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Abstract

Surrogate models replace computationally expensive simulations of physically-based models to obtain accurate results at a

fraction of the time. These surrogate models, also known as metamodels, have been employed for analysis, control, and opti-

misation of water distribution and urban drainage systems. With the advent of machine learning (ML), water engineers have

increasingly resorted to these data-driven techniques to develop metamodels of urban water networks. In this manuscript, we

review 31 recent papers on ML-based metamodeling of urban water networks to outline the state-of-the-art of the field, identify

outstanding gaps, and propose future research directions. For each paper, we critically examined the purpose of the metamodel,

the metamodel characteristics, and the applied case study. The review shows that current metamodels suffer several drawbacks,

including i) the curse of dimensionality, hindering implementation for large case studies; ii) black-box deterministic nature, lim-

iting explainability and applicability; and iii) rigid architecture, preventing generalization across multiple case studies. We argue

that researchers should tackle these issues by resorting to recent advancements in ML concerning inductive biases, robustness,

and transferability. The recently developed Graph Neural Network architecture, which extends deep learning methods to graph

data structures, is a preferred candidate for advancing surrogate modelling in urban water networks. Furthermore, we foresee

increasing efforts for complex applications where metamodels may play a fundamental role, such as uncertainty analysis and

multi-objective optimisation. Lastly, the development and comparison of ML-based metamodel can benefit from the availability

of new benchmark datasets for urban drainage systems and realistic complex networks.
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Key Points: 9 

• Machine Learning surrogate models have been widely employed for a variety of applications 10 

concerning urban water networks. 11 

• New research should focus on machine learning metamodels that account for inductive biases, 12 

robustness, and transferability. 13 

• Further research should focus on complex problems involving uncertainty and multi-objective 14 

optimisation, as well as improved benchmarking.  15 
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Abstract 16 

Surrogate models replace computationally expensive simulations of physically-based models to obtain 17 

accurate results at a fraction of the time. These surrogate models, also known as metamodels, have been 18 

employed for analysis, control, and optimisation of water distribution and urban drainage systems. With 19 

the advent of machine learning (ML), water engineers have increasingly resorted to these data-driven 20 

techniques to develop metamodels of urban water networks. In this manuscript, we review 31 recent papers 21 

on ML-based metamodeling of urban water networks to outline the state-of-the-art of the field, identify 22 

outstanding gaps, and propose future research directions. For each paper, we critically examined the 23 

purpose of the metamodel, the metamodel characteristics, and the applied case study. The review shows 24 

that current metamodels suffer several drawbacks, including i) the curse of dimensionality, hindering 25 

implementation for large case studies; ii) black-box deterministic nature, limiting explainability and 26 

applicability; and iii) rigid architecture, preventing generalization across multiple case studies. We argue 27 

that researchers should tackle these issues by resorting to recent advancements in ML concerning inductive 28 

biases, robustness, and transferability. The recently developed Graph Neural Network architecture, which 29 

extends deep learning methods to graph data structures, is a preferred candidate for advancing surrogate 30 

modelling in urban water networks. Furthermore, we foresee increasing efforts for complex applications 31 

where metamodels may play a fundamental role, such as uncertainty analysis and multi-objective 32 

optimisation. Lastly, the development and comparison of ML-based metamodel can benefit from the 33 

availability of new benchmark datasets for urban drainage systems and realistic complex networks.  34 

Plain Language Summary 35 

Analysis and improvement of urban water networks requires hydrodynamic models. Since these models 36 

are computationally expensive, researchers and engineers often resort to fast alternatives known as 37 

surrogate models. With the rise of artificial intelligence, machine learning methods have been increasingly 38 

used for surrogate modelling of urban water networks. In this study, we thoroughly reviewed recent papers 39 

on the field to outline the current state-of-the-art and propose future research directions. While many 40 

successful applications already exist, we found that these models have three main limiting factors: i) they 41 

need large amounts of data, ii) they are not explainable, and iii) they are too specific to each case. We argue 42 

that researchers can overcome these limitations by considering recent advancements in artificial intelligence 43 

and implement modeling techniques that better leverage the structure of the underlying data. Other 44 

promising direction include developing comprehensive benchmark databases and leveraging surrogate 45 

models for more complex applications. 46 

1 Introduction 47 

Urban water networks (UWNs) comprise drinking water distribution and urban drainage systems 48 

(WDS and UDS). The former are responsible for supplying drinking water to cities and the latter for 49 

evacuating wastewater and stormwater runoff. These infrastructures are a fundamental part of the city and 50 

are directly linked to its development (Brown et al., 2009). Each of these systems faces challenges to 51 

improve and maintain quality service in a dynamic urban environment under a widening range of climatic 52 

conditions; especially, in a climate-changing situation. Designing, optimising, and intervening in these 53 

systems requires approximating their hydraulic behaviour. Several models have been developed in the past 54 

years for simulating UWNs. Traditional modelling approaches are either based on accurate description of 55 

the physical processes or rely on simplified conceptual approaches; nonetheless, the former usually entail 56 

computationally expensive calculations while the latter lack fidelity. Applications such as optimisation, 57 

real-time modelling, and uncertainty analysis need an efficient model for evaluating the performance of a 58 

system multiple times or as fast as possible. Consequently, they require short execution times while 59 

maintaining a sufficient level of detail.  60 

1.1 Surrogate modelling 61 

Water modellers have resorted to surrogate models (SMs) to replace computationally costly models. 62 

Following the classification given by Razavi et al. (2012b), SMs, also known as metamodels or reduced-63 

order models, can be categorized as Lower-fidelity Physically-based surrogates (LFPB) or response surface 64 

(RS) surrogates.  On one hand, LFPB metamodels modify the original model to reduce its computational 65 
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effort. These models simplify the original model by lowering the resolution (e.g., larger time-steps) of the 66 

output or replacing computationally costly components with faster alternatives or complements (e.g., 67 

kriging, linear regression, neural networks (Fernandez et al., 2017)). On the other hand, RS surrogates avoid 68 

using the original model and replace it altogether with a faster-to-run alternative. In this branch of SMs, the 69 

original model is perceived as an input-output function and the metamodel is used to mimic the output 70 

surface as best as possible. Some of the algorithms for approximating response surfaces are polynomial 71 

interpolation, kriging, and more recently, machine learning (ML) algorithms. The following paragraphs 72 

summarize the advantages and disadvantages of LFPB and RS metamodels according to Razavi et al. 73 

(2012b). 74 

Lower-fidelity Physically-based surrogates (LFPB), also known as multifidelity based surrogates 75 

or “coarse” models, include techniques such as network simplification (Dempsey et al., 1997; 76 

Paluszczyszyn et al., 2013; Ulanicki et al., 1996), and skeletonization (Shamir et al., 2008). Compared 77 

against RS metamodels, LFPB surrogates are expected to better emulate the unexplored regions of the 78 

explanatory variable (input) space (i.e., regions far from the previously evaluated points with the high-79 

fidelity model) and, as such, perform more reliably in extrapolation. As for their drawbacks, LFPB models 80 

rely on the assumption that high-fidelity and low-fidelity models share the basic features and are correlated 81 

in some way. If this assumption is not satisfied, the surrogate modelling framework would not work, or 82 

provide minimal gains. Moreover, mapping the outputs from low resolution to the original resolution is not 83 

a trivial task, and may add complexity or uncertainty to the estimations. 84 

Response surface (RS) surrogates, also known as statistical and black-box models, include 85 

techniques such as polynomials (Schultz et al., 2004), kriging (Baú & Mayer, 2006), and neural networks 86 

(Behzadian et al., 2009). Some of their advantages include the possibility of maintaining the fidelity of the 87 

original model, being model-independent (i.e., not requiring access to the components, such as code or 88 

equations of the original model), and easier implementation with respect to LFPB surrogates. Nonetheless, 89 

they can be hard to train for high-dimensional problems, which may require extreme computational costs 90 

to create large enough databases to train the metamodels. Moreover, RS metamodels require scrupulous 91 

validation to minimize the chance of over-fitting and maximize their ability to extrapolate. 92 

1.2 Machine learning methods 93 

ML methods are part of artificial intelligence (AI) which is a broad term for tools that mimic 94 

cognitive human capabilities. The use of AI has rapidly increased in recent years. The number of peer-95 

reviewed publications across all fields between 2000 and 2019 has grown around 12 times (D. Zhang et al., 96 

2021) and with them, multiple algorithms, architectures, and tools have been created. Fields in which ML 97 

methods have shown outstanding results include computer vision, speech recognition, and language 98 

processing. Most of these applications use supervised learning, which identifies a branch of ML that is 99 

similar to RS metamodelling. Supervised ML employs a set of input-output examples, also known as the 100 

labelled training dataset, to calibrate a model by minimizing the error between the model predictions and 101 

the values assumed as ground truth. This set of algorithms usually increase their performance at a given 102 

task as the amount of labelled examples grows larger. Due to their successes, supervised ML methods, and 103 

in particular deep learning (DL) and artificial neural networks (ANNs), are widely employed for surrogate 104 

modelling across many fields of science and engineering (Liu et al., 2021; Peng et al., 2020; Wu et al., 105 

2020). Although scientific studies on ML applications for water resources date back to over two decades 106 

ago (Maier & Dandy, 2000), Hadjimichael et al. (2016) noted that this trend is not necessarily witnessed in 107 

the urban water sector.  108 

1.3 Previous studies - Surrogate Modelling in Urban Water Networks 109 

Previous studies have reviewed the application of metamodels in water resources. Razavi et al. 110 

(2012b) outline taxonomies, practical details, and advances of these SMs in water resources along with 111 

recommendations for future research. Among the multiple insights of this work, they highlight the non-112 

trivial effort to choose the right metamodel approach to the problem at hand and advocate for further 113 

research on these methods, especially in their assessment and validation. Furthermore, in the same year, 114 

Razavi et al. (2012a) numerically assessed metamodeling strategies in computationally intensive 115 

optimization, showing that metamodeling is not always a reliable approach, especially for complex 116 
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response surfaces. The authors also warned about the inappropriateness of neural network models when 117 

having a limited computational budget. Later, Broad et al., (2015) presented a formalized qualitative 118 

process to determine the most suitable scope for a metamodel based on the evaluation of a fitness function 119 

to maximize fidelity. Hadjimichael et al. (2016) reviewed the application of AI methods to UWS 120 

management and their integration with decision support systems. While valuable, these published reviews 121 

give low emphasis to SMs for UWNs, and do not account for the recent growth in machine learning-based 122 

surrogate models (MLSMs) driven by the rapid advancements in AI.  123 

This study aims to fill this gap by assessing the current state of MLSMs for UWNs in order to 124 

propose future directions based on identified outstanding issues and recent developments in ML. To achieve 125 

this purpose, we applied the review methodology described in Section 2 to review 31 published applications 126 

of metamodels for water networks. The results of the review are reported and discussed in Section 3, while 127 

major current gaps are detailed in Section 4. We propose future research directions in Section 5 and provide 128 

conclusions in Section 6. 129 

2 Materials and Methods 130 

We conducted a semi-systematic (Snyder, 2019) review of MLSM applications for UWNs to 131 

synthesize the state-of-the-art of the field. The review integrates the multiple applications of metamodels 132 

across water network applications, and explores them in a transversal manner. First, we searched journal 133 

papers in which MLSMs were applied to UWNs. Second, we determined a set of criteria to assess the 134 

relevant characteristics when applying these metamodels to UWNs’ problems.  135 

2.1 Search methodology 136 

We reviewed journal papers published in the last two decades (2001-2021) that use MLSMs for 137 

WDSs and UDSs. We established two main search criteria: surrogate modelling and water networks. Since 138 

both topics have a multiplicity of names, each of them was represented by a set of keywords. For surrogate 139 

modelling, the search terms were: “Surrogate model*”, “Metamodel*”, “Response surface”, “model 140 

emulation”, and “hybrid model”.  In the case of water networks, the search terms referred to both water 141 

distribution and drainage systems along with popular software for their analysis, “Water distribution”, 142 

“Water supply”, “Drinking water”, “Urban drainage”, “Wastewater”, “Sewer”, “Sewerage”, “EPANET”, 143 

“WaterCAD”, “SWMM”, “SOBEK”, and “Urban water”.  144 

For the search, we employed the SCOPUS database. By intersecting the search terms, we identified 145 

an initial set of 64 papers that were further filtered to only include ML applications, yielding a total of 31 146 

papers to review. Next, we searched through the citations of the selected set of papers and other relevant 147 

papers in the field (i.e., Maier et al., 2014; Maier & Dandy, 2000; Razavi et al., 2012b) for further 148 

references. However, the original set already contained the cited papers. Therefore, the results are 149 

equivalent to the keyword search. This validates the thoroughness of the original search and makes the 150 

methodology more replicable by avoiding arbitrarily selected papers. 151 

This list of papers may not be totally inclusive since some studies do not use the formal terminology 152 

of surrogate modelling, as indicated by Razavi et al. (2012b). Nevertheless, the purpose of this paper is to 153 

depict the recent state-of-the-art, identify gaps in knowledge and propose future research directions. We 154 

believe that the selected set of papers is sufficient to achieve this goal.  155 

2.2 Analytical methodology 156 

In addition to the search criteria, it was necessary to establish an analytical framework that allowed 157 

to classify, compare, and evaluate the application of the metamodels across the collected literature. To 158 
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achieve this, we identified the most relevant aspects of each paper in three broad categories: i) purpose, ii) 159 

case study, and iii) metamodel.  160 

Purpose includes general information about the application of the metamodel. It includes the type 161 

of network (distribution or drainage) and the application category (e.g., optimisation, real-time) as major 162 

grouping categories. In addition, it includes the specific application (e.g., optimisation of operation, real-163 

time for flood prediction) as a more detailed description for each paper.  164 

Case study contains information on the physical water network used for the testing and validation 165 

of a developed metamodel. This includes the name or location of the case study, whether it is a real case or 166 

a benchmark, and its size, indicated by the number of pipes or by the area. The size attribute is also reported 167 

as a categorical value ranging from small (S) to large (L), as shown in Table 1. 168 

Table 1. Categories of network size based on number of pipes or area 169 

Size Number of pipes in  

the simulation model 
Area [𝒌𝒎𝟐] 

Small (S) <100 <5 

Medium (M) 101-250 5 – 10 

Intermediate (I) 251-500 10 – 20 

Large (L) >500 >20 

Metamodel reports details on the computational algorithm (e.g., ANNs, Support Vector Machines) 170 

used to replace the original simulator along with further details on its architecture (i.e., deviations from a 171 

hidden layer ANN). The type and number of input and output variables are also reported to infer the 172 

dimensionality of the SM and the complexity of the RS to approximate. As for the performance, we report 173 

the computational speed-up provided by the metamodel and the fidelity to the original simulation, usually 174 

approximated with an accuracy metric. These criteria have been identified as the most relevant ones by 175 

previous related studies (Broad et al., 2015; Razavi et al., 2012b). Nevertheless, it is possible to consider 176 

other factors, such as development time, robustness and explainability. While assessing these criteria may 177 

enrich the analysis, they are not employed in most of the surveyed papers, and they are thus not included 178 

in this review. 179 

3 Review – Current status of Machine Learning Surrogate Models in Urban Water networks 180 

The analysis of the surveyed papers show an increase in research activity between 2015 and 2020 181 

with approximately two-thirds of the manuscripts published during this period. In terms of application, 182 

most of these papers are related to optimisation. For the case study, there is a noticeable difference between 183 

WDSs and UDSs since the latter networks lack the use of benchmark cases. Regarding the metamodel, the 184 

most popular algorithm is the fully connected ANN; because of this, we report the details of the used 185 

metamodel as deviations from a standard, one hidden layer, fully connected ANN, also referred to as simple 186 

Multi-layer perceptron (MLP). Table 2 summarizes the extracted information of the reviewed papers 187 

arranged in the previously mentioned categories: purpose, case study, and metamodel. 188 

  189 
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Table 2. List of reviewed papers and metamodeling approaches.  190 

Purpose Case study Metamodel Metamodel Performance 

Water 
network 

Application 
category Reference Application Location 

Size: Pipes in 
model / [area 

𝒌𝒎𝟐] 
Classification 

by size Type 

Deviations 
from simple 

MLP Inputs (Number) Outputs (Number) 
Computational 

saving Accuracy 

Water 
distribution 

systems 

Optimisation 

(Sayers et al., 
2019) 

Design 
TLN, GOY, 
MOD, BIN 

8, 30, 317, 454 S, S, I, I Benchmark 2 hidden layers Diameters * Rating of the network (1) Not reported Not reported 

(Dini & Tabesh, 
2019) 

Renovation 
planning 

TLN and 
Ahar, 
Azerbaijan 

8 and 192 S, M 
Benchmark and 
Real case 

  Diameters * 
Nodal pressure* and chlorine 
concentration * 

Not reported Not reported 

(Dini & Tabesh, 
2017) 

Model 
calibration 

TLN and 
Ahar, 
Azerbaijan 

8 and 192 S, M 
Benchmark and 
Real case 

  Observed residual chlorine * Wall Decay coefficient (1)  58x faster (98.3%) Average error (3.85%) 

(Andrade et al., 
2016) 

Design 
HAN and 
Maricopa, 
Arizona 

34 and 1090 S, L 
Benchmark and 
Real case 

Comparison of 
ANNs varying 
number of 
inputs and 
outputs 

Diameters and Chlorine 
dosing rates 

Chlorine concentration. (HAN): 3; 
(Maricopa): 9  

Not reported NSE (~90%) 

(Bi & Dandy, 2014) Design 

(I) NYT, (II) 
modified 
NYT and (III) 
Jilin  

21, 21, and 34 S, S, S 

(I) Benchmark, 
(II) modified 
benchmark, and 
(III) synthetic 
network 

  
Diameters and Chlorine 
dosing rates (I & II: 22; III: 35) 

Pressures at some nodes (I & II: 4; 
III: 5) and residual chlorine at one 
node (I & II: 1; III: 7) 

(I & II) 91%; (III) 
93%, 88%, and 
77% 

MSE (Not reported, 
0.001 as one stopping 
criteria) 

(Broad et al., 
2010) 

Operation 
Wallan, 
Australia  

2097;(Sk: 1376) L (L) Real case   
Trigger levels (45) and 
Chlorine rates (5) 

Pressure Head at critical node (1), 
Chlorine residual (1), energy value 
(1), or Total chlorine dosed (1) 

99% 
NSE (~0.6 for the full 
model, ~0.98 for 
skeletonized model) 

(Behzadian et al., 
2009) 

Sensor 
placement 

Anytown; 
Mahalat, 
Iran 

41, and 
1814;(Sk: 217) 

S, L (M) 
Benchmark and 
Real case 

  Available sensors  Sampling design accuracy (1) 
8x and 25x faster  
(87% and 96%) 

Pareto similarity: 93% 

(Salomons et al., 
2007) 

Operation 
Haifa-A, 
Israel 

126 M 
Modified real 
case 

 
Pumping status (13), Valve 
settings (1), DMA demands 
(6), Storage levels (9) 

Power consumption (5), pressures 
(4), future storage levels (9) 

25x faster (96%) 
RMSE (0.481%) ~5 cm 
averaged over all tanks 

(Martínez et al., 
2007) 

Operation 
Valencia, 
Spain  

772 L 
Modified real 
case 

 
Pumping status (6), Valve 
settings (10), DMA demands 
(6), Storage levels (2) 

Power consumption (6), flow rates 
(3),  pressures (4), future storage 
levels (2) 

94x faster (99%) RMSE (1.30%) 

(Broad et al., 
2005a) 

Design NYT 21 S Benchmark   
Diameters and Chlorine 
dosing rate (22) 

Four pressure nodes (1) or 
Chlorine concentration (1) 

700x faster 
(99.85%) 

RMSE (0.05 - 0.250) 

Real-time 

(Pasha & Lansey, 
2014) 

Warm 
solutions 
for pump 
scheduling 

Modified 
Anytown  

37 S 
Modified 
Benchmark 

SVM 
Pump combination, demand 
multiplier, initial tank levels 

Energy and final tank levels 84.25% NSE (0.99) 

(Rao & Alvarruiz, 
2007; Rao & 
Salomons, 2007) 

Real-time 
pump 
scheduling 

Modified 
AnyTown  

41 S 
Modified 
Benchmark 

 
Number of operating pumps 
(1), aggregated demand (1), 
and tank levels (3) 

Power consumption (1), pressures 
(3), new tank levels (3) 

10-fold (90%) RMSE (1.65%) 

 

Uncertainty 
analysis 

(Yoon et al., 2020) 
Seismic risk 
assessment 

A-city, South 
Korea  

85 S 
Anonymous real 
case 

15 layers - 
Deep neural 
network 

Components’ state (218) Network performance (1) 99% <5% 

(Beh et al., 2017) 
Planning 
under deep 
uncertainty 

Adelaide, 
Australia 

NA L Real case 
Combination of 
4 MLPs  

Supply augmentation options 
(9) and Uncertain variables: 
Population and climate 
change scenarios (2) 

(I) PV of cost (II) PV of Greenhouse 
gases (III) Reliability (IV) 
Vulnerability 

>99% 
Relative error (+-5%)  
NSE (~0.94, 0.95, 0.78, 
and 0.84) 

System state 
estimation 

(Lima et al., 2018) 

Nodal 
pressure 
estimation 
at near 
real-time 

Campos do 
Conde II and 
Cambuí, 
Brazil 

153 and 167 M, M Real case   
Pressure in sensors Steady 
State:  (3) - Extended (24h): 
96. Cambuí: (4) 

Pressure in nodes Steady State: 
(118) - Extended (24h): 2832. 
Cambuí: Steady (154 and 4) 

Not reported 
Relative error (<1%) 
and (<4%) 

(Meirelles et al., 
2017) 

Calibration 
with 
estimated 
pressures 

Campos do 
Conde II, 
Brazil and C-
Town 

153 and 429 M, I 
Real case and 
Benchmark 

  

Pressure in sensors Steady 
State:  (3) - Extended (24h): 
96. C-Town: 5 MLPs, one per 
DMA. 

Pressure in nodes Steady State: 
(118) - Extended (24h): 2832 

Not reported 
Average error (0.15 m) 
Max. Error (13.83 m) 

 191 
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 192 

Purpose Case study Metamodel Metamodel performance 

Water 
network 

Application 
category Reference Application Location 

Size # Pipes 
in model 

/[area 𝒌𝒎𝟐] 
Classification 

by size Type 

Deviations 
from simple 

MLP Inputs (Number) Outputs (Number) 
Computational 

saving Accuracy 

Urban 
drainage 
systems 

Optimisation 

(Seyedashraf 
et al., 2021) 

Design 

Bogotá, 
Colombia; 
Windsor, 
Canada 

511 and 122 L, M 
Stormwater - 
Real cases 

Generalized 
regression - 2 
hidden layers 

SUDS characteristics: area, 
type, and location (20) 

Boundary condition: Inflow (1) 95% 
Mean error (<0.015) 
CC (0.99) 

(W. Zhang et 
al., 2019) 

Design 
Urban 
catchment 
in China 

182 M 
Stormwater* - 
Real case 

Ensemble of 
100 MLPs  

Tank length and width (2) Flood depth (1) or peak flow (1) 80 - 90 % 
NSE (Between 0.66 and 
0.92 depending on the 
rainfall scenario) 

(Raei et al., 
2019) 

Design Tehran, Iran [20 𝑘𝑚2] I 
Stormwater* - 
Real case 

2 hidden layers 

Area sizes of the LID, 
Imperviousness and rainfall 
(3), TSS/BOD build-up (+1), 
TSS/BOD wash-off (+1) 

The volume of runoff (1) or BOD (1) or 
TSS (1) 

Not reported NSE (0.99) 

(Latifi et al., 
2019) 

Design Tehran, Iran [20 𝑘𝑚2] I 
Stormwater* - 
Real case 

  

Rainfall value, 6 build-up 
coefficients, 6 wash off 
coefficients, 6 imperviousness 
coefficients, and 32 values for 
area and type of LIDs (51) 

Runoff volume, BOD, TSS (3) Not reported Not mentioned 

(Huang et 
al., 2015) 

Design 
Zhong-He 
district, 
Taiwan 

[20.29 𝑘𝑚2] L 
Stormwater* - 
Real case 

  

Catchment precipitation, Full 
pipe percentage of water flow 
in 3 points, the quantity and 
capacity of rain barrels in four 
regions (12) 

Water level/flooding at t + 1 (1) Not reported 
MAE (<15%) CC (>0.94 
~0.97) 

Real-time 

(Kim & Han, 
2020) 

Flood 
prediction 

Seoul, Korea [3.19 𝑘𝑚2 *] M 
Stormwater* - 
Real case 

8 hidden layers 

Total rainfall, Max. Rainfall in 
1 - 3 hours, rainfall intensity, 
statistics (SD, Skewness, 
kurtosis), inter-event time (9) 

Total accumulative overflow (1) ~99% 
Mean relative errors 
between 2% - 62% 

(Keum et al., 
2020) 

Flood 
prediction 

Seoul, South 
Korea 

[7.4 𝑘𝑚2] M 
Stormwater* - 
Real case 

ANFIS 
Rainfall(t-1), Volume (t-1), 
Building coverage ratio 

Volume (t) 99%* NSE (0.959)* 

(Kim et al., 
2019) 

Flood 
prediction 

Gangnam 
area, Korea 

[7.4 𝑘𝑚2] M 
Stormwater* - 
Real case 

SVNARX and 
SOFM 

Accumulative rainfall Overflow at nodes (103) 98.50% NSE (0.6 - 0.94) 

(She & You, 
2019) 

Outflow 
prediction 

Tianjin, 
China  

33 / [0.1314 
𝑘𝑚2] 

S 
Real case with 
synthetic data 

Radial Basis 
function and 
NARX 

Rainfall intensities (6) Drainage outfall (1) Not reported SSE (0.273) 

(Berkhahn et 
al., 2019) 

Flood 
prediction 

Anonymous 
1224 and 
299 

L, I 
Stormwater* - 
Modifications 
of real cases 

1 - 4 hidden 
layers 

Precipitation intensities every 
5 minutes (24 for a 2h rain 
event) 

The maximum water level at different 
water cells 

NA RMSE (<0.35 cm) 

(Chiang et 
al., 2010) 

Flood 
prediction 

Yu-Cheng, 
Taiwan 

[16.45 𝑘𝑚2] I 
Stormwater* - 
Real case 

RNN with 1 
hidden layer, 3 
neurons 

Registered water level and 
precipitation at time t (4) 

Water level at time t+n (1) NA 
NSE (>0.97), CC (>0.93), 
NRMSE (<0.26) 

LFPB 
complement  

(Bermúdez 
et al., 2018) 

Surface flood 
volume 
estimation  

Ghent, 
Belgium  

6025 / 
[27.50 𝑘𝑚2] 

L 
85% Combined 
- Real case  

Ensemble of 
ANNs 

Rainfall-runoff volumes 
aggregated over 10 and 30 
min windows and volume in 
the underground system of 
the closest storage cell (3) 

Presence of flooding (1) and 
magnitude (1) 

104x faster* NSE (~0.9) but variable 

(Wolfs & 
Willems, 
2017)  

Sewer water 
quantity 
simulation 

Ghent, 
Belgium 

6025 / 
[27.50 𝑘𝑚2] 

L 
85% Combined 
- Real case  

 
Volumes between two sub-
catchments (2) 

Flow (1) 106x faster* NSE (0.95 in average) 

(Vojinovic et 
al., 2003) 

Wet weather 
flow prediction 

Catchment 
in Auckland, 
New 
Zealand 

[1.07 𝑘𝑚2] S 
Combined and 
Separated - 
Real case 

Radial Basis 
function 

Error, rainfall, model output 
(1 - 3) 

Error estimation of flow (1) NA 
Improvements of 15 - 
26%  

 193 

Notes: * denotes information not explicitly mentioned in the paper; ‘Sk’ denotes a skeletonized network.  194 

Acronymns: Small (S), Medium (M), Intermediate (I), Large (L); Correlation coefficient (CC). Mean squared error (MSE). Nash Sutcliff Efficiency (NSE). Root mean squared error 195 

(RMSE). Mean absolute error (MAE). Squared sum of error (SSE).196 
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3.1 Metamodel Purpose  197 

Figure 1 shows that the two main application categories for metamodels are optimisation (48%) 198 

and real-time applications (32%), with several examples for both WDSs and UDSs. Metamodels 199 

have been also used, although to a lesser extent, for conducting uncertainty analyses, system state 200 

estimation, and to complement LFPB surrogates. The last one refers to the use of an RS method 201 

(e.g., linear approximations, polynomials, ANNs) to complement an LFPB metamodel by 202 

replacing a slow component or fine-tuning the outputs for better accuracy, e.g., surrogating water 203 

exchange between sub-catchments with ANNs (Wolfs & Willems, 2017), or correcting the 204 

predictions of a hydrodynamic model of wastewater flows (Vojinovic et al., 2003). In all cases, 205 

metamodels are used to reduce the computational efforts required for the hydraulic simulation of 206 

these complex systems, which may severely compromise the feasibility of the applications.  207 

 208 

  209 

Figure 1 Types of applications that use machine learning metamodels for Water Distribution 210 

Systems (WDS) and Urban Drainage Systems (UDS) 211 

Optimisation usually employs population-based algorithms (e.g., genetic algorithms, particle 212 

swarm, ant colony optimisation, among others) which require multiple runs. These algorithms 213 

create an initial population, and they improve the obtained solutions through continuous iteration. 214 

Usually, these algorithms employ mechanisms inspired on genetics, such as crossover and 215 

mutation for finding (near) optimal solutions. Evolutionary algorithms are the most well-216 
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established metaheuristic for solving water resources problems (Maier et al., 2014); nonetheless, 217 

they tend to be highly computationally intensive.  218 

Optimisation can be used to formulate and solve multiple UWN problems. This explains the high 219 

number of metamodeling publications dedicated to this topic. A popular use of MLSMs for 220 

optimisation in UWNs is for the (re)design of the networks. For example, applications that use 221 

MLSMs include changes in pipe diameters and chlorine dosing rates (Andrade et al., 2016; Bi & 222 

Dandy, 2014; Broad et al., 2005a; Sayers et al., 2019) or operation of storage tanks and pumps 223 

(Broad et al., 2010; Martínez et al., 2007; Salomons et al., 2007). The goal for design is to select 224 

which new system components to install or identify existing ones to substitute. For operation, the 225 

aim is to find an optimal policy on how to operate the existing components. Regardless of the task, 226 

the goal is to maximize the performance of the system described by the objective function(s) and 227 

a number of constraints (e.g., physical, regulatory, economic, among others). In addition, other 228 

problems such as water quality model calibration (Dini & Tabesh, 2017), renovation planning 229 

(Dini & Tabesh, 2019), and sensor placement (Behzadian et al., 2009) have resorted to 230 

metamodels.   231 

Although MLSMs accelerate optimisation algorithms, they come with a series of drawbacks. First 232 

of all, these models need training data (simulation examples) to calibrate their internal parameters 233 

(e.g., the weights and biases in a neural network) to replicate the RS. Generating a sufficiently 234 

large training dataset can be a time-consuming process, and data sufficiency depends on the 235 

complexity of the input-output mapping and it can not be known a priori. Secondly, the training 236 

process is another optimisation process in itself, with its own hyperparameters (e.g., learning rate, 237 

number of training epochs, parameter initialization, among others depending on the optimiser) and 238 

its convergence to a desired performance is not guaranteed. Furthermore, errors of approximation 239 

in the RS can mislead the optimisation to suboptimal or unfeasible solutions as noted by Broad et 240 

al. (2005b), especially in zones near the boundaries or outside the training range. 241 

When comparing water distribution with drainage systems, it is clear that the applications of 242 

optimisation in UDSs are less diverse. The reviewed papers focus on the optimisation of 243 

stormwater sewers’ design with Low Impact Development (LID) management (Latifi et al., 2019; 244 

Raei et al., 2019; Seyedashraf et al., 2021) or for flood mitigation (Huang et al., 2015; W. Zhang 245 

et al., 2019). Meanwhile, WDS optimisation is more varied, with applications to operation, 246 

calibration, sensor placement, and long-term planning. This difference partially depends on the 247 

stochastic nature of the rainfall events driving the functioning of combined and stormwater sewers, 248 

which in turn favour real-time control over the optimisation of the operations, typical of WDS. 249 

Also, the research done on MLSMs for optimisation in UDSs is rather recent (2015 or later) 250 

compared to WDS (from 2005). Applications in UDSs that typically do not use metamodels can 251 

benefit from the experience of tackling similar problems in the context of WDSs. Examples include 252 

sensor placement (Sambito et al., 2020), calibration (Tscheikner-Gratl et al., 2016), and 253 

optimisation of operation (van Bijnen et al., 2017).  254 

In contrast to off-line optimisation, real-time applications require accurate answers with limited 255 

computational time. Real-time operation uses the current state of the system to modify its 256 

behaviour and improve its functioning in future time steps. In the case of UDSs, they are usually 257 

designed to retain stormwater for a certain period, to avoid combined sewer and stormwater 258 

outflows (Rosin et al., 2021; She & You, 2019) or to reduce flooding (Berkhahn et al., 2019; 259 
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Chiang et al., 2010; Keum et al., 2020; Kim et al., 2019; Kim & Han, 2020). Whereas, in WDSs, 260 

the objective is to deliver high-quality drinking water while minimizing pumping costs (Pasha & 261 

Lansey, 2014; Rao & Alvarruiz, 2007; Rao & Salomons, 2007).  262 

In the case of WDSs, the reviewed real-time applications concern optimisations, in which MLSMs 263 

are essential to reduce the computational time for evaluating the fitness function used by an 264 

evolutionary algorithm. Consequently, these applications suffer from the drawbacks already 265 

mentioned for optimisation with MLSMs. Real-time applications for UDS concern Real-Time 266 

Control (RTC), where operation and validation relies on real data (Beeneken et al., 2013; 267 

Langeveld et al., 2013; Lund et al., 2018). This is an issue since the usual targets are infrequent 268 

events, i.e., outflows and flooding; therefore, the availability of records may be scarce or non-269 

existent. 270 

The third application in order of frequency is uncertainty analysis of the UWNs’ performance. 271 

These analyses are usually carried out via multiple simulations to test the response of the system 272 

to multiple possible scenarios or uncertain input conditions, leveraging the computational 273 

efficiency of SMs. In WDSs, ANNs have been used to replace computationally expensive models 274 

for accelerating Monte Carlo analyses. For example, Yoon et al. (2020) performed a seismic risk 275 

assessment of a water distribution network considering earthquakes of different magnitudes and 276 

epicentres. In UDSs, Beh et al., (2017) used metamodels to directly estimate reliability and 277 

vulnerability metrics. In this case, resorting to MLSMs was crucial for the feasibility of the study. 278 

Otherwise, the explicit robustness assessment would have been impossible in practice. Creating a 279 

metamodel for uncertainty analysis entails having a model with explicit robustness as output, or 280 

generating a training dataset with multiple runs per example. However, the former is rarely the 281 

case and the latter consumes a large quantity of computational budget. 282 

Other works tested the ability of ANNs to estimate the state of the system at ungauged points with 283 

measurements from a limited amount of sensors.  Lima et al. (2018) and Meirelles et al. (2017) 284 

used recorded pressure at strategically located sensors and an ANN to estimate the pressure of all 285 

the nodes in a WDS. SMs for state estimation not only decreases the degrees of freedom for the 286 

addressed calibration problem but, according to the authors, they could also be used to detect 287 

anomalies and predict the current state of the network in real-time. Nevertheless, in these studies, 288 

the pressure in all the nodes is known since the MLSM is trained on simulations. For applications 289 

depending on sensor data, only a few nodes would be known and it would not be possible to 290 

estimate the error for the ungauged nodes. One alternative to handle this issue is to use some 291 

sensors for training and others for testing. This way, it is possible to estimate the error at the unseen 292 

nodes. However, this process reduces the training data available, and it is not clear how 293 

representative the testing sensors are with respect to the remaining ungauged nodes. This may lead 294 

to unjustified trust in the model and consequent errors.  295 

Metamodels for UDSs have also been used to complement LFPB surrogates, either to approximate 296 

some parts of the model (e.g., the most time-consuming) or to correct the predictions produced by 297 

a model. Wolfs & Willems (2017) created a modular approach in which they replaced the hydraulic 298 

simulation of drainage flow between subcatchments with an ANN, this was part of a bigger 299 

framework in which the goal was to simulate outgoing discharges for a given rainfall event. 300 

Similarly, Bermúdez et al. (2018) employed an ensemble of ANNs to accelerate a component of 301 

an LFPB model, used to estimate the occurrence and magnitude of flooding. On the other hand, 302 
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Vojinovic et al. (2003) used  MOUSE (MOdel for Urban Sewers), a hydrodynamic process model, 303 

to estimate flows within wastewater pipes during wet weather periods and trained a neural network 304 

to compensate for the output errors (residuals), leading to an overall increase in accuracy. Even 305 

though this hybrid approach bridges both metamodeling practices, the LPFB metamodel inherits 306 

the RS problems, e.g., database creation and training difficulties.  307 

In summary, SMs in water networks have been primarily used for optimisation and real-time 308 

applications due to their ability to quickly evaluate outputs while remaining sufficiently accurate. 309 

This avoids running computationally expensive hydrodynamic models. Nevertheless, the use of 310 

these metamodels is not bound to these two applications. They can replace the original model for 311 

uncertainty analyses and state estimation, or help the original model by correcting outputs or 312 

approximating computationally expensive components.  313 

3.2 Case studies 314 

Figure 2 shows the number of case studies analysed in the reviewed literature. In WDSs, each 315 

paper usually presents two or more networks. Since the papers introduce new problem 316 

formulations or methodologies, the authors apply them to different networks to prove that the 317 

methods work independently of the choice of the system. Studies in optimisation usually follow a 318 

common pattern where preliminary trials are done on small benchmark networks before 319 

proceeding with implementation in bigger real case scenarios. This pattern is repeated in all the 320 

cases, whether it is on the same paper or in sequential papers, as in the case of the POWADIMA 321 

project by Martínez et al., 2007; Rao & Alvarruiz, 2007; and Salomons et al., 2007. In the cases 322 

of real-time applications, the networks were usually modified benchmarks of medium size. For 323 

applications in uncertainty analysis and state estimation, the networks were real cases of large size. 324 

The reviewed papers for UDSs, in contrast to WDS, present only applications with real networks, 325 

some of them with modifications (e.g., Berkhahn et al., 2019; She & You, 2019).  326 

 327 
 328 

 329 
Figure 2. Case study type distribution for Water Distribution Systems (WDS) and Urban Drainage 330 

Systems (UDS) 331 
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On UDSs, in terms of size, most of the papers do not report the number of pipes. Consequently, 332 

the extent of the system was often assessed by the reported area. This suggests that when MLSMs 333 

are used, the water network is set aside and only the relation input-output is considered. The extent 334 

of the case study (number of pipes or area) is a proxy of the complexity of the case studies which 335 

is the relevant dimension. Nevertheless, some applications can involve medium-sized networks 336 

but with high complexity (e.g., different control elements, multiple objectives, changing scenarios, 337 

among others). Besides the particular characteristics of each network and application, the 338 

metamodeling process was the same regardless of the size of the network. However, the required 339 

time for creating the database and training the model increases with the complexity of the case 340 

study. So far, the procedure does not vary as a function of the complexity of the case study; 341 

nonetheless, considering modifications to the training process or the metamodels based on the 342 

complexity of the case study could yield better approximations to the RSs. 343 

Since each system has a different area and number of pipes, we proposed the categorization in 344 

Table 1. The ratio between the number of small networks and the rest is noticeably bigger in WDSs 345 

than in UDSs due to the use of benchmarks to test the methodologies. Even though the use of 346 

metamodels is justified in larger networks, its use decreases as the size increases. 347 

3.3. Metamodelling Methods 348 

Regardless of the water network type and metamodel applications, the preferred method for 349 

metamodeling is the ANN. ANNs are computational models based on the complex interaction of 350 

multiple individual components (i.e., units or neurons). Each unit performs the same procedure: 351 

receiving information, executing an operation (usually a linear transformation of the inputs), 352 

applying a non-linear transformation to the result (e.g., hyperbolic tangent, sigmoid, rectified linear 353 

unit), and sending the information to the next connected units. Each of the units has trainable 354 

parameters that determine the relative weight of each of the inputs. Units are arranged in layers; 355 

each ANN has at least one input layer and one output layer, where the inputs are presented to the 356 

network and the computed outputs are collected, respectively. Between these layers, there are one 357 

or more hidden layers, where most of the information processing takes place. ANNs learn to 358 

approximate the input-output relationships in the data by tuning the trainable parameters (i.e., 359 

unit’s weights and biases) during the backpropagation learning process, which is usually carried 360 

via gradient descent and by computing the partial derivatives of the hidden layers using the chain 361 

rule of derivation. For a complete review of ANNs, the reader is redirected to Goodfellow et al. 362 

(2016) for a general resource and Shen (2018) for a specific review for water resources scientists. 363 

The analysis of the literature shows that the MultiLayer Perceptron (MLP) is the most widely used 364 

MLSM. The MLP is a specific ANN architecture that consists of a series of layers in which all the 365 

units of a layer are connected to all the neurons in the previous and next layer; hence it is also 366 

known as the fully connected ANN. Most of the reviewed studies in this paper used this 367 

architecture with one hidden layer; mainly due to its simplicity, high speed, and accuracy. Still, 368 

the ANNs can be customized to increase the accuracy of certain applications. This practice of 369 

creating deep networks, i.e., with more layers and units per layer, is part of modern deep learning 370 

(Goodfellow et al., 2016).  371 

In WDSs, there are two cases of variations on the number of layers: Sayers et al. (2019) used two 372 

hidden layers for optimisation of design while Yoon et al. (2020) used 15 layers in their ANN to 373 
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estimate the network performance after earthquake events. Deep networks may increase 374 

performance but they are more prone to overfitting, and require more training time and examples. 375 

Also, it is not possible to know the number of layers and units that yield the best performance. For 376 

example, Modesto De Souza et al., (2021) tested multiple architectures of an MLP for pressure 377 

estimation in a WDS. Their results suggest that the optimal number of layers is two but this can 378 

vary for other applications. On the other hand, UDSs present more variation on the implemented 379 

MLPs including varying the number of hidden layers (Berkhahn et al., 2019; Kim & Han, 2020; 380 

Raei et al., 2019), changing the activation function to a radial basis function (She & You, 2019; 381 

Vojinovic et al., 2003), and adding fuzzy logic (Keum et al., 2020).  382 

As previously stated, MLPs are the most popular MLSM. This is not surprising due to its ease of 383 

implementation and success in multiple applications, as well as hype from the AI community. 384 

However, the MLP, and in general, the ML methods present several drawbacks. As Razavi et al. 385 

(2012a) indicated in their numerical assessment of metamodelling strategies in computationally 386 

intensive optimisation, “the likelihood that a metamodel-enabled optimizer outperforms an 387 

optimizer without metamodelling is higher when a very limited computational budget is available; 388 

however, this is not the case when the metamodel is a neural network. In other words, neural 389 

networks are severely handicapped in limited computational budgets, as their effective training 390 

typically requires a relatively large set of design sites, and thus are not recommended for use in 391 

these situations.”. Therefore, the use of an ANN may even harm the development of an application. 392 

In that same work, the authors show that there are cases for which it is better to not use a metamodel 393 

and go with the original model instead. Consequently, they recommend further research on 394 

determining where it is worth pursuing a metamodeling approach. In recent years, the widespread 395 

availability of parallel computing (e.g., cloud computing and graphics processing unit) and user-396 

friendly Deep Learning libraries, such as Pytorch (Paszke et al., 2019), have largely reduced this 397 

problem.  398 

Even though using MLPs is the most popular choice from the set of ML tools, it is not the only 399 

one. For example, Pasha & Lansey, (2014) used support vector machines (SVMs) for improving 400 

the real-time estimation of water tank levels and thus decreasing pump energy consumption in a 401 

WDS. In UDSs, Chiang et al. (2010) implemented an early form of recurrent neural network 402 

(RNN) for water level predictions at gauged and ungauged sites. According to the authors, their 403 

decision of using this architecture was motivated by its increase in performance. However, the 404 

main disadvantages of this architecture lies in training difficulty (Pascanu et al., 2013) and 405 

computational costs (Strubell et al., 2020). 406 

Similarly, Kim et al. (2019) and She & You (2019) leveraged the time structure in rainfall time 407 

series for real-time flood prediction with a nonlinear autoregressive network with exogenous 408 

inputs (NARX) neural networks. This architecture is a feedforward ANN that calculates the next 409 

value of a time series as a function of both past input and output values. In each study, the authors 410 

tailored the model to the conditions of their problem. Kim et al. (2019) added a second verification 411 

step to account for values that incur serious inundation damage and She & You (2019) 412 

implemented a NARX neural network for the monotonic parts of a hydrograph (i.e., ascending and 413 
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descending stages) and a radial basis function MLP for the non-monotonic interval (i.e., around 414 

the peak).  415 

3.3.1 Metamodel inputs and outputs 416 

The inputs to the metamodels in UWN applications are usually decision and explanatory variables 417 

while the outputs can vary based on the scope of the problem. Based on the inputs used in the 418 

reviewed papers, there is not a single consistent variable across the different applications in any of 419 

the water networks; they are problem-specific. For example, flood prediction in UDSs relies on 420 

rainfall time series, while the design of WDSs relies on inputs such as pipe diameters and chlorine 421 

rating doses. On the other hand, the output of the metamodels are usually state variables of the 422 

UWN or performance metrics. For example, a metamodel can be developed to estimate a pressure-423 

dependent metric, such as the resilience Network Resilience Index (NRI) (Prasad & Park, 2004), 424 

or it can output the pressures in a WDS, used to compute the NRI. Other examples of surrogated 425 

components are water level in storage units or pump energy consumption. Other examples of 426 

overall metrics are sampling accuracy (Behzadian et al., 2009), the economic cost of interventions, 427 

greenhouse gases, reliability, and vulnerability (Beh et al., 2017).  428 

Determining the output and scope of the metamodel entails deciding if the metamodel should 429 

emulate the model or one of the objectives computed after the hydraulic simulation. The reader is 430 

referred to Broad et al. (2015) for a complete methodology about metamodel scope for risk-based 431 

optimisation and its application to WDS design. In contrast, there are no applications for objective 432 

approximation using MLSMs in UDS.  433 

By inspecting the dimensions (i.e., number) of the inputs and outputs, a converging trend is visible: 434 

the number of inputs is higher than the number of outputs. This is no surprise since most of the 435 

studies estimate one or two target values that summarize the desired state of the network (e.g., 436 

overall performance, minimum chlorine concentration, total flooding volume) with multiple 437 

decision and state variables. Nevertheless, some authors have used fewer variables to produce 438 

more outputs. For example, in WDSs, Lima et al. (2018) and Meirelles et al. (2017) estimated 118 439 

pressure nodes with only known pressure at 3 nodes, while Kim et al. (2019) predicted urban floods 440 

in multiple nodes with a single rainfall time series.  441 

On the dimensionality of ANNs, having multiple inputs and outputs allows accounting for more 442 

complexity in the applications; nonetheless, they both come with downsides. For the input 443 

dimensions, Razavi et al. (2012b) argue against using a large number of explanatory variables 444 

(>20) since the minimum number of training examples can be excessively large. On the other side 445 

of the model, the number of output variables also is recommended to be low. In theory, the number 446 

of output variables is not restricted; moreover, it is one advantage of ANNs over other RS 447 

metamodels as they can act as multi-output emulators. However, an ANN with multiple outputs 448 

will seek to find a compromise between the errors of all the outputs, which might hurt the overall 449 

accuracy of the MLSM. For this reason, an alternative approach is to train an ANN for each output 450 

variable. Since each objective has a metamodel, the accuracy increases but also does the training 451 

time. As noted by Andrade et al. (2016), considering one multi-output ANN or multiple ANNs 452 

with single output depends on the problem at hand. The size of the water network is the most 453 

important factor since, for small systems, the results with one or multiple ANNs are equivalent in 454 
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performance. In addition, the choice of one model or the other should consider desired accuracy, 455 

available metamodeling time, and required speed of execution.  456 

3.3.2 Metamodel Performance 457 

Regarding the performance of a metamodel, the most important characteristics are computational 458 

speed and prediction accuracy. The computational saving is reported as a reduction of the time that 459 

the application would have taken by running the original model. This quantity was reported by 460 

nearly half of the reviewed studies and it was on average higher than 90%, most of the time over 461 

98%. This is a satisfactory indication since the purpose of these SMs is to reduce the computational 462 

burden of intensive applications. Nonetheless, around half of the studies did not report this saving. 463 

Although quantifying the computational saving is not always easy, it is recommended for future 464 

researchers who use a metamodel to consider such an estimate. Since the design and training time 465 

could be longer than the expected saved time, having an estimate of the potential saving aids in 466 

the decision of making a metamodel. 467 

In terms of prediction accuracy, there are multiple indicators used by the researchers to assess the 468 

fidelity of the ML algorithm to the original model. These common metrics include root mean 469 

squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error (MAE), 470 

and Pearson correlation coefficient. This multitude of metrics hinders a straight comparison 471 

between models or applications, but overall it is possible to observe good fittings between the 472 

metamodel and the original model. It is worth noticing that the metamodel will reflect reality as 473 

much as the original model is capable of doing so. Metamodels are second-level abstractions and 474 

therefore may only be as good as the original model in terms of accuracy.   475 

In addition to the previously mentioned criteria, Razavi et al. (2012b) include development time, 476 

and Asher et al. (2015) add surrogate-introduced uncertainty as assessment metrics. For these 477 

criteria, seven of the reviewed papers calculated or referred to the time it took to train the models 478 

and only five performed an analysis on the metamodels’ robustness. Given the versatility and 479 

multipurpose nature of the SMs, there are other performance indicators, e.g., ease of development, 480 

explainability, generalization, or re-trainability.  Along these lines, the reviewed papers disregard 481 

these indicators since the development of the metamodel is specific for each case study and the 482 

implementation goes unnoticed. These indicators are secondary in comparison to computational 483 

saving and accuracy. Both metrics constitute the most relevant metrics used in the literature, 484 

including this review. 485 

4 Current issues in metamodelling 486 

Based on the current status presented in the previous section the following issues were identified.  487 

4.1. Basic applications 488 

MLSMs have been used to tackle various issues, namely, optimisation, uncertainty analyses, real-489 

time applications, state forecast, and aiding LFPB metamodels. Although these generally 490 

addressed relevant problems, each of the reviewed papers had a basic framing, i.e., the inputs deal 491 

with few design or input variables (e.g., diameters, chlorine dosage, accumulated rainfall) and the 492 

outputs are usually summary variables (e.g., critical pressure, chlorine residual, flood volume). 493 

This approach is comprehensible for several reasons. First, most of the time the simplifications 494 
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still retain sufficient problem information to find an adequate solution. Second, it avoids problems 495 

related to high dimensionality in the inputs and outputs. Lastly, it allows researchers to introduce 496 

their metamodeling method without interference from excessive complexity.  497 

Although these frames are effective, they could result simplistic for the complexity of water 498 

networks. Considering a small set of interventions may discard types and combinations of 499 

interventions (e.g., allowing not only for change in diameters but also adding pumps or doing both 500 

at the same time). Furthermore, other changes in the network or their components, or even 501 

interactions with other city systems could be explored. However, these are rarely considered since 502 

they represent a challenge for traditional RS metamodels; current MLSMs are very specific to the 503 

cases in which they are trained on. Because of this, new approaches are required, mainly in 504 

optimisation and uncertainty analysis.  505 

As seen in section 3, the most popular application for MLSMs is optimisation. In this application, 506 

multiple authors (Beh et al., 2017; Doorn, 2021; Kapelan et al., 2005; Razavi et al., 2021) have 507 

remarked on the importance of considering new objectives. For example, robustness for designing 508 

water systems, especially under deep uncertainty, requires considering multiple scenarios for 509 

which is not possible to assign a probability or ranking. This analysis is desirable because water 510 

networks are systems with long lifespans of service. Nonetheless, objectives like robustness tend 511 

to be more computationally intensive; therefore, their need for metamodels increases. 512 

A relevant missing layer of complexity is uncertainty analysis, especially for UDSs. The current 513 

practice to design the system is to use a single benchmark storm and assume it is representative of 514 

the future rain events the system will face. However, two UDSs with similar performance during 515 

a design event could behave very differently for other rainfall patterns. According to Ng et al. 516 

(2020), the final design considering a single strong storm does not guarantee optimal performance 517 

during long mild storms and for a succession of frequent small events. Naturally, the authors 518 

recognize that performing a design considering multiple events would increase the computational 519 

effort but also suggest the implementation of SMs for dealing with this difficulty. 520 

4.2 Case studies: Lack of benchmarking with complex networks 521 

Benchmark water networks are open access datasets that contain the necessary information to 522 

create models of a system. It consists of the topology of the network, its components, and 523 

depending on the system it could incorporate leakages, demand patterns, cyber-attacks, rainfall, or 524 

surveillance data. Benchmarks are used as reference points to compare the performance of models 525 

and algorithms. Here, it is necessary to distinguish between synthetic and real data. Even though 526 

the synthetic data allow to implement and compare algorithms, they may not reflect all the 527 

processes that real data can account for.  528 

There is a clear difference between types of infrastructure in the number of used networks since 529 

benchmark networks in UDSs are not as available as in WDSs. In water distribution, there is a set 530 

of water networks called Water Distribution System Research database. The ASCE Task 531 

Committee on Research Databases for WDS created this database which is hosted by the 532 

University of Kentucky (2013). There are benchmarks for multiple problems in categories such as 533 

network expansion, operation, and design. This allows modellers to easily obtain data for the 534 

development and comparison of algorithms in networks of different sizes. On the other hand, there 535 
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is no consolidated set of benchmark networks for UDSs, let alone an entire structured database. 536 

This is attributable to factors such as the difficulty of taking measurements in sewer environments 537 

and, according to Pedersen et al. (2021), the little interest of utility companies in making the 538 

datasets publicly available. Consequently, all the applications on UDSs were entirely developed 539 

for real cases, which is positive for the bridging between the theoretical approaches and the 540 

practice, but hampers the development of algorithms on the systems, due to the difficulty of 541 

comparison and the process of accounting for particularities of each system.  542 

Regarding the size of the case studies, most of the systems in which the MLSMs were used were 543 

medium or small. Metamodels are most useful in problems with large computational times, that 544 

is, in applications with large water networks. In the case of WDSs, a common practice to test the 545 

effectiveness of a method is developing a metamodel for a small benchmark network and then 546 

using the same steps for creating a metamodel in a big real case. Even though this practice is 547 

reasonable, it assumes the response surface of both networks is comparable or similar. However, 548 

this is not necessarily the case as reported by Andrade et al. (2016) who noted contrasting 549 

accuracies between big and small case studies when training metamodels. Exploring solution 550 

spaces is already an issue when using metamodels, independent of the network, as reported by 551 

Broad et al. (2005), but large networks represent additional challenges that increase in complexity 552 

in a non-linear manner.  553 

4.3 Machine learning and multi-layer perceptron limitations 554 

Although the MLP is not the only ML technique, it is the most popular one among MLSMs. Given 555 

that its structure allows it to address multiple types of problems, it has become a one-size-fits-all 556 

model. Nevertheless, it presents multiple issues, namely, the curse of dimensionality, black-box 557 

nature, and rigid structure. These three shortcoming respectively 1) hinder their use for high 558 

dimensionality problems, 2) limit confidence in their approximations, and 3) prevent the 559 

transferability of trained models across different case studies. 560 

4.3.1 Curse of dimensionality - Metamodeling time 561 

The curse of dimensionality indicates that for a certain level of accuracy, there is an exponential 562 

increase in the required amount of data as the dimensions of a problem increase (Keogh & Mueen, 563 

2017). Naturally, this problem can be addressed by reducing the number of input dimensions (i.e., 564 

fewer explanatory variables) using prioritization based on experience, knowledge of the task, or 565 

some automatic procedure such as principal component analysis (PCA). However, as noted by 566 

Maier et al. (2014), for real-world problems reducing the number of input features may not be a 567 

satisfactory solution because it usually leads to an approximation that could exclude optimal zones 568 

and prevent the algorithms to find optimal solutions. Given this situation, searching for solutions 569 

on the algorithmic side may yield better answers. 570 

The SMs have worked adequately so far but future metamodels are likely to increase in complexity. 571 

This is either due to an increase in the complexity of UWNs or an increase in the number of input 572 

(more design choices/explanatory variables) or output (more objectives) dimensions. Both drivers 573 

increase the size of the metamodels and consequently the number of training examples. Since the 574 

original models are already expensive to run, creating a large training dataset might be unfeasible 575 

in the first place. The metamodeling time would become the obstacle. This time is usually 576 
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disregarded since some authors consider it not relevant compared to the posterior computational 577 

gain in the application. Nevertheless, this time is important in high dimensional search spaces, as 578 

noted by Razavi et al. (2012b), since the number of design samples required to train the metamodel 579 

could be already prohibitively large.  580 

4.3.2 Black box nature - Deterministic and obscure outputs 581 

Two of the most recurrent criticisms of ML models are their lack of uncertainty estimation and the 582 

lack of their transparency, i.e. little or no ability to explain the results they obtain. Both are 583 

overlooked aspects of metamodeling in the context of UWNs. The MLSMs return a unique answer 584 

without uncertainty bands or possibilities to explain the combination of inputs that drove to the 585 

final outputs. For SMs, these issues are not major concerns; nevertheless, their inclusion aids the 586 

applications in which the SMs are used.  587 

Regarding uncertainty estimation, a few papers (Raei et al., 2019; Rosin et al., 2021; She & You, 588 

2019; W. Zhang et al., 2019) estimated the effect of including a metamodel in their respective 589 

application. Not accounting for this uncertainty can lead to bad approximations of the actual 590 

response surface and suboptimal or unfeasible solutions. Authors have dealt with this difficulty by 591 

performing sensitivity analysis (e.g., Raei et al., 2019) or training multiple models in parallel with 592 

slightly different datasets and averaging the outputs of the models. For example, Rosin et al. (2021) 593 

developed a committee of ANNs with this approach. However, this analysis requires extra 594 

considerations which may increase the metamodeling time. Some guidelines have been given for 595 

the pre-treatment (Broad et al., 2015) and post-treatment (Broad et al., 2005a) of these SMs but 596 

there is still a lack of focus on improving the management of uncertainty during treatment, i.e., 597 

developing a model that directly considers uncertainty. Algorithms in the branch of robust ML 598 

may contribute to aid in the direct incorporation of metamodel uncertainty quantification whether 599 

it comes from the data (Wong & Kolter, 2019) or the model (Loquercio et al., 2020) .  600 

Although robust learning allows estimating the uncertainty of a result, it cannot explain why. This 601 

is the area of explainable ML. For water networks’ SMs, being able to explain the results would 602 

help to understand the relationship between the decision variables and the objective function for 603 

the particular network that is being surrogated. For example, understanding which pipes (or a 604 

combination of them) play a key role in the resilience or flooding in a water network. There is a 605 

growing interest in the AI community towards explainable models to gain insights (Bhatt et al., 606 

2020), ensure scientific value (Roscher et al., 2020), and develop trust in the outcomes of ML 607 

models (Dosilovic et al., 2018). 608 

4.3.3. Rigid architecture - Specific case use 609 

One disadvantage of MLSMs is the high degree of specialization in the trained metamodel. As 610 

seen before, these metamodels achieve high accuracies in the data for which they were trained. 611 

However, once they are trained, they become specific and rigid. Their structure limits its use for 612 

other tasks in the same system or similar applications in other water networks. The metamodel can 613 

be run several times on the same water network but doing the same operation in a different system 614 
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requires a new metamodel, which should be trained from scratch. This is not desirable since the 615 

training process could consume most of the computational budget, especially in large case studies.  616 

One solution is to leverage the training process of other models with  transfer learning to decrease 617 

the number of examples to train a new model. Situations for which transfer learning is desirable 618 

are changes in the water network composition, similar system metamodeling, and change in the 619 

behaviour of the surrogated system. Changing components of the system accounts for scenarios 620 

when components (e.g., pipes, pumps, or tanks) are added to or removed from the system. Even 621 

though the system changes, it is still related enough to leverage a pre-trained model on that water 622 

network. In a similar way, two networks can share enough resemblance (e.g., a subsystem of 623 

another network, two skeletonized networks, or two networks with similar topology or geography) 624 

that it makes sense to use an SM from one as a pre-trained SM for the other. Lastly, when the 625 

system changes and the metamodel no longer applies is a challenge, also known as concept drift, 626 

that can be addressed using transfer learning. Here the two related water networks are the same 627 

but in two different periods. 628 

4.4. Gaps in Knowledge 629 

Based on the above critical analyses of metamodels and the issues identified the following key 630 

gaps in knowledge are summarised here:  631 

1. Lack of depth on optimisation of complex objectives and uncertainty analysis for water 632 

networks using MLSMs. There are still additional and more complex objectives that can be 633 

optimised with the aid of MLSMs, for instance, robustness and interventions under deep 634 

uncertainty.  635 

2. Lack of benchmark water networks, especially for UDSs and complex cases. First, this 636 

hinders the development and comparison of algorithms across studies, and second, these 637 

metamodels still lack research on the changes of the response surface with the increase in the 638 

complexity of the water system, especially for large systems 639 

3. Current MLSMs’ limitations prevent advanced metamodeling applications. MLSMs can 640 

easily grow in size when the complexity of the response surface increases, most of the applications 641 

do not consider the uncertainty added by the metamodel, and its structure makes it rigid and not 642 

(re)usable for other cases. 643 

5 Research directions 644 

Based on the identified gaps, three main lines for future research are suggested. They consider the 645 

current and future needs in applications on UWNs as well as the potential of MLSMs to meet them. 646 

5.1 Advanced applications 647 

The current needs for adaptable water infrastructure are based on drivers such as growing 648 

demographics, urbanization, and climate change. As indicated in the UN-Water report “Water and 649 

Climate Change”, taking adaptation and mitigation measures benefits water resources 650 

management and improves the provision of water supply and sanitation services. In addition, it 651 

contributes to combat both causes and impacts of climate change while contributing to meeting 652 
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several of the Sustainable Development Goals (UNESCO, 2020). In UWNs, multi-objective 653 

optimisation and uncertainty analysis play a key role in the search for adaptation measures and 654 

decision making, and MLSMs can help improve and accelerate their implementation. 655 

Optimisation applications will increase in the number and complexity of the inputs and outputs. 656 

Increasing the number of inputs, i.e., decision variables and design interventions (e.g., nature-657 

based solutions), allows to explore more alternatives, consider uncertainty, or assess multiple 658 

scenarios. On the other hand, the output of the optimisation is leaning towards complex objectives 659 

such as multi-objective robustness (e.g., Kasprzyk et al., 2013), multiple technical performance 660 

metrics (e.g., Fu et al., 2013), pro-active maintenance (Kumar et al., 2018), complex water quality 661 

indicators (Jia et al., 2021), and human values (Doorn, 2021). Multi-objective optimisation allows 662 

identifying solutions balancing trade-offs among objectives, for instance, cost and resilience 663 

(Wang et al., 2015). Naturally, when considering more objectives, the computational load 664 

increases, especially when those objectives are computationally expensive (e.g., robustness). In 665 

previous phases of research on optimisation, metamodels were seen as an aid, but as optimisation 666 

gradually evolves to consider additional and more complex objectives, metamodels become 667 

indispensable (e.g., Beh et al., 2017).  668 

Regarding uncertainty analysis, it is necessary to have fast, reliable, and flexible metamodels that 669 

can adapt to the multiple conditions in which the systems are evaluated and under multiple criteria. 670 

Traditionally, simplified models have been preferred for this task;  however, RS metamodels 671 

become appealing alternatives when dealing with more complex objective functions and original 672 

models. Metamodels should play a key role in the development of frameworks for robustness-673 

driven design. This application has major implications for UDSs, since no MLSM study focused 674 

on uncertainty analysis, even when the evidence suggests the criteria for the design of these 675 

systems is not necessarily robust (Ng et al., 2020). Although uncertainty analysis entails an 676 

intrinsic increase in the computational effort, the benefits they bring outweigh the challenges it 677 

represents. According to the IPCC (2021b), UDSs are expected to receive more intense rainfall 678 

events based on climatic projections but considerable uncertainty remains. 679 

The community should further research combined RS-LPFB applications, to further integrate 680 

MLSMs with physically-based models for accelerating the underlying hydrodynamic engines. 681 

Likewise, physically-based models could be hybridized by incorporating an ML model that 682 

corrects the outputs of the original model for higher accuracy accounting for the real behaviour of 683 

the system. Looking ahead, ML algorithms could detach from the physically-based model and 684 

replace its functioning with a cheaper version to run based on increasingly available real-world 685 

data (e.g., digital twins for UWNs (IWA, 2021)).  686 

5.2 Benchmarking and large network behaviour  687 

The lack of benchmark models is a gap that was already identified by Maier et al. (2014) who set 688 

the characteristics and recommendations of valuable benchmarks, including non-trivial real-world 689 

problems with a representative range of decision problems characteristic of the water systems. The 690 

review shows that UDSs lack such benchmarks. To overcome this issue, we recommended to 691 

implement a similar approach to that of the Kentucky database, with applications such as real-time 692 

control, outflow, and flood prediction. For WDSs, it is appropriate to enlarge the current databases 693 

to account for new objectives, interventions, performance metrics, and real case examples. 694 
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Regarding metamodels, the benchmarks should also include a reference model to compare 695 

computational saving and accuracy, with suggested performance metrics, such as NSE, RMSE, or 696 

the number of model executions.  697 

As Goodfellow et al. (2016) indicate, having benchmark databases with real cases is one of the 698 

reasons why deep learning has recently become a crucial technology in several disciplines. In AI, 699 

datasets went from hundreds or thousands of examples in the early 1980s up to datasets with 700 

millions of examples after 2010. Nowadays, thanks to the increase in connectivity and 701 

digitalization of our society, a large amount of ML algorithms can be fed with the information they 702 

require to achieve high accuracy. Since the ML and DL models are dependent on their training 703 

sets, their success goes hand in hand with the size and quality of available datasets, preferable with 704 

real information. The UWNs’ research community is moving the first steps in this direction. One 705 

example concerns the UDS of the Bellinge dataset (Pedersen et al., 2021), a suburb to the city of 706 

Odense, Denmark that is now available for “independent testing and replication of results from 707 

future scientific developments and innovation within urban hydrology and urban drainage system 708 

research”. This dataset includes 10 years of asset data (information from manholes and links), 709 

sensor data (level, flow, and power meters), rain data, hydrodynamic models (MIKE urban and 710 

EPA SWMM), and other information. Similar examples are needed to enable the exploration of 711 

metamodels’ responses in networks of different characteristics (e.g., size, connectivity, slope). 712 

As for the size of the networks, further research is required to assess the response surface of large 713 

networks. Specifically, new benchmark datasets should also include complex network cases for 714 

their study. These can be large networks or medium-size cases with high complexity. Considering 715 

that the larger the network the higher the required time to generate and use the training data, 716 

significant efforts are required on this matter. Metamodels could aid in reducing the computational 717 

times that obstruct studying the response surface of large and complex systems. Nonetheless, new 718 

metamodels are required to account for the complexity of these cases and use as few training 719 

scenarios as possible. 720 

5.3 Unexplored advanced metamodeling technologies 721 

ML is the area with the highest growth in academic output in recent years. However, the field of 722 

MLSMs for UWNs has not yet considered the new tools and algorithms recently developed by 723 

researchers in fundamental AI or other applied disciplines. These advancements include DL 724 

architectures that express assumptions of the data in the ANNs for robust, interpretable, and 725 

transferrable models. This new wave of AI formalizes the attempts to add knowledge about 726 

modelled processes as well as extract knowledge from the results.  727 

5.3.1 Inductive bias – Deep learning: Graph Neural Networks 728 

The curse of dimensionality can be addressed by including inductive biases. Following the work 729 

of Battaglia et al. (2018), we define the inductive bias as the “expression of assumptions about 730 

either the data-generating process or the space of solutions”. Inductive bias can be seen as well in 731 

the architecture of the model by leveraging the inner structure of the data, which could be spatial, 732 

temporal, or relational. Exploiting the structural information of the data can reduce the number of 733 

parameters, and consequently the required training examples by parameter sharing and sparsity of 734 

connections. The data structure gives information about the similarity of the data points in a 735 
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relevant dimension (e.g., distance, time, connection). In that sense, similar data can be treated 736 

analogously (parameter sharing) and dissimilar data can remain unrelated (sparse connectivity).  737 

Inductive bias nudges a learning algorithm to prioritize some solutions over others. This allows 738 

finding high-performing solutions more easily than when it is not considered. Ideally, involving 739 

inductive bias improves the search for solutions without compromising the performance, as long 740 

as the right inductive bias is chosen; otherwise, it can lead to suboptimal performance (Battaglia 741 

et al., 2018). For example, when surrogating the pressure at the nodes of a WDS with a neural 742 

network (e.g., Broad et al., 2005; Meirelles et al., 2017) there are multiple metamodel solutions, 743 

i.e., architectures with specific parameter values that can approximate the response surface 744 

described by the training data. Nevertheless, when adding inductive bias, the set of possible 745 

solutions shrinks to a subset of solutions that comply with predefined characteristics, for example, 746 

having graph structure, following physical laws, or agreeing with measurements.  747 

The most common components in DL are fully connected, convolutional, recurrent, and, more 748 

recently, graph layers. The fully connected layers have a weak inductive bias, while each of the 749 

remaining exploits some relation or invariance in the data. The convolutional layers typical of 750 

convolutional neural networks (CNNs) leverage the regular structures in grids, such as images, 751 

and connects information according to Euclidean closeness. Recurrent neural networks (RNNs) 752 

consist of recurrent units which consecutively process data sequences, such as time series, and 753 

connects information according to sequential similarity. On the other hand, graph neural networks 754 

(GNNs) extend DL methods to non-Euclidean data, such as graphs, where entities are connected 755 

by relations or, in graph terminology, nodes connected by edges. 756 

Given their relational inductive bias, GNNs are the most suitable DL architecture for applications 757 

in UWNs, since the natural structure of these systems is a graph. Researchers have already 758 

exploited graph theoretical concepts to develop decomposition models of WDNs (Deuerlein, 759 

2008), assess the resilience of sectorized WDNs (Herrera et al., 2016), as well as identifying 760 

critical elements in UWNs (Meijer et al., 2018, 2020). Furthermore, there are already some 761 

applications of GNNs in UWNs. In WDSs, Tsiami & Makropoulos, (2021) employed this 762 

architecture for cyber-physical attack detection using a graph created from sensors in the water 763 

system. In UDSs, Belghaddar et al. (2021) applied this method to database completion of 764 

wastewater networks.  765 

This architecture operates on the graph domain, which allows it to leverage the pre-existing 766 

network topology of the data. This architecture has gained considerable attention in the last years 767 

due to its ability to include relational structure from connected entities. Even though GNNs’ 768 

outputs continue to be hardly explainable, there are efforts to generate explanations of their 769 

outputs, e.g., GNNExplainer (Ying et al., 2019). As noted by Battaglia et al., (2018), “the entities 770 

and relations that GNNs operate over often correspond to things that humans understand (such as 771 

physical objects), thus supporting more interpretable analysis and visualization”. In this way, 772 

GNNs are not entirely explainable but they are more explainable than other DL architectures. 773 

It is also possible to use combinations of layers in problems that contain more than one structure 774 

such as in the case of UWNs, which have temporal, spatial, and topological variability. An example 775 

of the application of these graph models in a civil infrastructure was developed by Sun et al. (2020) 776 

who included the spatial and temporal relations in a road network for traffic forecasting. This 777 
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infrastructure has multiple parallels with UWNs, including its graph connectivity, spatial-temporal 778 

variability, and human interaction. Another similar infrastructure with more examples can be 779 

found in power systems for which GNNs have been used in key applications such as fault scenario 780 

application, time series prediction, power flow calculation, and data generation (Liao et al., 2021). 781 

For a review in depth of GNN architecture, the reader is referred to Zhou et al. (2018).  782 

This architecture presents an opportunity to leverage the present structure of the data generated in 783 

the UWNs to decrease the number of parameters and consequently the required training data; 784 

which enables creating SMs of larger networks and many and more complex objectives. By 785 

conditioning the characteristics of the solutions, the metamodels gain the possibility to generalize 786 

to similar cases. For example, pipe changes in a network configuration could be better represented 787 

with a GNN-based metamodel. This GNN SM could be able to adjust itself without modifying the 788 

underlying structure, which would probably be required in the case of other metamodels that do 789 

not consider this inductive bias. 790 

5.3.2 Third wave of Artificial Intelligence 791 

The US Defense Advanced Research Projects Agency (DARPA, 2016) separates the different 792 

phases of AI into three waves. The first wave refers to the past approaches and the birth of AI, the 793 

second wave is the current and popular phase of high-performing black boxes, and lastly, the third 794 

wave is proposed for the future of AI with models leaning towards robustness and explainability.  795 

Robustness refers to the ability to include uncertainty in the calculation of the outputs of a model, 796 

in this way the user not only receives a deterministic answer but a range of possible values, usually 797 

represented by an expected value (e.g., mean) and a measure of uncertainty (e.g., variance). 798 

According to Gawlikowski et al. (2021), methods for estimating uncertainty in ANNs can be split 799 

into four types: single deterministic methods, bayesian methods, ensemble methods, and test-time 800 

augmentation methods. Each of these lines offers an estimation of the degree to which the neural 801 

network is certain of the output. This aspect is relevant when quantifying how likely it is for the 802 

metamodel to detach from the response surface which may cause, depending on the application, 803 

to omit optimal solutions, miss outflows, or underestimate floods. Recommended methods for 804 

implementation on MLSMs include Bayesian neural networks (e.g., Zhu & Zabaras, 2018)  or 805 

single deterministic methods, the latter is recommended based on the low additional computational 806 

burden they include. 807 

Research in explainability has also gained popularity in recent years. In the case of MLSMs, having 808 

an explainable model would allow us to better understand the response surface of the original 809 

model or the solution space. An improved comprehension of the response surface would facilitate 810 

obtaining a better insight on the behaviour of different algorithms (e.g., evolutionary methods); 811 

ultimately, contributing to what type of heuristic is best suitable in each application in water 812 

network which is a topic in which we have still very little understanding of (Maier et al., 2014). 813 

On the other hand, solution space explanation would allow gaining insight about which and 814 

components in the real system affect its performance, but most importantly, how they affect it. 815 

This could drive the interventions in the physical water network to improve its performance. 816 

Recommended models for implementation in this category are GNNs, as already reported by 817 

Tsiami & Makropoulos (2021), who were able to perform a removal analysis to quantify the 818 

contribution of each considered component (e.g., valves, tanks, and pumps) of the physical water 819 
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network to the model’s performance. Since GNNs’ structure resemble the underlying system, it is 820 

possible to relate events on the metamodel to the actual system. 821 

5.3.3 Transferrable AI models 822 

The reviewed studies in this paper presented a methodology for training a metamodel to surrogate 823 

a computationally expensive model.  Although the methodology is transferrable, meaning the steps 824 

can be followed and repeated to obtain a similar metamodel in another case study, the metamodel 825 

itself cannot be transferred to a new case study. This implies that all the metamodeling time spent 826 

on training is specific for every case. Through transferrable models, the authors may develop not 827 

only methodologies but also pre-trained SMs, which can be adapted to other cases lowering the 828 

amount of training needed for this new network.  829 

Having a transferrable model would allow training the metamodel with data not only from the case 830 

study at hand but also from other, real and synthetic cases. For example, the benchmark datasets 831 

discussed previously. This increase in available information to train on is expected to improve the 832 

performance of the metamodel or even allow it to exist for cases in which data is scarce, for 833 

example, very computationally expensive UWNs in which training examples are costly. Once 834 

again, inductive bias plays a role, since the assumptions added to the algorithm delimit a smaller 835 

solution space, the ML models can be used as pre-trained solutions for other tasks. In the AI 836 

domain, this practice is referred to as transfer learning. Transfer learning is mainly implemented 837 

for specialized deep learning methods, i.e., architectures with strong inductive bias. It has been 838 

successfully implemented for applications such as diagnosis of medical images using CNNs 839 

(Vogado et al., 2018), prediction of air pollutants using RNNs (Hang et al., 2020), and 840 

bioinformatics as well as social-network classification tasks with GNNs (Verma & Zhang, 2019), 841 

among others (Weiss et al., 2016).   842 

For transferrable SMs in UWNs, GNNs seem to be the natural option based on the agreement 843 

between the structure of the real system and the inductive bias corresponding to the GNNs. In an 844 

analogous way that CNNs learn filters that are independent of the input (i.e., images), GNNs learn 845 

filters that can be used across cases (e.g., water networks). Adding the structure and physics to the 846 

metamodel allows including more domain knowledge in the ANN that improves generalization 847 

capabilities. A relevant example of a model like this is the mass conserving RNN for rainfall-848 

runoff modelling developed by Hoedt et al. (2021) in which the parameters used in the model 849 

resemble the mass conservation principle, which increased the accuracy and improved the model’s 850 

interpretability. At the same time, transferability opens the door to new applications, such as online 851 

optimisation of interventions, by learning the effect of changes in the topology and components of 852 

the network.  853 

Using physical information, such as the knowledge embedded in the hydrodynamic models, also 854 

allows generating hybrid and general models. These models allow bridging the best of two 855 

domains: physical-based and data-driven. On this, Vojinovic et al. (2003) indicated that “the major 856 

advantage of integrating both a deterministic (numerical) model and a stochastic (data-driven) 857 

model over using the stochastic data-driven model alone is that the already available deterministic 858 

model quality is exploited and improved, instead of starting from scratch and throwing away all 859 

knowledge.”  Furthermore, combining the domain knowledge with transferable models opens the 860 

possibility of creating general models. This type of model detaches from the training set in which 861 
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it was trained so that its predictions can be applied in unseen scenarios. Following this trend, 862 

Kratzert et al. (2019) developed a recurrent ANN trained on basins from a continental dataset using 863 

meteorological time series data and static catchment attributes, and they were able to outperform 864 

hydrological benchmark models calibrated on individual catchments. The analogous application 865 

in UWNs would be an ML-based hydrodynamic model trained on a set of distribution or drainage 866 

systems which can generalize to independent unknown water networks. Such “DeEPANET” or 867 

“DeepSWMM” models can be developed by leveraging the inductive bias of GNNs, and 868 

accounting for the time dimension with recurrent layers or by resorting to an encoder-decoder 869 

architecture (Du et al., 2020). 870 

6 Conclusions 871 

This work reviews the current state of the application of MLSMs in urban water networks and 872 

proposes promising forward directions based on recent and successful developments in ML.  873 

In terms of purpose, the main uses of MLSM in UWNs are optimisation and real-time problems. 874 

Even though MLSM accelerate optimisation algorithms by increasing the speed of individual 875 

iterations, these algorithms have multiple disadvantages. The training process can be time-876 

consuming and the required size of that dataset cannot be known a priori as it depends on the 877 

complexity of the input-output mapping. For case study type, the UWNs in which MLSMs are 878 

applied vary in size and type. For analysing the complexity of the case studies, we preffered to 879 

consider WDSs and UDSs separately. Regarding its use in WDSs, the papers follow a clear pattern: 880 

the development and trial are usually made in medium or small benchmark networks, and the 881 

posterior implementation of the metamodel is done in a large real network. On the other hand, 882 

UDSs do not count with applications on benchmark networks due to their lack of availability. In 883 

terms of the metamodel, except for some applications of SVMs or RNNs, the vast majority of 884 

applications used MLP as SM. This method has been successfully implemented due to its high 885 

accuracy and flexibility regarding the inputs and outputs that it can map. Nevertheless, the MLSMs 886 

present multiple drawbacks that may even harm the development of an application. It is advisable 887 

to consider if an MLSM is worthwhile before starting its training.  888 

Based on the reviewed literature, the following issues and gaps in knowledge were identified in 889 

terms of limitations of existing MLSMs.  These problems include limitations on the MLSMs, lack 890 

of depth in current applications, and insufficient benchmarking datasets. 891 

• Regarding metamodels’ limitations, current MLSMs have the following issues: they 892 

can easily grow in size when the complexity of the response surface increases, most of 893 

the applications do not consider the uncertainty added by the metamodel, and its 894 

structure makes it rigid and not (re)usable for other cases.  895 

• In terms of applications, optimisation is where most of the SMs are currently used; 896 

nevertheless, there are still additional and more complex objectives that can be 897 

optimised with the aid of MLSMs, for instance, robustness and interventions under 898 

deep uncertainty.  899 

• On case studies, the reviewed papers denote two main issues: first, there is a lack of 900 

UDSs benchmarks, which hinders the development and comparison of algorithms 901 
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across studies, and second, these metamodels still lack research on the changes of the 902 

response surface with the increase in the complexity of the water system, especially for 903 

large systems.  904 

The following research directions are suggested to address the above key gaps in knowledge:  905 

• Regarding metamodeling methods, further research is required on advanced 906 

metamodeling techniques that include: inductive bias, robustness, and transferability. 907 

The notion of inductive bias allows leveraging prior information to reduce the required 908 

training samples. Examples of this bias include adding physical laws, coherence with 909 

sensor data, or considering the underlying structure of the data – space, time, or 910 

topology– In this regard, the recently developed GNNs resemble the already existing 911 

architecture of the urban water networks and offer the highest fit to the data in these 912 

systems. Furthermore, the new approach for AI models is to focus on the robustness 913 

and explainability of the models which offer insight into the applications and 914 

opportunities for improvement in the actual systems. Moreover, implementing the new 915 

architectures of ML as an SM would allow transfer learning, which represents the 916 

ability to use pre-trained models and save computational budget.  917 

• On applications, additional efforts are encouraged in two areas in which metamodels 918 

will increasingly be more required: uncertainty analysis and multi-objective 919 

optimisation, especially when robustness metrics are used as optimisation objectives. 920 

Further research is required on other less developed applications, namely, real-time 921 

predictions, state estimation, and to a lesser extent, LFPB complements. These 922 

applications have been minimally explored and most of them have only been used for 923 

a specific type of water network.  924 

• Regarding case study type, it is crucial to develop benchmark UWNs, especially of 925 

UDSs, and complex networks. This data will facilitate training, testing, and comparing 926 

new metamodels. These new benchmarks could incorporate information on leakages, 927 

demand patterns, cyber-attacks, rainfall, or surveillance data as well as performance 928 

metrics as reference points to compare performance. 929 

Exploring the potential of MLSMs for approximating UWNs’ components and correcting 930 

predictions with real data can lead to independent ML models of the water networks that leverage 931 

the physical domain knowledge and the measurements. New MLSMs are encouraged to leverage 932 

the inductive bias offered by the increasing data to help UDS and WDS operators. The new 933 

advancements in ML, especially GNNs, have great potential to advance surrogate modelling in 934 

UWNs. Water network modellers can speed up calculations for larger and more complex cases, 935 

being able to design more robust and overall better urban water systems. 936 

  937 
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