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Abstract

Uncertainty in the response of clouds to global warming remains a significant barrier to reducing uncertainty in climate sensi-

tivity. A key question is the extent to which the dynamic component – that which is due to changes in circulation rather than

changes in the thermodynamic properties of clouds – contributes to the total cloud feedback. Here, simulations with a range

of cloud-resolving models are used to quantify the impact of circulation changes on tropical cloud feedbacks. The dynamic

component of the cloud feedback is substantial for some models and is controlled both by SST-induced changes in circulation

and nonlinearity in the climatological relationship between clouds and circulation. Differences in the longwave and shortwave

dynamic components across models are linked to the extent to which ascending regions narrow or expand in response to a

change in SST. The diversity of changes in ascent area is coupled to intermodel differences non-radiative diabatic heating in

ascending regions.
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Abstract13

Uncertainty in the response of clouds to global warming remains a significant barrier to14

reducing uncertainty in climate sensitivity. A key question is the extent to which the dy-15

namic component – that which is due to changes in circulation rather than changes in16

the thermodynamic properties of clouds – contributes to the total cloud feedback. Here,17

simulations with a range of cloud-resolving models are used to quantify the impact of18

circulation changes on tropical cloud feedbacks. The dynamic component of the cloud19

feedback is substantial for some models and is controlled both by SST-induced changes20

in circulation and nonlinearity in the climatological relationship between clouds and cir-21

culation. Differences in the longwave and shortwave dynamic components across mod-22

els are linked to the extent to which ascending regions narrow or expand in response to23

a change in SST. The diversity of changes in ascent area is coupled to intermodel dif-24

ferences non-radiative diabatic heating in ascending regions.25

Plain Language Summary26

Clouds influence Earth’s energy balance by absorbing and reflecting solar and terrestrial27

radiation. The response of clouds to warming remains a key source of uncertainty in our28

understanding on how the climate system will evolve. In particular, how the influence29

of clouds on radiation is coupled to the atmospheric circulation is an open question. In30

this study, idealized simulations of the tropics at high resolution (3 km) are analyzed to31

probe how changes in circulation impact clouds in a warming climate. It is found that,32

across a range of models, the degree to which circulation changes influence clouds de-33

pends on how the area of the region with ascending air responds to warming.34
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1 Introduction35

The interplay between clouds and the atmospheric circulation is a persistent source of36

uncertainty in our understanding of how the climate system may evolve (Sherwood et37

al., 2014; Bony et al., 2015; Ceppi et al., 2017; Webb et al., 2017). One particular chal-38

lenge is that clouds and their associated radiative effects – particularly in the tropics –39

are strongly influenced by convection (Hartmann et al., 2001), which occurs at horizon-40

tal scales smaller than those typically resolved by the current generation of global cli-41

mate models (GCMs). Integrating GCMs at convection-permitting resolutions for long42

enough to study climate and climate change remains prohibitively expensive. One way43

to overcome this computational barrier is through the use of limited-domain cloud-resolving44

models (CRMs), which have the potential to advance fundamental understanding of cloud–45

circulation coupling in the tropics and shed light on potential sources of uncertainty in46

cloud feedbacks.47

Cloud radiative effect – defined as the difference between all-sky and clear-sky broad-48

band fluxes at the top-of-atmosphere (TOA), with positive values representing a net down-49

ward flux at TOA due to clouds – is tightly coupled to the atmospheric circulation (Bony50

et al., 2004). In the tropics, regions of strong ascent (Fig. 1, left column) are associated51

with strong positive longwave cloud radiative effects due to their high, cold cloud tops52

and therefore large temperature contrast relative to the surface (Fig. 1, middle column).53

These deep convective clouds are also highly reflective, resulting in co-located regions54

of strong negative shortwave cloud radiative effect (Kiehl, 1994; Hartmann et al., 2001)55

(Fig. 1, right column).56

There are number of ways in which tropical convective-scale circulations may change57

in a warming climate, and it remains unclear to what extent these changes could impact58

cloud feedbacks. For example, previous work with CRMs has suggested that a warmer59

climate may lead to stronger updraft velocities (Singh & O’Gorman, 2015); more con-60

vective available potential energy (Romps & Kuang, 2011); changes to convective organ-61

ization (Wing & Emanuel, 2014); a weakening of the overturning circulation and changes62

to the area of ascending air (Cronin & Wing, 2017; Jenney et al., 2020).63

The dependence of clouds on circulation is often characterized by discretizing cloud64

radiative effect as a function of circulation regime, typically defined as the mid-tropospheric65

vertical velocity (Bony et al., 2004, 2006; Wyant, Bretherton, et al., 2006; Byrne & Schnei-66

der, 2018; Lutsko, 2018) (Fig. 2a,b). Previous work has shown that there exists an ap-67

proximately linear relationship between cloud radiative effect and vertical velocity in GCMs68

with O(1◦) horizontal resolution for a broad range of circulation regimes (Byrne & Schnei-69

der, 2018), and that this quasi-linearity constrains the influence of circulation changes70

on cloud feedbacks to be small (Wyant, Bretherton, et al., 2006; Byrne & Schneider, 2018).71

But as O(1◦)-resolution GCMs cannot resolve the convective-scale circulations that in-72

fluence cloud radiative effect, particularly in tropical and subtropical regions, this begs73

the question: Is the impact of circulation changes on cloud feedbacks small when con-74

vection is explicitly simulated? Or do circulation changes and their impacts on cloud feed-75

backs become more dominant at higher resolutions, representing a potentially important76

influence on clouds feedbacks that is absent from the current generation of GCMs?77

This study will address the following questions: First, do the climatological rela-78

tionships between circulation and cloud radiative effect in CRMs have the same quasi-79

linearity as noted in GCMs? Second, in CRMs, is the dynamic component of cloud feed-80

back – due to changes in circulation – a significant part of the total feedback? And third,81

which physical processes control the dynamic component of the cloud feedback across82

a range of CRMs? We begin with an overview of the models and simulations to be an-83

alyzed (Section 2), followed by a description of how cloud feedbacks are decomposed into84

dynamic and thermodynamic components (Section 3). We then develop, in Section 3.1,85

a toy model to explore the effects of nonlinearities in climatological cloud-circulation cou-86

–3–
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Figure 1. Daily mean snapshots of vertical velocity at 500hPa (left), longwave cloud radia-

tive effect (LW CRE, middle) and shortwave cloud radiative effect (SW CRE, right) from the

SAM CRM RCE large300 experiment. Data have been spatially (96 km2 blocks) and temporally

averaged (24-hour periods). Positive values of cloud radiative effect correspond to a warming

effect of clouds at TOA.

pling on cloud feedbacks. In Sections 4 and 5 we analyze the physical processes control-87

ling the dynamic components of the cloud feedback across CRMs. We conclude with a88

discussion and suggestions for future research (Section 6).89

2 Simulations90

A common framework to study cloud-circulation interactions is radiative-convective equi-91

librium (RCE), an idealization of the tropical atmosphere defined by a simple thermo-92

dynamic balance between radiative cooling and convective warming of the atmosphere93

(e.g. Held et al., 1993). A major advantage of RCE is there are no external forcings or94

boundary conditions from large-scale dynamics, allowing fundamental convective and cloud95

processes to be studied without additional complications (Wing et al., 2020). RCE can96

be implemented across spatial scales and for studying many different aspects of the trop-97

ical atmosphere: For example, previous studies have focused on factors controlling cloud98

anvil amount in GCMs and CRMs (Bony et al., 2016); the relationship between the or-99

ganization of convection and extreme precipitation (Pendergrass et al., 2016; Bao et al.,100

2017); energetic constraints on large-scale circulation (Jenney et al., 2020); the response101

of updraft velocities to warming (Singh & O’Gorman, 2015); and self aggregation of con-102

vection (Bretherton et al., 2005; Muller & Held, 2012; Wing & Emanuel, 2014; Holloway103

& Woolnough, 2016). In this study we will primarily use CRMs to assess the degree to104

which circulation influences cloud feedbacks in simulations of RCE.105

One area of recent focus has been convective self aggregation - the phenomenon of106

convection spontaneously organising in the absence of external forcing - and the inter-107

actions between the moist-radiative processes associated with it (e.g. Bretherton et al.,108

2005; Wing & Emanuel, 2014; Wing & Cronin, 2016a; Holloway & Woolnough, 2016; Cronin109

& Wing, 2017; Becker & Wing, 2020). In particular, there has been much interest in the110

implications of convective aggregation for equilibrium climate sensitivity (ECS). Defined111

as the change in global mean surface temperature at equilibrium in response to a sud-112
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den doubling of CO2, ECS remains stubbornly uncertain in current GCMs (Zelinka et113

al., 2020; Sherwood et al., 2020), leading to interest in the links between climate sensi-114

tivity and aggregation in more idealized model configurations (e.g. Wyant, Khairout-115

dinov, & Bretherton, 2006; Cronin & Wing, 2017; Coppin & Bony, 2018; Romps, 2020).116

Self-aggregation is sensitive to domain size, resolution and SST (e.g Muller & Held, 2012;117

Wing et al., 2017; Wing, 2019), but comprehensive assessments of the phenomenon have118

been hampered by a lack of consistent experiments across models.119

To address this, a recent model intercomparison project (the Radiative-Convective120

Equilibrium Intercomparison Project, RCEMIP) has established an archive of CRM and121

GCM simulations over a range of resolutions and SSTs (Wing et al., 2018, 2020). De-122

spite uniform boundary conditions, there are substantial differences in RCE state across123

the RCEMIP simulations, with large differences in temperature, relative humidity and124

cloud profiles (Wing et al., 2020). Cloud and circulation responses to warming also vary125

across models (Becker & Wing, 2020; Silvers et al., submitted), though the majority of126

models simulate anvil clouds which rise, warm and reduce in area fraction with SST warm-127

ing, consistent with previous work (Hartmann & Larson, 2002; Zelinka & Hartmann, 2010;128

Bony et al., 2016).129

The RCEMIP models also have a large spread in their “Cess-type” TOA feedback130

parameters (Cess & Potter, 1988) – defined as the change in net TOA radiation divided131

by the surface temperature change – leading to a spread in their hypothetical climate132

sensitivities (Wing et al., 2020; Becker & Wing, 2020). Becker and Wing (2020) deter-133

mine that model differences in the total feedback parameter and climate sensitivity arise134

through a combination of shallow cloud fraction and convective aggregation, but that135

it is changes in the degree of self aggregation which influences the feedback parameter136

rather than the average value.137

A major advantage of RCEMIP is that it incorporates a hierarchy of models run138

in RCE, with consistent experiments allowing comparison across model types. Here, we139

focus on the simulations at cloud resolving (3 km) resolution in a long-channel domain140

(∼ 6000 km x ∼ 400 km). These long-channel simulations permit both convection and141

the evolution of large-scale dynamics within the domain (Wing & Cronin, 2016b; Cronin142

& Wing, 2017). We use all the CRM long-channel simulations which provide the vari-143

ables required for our analysis. All models used are listed in Table Appendix A. Detailed144

information about individual models can be found in the supporting information of Wing145

et al. (2020). All simulations are non rotating, with uniform solar insolation and uniform,146

fixed SST at three different temperatures (295, 300 and 305 K). We exclude two mod-147

els from all our analysis (UCLA-CRM and MESONH) at the higher temperature range148

(305-300 K) because their simulations are highly anomalous and have an undue effect149

on our analysis (Fig. S1).150

3 Dynamic and thermodynamic components of cloud feedbacks151

To assess how circulation changes influence cloud feedbacks we follow the framework in-152

troduced by Bony et al. (2004), and employed by a number of subsequent studies (Wyant,153

Bretherton, et al., 2006; Wyant, Khairoutdinov, & Bretherton, 2006; Byrne & Schnei-154

der, 2018; Lutsko, 2018), in which changes in the cloud radiative effect at TOA are de-155

composed into components associated with a) changes in circulation (the dynamic com-156

ponent) and b) changes assuming fixed circulation (the thermodynamic component). The157

nonlinear component quantifies the combined influence of changes in circulation and ther-158

modynamic processes.159

We analyze the last 25 days of each simulation, following Wing et al. (2020). For160

the CRMs, we perform spatial and temporal averaging: We calculate daily means with161
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a spatial average over 96 km2, a similar scale to typical GCM gridboxes which have a162

resolution on the order of 1-2◦.163

To decompose the total cloud feedback in dynamic and thermodynamic components,164

we first characterise how the cloud radiative effect, in both the longwave and shortwave,165

depends on vertical velocity at 500 hPa (w). We extract the vertical velocity at the model166

level closest to 500 hPa for each time- and space-averaged block, then discretize the ver-167

tical velocity field into bins of width 0.001 ms−1. This allows us to construct two dis-168

cretized functions of the longwave and shortwave cloud radiative effects, RLW (w) and169

RSW (w), which we term the “cloud-circulation coupling functions”. Figures 1 and 2 il-170

lustrate this process: for all the grid points falling within a particular vertical velocity171

bin (Fig. 1, left column), we calculate the mean of the longwave and shortwave cloud172

radiative effects (Fig. 1, middle and right columns) obtaining RLW (w) and RSW (w) (Fig.173

2 a,b). The area probability density function [A(w)] is simply the normalized number174

of points within each vertical velocity bin (Fig. 2c). To construct a continuous function,175

we linearly interpolate across any empty vertical velocity bins and ensure A(w) integrates176

to 1 over the full w range by applying a correction to account for the linear interpola-177

tion.178

Figure 2a-c shows the RLW (w), RSW (w) and A(w) functions from the SAM CRM179

model in turquoise. Also included are the multimodel mean, interquartile range and full180

range of the CRMs. Despite the large intermodel spread, there are some common fea-181

tures across models: While there are relatively few grid points with strong ascent (strongly182

positive vertical velocity), these regions have large longwave and shortwave cloud radia-183

tive effects associated with deep convective clouds. These high-topped clouds are both184

cold, reducing the outgoing longwave radiation with respect to clear-sky conditions and185

producing a strong positive longwave cloud radiative effect, and reflective, increasing the186

proportion of shortwave radiation reflected to space and producing a strong negative short-187

wave cloud radiative effect. With weakening ascent, we generally see a decrease in the188

magnitudes of the longwave and shortwave cloud radiative effects (Fig. 2a,b).189

Written in continuous form, the mean change in cloud radiative effect with warm-
ing, δR, is decomposed into dynamic, thermodynamic and nonlinear components as fol-
lows:

δR =

∫ ∞
−∞

R(w)δA(w)dw︸ ︷︷ ︸
dynamic

+

∫ ∞
−∞

δR(w)A(w)dw︸ ︷︷ ︸
thermodynamic

+

∫ ∞
−∞

δR(w)δA(w)dw︸ ︷︷ ︸
nonlinear

. (1)

The first term on the right hand side of (1) is the dynamic component representing the190

effect of circulation changes between simulations, δA(w), on cloud radiative effect assum-191

ing constant cloud–circulation coupling functions (i.e. δRLW (w) = 0, δRSW (w) = 0).192

The second term is the thermodynamic component, which quantifies the change in cloud193

radiative effect assuming a fixed distribution of vertical velocity (i.e. δA(w) = 0). The194

third term is the nonlinear component, which depends on changes in both circulation195

and cloud–circulation coupling. In physical terms, the dynamic component represents196

the change in cloud radiative effect due to, say, a strengthening or weakening of verti-197

cal velocity in ascending/descending regions, or a change in the relative sizes of these re-198

gions, while the thermodynamic component includes, for example, the effects on the cloud199

radiative effect of phase changes in cloud water. For discussion of these and further ex-200

amples we refer the reader to Byrne and Schneider (2018).201

3.1 Influence of nonlinearity in cloud–circulation coupling on the dy-202

namic component203

As illustrated in Figure 2, the cloud–circulation coupling functions RLW (w) and RSW (w)204

are approximately linear over a range of vertical velocities, a feature also found in ob-205

servations and reanalyses (Bony et al., 2004; Wyant, Bretherton, et al., 2006) and global206

–6–
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Figure 2. (a) Longwave cloud radiative effect, (b) shortwave cloud radiative effect and (c)

area probability density function (PDF) expressed as functions of vertical velocity at 500 hPa

for the 300 K simulations. (d) Change in area PDFs between the 300 K and 305 K simulations.

Light grey shading indicates the full range of RCEMIP models, dark grey shading the interquar-

tile range, and the black continuous lines show the multimodel means. Data from SAM CRM is

in turquoise.
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coupled models (Byrne & Schneider, 2018). This quasi-linearity constrains the global dy-207

namic component of the cloud feedback to be small in GCMs (Byrne & Schneider, 2018);208

we summarize this argument below before exploring, using a toy model, how different209

characteristics of the nonlinearity in cloud–circulation coupling control the degree to which210

circulation changes influence the cloud feedback.211

The dynamic component of the cloud feedback is defined as [see (1)]:212

δRdyn =

∫ ∞
−∞

R(w)δA(w)dw. (2)

Substituting a linearized form of the cloud–circulation coupling function, Rlin(w) = a+213

bw where a and b are constants, into (2), the dynamic component can be expressed as214

a sum of two terms (Byrne & Schneider, 2018): δR
lin

dyn = a
∫∞
−∞ δAdw+b

∫∞
−∞ wδAdw.215

The first term on the right hand side of this expression is zero because A(w) is a nor-216

malized area PDF, implying by definition that any change in A(w) integrates over w to217

zero. The second term is also zero by mass conservation: For any given climate state –218

and averaged over a sufficiently long time and over a region with zero net mass flux across219

its boundary (i.e. a closed-mass region) – the total mass flux of the ascending region (where220

w > 0) balances the total mass flux of the descending region (where w < 0) such that221 ∫ 0

−∞ wAdw = −
∫∞
0
wAdw and

∫∞
−∞ wAdw = 0.222

The argument above demonstrates that if the relationship between vertical veloc-223

ity and cloud radiative effect is strictly linear, circulation changes are irrelevant for cloud224

feedbacks when averaged over a sufficiently large region (Wyant, Bretherton, et al., 2006;225

Byrne & Schneider, 2018). But in the more general case where cloud–circulation cou-226

pling functions are nonlinear, the dynamic component will depend on higher-order terms227

in w that do not generally integrate to zero when multiplied by δA(w).228

We extend this theoretical analysis to demonstrate that not only is a nonlinear cloud–229

circulation coupling function required for a nonzero dynamic component, but that the230

magnitude of the dynamic component depends on both the degree of nonlinearity in R(w)231

and its location, in w space, relative to the change in circulation, δA(w). To illustrate232

the sensitivities of the dynamic component to the climatological structure of cloud–circulation233

coupling, we construct a toy model of R(w):234

Rtoy(w) = a+ bw + c tanh(dw + e), (3)

where a, b, c, d and e are constants, with baseline values of a = 17, b = 592, c = 32, d235

= 1 and e = 0. The functional form of (3) and values of the constants are chosen so as236

to qualitatively match a simulated longwave cloud–circulation coupling function (cf. Fig.237

3a and Fig. 3b). By varying the constants c and e we explore, respectively, the impacts238

on the dynamic component of (i) varying the degree of nonlinearity in R(w) and (ii) vary-239

ing the location of the nonlinearity relative to δA(w) in w space. The stylized version240

of R(w) described by (3) is multiplied by the simulated circulation change δA(w) from241

the SAM CRM model and summed over all vertical velocities to explore, in a general242

way, how climatological cloud–circulation coupling affects the cloud feedback.243

As anticipated from the discussion above and following the results of Byrne and244

Schneider (2018), when R(w) is linear (c = 0, turquoise line in Fig. 3b), the resultant245

dynamic component is identically zero (turquoise circle in Fig. 3d). As the nonlinear-246

ity is enhanced by increasing c, the magnitude of the dynamic component increases (Fig.247

3d). As a more intuitive measure of the nonlinearity, we plot the the dynamic compo-248

nent against ‘step size’, defined as the difference, in Wm−2, between the two linear ex-249

trapolations before and after the nonlinearity. These extrapolations are shown in Fig.250

3b for the case of c = 48 as dashed red lines. Thus, Fig. 3d shows that the magnitude251

of the dynamic effect increases approximately linearly with step size.252
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Figure 3. Investigating the effects of nonlinearity in cloud–circulation coupling using a toy

model of R(w). (a) Simulated R(w) taken from the SAM CRM RCE large300 run, while δA is

calculated from SAM CRM RCE large305 minus SAM CRM RCE large300. Both R(w) and δA

are smoothed using a 14-bin moving average over w. Idealized forms of R(w) generated using (3)

by varying the (b) step size and (c) point of inflection. Circles in plots (a)-(c) indicate location

of the inflection point in the function. (d) and (e): The dynamic components obtained by multi-

plying the idealized forms of R(w) from (b) and (c), respectively, with the simulated δA from (a),

as a function of (d) step size and (e) the difference in inflection points between δA(w) and R(w),

and integrating over w.
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Varying the location of the nonlinearity in the cloud–circulation coupling function253

with respect to δA(w) (Fig. 3c) also impacts the dynamic component (Fig. 3e). In par-254

ticular, we plot the dynamic component as a function of the ‘difference in inflection points’255

(Fig. 3c), which is varied using the e parameter in (3). The difference in inflection points256

is defined, in units of ms−1, as the position of the inflection point in R(w) minus the po-257

sition of the inflection point in δA(w) (see circles in Fig. 3a). Figure 3e demonstrates258

that the magnitude of the dynamic component varies non-monotonically with the dif-259

ference in inflection point and can be either a positive (warming) or negative (cooling)260

feedback depending on the structure of cloud–circulation coupling relative to the struc-261

ture of the circulation change.262

Using this toy model, we show that not only does a nonzero dynamic component263

require the climatological cloud–circulation coupling function to be nonlinear, but the264

size of the nonlinearity and its location in vertical velocity space influence the magni-265

tude of the dynamic component. Therefore the characteristics of climatological cloud–266

circulation coupling are crucial for determining how changes in circulation affect cloud267

feedbacks.268

4 Dynamic component across cloud-resolving models269

The remainder of this paper focuses on the dynamic component of cloud feedbacks across270

the RCEMIP CRMs. We begin by quantifying the role of circulation changes in cloud271

feedbacks before assessing whether intermodel spread in the dynamic component is con-272

trolled primarily by differences in circulation changes or differences in climatological cloud–273

circulation coupling across models (Section 4.1). This is followed by an investigation of274

how the dynamic component depends on bulk metrics of the atmospheric circulation (Sec-275

tion 4.2), with a focus on the physical processes controlling ascent fraction (Section 5).276

4.1 Quantifying the dynamic component of the cloud feedback277

Using the decomposition (1), we calculate the total cloud feedback as well as the dynamic,278

thermodynamic and nonlinear components for both temperature differences (300 minus279

295 K and 305 minus 300 K), and for the models listed in Table Appendix A. We ver-280

ify that the sum of the feedback components [see (1)] is approximately equal to the to-281

tal cloud feedback calculated by taking the change in domain-mean cloud radiative ef-282

fects between two simulations with different SSTs and dividing by the SST change. The283

multi-model mean difference between the two methods is ∼ 0.01 Wm−2K−1 for both the284

longwave and shortwave feedbacks.285

The longwave thermodynamic component across models ranges from approximately286

-1 to +1 Wm−2K−1, which is a larger range than the dynamic component (approximately287

-0.5 to 0.5 Wm−2K−1). However, both the thermodynamic and dynamic components288

have a statistically significant (p < 0.01) correlation with the total cloud feedback (e.g.289

r2 = 0.94, 0.65 for the longwave thermodynamic and dynamic components, respectively).290

The correlation between the total shortwave feedback and the dynamic component is less291

strong (r2 = 0.18) and not statistically significant. A statistically significant correlation292

between the dynamic and thermodynamic components in the longwave (r2 = 0.43) sug-293

gests that the processes determining the magnitude of the two components are not in-294

dependent, though this does not apply in the shortwave (r2 = 0.00 for the correlation295

between the thermodynamic and dynamic components).296

In summary, the longwave and shortwave dynamic components are (i) substantial297

in magnitude compared to the total feedbacks; and (ii) linked to differences in total cloud298

feedback across models, at least in the longwave. An immediate question arising from299

this analysis is whether intermodel differences in the dynamic component are primar-300

ily due to differences in climatological cloud–circulation coupling [i.e. different R(w) func-301

–10–
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Figure 4. Total (a) longwave, (b) shortwave and (c) net cloud feedbacks, along with the dy-

namic, thermodynamic and nonlinear components as defined by (1), for the RCEMIP CRMs.

Feedbacks computed between the 295 K and 300 K simulations (circles) and the 300 K and

305 K simulations (squares) are shown. Numbers at the top of each subplot indicate the Pearson

correlation coefficient between the total cloud feedback and the various feedback components,

across all models and both temperature changes. The correlations written in bold are statistically

significant (p < 0.01). Feedbacks for the UCLA-CRM and MESONH models computed using the

300 K and 305 K simulations have been omitted as they are significant outliers (see Section 4.1

and Fig. S1).
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Figure 5. (a) Longwave and (c) shortwave dynamic components calculated using the

multimodel-mean change in circulation [δA(w)] and model-specific cloud–circulation coupling

functions [R(w)], plotted against the full dynamic component calculated using (1). (b,d) As

in panels (a) and (c) but here, for the x-axis, computing the longwave and shortwave dynamic

components using the multimodel-mean cloud–circulation coupling function [R(w)] and the

model-specific circulation changes [δA(w)]. Colours represent different models, corresponding to

the legend in Figure 4. Dynamic component is calculated using the 295 K and 300 K simulations

(circles) and the 300 K and 305 K simulations (squares). Numbers at the top of each subplot

indicate the Pearson correlation coefficient between the x and y axes.

tions], or differences in circulation changes with warming [i.e. different δA(w)]. To ex-302

plore this question, we determine to what extent variations in the dynamic component303

across models can be reproduced using either the multimodel-mean cloud–circulation cou-304

pling function, R(w), or the multimodel-mean circulation change, δA(w). For each model,305

we calculate
∫∞
−∞R(w)δA(w)dw – the dynamic component assuming all models have the306

same change in circulation – and compare this to the full dynamic component (Fig. 5a,c).307

We also compute
∫∞
−∞R(w)dA(w)dw – the dynamic component assuming all models have308

the same cloud–circulation coupling function (Fig. 5b,d).309

The intermodel spread in longwave and shortwave dynamic components is dom-310

inated by differences in circulation changes across models (Fig. 5b,d) rather than dif-311

ferences in cloud–circulation coupling (Fig. 5a,c). This suggests that while, as discussed312

in Section 3.1, a nonlinearity in R(w) is an essential prerequisite for a nonzero dynamic313

component, and the structure of this nonlinearity and its location in vertical-velocity space314

affects the magnitude of the dynamic component (Fig. 3), in the case of the models an-315

alyzed here, it is the diversity in the changes in circulation which largely controls the dif-316

ferences in the dynamic component. In the next section we explore the aspects of the317

circulation changes that determine the dynamic component of the cloud feedback.318
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4.2 Link between dynamic component and ascent fraction319

Differences in circulation changes across models drive the spread in the dynamic com-320

ponent. But changes in the full distribution of vertical velocity with warming are com-321

plex (Fig. 2d) and difficult to interpret in straightforward physical terms. To gain in-322

sight into how circulation impacts cloud feedbacks, we focus on a particular bulk met-323

ric of the circulation: ascent fraction, αup. Ascent fraction is defined as the fraction of324

the model domain ascending at 500 hPa and is closely related to the subsidence fraction,325

which has been analyzed extensively in RCE simulations (e.g. Cronin & Wing, 2017; Wing326

et al., 2020; Becker & Wing, 2020; Jenney et al., 2020). We find that fractional changes327

in ascent fraction vary significantly between models, from -3.2–+4.9 %K−1, with a mul-328

timodel mean value of 1.0 %K−1. Importantly, across models, there is a strong positive329

correlation between fractional changes in ascent fraction and the longwave dynamic com-330

ponent (r2 = 0.71, Fig. 6a); a strong negative correlation with the shortwave dynamic331

component (r2 = 0.75 Fig. 6b); and a weak negative correlation with the total dynamic332

component (r2 = 0.19, Fig. 6c). We find similar, but less robust, relationships (not shown)333

if we use a measure of convective aggregation [specifically the organisation index, Becker334

and Wing (2020)] in place of ascent fraction. The relationship between ascent fraction335

and longwave dynamic component is robust to the resolution of the spatial averaging (Fig.336

S2).337

The statistical relationships between ascent fraction and the dynamic components338

arise from the tight coupling between changes in ascent fraction and high cloud fraction.339

In particular, models which tend to decrease ascent fraction under warming also tend340

to reduce their high cloud fraction (Fig. 7a), leading to a negative longwave dynamic com-341

ponent (Fig. 7b) and a positive shortwave component (Fig. 7c). The shortwave and long-342

wave effects of high clouds approximately cancel one another (Kiehl, 1994), which offers343

a possible explanation as to why the net dynamic component – which is the sum of the344

longwave and shortwave dynamic components, both of which are linked to high cloud345

fraction (Fig. 7b,c) – is small (Fig. 4c). Similar relationships between high cloud frac-346

tion, ascent fraction and radiative feedbacks have also been found in GCMs in the con-347

text of narrowing of the intertropical convergence zone (Su et al., 2017). While there is348

a robust link between fractional changes in ascent fraction and high cloud fraction in the349

RCEMIP models, there are models which simultaneously have an expansion of the as-350

cent region, and a reduction in high cloud fraction (Fig. 7a). Indeed, the response of high351

cloud fraction to warming is not robust across the models: There are some models in which352

warming leads to an expansion of high cloud fraction, though the majority have a con-353

traction. This is also true for the wider RCEMIP archive (Wing et al., 2020). The cor-354

relations between ascent fraction, longwave and shortwave dynamic components and low355

cloud fraction are weaker, and not statistically significant (Fig. S3).356

The relationships between ascent fraction, high cloud fraction and the dynamic com-357

ponents of the cloud feedback can be interpreted in simple physical terms. For exam-358

ple, a decrease in ascent fraction is consistent with a decrease in the area of high clouds359

(Fig. 7a), which in turn decreases the domain-mean shortwave cloud radiative effect and360

induces a negative shortwave cloud feedback (all else equal). This conceptual picture is361

similar to ideas explored by Pierrehumbert (1995), Lindzen et al. (2001), Mauritsen and362

Stevens (2015), Bony et al. (2016) and others, who argued that a decrease in high cloud363

cover with warming could constitute an important negative feedback on the climate sys-364

tem. The possibility of a reduction in ascent area and high cloud fraction with warm-365

ing has been linked to the self-aggregation of convection, which is associated with a re-366

duction of a high cloud cover and an increase in radiative cooling to space (Wing, 2019).367

However, it should be noted that the dynamic component of the cloud feedback captures368

all effects due to changes in circulation, not just those associated with self-aggregation,369

or indeed more generally those associated with a reduction of ascent fraction.370
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Figure 6. Fractional changes in ascent fraction between the 295 K and 300 K simulations (cir-

cles) and the 300 K and 305 K simulations (squares) versus the (a) longwave, (b) shortwave and

(c) net (longwave plus shortwave) dynamic components. Colours represent different RCEMIP

models, as in the legend of Fig. 4. Changes between the at 300 K and 305 K simulations for the

UCLA-CRM and MESONH models are not shown as they are significant outliers (see Section

4.1). Inset text quotes the r2 value for each panel (Pearson’s correlation), with the text in bold if

the correlation is statistically significant (p<0.01).
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Figure 7. Fractional change in high cloud fraction with fractional changes in (a) ascent frac-

tion, (b) longwave dynamic component and (c) shortwave dynamic component. Colors indicate

different models, as in Fig. 4. UCLA-CRM and MESONH at 305-300 K have been removed from

the analysis as they are significant outliers (see Section 4.1). Inset text gives the Pearson’s r2

value, with the text in bold if statistically significant (p<0.01) for the correlation between x-axis

and fractional change in high cloud fraction (black). Cloud fraction is calculated at each model

level following the method in Wing et al. (2020), using a threshold value of cloud condensate. We

calculate the mean cloud profile for each model, and take the high cloud fraction at the peak of

the profile above 500 hPa.

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

5 Physical processes controlling ascent fraction371

The strong link between the dynamic components of the cloud feedback and ascent frac-372

tion motivates the questions: What physical processes control ascent fraction in a chang-373

ing climate? And can these processes account for the spread in dynamic components across374

RCEMIP models? The remainder of the paper will focus on addressing these two ques-375

tions.376

5.1 Connecting ascent fraction to diabatic heating and static stability377

To understand the processes influencing ascent fraction – and therefore the dynamic com-378

ponents of the cloud feedback – we first invoke the energy and mass budgets of the at-379

mosphere. In particular, we follow the framework of Jenney et al. (2020) who derive an380

expression for the ascent fraction in terms of static stability and the diabatic heating rates381

in ascending and descending regimes. [A similar approach was taken by Byrne and Schnei-382

der (2016a, 2016b) to understand the processes controlling the width of the intertrop-383

ical convergence zone]. Here we outline a version of the Jenney et al. (2020) framework384

in pressure coordinates, starting with the steady-state energy budgets averaged over as-385

cending regions (denoted using the subscript “up”) and descending regions (subscript386

“dn”) separately:387

−ωupSup = Qup = Qcup +Qrup (4)

−ωdnSdn = Qdn = Qcdn +Qrdn, (5)

where all quantities are means over the fraction of the domain which is either ascend-388

ing (4) or descending at 500 hPa (5); ω is the vertical velocity in pressure coordinates;389

Q is the diabatic heating rate, consisting of radiative (Qr) and non-radiative contribu-390

tions (Qc); and S = −(T/θ)× ∂θ/∂p is the static stability in pressure coordinates (T391

and θ represent temperature and potential temperature, respectively, and p is pressure),392

and all variables are evaluated at 500 hPa. Note that the “weak temperature gradient”393

(WTG) approximation – which suggests free-tropospheric temperature gradients in the394

tropics are weak owing to the small effects of planetary rotation at low latitudes (Sobel395

& Bretherton, 2000) – has been invoked in the derivations of (4) and (5), leading to the396

horizontal advection terms being dropped. The WTG approximation is expected to be397

applicable to the simulations being analyzed here, which have zero rotation. Indeed, in398

the multimodel mean, horizontal temperature advection at 500hPa is orders of magni-399

tude smaller than vertical advection (0.0016 K s−1 compared to 0.24 K s−1), support-400

ing the use of the WTG approximation in deriving (4) and (5). We expect that in de-401

scending regions, with little precipitation, the dominant diabatic term in the energy bud-402

get is radiative cooling. In contrast, while ascending regions also cool radiatively, latent403

heat release is more influential (Neelin, 1988), leading to a net positive, or warming, di-404

abatic term (Fig. S4).405

In steady state, the mass budget of the atmosphere can be expressed as:

ωupαup = −ωdnαdn, (6)

where αdn = 1−αup is the fraction of the domain with descending air at 500 hPa: In406

simple terms, (6) states that “what goes up must come down”. Combining the energy407

and mass budgets, an expression for the ascent fraction as a function of diabatic heat-408

ing rates and static stabilities in the ascent and descent regions can be derived:409

αup =
1

1− γ(Qup/Qdn)
, (7)

where γ ≡ Sdn/Sup is the ratio of the static stabilities in the descent and ascent regions.410

Due to the WTG approximation we expect this ratio to be approximately 1 in the free411
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troposphere. Indeed we find that for the 295 K simulations, γ at 500 hPa ranges from412

0.87–1.07 across models, with a multimodel mean of 0.97. This expression for αup holds413

for much of the troposphere (Jenney et al., 2020) and in the following analyses we fo-414

cus on the 500 hPa level.415

5.2 Processes controlling ascent fraction416

We have demonstrated that there exists a strong relationship between ascent fraction417

at 500 hPa and the dynamic components of the cloud feedback (Fig. 6). We now apply418

(7) to understand the processes determining ascent fraction at that level. The diabatic419

temperature tendency due to radiative processes, Qr, is a standard output for the RCEMIP420

simulations; we compute the non-radiative diabatic temperature tendency, Qc, as a resid-421

ual from the energy budgets (4) and (5).422

First, we verify that the expression (7) for αup – derived using the energy and mass423

budgets and invoking the WTG approximation – holds at 500 hPa. We find that despite424

a small tendency to overestimate αup, equation (7) provides a good approximation to425

ascent fraction across all the models (Fig. S5a). Fractional changes in simulated and ap-426

proximated αup between simulations, which we use in our subsequent analyses, are also427

very similar (Fig. S5b).428

Next we linearize (7) to explore how fractional changes in ascent fraction depend429

on energetic processes in the atmosphere, namely diabatic heating rates and static sta-430

bility:431

δαup
αup

≈ γ

1− γQup

Qdn

Qup
Qdn︸ ︷︷ ︸

−β1

[
δQup
Qup

− δQdn
Qdn

]
. (8)

To obtain (8), we neglect fractional changes in γ = Sdn/Sup. This is justified again by432

the WTG approximation, which constrains the static stabilities in the ascent and descent433

regions to be similar, as discussed above. The approximation (8) broadly captures the434

simulated fractional changes in ascent fraction across models (Fig. S6a); accounting for435

changes in γ improves the approximation marginally (Fig. S6b).436

Equation (8) suggests that the response of ascent fraction to warming, and there-437

fore the dynamic components of the cloud feedback, are tightly coupled to sources of di-438

abatic heating in the atmosphere. In particular, (8) highlights that a key control on as-439

cent fraction is the contrast in fractional changes in diabatic heating between ascend-440

ing and descending regions. If diabatic heating increases in magnitude with warming at441

the same fractional rate in ascending and descending regions, the ascent fraction would442

not change. Analogously, a larger fractional increase in diabatic heating in the ascend-443

ing region relative to the descending regions implies a narrowing of ascent and vice versa.444

Note that the prefactor, −β1, multiplying fractional changes in diabatic heating [see (8)]445

is a function of the climatological atmospheric state and is negative for all models an-446

alyzed.447

We examine how contrasting fractional changes in diabatic heating influence changes448

in ascent fraction across the RCEMIP models (Fig. 8). As expected based on the ap-449

proximation (8), there is a strong relationship between fractional changes in ascent frac-450

tion and the difference in fractional changes in diabatic heating between ascending and451

descending regions (Fig. 8a). The intermodel spread in ascent fraction changes is also452

linked to diabatic heating changes in the ascending region (r2 = 0.72; see Fig. 8b), but453

there is no relationship to diabatic heating changes in the descending region (r2 = 0.01).454

The relationship between ascent fraction and diabatic heating can be interpreted455

in the following way: An increase in SST leads to a positive fractional change in Qdn (i.e.456
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Figure 8. Relationships between fractional changes in ascent fraction and (a) δQup/Qup -

δQdn/Qdn; (b) fractional changes in ascent region diabatic heating rate (δQup/Qup, teal) and

descent region diabatic heating rate (δQdn/Qdn, orange); and (c) as in (b), but for ascent region

radiative (δQr
up /Qr

up) and non-radiative (δQc
up/Qc

up) diabatic heating rates. Colors in (a) indi-

cate different models, as in Fig. 4. Changes for the UCLA-CRM and MESONH models between

the 300 K and 305 K simulations have been removed from the analysis as they are significant

outliers (see Section 4.1). Inset text quotes the Pearson’s r2 values, with the text in bold if the

correlation is statistically significant (p<0.01).
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Qdn becomes more negative) in all models (Fig. 8b), consistent with increased radiative457

cooling from a warmer, moister atmosphere (Pendergrass & Hartmann, 2014). This ef-458

fect, all else being equal, would drive an increase in ascent fraction according to (8). How-459

ever, changes in Qup with SST are less consistent across models: while the majority of460

pairs of model simulations (18 of the 22) have a positive fractional change in Qup, cor-461

responding to a decrease in αup should no other changes occur, a minority of simulation462

pairs show a fractional decrease in Qup. The relative sizes of fractional changes in Qup463

and Qdn determine the change in αup, and only six of the simulation pairs have a suf-464

ficiently positive fractional change in Qup to overcome the change in Qdn (Fig. 8a). There-465

fore, while relative changes in Qup versus Qdn determine changes in αup, the spread be-466

tween models of fractional changes in αup, and therefore the dynamic component of the467

cloud feedback, are largely due to variations between models in the response of Qup.468

5.3 Radiative versus non-radiative diabatic heating469

To further probe the processes driving intermodel spread in ascent fraction changes, we470

divide the total diabatic heating in ascent regions into radiative and non-radiative com-471

ponents (i.e. Qup = Qrup +Qcup):472

δQup
Qup

=
Qcup

Qcup +Qrup︸ ︷︷ ︸
β2

δQcup
Qcup

−−
Qrup

Qcup +Qrup︸ ︷︷ ︸
β3

δQrup
Qrup

, (9)

where both β2 and β3 are both positive as Qcup (largely driven by latent heating, a pos-473

itive term) is positive, Qrup is negative (from radiative cooling) and |Qcup| > |Qrup| (Fig.474

S4b). Substituting (9) into (8) leads to:475

δαup
αup

= −β1
[
β2
δQcup
Qcup

− β3
δQrup
Qrup

− δQdn
Qdn

]
. (10)

Equation (10) again broadly captures variations in the fractional change in ascent476

fraction (Fig. S6c) and highlights how both radiative and non-radiative diabatic heat-477

ing in ascending regions influence ascent fraction, though the relative importance of each478

term is unclear. We find a statistically significant correlation between fractional changes479

in non-radiative diabatic heating and fractional changes in ascent fraction (r2 = 0.60;480

Fig. 8c), but no significant correlation with radiative heating changes (r2 = 0.04). This481

suggests that it is the non-radiative diabatic heating response to warming in the ascent482

region which is most strongly linked to ascent fraction.483

To what extent can a similar argument be made to explain the differing roles of484

circulation changes in cloud feedbacks across models? Fractional changes in the diabatic485

heating contrast between ascending and descending regions correlate significantly with486

the spread in longwave dynamic component (r2 = 0.61, not shown). The dynamic com-487

ponent is negatively correlated with these terms: If fractional changes in Qup increase488

relative to fractional changes in Qdn, ascent fraction decreases and the longwave com-489

ponent of the cloud feedback is negative.490

The next logical question, following the analysis above, is which non-radiative pro-491

cesses may be contributing to the spread in Qcup and thus to differing ascent fraction re-492

sponses. Non-radiative diabatic heating is composed of contributions from latent heat-493

ing, detrainment and dry static energy transport due to turbulence (Jenney et al., 2020).494

We do not isolate the roles of these individual non-radiative diabatic heating processes495

here, given the required data are not available in the RCEMIP archive, but this would496

be an interesting avenue for future research. Another interesting question is whether in-497

termodel differences in how non-radiative heating changes with warming arise from dif-498

fering convective parameterizations, differing cloud physics, surface fluxes or other fac-499
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tors. Schiro et al. (2019) explore this question by perturbing convective and cloud pa-500

rameterizations in a GCM to recreate the spread in ascent fraction change across the CMIP5501

ensemble, and find that convective parameterizations are key to explaining differing ascent-502

fraction responses.503

6 Discussion504

Cloud feedbacks remain one of the largest sources of uncertainty in climate projections.505

While the role of circulation changes in modulating large-scale cloud feedbacks is lim-506

ited in global climate models (Byrne & Schneider, 2018), the influence of circulation on507

cloud responses in high-resolution models and in the real Earth system is an open ques-508

tion.509

Here we investigate cloud–circulation coupling using idealized cloud-resolving sim-510

ulations in radiative-convective equilibrium (Wing et al., 2018, 2020). Cloud feedbacks511

are decomposed into dynamic and thermodynamic components following Bony et al. (2004)512

in order to directly quantify the role of circulation changes (i.e. the dynamic component).513

In contrast to the negligible dynamic components in global models found in previous stud-514

ies, we find a wide range of dynamic components across the RCEMIP models, some of515

which contribute substantially to the total cloud feedback. Some models have a strong516

positive longwave dynamic component, some have a strong negative longwave dynamic517

component, and some have a small dynamic component. In general, the shortwave dy-518

namic component for a given model is of similar magnitude and opposite sign to the long-519

wave dynamic component.520

We establish a strong link between the dynamic component of the cloud feedback521

and the degree to which the ascent region narrows or widens with warming. Models which522

have the strongest narrowing of ascent with warming also have the strongest longwave523

and shortwave dynamic components of the cloud feedback, due to decreases in high cloud524

fraction. The dynamic components and changes in ascent fraction are linked – via the525

energy and mass budgets of the atmosphere – to diabatic heating rates in ascending and526

descending regions. Specifically, intermodel differences in how ascent fraction changes527

with warming are coupled to differences in non-radiative diabatic processes, including528

latent heating, in ascending regions. However, a stronger predictor of ascent region nar-529

rowing or expansion – and therefore a strong predictor of the dynamic component – is530

the contrast in diabatic heating changes between ascending and descending regions.531

Our study highlights a number of interesting possibilities for further research. First,532

a key question is the degree to which different non-radiative diabatic processes – includ-533

ing latent heat release, convective entrainment and cloud microphysics – drive the re-534

sponse of ascent fraction and high-cloud fraction to warming. Also, what is the effect535

of a large-scale circulation, for example driven by SST gradients, on the relationships be-536

tween cloud feedbacks and circulation examined here? And finally, does the substantial537

influence of circulation on clouds found in tropical high-resolution models have impli-538

cations for estimates of cloud feedbacks and climate sensitivity in global models? Pur-539

suing these questions, perhaps through analyses of observations and a hierarchy of mod-540

els, will further build understanding of the role of cloud–circulation coupling in the cli-541

mate system.542
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Appendix A543

Table A1. The RCEMIP models analyzed in this study. For more details about individual

models see Wing et al. (2020).

Full Name Abbreviation

Cloud Model 1, cm1r19.6 CM1
Das Atmosphaerische Modell dam

ICOsahedral Nonhydrostatic-2.3.00, LEM config. ICON LEM CRM
ICOsahedral Nonhydrostatic-2.3.00, NWP config. ICON NWP CRM

Meso-NH v5.4.1 MESONH
System for Atmospheric Modeling 6.11.2 SAM CRM

SCALE v5.2.5 SCALE
UCLA Large-Eddy Simulation model UCLA CRM

UK Met Office Idealized Model v11.0 - CASIM UKMOi-vn11.0-CASIM
UK Met Office Idealized Model v11.0 - RA1-T UKMOi-vn11.0-RA1-T
UK Met Office Idealized Model v11.0 - RA1-T UKMOi-vn11.0-RA1-T-nocloud

Weather Research and Forecasting model v3.5.1 WRF COL CRM
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Figure S1. Similar to Figure 4, but without the outlier points removed. Two sets of feedbacks

are computed: between the 295 K and 300 K simulations (circles) and between the 300 K

and 305 K simulations (squares). Colours indicate different models, as in legend of Fig. 4. The

identified anomalous feedbacks are for the UCLA-CRM model (computed between the 300 K and

300 K simulations, yellow squares), which has an anomalously large shortwave thermodynamic

component, and the MESONH model (also computed between the 300 K and 300 K simulations,

red squares), which has anomalously large thermodynamic, dynamic and nonlinear components.

Inset text in this and subsequent figures gives the Pearson’s r2 value, with the text in bold if

statistically significant (p<0.01).

December 21, 2021, 9:42am



: X - 3

Figure S2. Testing the sensitivity of Figure 6a [reproduced here for comparison as panel

(a)] to the resolution of spatial averaging. Dynamic components computed for the 300 K minus

295 K simulations (circles) and the 305 K minus 300 K simulations (squares). Colours indicate

different models, as in legend of Figure S1.
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Figure S3. As in Figure 6 but here for low-cloud fraction.
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Figure S4. (a) Model values of Qup against Qdn, circles, sqaure and triangles indicate the

295 K, 300 K and 305 K simulations, respectively. Black lines show where |Qdn| = |Qup| to aid

comparison of magnitudes. Panel (b), as for panel (a), but for Qr
up versus Qc

up
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Figure S5. (a) Ascent fraction αup as approximated by (7) (Jenney et al., 2020) versus

simulated ascent fraction. Symbols represent different temperatures: circles indicate the 295 K

simulations, squares the 300 K simulations, and triangles the 305 K simulations. (b) Fractional

changes in approximated versus simulated αup, circles indicate 300 K minus 295 K, squares

indicate 305 K minus 300 K. UCLA-CRM and MESONH at 305-300 K have been removed from

the analysis as they are significant outliers (Fig. S1).
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Figure S6. (a) Approximation of the fractional change in ascent fraction by (8) versus that

computed from (7) and calculating the fractional changes. The 1:1 line is marked, as is the

regression line from the approximation, which has a slope of 0.77. (b) As for panel (a) but the

x-axis values are calculated including fractional changes in γ; the slope of this regression line

is 0.83. (c) As for panel (a) but the x-axis values are calculated using (10); the slope of this

regression line is 0.77. UCLA-CRM and MESONH at 305-300 K have been removed from the

analysis as they are significant outliers (Fig. S1).
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