image segmentation (Long et al., 2015)
including intersection over union (IoU), mean accuracy, average precision, and area un-
der the ROC curve (AUC). As there is a severe class imbalance and we are primarily in-
terested in the identification of sinkholes, we report sinkhole IoU separately as well.

Intersection over union, also known as the Jaccard index, can be written as:

IoU(y, ŷ) =
y ∩ ŷ
y ∪ ŷ

(3)
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where y ∩ ŷ is the intersection (overlap) and y ∪ ŷ is the union of prediction and true
label. Accuracy is given as:

Acc(y, ŷ) =
TP + TN

T
(4)

where TP is number of true positive, TN is number of true negative, and T is the to-
tal number of pixels. We show receiver operating characteristics curve (ROC) as well two
methods of summarizing the curve, area under the ROC curve and average precision. Av-
erage precision is given as

AP =
∑
i

(Ri −Ri−1Pi) (5)

where Pi and Ri are precision and recall computed at the threshold value i. Precision
(P) and recall (R) are given as:

P =
TP

TP + FP
R =

TP

TP + FN
(6)

where TP , TN , FP , and FN are numbers of true positive, true negative, false positive,
and false negative, respectively.

4.2 Results

The model can predict the probability of each pixel being part of a sinkhole (ŷ)
in an image. However, in practice, we need to make a binary prediction for whether or
not a pixel is within a sinkhole if ŷ > t for the threshold t. For all models, we find the
optimum threshold that gives the highest sinkhole IoU on the validation set. We use this
threshold to compute metrics of the respective model on the test set. Figure 6 shows how
sinkhole IoU varies with different thresholds for the model using the elevation gradient
image with Gaussian normalization. We can see that for this model, the optimum thresh-
old is 0.9, as shown in Figure 6. A visualization of varying binary predictions as the thresh-
old changes is shown in Figure 7 for the validation set.
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Figure 6: Analysis of varying threshold on (a) the validation set and (b) the test set.

After selecting the optimum threshold, we calculated the five metrics introduced
in section 4.1 on the test set for each model. Among the five metrics, sinkhole IoU, mean
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DEM Threshold=0.3 Threshold=0.6 Threshold=0.9Soft PredictionTarget Label

Figure 7: Qualitative results on the full validation set for several threshold values. We
also show soft predictions without applying any threshold.
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Figure 8: Test set evaluation. (a) Precision recall curve and (b) receiver operating char-
acteristics (ROC).

IoU, and mean accuracy were calculated using the optimum threshold while average pre-
cision and AUC were integrated over the entire threshold range. Figure 8 shows a precision-
recall curve used for calculating the average precision and a receiver operating charac-
teristic curve for calculating AUC for the model using the elevation gradient image with
Gaussian normalization.

Although all the five metrics were used in comparing the models, we selected sink-
hole IoU as the indicator metric because IoU is a widely used metric in evaluating im-
age segmentation models and the other four metrics are consistent with sinkhole IoU.
Comparing the metrics of all the 18 models (Tables 1, 2, 3, 4, 5), the model using ele-

–10–



manuscript submitted to Earth and Space Science

vation gradient with Gaussian normalization performed the best, with a sinkhole IoU
of 45.38 %, followed by the model using elevation gradient without normalization, which
achieved a sinkhole IoU of 43.61 % (Table 3). Other models that achieved sinkhole IoU
above 40 % were elevation gradient with Global normalization (Table 3) and DEM with
Instance normalization (Table 1). In contrast, models using NAIP image performed the
worst with sinkhole IoU values below 3 % in all normalization methods (Table 5). The
models using DEM slope (Table 2) and the models using shaded relief image (Table 4)
were better than the models using the NAIP image. However, with their sinkhole IoUs
in the range of 20 % – 30 %, these models can only be considered to be moderately suc-
cessful.

Normalization
Sinkhole
IoU (%)

Mean
IoU (%)

Mean
Accuracy (%)

Avg.
Precision (%)

AUC

None 19.18 57.43 66.94 24.33 0.8627
Global [0, 1] 25.45 60.80 72.13 29.14 0.8968
Gaussian 23.47 60.29 65.31 32.52 0.7954
Instance 40.83 69.15 80.02 60.21 0.9508

Table 1: Evaluation metrics of image segmentation models using DEM as input.

Normalization
Sinkhole
IoU (%)

Mean
IoU (%)

Mean
Accuracy (%)

Avg.
Precision (%)

AUC

None 27.55 62.24 69.90 40.31 0.9076
Global [0, 1] 25.12 60.73 70.77 36.54 0.8987
Gaussian 26.57 61.41 74.92 40.83 0.9044
Instance 27.42 62.20 69.52 40.18 0.8946

Table 2: Evaluation metrics of image segmentation models using DEM slope as input.

Normalization
Sinkhole
IoU (%)

Mean
IoU (%)

Mean
Accuracy (%)

Avg.
Precision (%)

AUC

None 43.61 70.68 80.03 65.39 0.9610
Global [0, 1] 41.26 69.36 80.89 60.25 0.9513
Gaussian 45.38 71.65 79.87 66.29 0.9645
Instance 26.35 60.94 76.62 39.15 0.3915

Table 3: Evaluation metrics of image segmentation models using DEM gradient as input.

The results of the best performing model, elevation gradient with Gaussian nor-
malization, on the test set are illustrated in Figure 9. The figure shows prediction of the
model with the optimum threshold of 0.9 as well as predictions for thresholds 0.3 and

–11–



manuscript submitted to Earth and Space Science

Normalization
Sinkhole
IoU (%)

Mean
IoU (%)

Mean
Accuracy (%)

Avg.
Precision (%)

AUC

Global [0,1] 26.05 60.91 74.97 40.00 0.9149
Gaussian 23.18 59.29 72.00 34.78 0.8859
Instance 21.32 58.47 69.63 29.47 0.8486

Table 4: Evaluation metrics of image segmentation models using shaded relief as input.

Normalization
Sinkhole
IoU (%)

Mean
IoU (%)

Mean
Accuracy (%)

Avg.
Precision (%)

AUC

Global [0,1] 2.97 5.58 53.19 2.99 0.5473
Gaussian 2.90 4.05 52.02 3.40 0.5882
Instance 2.98 12.81 53.01 3.19 0.5537

Table 5: Evaluation metrics of image segmentation models using NAIP image as input.

DEM

Threshold=0.3 Threshold=0.6 Threshold=0.9

Soft PredictionTarget Label

Figure 9: Test set results. We show qualitative results on the full test set for several
threshold values and soft predictions without applying any threshold.

0.6 and the soft prediction. The soft prediction was the actual prediction result, which
was the probability of each pixel being part of a sinkhole. The soft prediction and re-
sults with three different thresholds largely matched the sinkhole label image in pattern,
but the one with the 0.9 threshold closely resembled the sinkhole label.

A close view of the prediction results is shown in Figure 10. It shows results from
seven randomly selected patches on the test data. Each row in Figure 10 shows a sin-
gle patch that is passed through the network. Overall, the prediction matched the true
sinkhole label quite well. However, there were some mismatches, as shown in the last three
rows of Figure 10.
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DEM Target Label Soft Prediction Prediction

Figure 10: Qualitative results on patches from the unseen test set.
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5 Discussion

We trained 15 sinkhole segmentation models using images created from LiDAR-
derived digital elevation data. We found that, with proper data pre-processing and nor-
malization, the CNN-based image segmentation method can extract sufficient informa-
tion from the LiDAR-derived elevation data to build decent models to automatically iden-
tify sinkholes. However, when the raw DEM data were directly used without normal-
ization, the model performed poorly. The raw DEM data had the largest range of val-
ues (518-1003) among all the inputs and there is an overall trend in elevation where the
elevation is highest in the southeast and dips into the northwest. We speculate that the
large range and the trend create a difficulty to translate the results from the training area
(northwest region) to the test area (south region). Both Global and Gaussian normal-
izations reduced the overall range of the data, but the overall trend remained. This is
evident as both normalizations only slightly improved the model. On the other hand,
the Instance normalization reduced the range and also removed the overall trend, there-
fore provided an additional improvement.

Models trained on DEM slope with and without normalization yielded similar poor
results with sinkhole IoUs of around 25 % – 27 % (Table 2). The Planar Slope method
combines the slope values in x and y directions into one value, leading to possible infor-
mation loss. To test if the information loss attributes to the poor performance, we cre-
ated an image with two channels, one for elevation gradient in the x direction and the
other for the y direction. Models trained on this 2-channel DEM gradient image (Ta-
ble 3) performed much better than the models trained on DEM slope. Using the 2-channel
gradient image, the model without normalization achieved a sinkhole IoU of 43.61 % and
Gaussian normalization slightly improved the model with a sinkhole IoU of 45.38 %.

In the models using the raw DEM as input, all normalization methods improved
model performance (Table 1). However, these normalization methods did not yield no-
ticeable improvements when slope data or elevation gradient were used as inputs. For
models using the slope data, all normalization methods had little impact (Table 2). For
models using the elevation gradient data, Gaussian and Global normalizations had lit-
tle impact whereas the Instance normalization decreased sinkhole IoU to 26.35 % (Ta-
ble 3). The slope and DEM gradient data removed the overall trend in the DEM and
converted elevation values to a smaller range of 0 – 90 degrees for the 1-channel image
and a smaller range for the elevation gradient image, which might explain why all the
additional normalization methods did not improve the model. The poor performance of
Instance normalization on the elevation gradient data was a stark contrast to the method’s
improvement on models using the raw DEM data. In normalizing each patch to a range
[0, 1], the Instance normalization requires different scaling factors for every patch, there-
fore lacking consistency across the entire training image. As a result, the Instance nor-
malization can be more sensitive to noise in the DEM.

Metrics of models using the shaded relief of the DEM are shown in Table 4. The
shaded relief image is a three-channel color image. For color images, Global normaliza-
tion and Gaussian normalization are universally used in machine learning. Consequently,
we did not run the model from shaded relief without normalization. The results of the
three normalization methods were quite similar and sinkhole IoUs ranged from 21 % to
26 %. The results were also similar to several models using raw DEM and the models
using the slope data. It suggests that a shaded relief image does not provide additional
information from the raw DEM to the segmentation models despite it being useful for
manual visual inspection.

Results of the three sinkhole segmentation models using NAIP imagery as input
showed the aerial image provided weak cues for segmenting sinkholes (Table 5). For all
normalization methods, the models could not correctly identify sinkholes and achieved
sinkhole IoUs of merely 2.98 %. Since most sinkholes cannot be seen directly on aerial
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Figure 11: Out-of-distribution evaluation area in Missouri. Blue lines depict mapped
sinkholes

images such as NAIP, models using NAIP images alone perform poorly. However, vis-
ible surface features on aerial images, such as tree clusters, ponds, roads, and residen-
tial houses, can be used to help separate sinkholes from other forms of surface depres-
sion (Zhu et al., 2014). In future research, we will explore methods that combine eleva-
tion data and aerial images to improve their ability to segment sinkholes.

Deep learning models trained in one area can perform unexpectedly when applied
to a geographic region with different landscape characteristics. This issue is an exam-
ple of so called out-of-distribution problems commonly encountered in deep learning. To
evaluate if the models trained using data from Kentucky are applicable to other karst
regions, we applied our best performing sinkhole segmentation model to the Springfield
Plateau in southwest Missouri, USA. The Springfield Plateau is a prominent karst re-
gion with abundant karst features, such as sinkholes, caves, and springs. The region is
underlain by the Mississippian Burlington and Keokuk Limestones (Martin & Pratt, 1991)
, which are roughly 100 million years younger than the Lexington Limestone underly-
ing the area in Kentucky where our models were trained. We selected a rectangular area
of 86.4 km2 in Greene County in the Springfield Plateau (Figure 11). The area is 9.6
km in the x direction (west-east) and 9 km in the y direction (south-north). LiDAR DEM
of 1 m resolution were obtained from MSDIS (Missouri Spatial Data Information Ser-
vice, n.d.) and were resampled to 1.524m (5 ft) to match the resolution of the images
used for model training. The range of elevations in this area is 90 m (306 - 396 m) whereas
the elevation range in the training area is 150 m (158 - 308 m). Total 1021 sinkholes have
been mapped in the area (City of Springfield, Missouri, n.d.) and were used to create a
binary label image to evaluate model prediction results.

Our best-performing model was the one that used DEM gradients as inputs with
Gaussian normalization. The prediction results of applying this model to the Missouri
area show that the model predicted sinkhole areas closed matched with mapped sink-
hole areas( Figure 12). The evaluation metrics (Table 6) confirmed the model’s good
performance in the new area. The sinkhkole IoU was 42.38 %, which was only slightly
lower than the Kentucky test Sinkhole IoU of 45.38 % (Table 3). Note that while the
threshold producing the highest sinkhole IoU for Kentucky was 0.9, the threshold for the
highest sinkhole IoU for the Missouri area was 0.5. The difference in optimal thresholds
appeared to be corresponding to different criteria in mapping sinkholes. In Kentucky,
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DEM Threshold=0.3 Threshold=0.6 Threshold=0.9Soft PredictionTarget Label

Figure 12: Qualitative results on the data from the Missouri Area. These results are
generated from the model trained on DEM gradients of the Kentucky data and no infor-
mation from the Missouri area is provided to train the model.

surface depression features less then 46.45 m2 (500 ft2) were excluded for consideration
for sinkholes (Zhu et al., 2014), but approximately 15 % of the mapped sinkholes in the
Missouri area were less than the minimum area of 46.45 m2 used in Kentucky. Even though
our model generalizes well for a different region, an appropriate threshold separating sink-
holes from non-sinkholes requires existing sinkhole data for the region. Because we had
a sinkhole dataset for the Missouri area, we were able to find an optimal threshold. If
the trained image segmentation model is used to predict sinkholes to an area where sink-
holes are not mapped, we suggest that a small sub-area should be mapped manually so
that a suitable threshold can be determined.

Normalization
Sinkhole
IoU (%)

Mean
IoU (%)

Mean
Accuracy (%)

Avg.
Precision (%)

AUC

Gaussian 42.38 68.85 77.01 61.78 0.8665

Table 6: Evaluation metrics of applying the best image segmentation model to the Mis-
souri region. The first three metrics were calculated with a threshold of 0.5.

6 Conclusions

Sinkholes are the most prevalent topographic features in karst areas worldwide. Un-
derstanding their occurrence and characteristics is critical for studying karst aquifers and
mitigating sinkhole-related hazards. In this study, we explored image segmentation for
automatically locating and delineating sinkholes from high-accuracy, high-resolution Li-
DAR DEMs. We trained convolutional neural network models based on the U-Net ar-
chitecture and performed image segmentation to label each pixel in an image as sink-
hole or non-sinkhole. We evaluated how three normalization methods impacted model
performance. Furthermore, we explored the usefulness of aerial images as input for train-
ing deep learning sinkhole identification models. We also applied our mdoel to a karst
area in Missouri to test our model’s out-of-distribution generalization. Our study sug-
gests:

• Deep learning-based image segmentation is a promising tool to identify karst sink-
holes directly from DEMs.

• Slope and DEM gradient data provide better information than the raw DEM in
identifying sinkholes. Shaded relief of DEMs, on the other hand, does not enhance
model performance.
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• While Global and Gaussian normalization methods have the potential to improve
deep learning models, Instance normalization should be used with caution as it
can worsen model performance.

• The sinkhole segmentation models trained using data from Kentucky show good
out-of-distribution generalization and can potentially be applied to other karst ar-
eas.

• Aerial images alone did not prove to be useful as input to the proposed segmen-
tation model.
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