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Abstract

Evaluation of the climatic water balance (CWB) – i.e. precipitation minus potential evapotranspiration – has strong potential

as a tool for investigating patterns of variability and change in the water cycle since it estimates the (im)balance of atmospheric

moisture near the land surface. Using observations from a middle-Himalaya weather station at Mukteshwar (29.474°N, 79.646°E,

Uttarakhand state) in India, we demonstrate a CWB-based set of analytical procedures can robustly characterise local climate

variability. Use of the CWB circumvents uncertainties in the soil water balance stemming from limited data on subsurface

properties. We also focus on three key input variables used to calculate the CWB: precipitation, mean temperature and diurnal

temperature range. We use local observations to evaluate the skill of gridded datasets –specifically meteorological reanalyses

– in representing local conditions. Reanalysis estimates of Mukteshwar climate showed large absolute biases but accurately

captured the timing and relative amplitude of the annual cycle of these three variables and the CWB. This suggests that the

reanalyses can provide insight regarding climate processes in data-sparse regions, but caution is necessary if extracting absolute

values. While the local observations at Mukteshwar show clear annual cycles and substantial interannual variability, results from

investigation of their time-dependency were quite mixed. Pragmatically this implies that while “change is coming, variability

is now.” If communities can adapt to the observed historical hydroclimate variability they will have built meaningful adaptive

capacity to cope with on-going environmental change. This follows a ‘low regret’ approach advocated when facing a substantially

uncertain future.

1



1 
 
“The climatic water balance captures evolving water resources pressures on the margins of the 1 
Himalaya” 2 

Authors: Forsythe, Nathan D1 [ORCID: 0000-0002-4593-8233]; Tiwari, Prakash Chandra2; 3 
Pritchard, David M W1 [ORCID: 0000-0002-9215-7210]; Walker, David W.1,3 [ORCID: 0000-4 
0002-2486-4677], Joshi, Bhagwati2 <deceased>; Fowler, Hayley J1 [ORCID: 0000-0001-8848-5 
3606]; 6 

Affiliations: 7 

[1] Water resources research group, School of Engineering, Newcastle University, United Kingdom 8 

[2] Department of Geography, Kumaun University, India 9 

[3] Wageningen University & Research, the Netherlands 10 

 11 

<abstract> 12 

Evaluation of the climatic water balance (CWB) – i.e. precipitation minus potential 13 
evapotranspiration – has strong potential as a tool for investigating patterns of variability and change 14 
in the water cycle since it estimates the (im)balance of atmospheric moisture near the land surface. 15 
Using observations from a middle-Himalaya weather station at Mukteshwar (29.474°N, 79.646°E, 16 
Uttarakhand state) in India, we demonstrate a CWB-based set of analytical procedures can robustly 17 
characterise local climate variability. Use of the CWB circumvents uncertainties in the soil water 18 
balance stemming from limited data on subsurface properties. We also focus on three key input 19 
variables used to calculate the CWB: precipitation, mean temperature and diurnal temperature range. 20 
We use local observations to evaluate the skill of gridded datasets –specifically meteorological 21 
reanalyses – in representing local conditions. Reanalysis estimates of Mukteshwar climate showed 22 
large absolute biases but accurately captured the timing and relative amplitude of the annual cycle of 23 
these three variables and the CWB. This suggests that the reanalyses can provide insight regarding 24 
climate processes in data-sparse regions, but caution is necessary if extracting absolute values. While 25 
the local observations at Mukteshwar show clear annual cycles and substantial interannual variability, 26 
results from investigation of their time-dependency were quite mixed. Pragmatically this implies that 27 
while “change is coming, variability is now.” If communities can adapt to the observed historical 28 
hydroclimate variability they will have built meaningful adaptive capacity to cope with on-going 29 
environmental change. This follows a ‘low regret’ approach advocated in the face of a substantially 30 
uncertain future. 31 
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MAIN TEXT 47 

 48 

[1] Introduction 49 

[1.1] A conceptual framework for understanding the changing water cycle 50 

When addressing the question of how the water cycle, in a specific location or region, has 51 
changed in recent decades, and how it may change in the future, the conceptual framing of the 52 
question will guide the response (Milly et al., 2005; Huntington, 2006; Oki and Kanae, 2006, 53 
Sheffield and Wood, 2008; Trenberth et al., 2014). For human activities and terrestrial ecology, the 54 
partitioning of precipitation between infiltration and runoff is of preponderant importance, because 55 
the path water takes to return either to the atmosphere, via evapotranspiration, or to the sea, via stream 56 
networks, has great influence on crop production, natural vegetation cover, water supply and 57 
freshwater ecosystems. While the key determinant of partitioning is precipitation intensity (rainfall 58 
rate), this is modulated by surface characteristics including slope, land cover (permeability) and 59 
underlying soil properties (porosity, hydraulic conductivity). These characteristics can vary greatly 60 
over short distances, and many catchments, including the focus catchment, and particularly those with 61 
substantial human activities, exhibit high degrees of heterogeneity. Where available, detailed spatially 62 
comprehensive information on catchment surface characteristics enables the use of precipitation and 63 
evapotranspiration data to calculate the soil moisture balance. This is needed to estimate moisture 64 
available to meet water requirements of crops and natural vegetation as well as quantifying 65 
contributions to groundwater recharge and stream baseflow. 66 

Unfortunately, information on surface characteristics, especially soil properties, is rarely 67 
available with sufficient spatial granularity to enable skilled calculation of the soil moisture balance 68 
over substantial areas (Grunwald, 2009), unless available river discharge measurements and/or 69 
groundwater level observations enable back-calculation of spatially aggregated runoff-infiltration 70 
partitioning. Alternatively, the climatic water balance (CWB), i.e. the net quantity of precipitation 71 
minus potential (or reference) evapotranspiration, can be evaluated almost everywhere and with 72 
relative confidence, particularly if drawing upon gridded datasets such as global meteorological 73 
reanalyses. At monthly and longer timescales, the CWB provides a strong indicator of relative 74 
moisture abundance or shortfall and is useful for evaluating stresses on, and the potential of forestry 75 
and rainfed agriculture for, specific crops and regions (Sharma et al., 2010; Crimmins et al., 2011; 76 
Churchill et al., 2013). These stresses are of preponderant concern because, with the exception of 77 
high-latitude and high-elevation contexts, moisture rather than energy will be the limiting constraint 78 
on plant development through transpiration (Jung et al, 2010) and hence ecosystem benefits and food 79 
production. 80 

Furthermore, potential evapotranspiration (PET: Thornthwaite, 1948; Hargreaves, 1994) can be 81 
parameterised with reasonable skill from simply daily mean temperature (Tavg) and diurnal 82 
temperature range (DTR) (Droogers and Allen, 2002; Hargreaves and Allen, 2003). Thus, together 83 
with precipitation, the CWB can be determined from three readily observed climate variables. From 84 
a purely meteorological standpoint, these three variables together succinctly summarise prevailing 85 
weather conditions: dry versus wet, warm versus cold, and clear (high DTR) versus overcast (low 86 
DTR) skies. This is reflected in tools such as the RainSim-CRU Weather Generator (Burton et al., 87 
2009; Kilsby et al., 2007) for synthetic time-series generation and stochastic downscaling of climate 88 
projections. However, PET can be better estimated by more complex formulae derived from physical 89 
principles, e.g. the Penman-Monteith equation (Monteith, 1965) requires net radiation, humidity and 90 
windspeed data in addition to temperature, along with parameterisations representing aerodynamic 91 
and surface resistances to fluxes. Unfortunately, in many areas where assessment of water availability 92 
is required, formal meteorological observations are lacking due to limited density of national 93 
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monitoring networks. Formal measurements of humidity – as dewpoint temperature, relative 94 
humidity or vapour pressure – and windspeed are not as widely available as temperature and 95 
precipitation observations. Observations of radiation components (shortwave, longwave) are even 96 
more rare. In these cases global meteorological reanalyses provide a promising data source as they 97 
assimilate not only available regional surface observations but also a portfolio of other inputs 98 
including radiosonde measurements and satellite imagery. Numerical tools and forecasting models 99 
then synthesise spatially continuous, physically consistent estimates of climate variables both at the 100 
surface and upward through the atmosphere, but these are biased in absolute values compared to 101 
observations, particularly in regions of high topographic variability, where elevation biases also play 102 
a role. 103 

Changes in the CWB, itself a metric of moisture surplus or deficit, provide a first order 104 
indication of whether moisture is tending to become more abundant (CWB increase) or scarce (CWB 105 
decrease). These changes – be they increasing surpluses, aggravated deficits or a tendency toward 106 
equilibrium – result from increases or decreases in atmospheric supply (precipitation) and demand 107 
(potential/reference evapotranspiration) of moisture at the land surface. Thus the individual causal 108 
mechanisms of changes in precipitation and (surface) energy – indexed by Tavg and DTR – are of 109 
great interest. Furthermore, understanding the role of distinct climate processes – such as surface 110 
energy balance modulation by cloud radiative effects – as causes of these changes can provide 111 
qualitative context to better anticipate likely future CWB evolution and to objectively evaluate 112 
available climate model outputs which provide quantitative projections of this evolution. Using 113 
Mukteshwar as a case study, the present work advances a framework analytical methodology for 114 
addressing these issues at the ‘point’ (single-site) scale at which a great many scientists and technical 115 
professionals will be working to understand the evolution of the hydrological cycle and its implication 116 
for interdependent human and natural systems. 117 

 118 

[1.2] Case study context 119 

Situated in the ‘middle upper reaches’ of the Ganges basin, the small headwater sub-120 
catchments of the Kosi river rising from the Gaula and Almora ranges of the Kumaun Lesser 121 
Himalaya (KLH) are critical water resources units at both micro and macro scales. These sub-122 
catchments provide valuable insights regarding potential pathways for sustainable resilience to 123 
hydroclimate variability. With complex agro-forestry land cover patterns and surface elevations 124 
ranging from ~1000m to ~2300m above sea level (asl), these catchments experience a (primarily) 125 
subtropical/monsoonal precipitation regime and support multiple crop growing seasons each year. 126 
While annual rainfall is sufficient for substantial agricultural production, these catchments also 127 
generate important surface runoff (and baseflow) for downstream segments of the middle and lower 128 
Ganges basin. This latter area along with the Punjab (in both India and Pakistan) serves as the ‘bread 129 
basket’ of South Asia, encompassing the majority of the region’s irrigated farmland and underpinning 130 
its food security (Rahaman, 2009). This paper explores potential pressures on local water resources 131 
and food security in the KLH due to evolution of the local water cycle through CWB-focused analysis 132 
of historical observations from the Mukteshwar meteorological station in Uttarakhand state, India 133 
(Figure 1). This station is located on a ridgeline overlooking two headwaters catchments – Ramgad 134 
and Dhokane – of the Kosi river tributary to the Ganges. 135 
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 136 
Figure 1: Study area geographical context showing location of Mukteshwar meteorological station 137 
(29.474°N, 79.646°E, Uttarakhand state) operated by India Meteorological Department (IMD) in 138 
relation to surface elevation and international boundaries in Asia. The left panel shows detail of the 139 
Kumaon division of Uttarakhand state while the right panel shows the broader Asian continental 140 
context. 141 

 142 

[2] Data and Methods 143 

[2.1] Data 144 

[2.1.1] Local climate observations: IMD Mukteshwar 145 

The weather observation station at Mukteshwar (29.474°N, 79.646°E) – currently operated by 146 
the India Meteorological Department (IMD) – was established in 1897. Along with precipitation, 147 
daily maximum and minimum temperature observations (beginning in 1969) were made available by 148 
IMD personnel for use in this study. In the absence of sub-daily observations, daily mean temperature 149 
was approximated as the mean of recorded daily maximum and minimum. There was an interruption 150 
in temperature data recording from September 1993 through August 1997. This study also lacks 151 
access to observations of all variables during 2015, with the exception of December of that year. A 152 
double mass check with temperature data from New Delhi, accessed via the Global Historical Climate 153 
Network dataset (Lawrimore et al., 2011), however, reveals no slope ‘break points’. This result 154 
mitigates concerns regarding step changes or inhomogeneity in temperature measurements and lends 155 
confidence to the results presented in this paper. Precipitation records at Mukteshwar are far more 156 
complete with a mean total fraction of missing observations of 4.3% as compared to 14.5% for 157 
temperature (Table 1). This study focuses on a common analytic time period of 1980 through 2018 158 
(as complete calendar years). 159 

 160 

Table 1 Missing** daily observations from Mukteshwar IMD station, by fraction of record for 161 
individual months, 1980 to 2018 162 

Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 
Precipitation 0.044 0.049 0.046 0.051 0.057 0.041 0.039 0.044 0.040 0.041 0.045 0.021 0.043 
Temperature 0.147 0.155 0.144 0.151 0.154 0.138 0.140 0.140 0.154 0.142 0.149 0.128 0.145 

** observations available to this study. There is a period of 11 months in 2015 from January 163 
through November where observations were made as demonstrated by inclusion in GHCN-Monthly 164 
(v2 for precipitation, v3 for temperature). 165 

 166 
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[2.1.2] Global meteorological reanalyses 167 

Global meteorological reanalyses ingest vast quantities of climate observations ranging from 168 
ocean buoys through ground-based measurements, to atmospheric soundings and satellite imagery. 169 
They are produced by leading weather/climate forecasting institutes and serve a range of purposes 170 
(Bosilovich et al., 2008, Lorentz and Kunstmann, 2012; Vose et al., 2012). For their producers 171 
reanalyses projects offer an opportunity to test updates to their data assimilation and weather 172 
forecasting systems. For the broader scientific community, reanalyses offer ‘gap free’, i.e. 173 
spatiotemporally continuous, estimates of a broad range of climate variables at levels ranging from 174 
the ground (or sea) surface to the upper (‘top of’) atmosphere. 175 

Variable estimates from reanalyses are generally grouped in two broad categories: i) analytical 176 
outputs which include ‘state’ variables (temperature, humidity, wind speed, etc.) estimated using the 177 
data assimilation schemes/components of forecasting systems; b) forecast outputs which include 178 
fluxes (precipitation, radiation, etc) estimated using the forecast models themselves. The analytical 179 
methods utilised in reanalysis projects are guided by physical processes/relationships. Therefore, their 180 
outputs can avoid the potentially spurious results found in ‘observational’ gridded datasets which 181 
attempt to fill voids over sparsely observed regions through purely geostatistical techniques. This 182 
study utilised data from four independent reanalyses: a) ERA-Interim (Dee et al., 2011) produced by 183 
the European Centre for Medium Range Weather Forecasting (ECMWF), b) JRA-55 (Ebita et al., 184 
2011) produced by the Japan Meteorological Agency (JMA), c) MERRA2 (Rienecker et al., 2011) 185 
produced by NASA and d) ERA5 (Hersbach et al, 2020) also produced by ECMWF. Key 186 
differentiating characteristics of each of the reanalyses are presented in Table 2.  187 

 188 

Table 2 Global meteorological reanalyses 189 

Reanalysis Producer Start date Latitude 
resolution 

Longitude 
resolution 

Analytical/synoptic 
time-step 

ERA-Interim ECMWF 01/01/1979 0.75° 0.75° 6 hours 
JRA-55 JMA 01/01/1958 1.25° 1.25° 3 hours 
MERRA2 NASA 01/01/1980 0.50° 0.625° Hourly 
ERA5 ECMWF 01/01/1979 0.25° 0.25° Hourly 

 190 

 191 

[2.2] Methods 192 

[2.2.1] Calculation of CWB from supply and demand components= 193 

In the absence of multi-decadal local hydrological observational records – and the detailed 194 
local soil characteristic descriptions needed to calculate the soil moisture balance – we focused on 195 
the climatic water balance (CWB) as the core indicator of water availability in the KLH in the vicinity 196 
of Mukteshwar. In the CWB the atmospheric moisture demand component is represented by potential, 197 
or reference, evaporation. For a given set of weather conditions PET quantifies the amount of 198 
moisture which, if available, would be transferred to the atmosphere from the land surface, including 199 
vegetation (Thornthwaite, 1948). A wide range of equations exist for calculating PET. Here we 200 
adopted the United Nations Food and Agriculture Organisation (FAO) Penman Monteith method for 201 
calculating reference evapotranspiration (ET0) (see Allen et al., 1998) as it is a well-established 202 
approach with relatively flexible input data requirements: net radiation, humidity and windspeed data 203 
in addition to temperature. The equation also uses parameterisations representing aerodynamic and 204 
surface resistances to fluxes which vary based on a range of factors including vegetation height. This 205 
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is based on resistance associated with a ‘reference crop’, specifically a “well-watered grass 12cm tall” 206 
to facilitate both spatiotemporal comparisons and extrapolations to various important crops (through 207 
use of coefficients). The approach of calculating a reference from which the potential water 208 
requirements of specific crops can be quickly estimated is particularly useful in farming systems such 209 
as those used by smallholders in the geographic focus of the study, i.e. the Kumaun Himalaya around 210 
Mukteshwar, where a wide range of vegetables and legumes are cultivated. 211 

To calculate the reference evapotranspiration (ET0) local observations of daily rainfall, 212 
minimum and maximum temperature were paired with ensemble mean estimates for the overlying 213 
grid cell from the four reanalyses – ERA-Interim, JRA-55,  NASA MERRA2 and ERA5 – for 214 
radiation, wind speed and relative humidity. These ensemble estimates were made by extracting daily 215 
(mean) time-series from the relevant grid cell of each individual reanalysis. Without ground-based 216 
data to validate or characterise bias in reanalysis data, a simple ensemble averaging approach was 217 
adopted to obtain (reasonable) central estimates.  218 

We also calculated daily estimates for ET0 directly for each reanalysis ensemble member 219 
using its own values for input variables in the grid cell overlying Mukteshwar. This allows us to 220 
compare CWB results using the maximum available local observations to estimates purely derived 221 
from global gridded datasets. 222 

 223 

[2.2.2] Climatological characterisations and time-series analyses 224 

Climatological characterisation was approached as statistical (mean, quantiles) description of 225 
the annual cycle at a monthly time-step. The use of local observations and global meteorological 226 
reanalyses at very different spatial scales requires comparison not only of absolute values but also in 227 
relative terms as the large-scale reanalyses are unlikely to provide absolute value matches to local 228 
observations in regions of high topographic variability such as Uttarakhand/the Kumaun Himalaya 229 
where there is a steep transition from plains to high mountains. We therefore applied simple 230 
normalisations to both the gauge and reanalysis data: a) for zero-bounded ‘accumulating’ variables 231 
(precipitation, reference evapotranspiration, net radiation) we normalised the monthly mean and 232 
quantiles of individual data sources by dividing absolute values by the period annual mean; b) for 233 
‘state’ variables (temperature, humidity, wind speed, CWB) we normalised the monthly mean and 234 
quantiles of individual data sources by subtracting the annual period mean from absolute values then 235 
dividing the result by the amplitude, i.e. maximum period monthly mean minus minimum period 236 
monthly mean. This specific normalisation method – as a opposed to a the more widely used 237 
standardisation method of subtracting the (period monthly) mean and dividing by the standard 238 
deviation – was used to preserve the form (shape) of the annual cycle in order to assess if gridded 239 
datasets with strong absolute biases might still provide some useful information content by accurately 240 
capturing the interplay of dominant climatic processes and forcings throughout the year. 241 

Time-series analyses were performed to examine changes in CWB and its drivers over the 242 
record period. For time-series analyses: a) monthly means/totals were calculated if a minimum of 24 243 
days (~80%) were available; b) annual aggregates of seasonal values were calculated only if all 244 
months concerned had met the aggregation criteria for calculation of valid mean/total values, i.e. 245 
sufficient daily observations. We used an alternate approach to the standard “p-value” for quantifying 246 
the probability of random occurrence of values of specific correlation or trend metrics. This deviation 247 
from standard procedure was inspired by recent thinking of Serinaldi et al. (2018) that challenges the 248 
validity of null hypothesis significance tests (NHSTs) for assessment of long-term patterns in hydro-249 
climatological time series. Serinaldi asserts specifically that “NHSTs have a logically flawed rationale 250 
coming from ill-posed and theoretically unfounded hybridization of Fisher significance tests and 251 
Neyman-Pearson hypothesis tests; they do not provide the in-formation that scientists need (i.e., the 252 
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likelihood of H0 given the data and/or physical significance), do not allow conclusions about the truth 253 
of falsehood of any hypothesis, and do not apply to exploratory non-randomized studies… ” The 254 
alternate method -- which still utilises the correlation assessment component of the null hypothesis 255 
approach -- conserves the observed values for a given variable but randomises (‘shuffling’) their 256 
sequence a large number of times (n=1x106) to provide a large sample of chaotic/quasi-natural 257 
variability. This method is similar to that utilised by Guerreiro et al (2018) to assess whether observed 258 
changes in sub-daily precipitation intensity exceed those which might occur through random/natural 259 
variability. Each synthetic sample member was tested against the potential causal factor – e.g. time, 260 
cloud cover – and the statistical distribution of resultant correlation strengths/trend rates were sampled 261 
to identify values corresponding to chances of ‘random’ (chaotic) occurrence. This method assumes 262 
that the observed series of values of a given variable represent a sample of physical plausible “real” 263 
values, but their specific sequencing could be the result of natural variability or driven by some strong 264 
causal factor. We use this approach to robustly evaluate the likelihood of the correlation (trend rate), 265 
indicated by an observed sequence, occurring through natural variability.  266 

 267 

[3] Results 268 

We now present the results of characterising the CWB – the climatology of its constituent elements, 269 
their temporal variability and evaluation of the potential drivers of this variability – using gauge 270 
observations from the Mukteshwar IMD station and equivalent reanalyses estimates. Because the 271 
CWB quantifies near-surface atmospheric moisture surplus/deficit status it helps us to understand the 272 
water cycle at Mukteshwar. This includes water cycle changes in recent decades, along with their 273 
potential causes. This work also demonstrates the utility of the single-site (point-based) CWB 274 
approach for characterising climate drivers of water resources in focused geographic areas. The inter-275 
comparison of local observations to meteorological reanalyses further provides insight on the 276 
potential to extract useful CWB characterisations in data-sparse regions. 277 

 278 

[3.1] Climatologies of individual variables 279 

[3.1.1] Climatologies of primary (precipitation) and secondary (temperature) variables 280 

The gauge observations in Figure 2 indicate that Mukteshwar has a strongly monsoonal 281 
precipitation regime: roughly 70% of annual precipitation falls in June through September. Due to its 282 
high surface elevation at ~2200m asl, the annual cycle/range of (daily) mean near surface air 283 
temperature (Tavg) exhibits a large amplitude more typical of temperate latitude zones, with the hottest 284 
month more than 10°C warmer than the coldest month. The annual cycle of diurnal temperature range 285 
(DTR) shows influence of both incoming (top of atmosphere) solar radiation and seasonal cloud cover 286 
with relative DTR maxima in the pre- and post-monsoon seasons and annual minimum during the 287 
monsoon. In addition to period mean conditions, Figure 2 also shows interannual variability 288 
quantified as the 10th and 90th percentiles of the period distribution, i.e. values for a given calendar 289 
month from 1980 to 2018. Precipitation logically shows larger absolute variability, expressed as this 290 
10th to 90th percentile range, during the monsoon than in the drier seasons. Year to year variability of 291 
monthly mean (daily) temperature is greater in winter and the pre-monsoon (Dec to June), with 10th 292 
to 90th percentile ranges of roughly 5°C, than during the monsoon and autumn (July to Nov), with 293 
ranges of roughly 2°C. Interannual variability of DTR is greatest in the early monsoon (June/July) 294 
and least in the late autumn (Nov/Dec). 295 

The normalised climatogies of these three variables reveal that the reanalyses have strong skill in the 296 
(monthly) timing and amplitude of annual cycles (Figure 2, bottom row). For Tavg in particular, the 297 
contrast of the absence of relative bias with the very large absolute bias can be explained in part by 298 
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the study area location on the fringe of the Himalaya and by the coarse spatial resolution of the 299 
reanalyses. Depending upon the precise position of grid cell boundaries in the individual reanalyses, 300 
the grid cell overlying Mukteshwar is likely to be estimated to have a surface elevation either much 301 
higher (colder) or lower (warmer) than at the specific (point) location. These differences come from 302 
both latitudinal position and simulated elevation of the source grid cells in each of the reanalyses. By 303 
taking into account the likely role of elevation differences between the actual Mukteshwar IMD 304 
station (2218m asl) and the invariant orography values from each of the reanalyses we can infer the 305 
component ‘residual’ bias. This bias could be due to oversimplification of spatial temperature 306 
gradients through coarse spatial resolution and hence oversimplification of land surface cover and its 307 
modulation of surface energy balance influences on near surface air temperature. Alternately the 308 
biases of individual reanalyses’ representation of near surface temperature could be due to errors in 309 
surface energy balance or cloud radiative effects. In the case of the Mukteshwar IMD station, all 310 
simulated elevations are lower than the ‘real world’ and differences range from less than 100m lower 311 
in JRA55 to nearly 1500m lower in ERA-Interim. The cold bias (Figure 2, Table 3) in JRA55 mean 312 
temperature thus cannot be attributed solely to elevation. For the remaining reanalyses, assuming a 313 
temperature lapse rate 0.7°C per 100m vertical difference, their respective differences between real 314 
and simulated elevation could account for the following amounts of their warm biases: a) ERA-315 
Interim = ~10.5°C; b) NASA MERRA2 = ~8°C; and c) ERA5 = ~5°C. Subtracting these estimates 316 
from the calculated mean temperature biases in Table 3 implies that ‘elevation corrected’ (cold) biases 317 
would be roughly 4°C in both ERA-Interim and JRA55 and perhaps less than 2°C in both NASA 318 
MERRA2 and ERA5.  319 

 320 

 321 
Figure 2: Climatologies of primary (precipitation) and secondary (temperature: Tavg, DTR) 322 
variables for the Mukteshwar site from local observations and global meteorological reanalyses. 323 
Solid lines indicate period mean values. Areas bounded by grey shading and dashed lines denote 324 
ranges of 10th to 90th percentiles respectively for local observations and reanalyses. Top row shows 325 
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absolute values. Bottom row shows normalised values (calculated as described in Section 2.2.2) 326 
thus comparing de-biased skill at representation of annual cycle timing and amplitude. notes: 327 
ERI=ERA-Interim, J55=JRA-55, NM2=NASA MERRA2, ER5=ERA5, local = local observations 328 
at Mukteshwar IMD. 329 

 330 

The differences between individual reanalysis performance in absolute and normalised terms can be 331 
considered in detail by calculating error metrics – the mean bias/error for absolute values and the root 332 
mean square deviation (RMSD) for normalised values – of the annual cycle monthly period statistics 333 
with the local observations as the reference or ‘ground truth’ (Table 3). This is not limited to the 334 
period mean but can also address interannual variability through quantiles of the distribution. Table 335 
3 shows this for the 10th and 90th percentiles of the distributions of individual calendar months for the 336 
39-year record period. This indicates that the smallest bias for different statistics of a given variable 337 
may be from different reanalyses. Furthermore, the smallest biases in absolute terms may differ from 338 
those in normalised terms. Despite this, errors in the mean are for the most part smaller than errors in 339 
the ‘tails’ of the distribution, particularly in normalised terms. This is an indication of how gridded 340 
datasets struggle to accurately represent interannual variability at the point scale. 341 

 342 

Table 3: Identified biases – as mean bias (error) for absolute values and root mean square deviation 343 
(RMSD) for normalised values – of annual cycle of monthly period statistics, for individual 344 
reanalyses’ grid cells overlying Mukteshwar IMD station, 1980 to 2018. 345 

Identified biases Precipitation 
[absolute units: mm] 

Mean temperature 
[absolute units: °C] 

Diurnal temperature range 
[absolute units: °C] 

type statistic ERI J55 NM2 ER5 ERI J55 NM2 ER5 ERI J55 NM2 ER5 
Absolute 
(mean 
bias) 

10% 5.7 21.1 11.8 110.4 7.3 -4.2 7.5 4.2 -0.6 -2.1 2.0 0.1 
Mean -7.4 11.5 26.5 152.7 6.5 -4.7 6.9 3.5 -0.8 -1.8 1.9 -0.4 
90% -22.8 2.4 52.6 186.9 7.1 -5.0 6.5 3.0 -1.0 -1.9b 1.8 -0.8 

Normalised  
(RMSD) 

10% 0.021 0.022 0.022 0.031 0.116 0.113 0.128 0.100 0.151 0.099 0.182 0.162 
Mean 0.025 0.015 0.041 0.026 0.033 0.075 0.067 0.054 0.079 0.111 0.078 0.082 
90% 0.036 0.041 0.058 0.053 0.086 0.108 0.086 0.081 0.189 0.205 0.150 0.180 

Key to reanalyses labels: ERI = ERA-Interim; J55 = JRA-55; NM2 = NASA MERRA2, ER5 = 346 
ERA5. 347 

 348 

[3.1.2] Climatologies of tertiary variables (radiation, humidity and wind speed) from 349 
meteorological reanalyses 350 

Despite the potential shortcomings in the available data and the lack of in-situ observations to 351 
provide a ‘ground-truthing’ benchmark, it is nevertheless interesting to compare the climatologies of 352 
net surface radiation (Rsfcnet), relative humidity (RH) and windspeed at 10m height (10mWind) from 353 
the four global reanalyses, ERA-Interim, JRA-55, NASA MERRA2 and ERA5 (Figure 3). For Rsfcnet 354 
there is general agreement between the reanalyses, particularly after normalisation: a strong annual 355 
cycle in net radiation driven by seasonal variation in incoming shortwave (solar) energy. For RH there 356 
is a similar level of agreement, after normalisation, with a pronounced annual minima in the pre-357 
monsoon months (April, May) and a strong maximum during the monsoon (July to Sept). 358 
Interestingly, although absolute value estimates differ by a factor of 2, there is also post-normalisation 359 
agreement on the shape of the annual cycle in 10mWind. 360 
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In the absence of local observations to evaluate biases in the reanalyses’ estimates of these 361 
variables, the implications for reference evapotranspiration of the mean states of these three variables 362 
bears elaboration. Rsfcnet contribution to driving evapotranspiration will be greatest prior to the 363 
monsoon but only marginally reduced during the rainy season. The evapotranspiration-enhancing 364 
vapour pressure deficit (increasing as RH decreases), however, will be substantially greater in the 365 
pre-monsoon than during the rains. 10mWind will act in concert with RH as higher windspeeds during 366 
the pre-monsoon will further enhance energy and moisture transfer from the surface toward the 367 
atmosphere. Lighter winds during the monsoon will further limit what would otherwise, due to strong 368 
radiative input, be elevated evapotranspiration rates. Again, given the absence of direct “ground-369 
truthing” observations for the tertiary variables it is worthwhile to point out the strong (logical) 370 
similarities – comparing Figures 2 and 3 – in the shapes of the annual cycles of Rsfcnet and Tavg. 371 
Similarly, the shapes of the normalised annual cycles of 10mWind and DTR have much in common. 372 
The normalised annual cycle of RH, if inverted, also resembles this latter pattern. These similarities 373 
clearly point to the logical use of directly observed ‘secondary variables’ (Tavg, DTR) as potential 374 
proxies for the estimates of tertiary variables (Rsfcnet, RH, 10mWind) provided by the large-scale 375 
reanalyses. 376 

 377 
Figure 3: Climatologies of tertiary variables – radiation as Rsfcnet, humidity as RH, wind as 10m 378 
windspeed – for the Mukteshwar site from global meteorological reanalyses. Solid lines indicate 379 
period mean values. Areas bounded by dashed lines denote ranges of 10th to 90th percentiles. notes: 380 
ERI = ERA-Interim, NM2=NASA MERRA2, J55=JRA-55, ER5 = ERA5; 381 

 382 

[3.2] CWB climatology 383 

[3.2.1] CWB estimates derived from local observations 384 

The annual cycles of precipitation, ET0 and CWB at Mukteshwar are shown in Figure 4. The 385 
shape/form of the reference evapotranspiration (ET0) annual cycle strongly resembles that of Tavg and 386 
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Rsfcnet, as all three are predominantly influenced by the seasonal variations of incoming solar radiation. 387 
The annual cycle of the CWB is (logically) dominated by the moisture surplus during monsoonal 388 
months, with surplus/deficit magnitudes >100mm only calculated/estimated for June through 389 
September. In other months values are much closer to equilibrium (0mm) as both rainfall and ETo are 390 
smaller in magnitude. CWB is generally, but not uniformly, positive in January/February and 391 
similarly negative in April, May and October. Local agricultural practices (near Mukteshwar) 392 
generally have two cropping seasons per year with planting timings (~Nov-Jan and ~June-July) 393 
coinciding with/immediately preceding moisture surplus periods and harvest timings (~May-June and 394 
~Oct-Nov) coinciding with peak moisture deficit. The range of interannual variability in CWB -- 395 
illustrated in Figure 4 by the 10th and 90th percentiles – indicates that some years moisture deficits 396 
during the ‘maturity’ phase will be more severe than others. The impacts of CWB variability on small-397 
scale agriculture in the Mukteshwar area are subjects of on-going research. 398 

 399 

[3.2.2] CWB estimates derived from meteorological reanalyses 400 

Comparisons of ET0 estimates from individual reanalyses to ET0 estimates from local 401 
observations of secondary (Tavg, DTR) variables and (reanalyses) ensemble mean estimates of tertiary 402 
variables (radiation, humidity, windspeed)) show firstly that reanalysis ensemble members either 403 
closely match (JRA55, ERA5) or substantially overestimate (ERA-Interim, MERRA2) ET0 in 404 
absolute terms. The overestimation cases appear to be correspond to the absolute bias in Tavg. 405 
Secondly, the normalisation procedure used for the primary and secondary variables (precipitation, 406 
Tavg and DTR) shows that despite absolute biases there is strong agreement amongst all data sources 407 
regarding the shape/form of the ET0 annual cycle. Interestingly because the individual reanalyses tend 408 
to overestimate (in absolute terms) both precipitation and ET0, resultant absolute CWB biases are 409 
smaller in magnitude. Logically, the normalisation procedure again shows very strong agreement on 410 
the shape/form of the CWB annual cycle. Comparing Figures 3 and 4 reveals a notable similarity 411 
between the normalised forms of the annual cycles of RH and CWB.  412 
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 413 
Figure 4: Climatologies of contributing components, i.e. precipitation and reference 414 
evapotranspiration (ET0), along with the climatic water balance (CWB) for the Mukteshwar site 415 
from local observations and global meteorological reanalyses. Solid lines indicate period mean 416 
values. Areas bounded by grey shading and dashed lines denote interannual variability quantified as 417 
ranges of 10th to 90th percentiles respectively for local observations and reanalyses. notes: ERI = 418 
ERA-Interim, J55=JRA-55, NM2=NASA MERRA2, ER5 = ERA5, local = local observations at 419 
Mukteshwar IMD  420 

 421 

[3.3] Time-series in individual variables 422 

Agricultural practice near Mukteshwar predominantly uses two growing seasons per year. To 423 
avoid analysing individual growing seasons spanning more than one calendar year we simplified their 424 
representation into two five-month time aggregates: January to May (cold) and June to October 425 
(monsoonal). These season definitions were then used to calculate yearly time-series of standardised 426 
anomalies for the primary and secondary climate variables (Figure 5) and for ET0 and CWB (Figure 427 
6) from both local observations and large-scale reanalyses. Figures 5 and 6 show that for all variables 428 
in both seasons, agreement is reasonably strong both by reanalyses with local observations and 429 
between individual reanalyses. Nevertheless, consensus on sign and magnitude of anomalies is visibly 430 
closer for the cold season (JFMAM) than during monsoonal months (JJASO). The sequencing of 431 
CWB anomalies (Figure 6) in both seasons strongly resembles the corresponding sequencing of 432 
precipitation anomalies (Figure 5) thus underlining how precipitation dominates the CWB at 433 
Mukteshwar. Meanwhile, the sequencing of ET0 anomalies (Figure 6) visually resemble Tavg 434 
anomalies (Figure 5) in respective seasons, thus providing further evidence for the strong role of 435 
incoming shortwave (solar) radiation in driving atmospheric moisture demand. 436 

In terms of emerging patterns of change, none of the variable-season combinations (individual 437 
panels in Figures 5 & 6) appear to follow a linear trend. Nevertheless there are substantially fewer 438 
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negative anomalies in the latter half of the time period for Tavg in both seasons, which might indicate 439 
local warming. The opposite is true for DTR, with fewer positive anomalies later in the time period 440 
during both seasons. This indicates a narrowing of differences between daily maximum and minimum 441 
temperatures, possibly due to increasing cloud-cover and/or near surface water vapour. In contrast, 442 
precipitation anomalies are highly variable in both seasons. ET0 anomalies in the cold season appear 443 
to increase in line with Tavg warming. Evidence of ET0 change during the monsoonal season is less 444 
clear, with negative anomalies at both the beginning and end of the period and maximum values 445 
during the 1990s and early 2000s. The distributions of CWB anomalies throughout the time period in 446 
both seasons show similar levels of ‘noise’ (apparent randomness) to those in Precip, albeit with weak 447 
indications of a decreasing pattern in the cold season (JFMAM) contrasting with equally weak 448 
indications of increases during the monsoon (JJASO). 449 

 450 
Figure 5: Standardised anomaly (units of ‘standard deviation’) times series of seasonal aggregates 451 
of  primary (Precip) and secondary (Tavg, DTR) variables. Cold season (JFMAM) is January 452 
through May. Warm season (JJASO) is June through October. ERI = ERA-Interim, J55=JRA-55, 453 
NM2=NASA MERRA2, ER5 = ERA5, local = local observations at Mukteshwar IMD. 454 
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 455 
Figure 6: Standardised anomaly (units of ‘standard deviation’) time-series of seasonal aggregates of 456 
extrapolated reference evapotranspiration (ET0) and climatic water balance (CWB). Season 457 
definitions and figure symbology as in Figure 5. 458 

 459 

[3.4] Correlations of hydroclimate variables to time (trend precursors) 460 

The underlying variability (“noise”) exhibited by the time-series of the hydroclimate variables 461 
presented (Figs 5 & 6) shows that attempting to fit linear trend rates to observed historical anomaly 462 
patterns would not appear entirely appropriate. Nevertheless, while investigating on-going water 463 
cycle change, insight can be gained through assessing the correlation, e.g. Kendal ‘tau’, of individual 464 
variables with time, i.e. series of yearly values for individual calendar months. Results of this 465 
procedure for the Mukteshwar site data are shown in Figure 7. Strong positive (negative) correlations 466 
to the time index are of course indicative of increasing (decreasing) tendencies in the variable values. 467 

Precipitation is globally recognised as highly variable, and in the Mukteshwar site time-series 468 
analyses, noise – correlation values found through random shuffling of observations as described in 469 
the Methods section – largely exceeds signal. In contrast, mean temperature (Tavg) shows consistently 470 
positive correlation throughout the annual cycle, with several months above the 95th percentile – as 471 
well as four months above the 99th and even two months exceeding the 99.9th percentile – of results 472 
expected from simple random sequencing. Estimated DTR correlation with time, however, shows 473 
mixed results across the annual cycle in terms of both strength and sign. In the first 5 months of the 474 
year DTR correlation to time is within the random variability or ‘noise’ range. From June through 475 
November there are notable decreasing tendencies (negative correlations), with the monsoonal 476 
months in particular exceeding values expected from random sequencing. The near identical patterns 477 
of correlation of CWB and precipitation to time further illustrate how Mukteshwar CWB is dominated 478 
by moisture inputs rather than potential evaporative demand. Reference evapotranspiration (ET0) for 479 
its part shows a mixed pattern, with the late winter and spring seemingly dominated by mean 480 
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temperature (thus increasing), but with tendencies in monsoonal months driven by DTR (thus 481 
decreasing). If these temporal tendencies continue, the increases during the middle of the ‘cold 482 
season’ cropping cycle could lead to more damaging moisture stresses in dry years. A general remark, 483 
applying to all variables shown in Figure 7, is that correlations between variable estimates from three 484 
of the reanalyses – ERA-Interim, JRA55 and NASA MERRA2 – and time generally track those for 485 
local observations relatively well in cooler months (~Nov to Feb) but often diverge widely in warmer 486 
months (March to October). This may well result from generally strong skill of these reanalyses to 487 
represent conditions of climates dominated by large-scale/frontal precipitation and weakness at 488 
representing moisture and radiation fluxes in convection-dominated conditions. Time-variable 489 
correlations from ERA5, however, track noticeably closer to the time-variable correlations in the local 490 
observations, with the exception of ET0. This is despite ERA5 having broadly similar skill to the other 491 
reanalyses – albeit with a very strong wet bias in precipitation – in climatological representation of 492 
the key variables. ERA5 is the newest of the reanalyses and it will be of scientific interest to explore 493 
if this pattern of performance is repeated in through other locations in South Asia and beyond. 494 

 495 
Figure 7: Kendall Tau correlation of hydroclimate variables to time for individual calendar months 496 
(totals/means). Grey lines indicate statistical distribution of correlation values resulting through 497 
randomisation of observation order/sequencing; ERI=ERA-Interim, NM2=NASA MERRA2, 498 
J55=JRA-55, ER5=ERA5, local = local observations at Mukteshwar IMD. 499 

 500 

In light of the clearly dominant impact of precipitation on CWB, it is worthwhile to further 501 
explore how precipitation might be changing at Mukteshwar, specifically in terms of the frequency 502 
of daily rainfall accumulations exceeding specific totals. Before potential changes – assessed as 503 
correlations to time – in event intensity can be considered, the (annual cycle) climatology of rainfall 504 
accumulations must first be examined (Figure 8). The defining influence of the monsoon on frequency 505 
of rainfall events is unmistakeable regardless of whether 1mm, 10mm or 50mm daily accumulation 506 
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thresholds are utilised. The monthly frequency of events >1mm and >10mm (daily) are both strongly 507 
proportional to monthly rainfall totals. With the exception of very rare winter storms (in particular in 508 
February), events with daily totals >50mm occur during the monsoonal period from June through 509 
September. In comparison with the local observations, all four meteorological reanalyses exhibit 510 
characteristic “drizzle biases” (Hong et al, 2006; Piani et al, 2010) during at least part of the annual 511 
cycle in that low intensity events are estimated to occur with excessive frequency. For the high 512 
intensity events, exemplified in Figure 8 by daily accumulation >50mm, there are clear differences 513 
between the individual reanalyses. ERA-Interim and JRA-55 largely underestimate the absolute 514 
frequency of these events. Both NASA MERRA2 and ERA5 in contrast strongly overestimate 515 
(absolute) frequencies in June through August but match observed frequencies in September. As with 516 
the climatologies of key meteorological variables and CWB components, the normalisation of 517 
(observed and) estimated frequency of rainfall events exceeding specified accumulation thresholds 518 
shows substantially greater agreement/consensus than the absolute values. This shows that 519 
meaningful information content on precipitation event characteristics, including extremes, can be 520 
derived from the reanalyses despite biases in absolute values. 521 

 522 
Figure 8: Climatology of frequency of daily precipitation surpassing thresholds. Note: These results 523 
are not ‘binned’, hence lower thresholds include all larger events, i.e. Precip>50mm is a subset of 524 
Precip>10mm which is itself a subset of Precip>1mm. Solid lines indicate period mean values. 525 
Areas bounded by grey shading and dashed lines denote ranges of 10th to 90th percentiles 526 
respectively for local observations and reanalyses. Data source are abbreviations as follows: 527 
ERI=ERA-Interim, J55=JRA-55, NM2=NASA MERRA2, ER5 = ERA5, local = local observations 528 
at Mukteshwar IMD. 529 

 530 

In the context of a globally warming climate there is both scientific expectation and substantial 531 
observational evidence for increases in the accumulation of precipitation from individual storm events 532 
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– from either increases in intensity, duration or both (Trenberth et al, 2003). At Mukteshwar, however, 533 
over the common period (1980 to 2018) covered by local observations and the four meteorological 534 
reanalyses, there is an absence of consistency in sign and strength of correlation of precipitation 535 
indicators to time and relatively little in way of consistency/consensus between the independent data 536 
sources (Figure 9). With specific regard to the local observations, the sequencing of measured 537 
monthly precipitation amounts and event (greater than threshold) frequency rarely show correlation 538 
strengths greater than that found through <10% of randomisation sequence cases. Even so, one 539 
noteworthy aspect is that correlation of precipitation amounts to time appears strongly influenced by 540 
correlation of medium to large accumulation events (a mixture of >10mm and >50mm). None of the 541 
meteorological reanalyses consistently match the sign and strength of correlations of local 542 
observations to time, although ERA5 is marginally closer than the others. There is some indication, 543 
however, that agreement is better in colder months (October to April) than in warmer months (May 544 
to November). In terms of changes which could be deemed significant, the clearest signals (from local 545 
observations) appear to be increases in frequency of >50mm (daily) events in February and August. 546 
These specific increases in frequency of large events are counterbalanced by decreases in large event 547 
frequency in March and November. It remains to be established whether these apparent changes 548 
(shifts in seasonality?) are underpinned by evolving physical mechanisms or are simply indicative of 549 
the vast range of inherent variability (‘noise’) in the local precipitation regime. 550 

 551 
Figure 9: Kendall Tau correlation of frequency of daily precipitation surpassing thresholds to time 552 
for individual calendar months. Grey lines indicate statistical distribution of correlation values 553 
resulting through randomisation of observation order/sequencing, as per Figure 7; ERI=ERA-554 
Interim, J55=JRA-55, NM2=NASA MERRA2, ER5 = ERA5, local = local observations at 555 
Mukteshwar IMD. 556 

 557 

 558 
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[3.5] Atmospheric processes as candidate determinants of CWB change 559 

Simple evaluation of change over recent decades provides little insight into likely future 560 
evolution of the climate system unless those changes can be linked to driving physical mechanisms 561 
whose behaviour can be anticipated with strong confidence. As an illustrative example the potential 562 
influence of (local) cloud cover is examined here to provide context for the historical tendencies 563 
reported in the preceding section. Future evolution of cloud cover may be quite complex due to 564 
dependency of formation on presence of ‘seed particles’ (e.g. aerosols) but can nevertheless be 565 
interpreted through fundamental aspects of climate science relating changes in evaporation and 566 
condensation of water vapour to temperature change. Atmospheric circulation may play a role in 567 
evolution of cloud cover through variations in the paths or “tracks” of large-scale storm systems, 568 
including those linked to the monsoon. 569 

The potential of (local) cloud cover influence in driving interannual near surface climate 570 
variability is examined here as an illustrative example of a causal mechanism. Correlations shown in 571 
Figure 10 are essentially monotonic (uniformly signed) and exhibit strength levels which are highly 572 
unlikely to exist by chance. There is relatively strong consensus between the correlations found using 573 
local observations of near surface climate and those found using reanalyses estimates. These factors 574 
underpin relatively straightforward physical interpretations. Precipitation shows strong positive 575 
correlation to cloud cover which is logical since rain rarely falls under clear skies. For Mukteshwar 576 
there are consistent negative correlations between cloud cover and mean temperature (Tavg) although 577 
these are weaker in cold months (October to February) and during the late monsoon (August and 578 
September) when the cooling influence of clouds through shortwave (solar) radiative forcing is 579 
tempered by a warming influence of longwave (thermal) forcing. These findings are in line with a 580 
previous study (Forsythe et al., 2015) of cloud influence on temperature elsewhere in the Himalayan 581 
arc. DTR also shows consistent negative correlations, although values are perhaps less strong and less 582 
consistent in magnitude than could be expected given the presumed relationship between clear 583 
(cloudy) skies and amplified (suppressed) DTR. This may either point to limitations in cloud 584 
representation by meteorological reanalyses and/or substantial roles for other radiative influences, 585 
e.g. water vapour, in modulating DTR.  586 
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 587 
Figure 10 Kendall Tau correlation of near surface climate variables to total cloud fraction for 588 
individual calendar months. The individual reanalysis correlations are calculated between variable 589 
estimates by that data source. Local observations correlations are calculated against the ensemble 590 
mean of cloud cover estimates from the four reanalyses. Grey lines indicate statistical distribution 591 
of correlation values resulting through randomisation of observation order/sequencing; ERI=ERA-592 
Interim, J55=JRA-55, NM2=NASA MERRA2, ER5 = ERA5, local = local observations at 593 
Mukteshwar IMD. 594 

 595 

 596 

[4] Discussion and future perspectives 597 

[4.1] Descriptive hydroclimatology 598 

From an objective standpoint, CWB is an imperfect and admittedly oversimplified aggregate 599 
metric of water availability. This shortcoming is due to its neglect of the role of soil as reservoir 600 
storing moisture between precipitation events. Soil characteristics, along with precipitation 601 
intensity/event magnitude, play a critical role in modulating the partitioning of rainfall between 602 
direct/surface runoff and (subsurface) infiltration. Nevertheless, CWB provides an 603 
accessible/feasible, meaningful indicator of moisture availability without necessitating soil 604 
characteristics data (whose acquisition would be cost prohibitive). It would be possible to substitute 605 
in-situ subsurface information with sensitivity studies and probabilistic estimation of potential soil 606 
moisture balance, but such an approach would inherently entail such broad uncertainty bounds that 607 
resulting information content would be questionable. 608 

This study has drawn substantially on climate variable estimates from global meteorological 609 
reanalyses. These data sources do have important limitations, particularly in areas where the influence 610 
of steep topographic gradients greatly exceeds the level of detail enabled through their relatively 611 
coarse spatial resolution. This coarseness along with methodological limitations of the data 612 
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assimilation and forecasting systems which drive the reanalyses can (often) lead to strong biases in 613 
absolute value estimates of key climate variables, particularly precipitation. With relevance to this 614 
study specifically, the Mukteshwar area is situated in a (heterogeneous) transition zone at the margin 615 
between lowlands/plains and high mountains. The reanalyses do nevertheless have strong advantages, 616 
principally that they provide spatially and temporally continuous (internally consistent) estimates of 617 
a wide range of climate variables. Much of the aforementioned general biases can be overcome 618 
through simple normalisation/standardisation procedures as shown in Figure 2. It must be recognized, 619 
however, that these normalisation/standardisation procedures may not be effective at the transitions 620 
between climate regimes where different physical processes and seasonalities (timing of annual 621 
maxima and minima) intersect. 622 

From a more general scientific standpoint, exploratory data analysis can provide a pathway to 623 
improved understanding underlying physical mechanisms driving variability and change in natural 624 
systems. In order to attain this goal, temporal aggregation, whether monthly or seasonal, should 625 
reflect prevailing climate patterns such as precipitation regimes. The robustness of preliminary results 626 
can be assessed based on their independence (i.e. lack of sensitivity) to the choice of ‘analytical time-627 
window’, i.e. the start & end years for correlation and trend calculations. In the case of Mukteshwar 628 
specifically, using the CWB framework, apparent changes in climate over recent decades can be 629 
separated based on whether the variables in question influence atmospheric moisture supply or 630 
demand. In terms of supply, the dominant aspect of precipitation is arguably underlying/inherent 631 
(chaotic) variability although there is tentative evidence for the intensification of the hydrological 632 
cycle based on increasing frequency of large (accumulation) rainfall events in key months. This 633 
intensification of precipitation events is coherent with theoretical expectations, particularly the 634 
Clausius-Clapeyron relationship (Guerreiro et al, 2018), of climate evolution driven by anthropogenic 635 
global warming. Further research could also investigate in greater detail whether shifts in regional 636 
atmospheric circulation are changing the frequency with which storm systems pass through/over the 637 
Mukteshwar area. Regarding atmospheric moisture demand, evidence from local observations seems 638 
to robustly demonstrate year-round increases in daily mean temperature (Tavg) and corresponding 639 
decreases (except during spring) in diurnal temperature range (DTR). Additional investigation would 640 
be required to determine if the proximate mechanisms driving these changes, and in particular the 641 
strong Tavg increases in March, are predominantly attributable to cloud radiative influences, changes 642 
in regional atmospheric circulation or other underlying factors. On this point, i.e. with respect to water 643 
vapour (humidity), in light of visible similarity between the (normalised) annual cycles of RH and 644 
CWB, it may be worthwhile to consider the potential role of RH in influencing CWB components 645 
and the key climate variables. When using data from meteorological reanalyses, however, it is 646 
unlikely there would be substantial additional ‘information content’ in exploring correlations of 647 
(other) near surface climate variables to RH because RH and cloud cover will be highly correlated in 648 
these datasets.  649 

These results have potential implications for regional applications of (physically-based) 650 
“emergent constraint” approaches for validation/evaluation of climate models (Knutti et al, 2017; 651 
Cox et al 2018; Eyring et al, 2019) since accurate representation of moisture fluxes – whether as RH 652 
or CWB – near the land surface are central to the plausibility and relevance of simulated future 653 
conditions which will modulate the impacts of anthropogenic climate change. 654 

 655 

 656 

 657 

 658 
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[4.2] Promising avenues and critical pathways: 659 

While the findings of this study are of greatest interest for the Mukteshwar area, adjacent 660 
sections of the Kumaun Lesser Himalaya (KLH) and similar areas of the Ganges basin headwaters, 661 
the methodology employed has much broader potential relevance/transferability. 662 

 663 

[4.2.1] Validation of simulated historical climatologies and downscaling of projected future 664 
conditions 665 

In addition to driving biases in mean temperature, the precise location of grid cell boundaries 666 
can also influence the characterised precipitation regime. In this specific case, both ERA-Interim and 667 
NASA MERRA2 appear to somewhat overemphasise the monsoonal character of Mukteshwar 668 
precipitation with too large a fraction of annual rainfall found from July to August and too small from 669 
January to May. ERA5 is distinct in that its absolute wet bias is severe but its representation of the 670 
(normalised) annual distribution of precipitation is relatively skilful albeit with both onset and 671 
recession of the monsoon occurring earlier than in local observations. Despite its coarse spatial 672 
resolution, JRA55 estimates (relatively) accurately both the magnitude and timing of precipitation. 673 
These issues of magnitude and timing (seasonality) may further influence subsequent elements of 674 
study/analyses, as it implies differing relative contributions of distinct rainfall generating mechanisms 675 
(frontal/stratiform versus convective). Precipitation frequencies and amounts resulting from these 676 
mechanisms may follow divergent trajectories as a result of anthropogenic climate change. While 677 
large-scale meteorological reanalyses generally represent the shape of the annual cycle well, they 678 
struggle nevertheless to adequately capture the magnitude of interannual variability, even in relative 679 
terms. This may be linked to aggregation/homogenisation of conditions across large “grid cells” thus 680 
smoothing substantial local (“sub-grid”) variability. These limitations, particularly evidenced in the 681 
biases shown in the relatively finer resolution ERA5, support the need for high resolution dynamical 682 
downscaling of global meteorological reanalyses. Previous studies in North America have found that 683 
spatial resolutions finer than 10km are necessary to capture the influence of topography on 684 
precipitation gradients (Rasmussen et al, 2011). Separately, in regions with predominantly warm 685 
rainfall regimes, precipitation should be simulated using models run at convection-permitting spatial 686 
resolutions, i.e. less than 4km (Kendon et al, 2012; Prein et al, 2015). 687 

Looking beyond the evaluation of global meteorological reanalyses as potential sources of 688 
historical data in observation void/gap areas, the approach utilised here could equally be applied as a 689 
framework for site-based validation of climate model outputs (CORDEX, CMIP, etc). Validation and 690 
bias assessment efforts to quantify climate model performance often focus on spatial patterns within 691 
the modelled domain or on annual cycles of large spatial aggregates, e.g. along longitudinal bands or 692 
over major river basins. Such broad aggregation can easily obscure whether the simulated 693 
climatologies are realistic at the scale of natural resource management. By relating – both in absolute 694 
and normalised/standardised terms -- climate model outputs to the CWB (derived from local 695 
observations) a meaningful assessment of hydro-climatological ‘fidelity’ or skill can be made. 696 
Repeating CWB ‘point’ assessments for multiple locations with quality multi-decadal observational 697 
records can provide much greater insight into model performance than simple gridded or spatially 698 
aggregated assessments would yield. These site-based bias assessments can also provide the 699 
foundation for downscaling – if a ‘delta change’/perturbation type approach is adopted -- of future 700 
climate projections. This is because it is necessary to relate the incremental (multiplicative for 701 
precipitation, additive for temperature) changes between projected future and simulated historical 702 
climate conditions to the local observational record in order to minimise ‘contamination’ of impact 703 
assessments with model biases. This is, however, an imperfect approach because the underlying 704 
climate model errors in representing physical processes will still be present in the projected ‘change 705 
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factors’ (Ehret et al, 2012) albeit reduced through exclusion of the most unrealistic models. This fact 706 
provides further impetus in the drive toward high-resolution dynamical downscaling capable of 707 
accurately simulating physical processes including orographic and convective precipitation. 708 

 709 

[4.2.2] Attaining field-scale representation of CWB and beyond 710 

Along similar lines, the full suite of meteorological variables utilised to calculate (FAO 711 
Penman Monteith) reference evapotranspiration are rarely observed at individual locations 712 
particularly in countries with emerging or developing economies (i.e. the ‘Global South’). The three 713 
key variables -- precipitation, Tavg and DTR – can, however, be observed accurately and at low cost 714 
around the globe. As such the number of meteorological stations with multi-decadal observational 715 
records of these variables is substantial. Even where longstanding measurements have not been 716 
conducted, observational systems can quickly be established and, within a few years of operation, 717 
results can be compared to national monitoring systems and/or gridded data sources. Supplemental 718 
low-cost in-situ measurements of additional variables, such as relative humidity (RH), can further 719 
reduce uncertainty in deriving reference evapotranspiration and CWB from these primary climate 720 
observations. The role of RH is of high potential interest as it is possible to directly observe RH (in 721 
additional to Precip and Tavg/DTR) locally using low cost sensors. Expanding the availability of local 722 
RH observations could thus provide a promising avenue for highly-scalable additional ‘ground 723 
truthing’ of gridded/global datasets – both meteorological reanalyses and climate models – as well to 724 
reduce uncertainty in CWB estimates calculated using estimates of ‘tertiary’ variables extracted from 725 
these datasets. Furthermore, at local spatial scales, meaningful investigations of soil characteristics 726 
(depth, texture) become feasible. Such field campaigns thus enable progress from the relatively 727 
simple CWB estimates to extrapolation of full water balance, i.e. including actual evapotranspiration 728 
(AET), effective precipitation (precip minus AET), direct runoff and percolation/baseflow. 729 

 730 

[5] Conclusions 731 

[5.1] Specific findings regarding the climatic water balance in proximity to Mukteshwar  732 

In order to characterise the evolving hydroclimate of a case study within the middle mountains 733 
in the transition zone between the Indo-Gangetic plain and the Greater Himalaya, we have utilised 734 
meteorological observations from the Mukteshwar station (Nainital district, Uttarakhand state) of the 735 
India Meteorological Department (IMD) to quantify the local climatic water balance (CWB) – along 736 
with the variables which determine it – in terms of both annual cycles and interannual variability. The 737 
observed patterns of year-to-year variability in time-series of seasonal aggregates for the variables of 738 
interest do not show linear progression. We have nevertheless investigated the time-dependency of 739 
these patterns through correlation analyses (Figures 8 and 9). 740 

In order to corroborate the conditions described by local (IMD) observations, we have also 741 
characterised the CWB, and its contributing variables, using data from four global meteorological 742 
reanalyses: ERA-Interim, JRA-55, NASA MERRA2 and ERA5. Comparison of climatologies from 743 
the four reanalyses to local observations show that although large absolute biases exist in the gridded 744 
data sources, simple normalisation (corrective) procedures yield accurate representation of 745 
Mukteshwar climatology. This relative skill extends to reasonable estimation of interannual 746 
(standardised) seasonal anomaly patterns. Even limited discrepancies between local observations and 747 
reanalyses for individual time-steps, however, yield substantial discrepancies in results of the more 748 
sensitive procedure of assessing time-dependency. 749 

The CWB component variable characterisation demonstrates that Mukteshwar and the 750 
adjacent Kumaun Lesser Himalaya (KLH) have a monsoonal precipitation regime. The annual 751 
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temperature cycle has a larger amplitude than might otherwise be expected at its latitude (~29.5°N), 752 
owing to the high elevation (>2000m asl). Examination of both time-series of seasonally aggregated 753 
anomalies and the correlation analyses of the time-dependency of monthly variables show that at 754 
Mukteshwar, and the adjacent KLH, CWB variability is driven predominantly by precipitation, i.e. 755 
the supply side of the moisture balance equation. Variability in reference evapotranspiration (ET0), 756 
i.e. the demand side of the equation, reflects a combination of the variability in daily mean 757 
temperature (Tavg) and diurnal temperature range (DTR). In light of the dominant role of precipitation 758 
in the CWB, we further investigated the climatology and time-dependency (correlation) of daily 759 
precipitation exceeding specific thresholds. These analyses showed that correlations of precipitation 760 
to time appear to follow that of medium and heavy wet days (24-hour accumulation of ≥10mm and ≥ 761 
50mm). This dominance of large precipitation events has potentially worrying implications for local 762 
resource management and hazard mitigation if the distribution of rainfall shifts toward more large 763 
events and fewer gentle/sustained showers. At the local scale, soil is unlikely to be able to infiltrate 764 
large precipitation amounts in a short time period. If concentration of precipitation in intense events 765 
is coupled with prolonged dry spells between rainfall episodes, the capacity of soil to store sufficient 766 
moisture to meet uptake needs by vegetation – both crops and forests – will likely be exceeded. While 767 
particularly heavy precipitation can cause crop damage, general intensification of rainfall rates in the 768 
uplands will likely result in increased soil erosion and higher peak river discharge. This will 769 
complicate infrastructure operation downstream, in the Terai and lowland segments of the Ganges 770 
basin, as reservoir storage capacity and flood defences may not provide adequate buffers to 771 
intensification of the hydrological cycle. 772 

 773 

[5.2] Relevance of CWB methodology for informing adaptive resource management more 774 
broadly 775 

The CWB, as a metric of the equilibrium – or lack thereof – between atmospheric moisture 776 
supply (precipitation) and demand (potential or reference evapotranspiration) to and from the land 777 
surface, provides a very meaningful descriptor of hydroclimate conditions. Quantitative identification 778 
of alternating phases of CWB surplus and deficit within the annual cycle contextualises seasonality 779 
of local plant growth and water-dependent economic activities in moisture-limited (rather than 780 
energy-limited) cases. Time-series analyses of CWB anomalies provide insight on the magnitude, 781 
frequency and duration over which near surface atmospheric moisture availability is observed to 782 
deviate from mean conditions. Taken together the climatological and ‘anomaly-space’ approaches 783 
usefully frame the time-varying need for local moisture storage either within the natural subsurface 784 
– i.e. in soil and aquifers – or in engineered structures ranging from household-level tanks and ponds 785 
to regional networks of surface reservoirs and/or groundwater pumping. 786 

In light of the findings regarding the dominance of precipitation and particularly large rainfall 787 
events in driving variability and evolution of CWB (as illustrated through the Mukteshwar 788 
observational record), it is pragmatic to suggest that local and regional initiatives to develop adaptive 789 
resource management should focus on increasing buffering capacity to attenuate moisture supply-790 
demand imbalances. This could be pursued not only through the construction of surface water storage 791 
(tanks, reservoirs) and distribution systems, but also through land management activities and 792 
interventions to enhance infiltration (e.g. bunds) and soil moisture retention (e.g. increasing topsoil 793 
organic content) and to limit evapotranspiration (e.g. mulches). In the context of this study, such 794 
initiatives could be tested within the Ramgad and Dhokane watersheds (Figure 1) which lie within 795 
the Ramgarh Development Block in the Nainital district of Utttarakhand state, India. Developing 796 
systems and methods capable of coping with already high levels of interannual variability would 797 
represent an important step toward resilience to future climate change impacts on the water cycle. 798 



25 
 
These systems could be scalable in terms of both spatial service area and temporal buffering. In the 799 
most modest configuration, tanks and subsurface storage would be destined to bridge moisture supply 800 
shortfalls over a few days or weeks for the fields of individual smallholder farming families. More 801 
ambitious schemes could be designed to store ‘surplus’ monsoonal precipitation to meet moisture 802 
demands for the following several months for substantial sections of individual villages (panchayats).  803 

Independent of the scale at which it is applied, the CWB approach, as demonstrated in this 804 
study, provides a scientifically robust approach to characterising near surface atmospheric moisture 805 
availability. Because it is conceptualised through supply and demand terms analogous to simple 806 
accounting principles, its broad strokes should also be accessible to lay-person decision makers who 807 
could draw upon its findings to guide adaptive resource management efforts. 808 
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SUPPLEMENTARY INFORMATION 999 

Additional information on evaluation of reanalyses estimates of local conditions 1000 

[1] Time correlations between local observations and reanalyses estimates of key variables (Precip, 1001 
Tavg, DTR) 1002 

 1003 
Figure S1 Kendall Tau correlation of reanalyses estimates of near surface climate variables to local 1004 
observations (from Mukteshwar IMD). These correlations are based on monthly aggregated values. 1005 
Grey lines indicate statistical distribution of correlation values resulting through randomisation of 1006 
observation order/sequencing; ERI=ERA-interim, NM2=NASA MERRA2, J55=JRA-55, 1007 
ER5=ERA5. 1008 
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