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Abstract

This study investigates the influence of oceanic and atmospheric processes in extratropical thermodynamic air-sea interactions

resolved by satellite observations (OBS) and by two climate model simulations run with eddy-resolving high-resolution (HR)

and eddy-parameterized low-resolution (LR) ocean components. Here, spectral methods are used to characterize the sea surface

temperature (SST) and turbulent heat flux (THF) variability and co-variability over scales between 50-10000 km and 60 days-

80 years in the Pacific Ocean. The relative roles of the ocean and atmosphere are interpreted using a stochastic upper-ocean

temperature evolution model forced by noise terms representing intrinsic variability in each medium, defined using climate

model data to produce realistic rather than white spectral power density distributions. The analysis of all datasets shows that

the atmosphere dominates the SST and THF variability over zonal wavelengths larger than ˜2000-2500 km. In HR and OBS,

ocean processes dominate the variability of both quantities at scales smaller than the atmospheric first internal Rossby radius

of deformation (R1, ˜600-2000 km) due to a substantial ocean forcing coinciding with a weaker atmospheric modulation of THF

(and consequently of SST) than at larger scales. The ocean-driven variability also shows a surprising temporal persistence,

from intraseasonal to multidecadal, reflecting a red spectrum response to ocean forcing similar to that induced by atmospheric

forcing. Such features are virtually absent in LR due to a weaker ocean forcing relative to HR.
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Abstract25

This study investigates the influence of oceanic and atmospheric processes in extratrop-26

ical thermodynamic air-sea interactions resolved by satellite observations (OBS) and by27

two climate model simulations run with eddy-resolving high-resolution (HR) and eddy-28

parameterized low-resolution (LR) ocean components. Here, spectral methods are used29

to characterize the sea surface temperature (SST) and turbulent heat flux (THF) vari-30

ability and co-variability over scales between 50-10000 km and 60 days-80 years in the31

Pacific Ocean. The relative roles of the ocean and atmosphere are interpreted using a32

stochastic upper-ocean temperature evolution model forced by noise terms representing33

intrinsic variability in each medium, defined using climate model data to produce real-34

istic rather than white spectral power density distributions. The analysis of all datasets35

shows that the atmosphere dominates the SST and THF variability over zonal wavelengths36

larger than ∼2000-2500 km. In HR and OBS, ocean processes dominate the variability37

of both quantities at scales smaller than the atmospheric first internal Rossby radius of38

deformation (R1, ∼600-2000 km) due to a substantial ocean forcing coinciding with a39

weaker atmospheric modulation of THF (and consequently of SST) than at larger scales.40

The ocean-driven variability also shows a surprising temporal persistence, from intrasea-41

sonal to multidecadal, reflecting a red spectrum response to ocean forcing similar to that42

induced by atmospheric forcing. Such features are virtually absent in LR due to a weaker43

ocean forcing relative to HR.44

Plain Language Summary45

This study investigates the importance of atmospheric processes (weather) and ocean46

currents in driving variations in sea surface temperature (SST) and the air-sea heat ex-47

change at mid-latitudes. Our analysis uses satellite observations, a high-resolution (HR)48

climate model that resolves ocean currents with dimensions of tens of km, and a low-resolution49

model (LR) that can only simulate ocean currents with hundreds of km in size. We specif-50

ically examine how variable SST and the heat exchange are in each of these datasets at51

horizontal scales between 50 and 10000 km and time scales from two months to eighty52

years in the Pacific Ocean. Using a simple mathematical model to interpret the results,53

we find that variability at scales larger than 2000 km is driven predominantly by weather.54

At smaller scales, SST and heat exchange are more variable in HR than in LR and agree55

better with satellite observations. We also find that ocean processes drive variability in56

SST with time scales ranging from two months to several decades, similar to those caused57

by weather, which induces slow variations in the air-sea heat exchange.58
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1 Introduction59

Interactions between the atmosphere and oceans largely determine the Earth’s cli-60

mate, and the physical mechanisms controlling these interactions are scale-dependent.61

In midlatitudes, at large spatial scales (O[103 km]) the atmosphere modulates the sur-62

face turbulent heat fluxes (THF) via the prevailing winds and the advection of humid-63

ity and air temperature by synoptic weather systems, producing slow fluctuations in sea64

surface temperature (SST) that lag the heat flux signal over time scales of several weeks65

or longer (e.g., Barsugli & Battisti, 1998; Frankignoul et al., 1998; von Storch, 2000; Oku-66

mura et al., 2001; Xie, 2004; Small et al., 2019). At ocean mesoscales (O[101–102 km]),67

ocean currents can create SST anomalies that are large and persistent such that they68

induce anomalous surface heat fluxes. The response in THF is forced by air-sea temper-69

ature and humidity differences arising when an air parcel moves over mesoscale SST fea-70

tures, and is proportional to the magnitude of the underlying SST signal (e.g., Wu et71

al., 2006; Villas Bôas et al., 2015; Putrasahan et al., 2017; Bishop et al., 2017; Small et72

al., 2019). While the large-scale regime is traditionally considered important in climate73

dynamics, there is growing evidence that mesoscale air-sea coupling can influence oceanic74

and atmospheric variability (e.g., Chelton et al., 2004; O’Neill et al., 2010; Frenger et75

al., 2013; Putrasahan et al., 2013; Gaube et al., 2015; Ma et al., 2015, 2016, 2017; Pu-76

trasahan et al., 2017; Laurindo et al., 2019) and play a key role in weather and climate77

(e.g., Minobe et al., 2008; Siqueira & Kirtman, 2016; Ma et al., 2015, 2017; Kirtman et78

al., 2017; Chang et al., 2020; Siqueira et al., 2021).79

Despite the importance of mesoscale air-sea interactions revealed by literature, the80

physical mechanisms that allow them to prevail over the large-scale regime remain poorly81

understood. To investigate these mechanisms, this work uses spectral methods to char-82

acterize the SST and THF variability and co-variability resolved by satellite observations83

and climate model simulations over scales between 50-10000 km and 60 days-80 years84

in the models and up to nineteen years for observations. The roles of oceanic and atmo-85

spheric processes in the obtained spectra are then interpreted using an idealized stochas-86

tic climate model. The presented analysis focuses on the Pacific Ocean, although sim-87

ilar results and conclusions are also obtained for the Indian and Atlantic basins.88

Several previous studies used stochastic climate models to analyze the basic effects89

of the extratropical thermodynamic air-sea coupling (e.g., Wu et al., 2006; O’Reilly et90

al., 2016; Bishop et al., 2017; Sun & Wu, 2021). These idealized models represent the91

mechanisms in the ocean and atmosphere that generate variability in the upper-ocean92

temperature as stochastic (i.e., random) processes, and indicate that linear, time-domain93

relationships between SST and THF can be used to infer the local dominance of either94
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ocean- or atmosphere-driven variability in both quantities. Specifically, when the atmo-95

sphere forcing signal is strong, solutions derived from the stochastic formulations pro-96

duce negative correlations between the SST rate of change (known as the SST tendency)97

and THF at lag zero, concurrent with lead-lag SST/THF correlations. In turn, when the98

ocean forcing term is strong (and defining THF as being positive when out of the ocean),99

positive correlations arise between SST and THF at lag zero, while SST tendency and100

THF are related in a lagged fashion (c.f. Fig. 1 of Bishop et al., 2017).101

Consistent with the conclusions drawn from idealized formulations, fully-coupled102

climate model simulations reproduce linear relationships characteristic of atmosphere-103

or ocean-driven variability depending on the resolution of their ocean components. When104

the resolution is insufficient to resolve mesoscale ocean eddies, linear SST/THF relation-105

ships suggest that the variability is primarily driven by the atmosphere over much of the106

extratropics. In contrast, horizontal ocean resolutions sufficiently refined to allow eddy107

formation and evolution significantly enhance the mesoscale current variability (Sérazin108

et al., 2015, 2018; Constantinou & Hogg, 2021), which increases the local upper-ocean109

heat convergence anomalies that in turn lead to larger SST variability, most prominently110

in strong current systems such as the seaward extensions of western boundary currents111

and the Antarctic Circumpolar Current (ACC) (Putrasahan et al., 2017; Sérazin et al.,112

2017; Small et al., 2020; Constantinou & Hogg, 2021). The SST variability at these re-113

gions is positively correlated with THF (Kirtman et al., 2012; Ma et al., 2016; Roberts114

et al., 2016; Chang et al., 2020), a characteristic that is also present in satellite estimates115

(Villas Bôas et al., 2015; Ma et al., 2016; Bishop et al., 2017; Small et al., 2019), sug-116

gesting that the mesocale air-sea coupling regime is dominant there.117

Recently, several studies examined the spatial and temporal scales where ocean dy-118

namics can influence the extratropical SST variability and consequently impact THF.119

For instance, the analysis of satellite data indicate that ocean processes dominate the120

variability of both quantities over spatial scales smaller than ∼500-700 km and up to in-121

terannual timescales at most latitudes (Bishop et al., 2017; Small et al., 2019). Histor-122

ical ship-based observations show that SST fluctuations of the Atlantic Multidecadal Vari-123

ability (AMV) – a climate mode in SST thought to be driven by the Atlantic Meridional124

Overturning Circulation (AMOC, Buckley et al., 2015; R. Zhang et al., 2019) – are pos-125

itively correlated with THF in the subpolar North Atlantic (Gulev et al., 2013; O’Reilly126

et al., 2016). In support of these observational findings, eddy-resolving simulations in-127

dicate that mesoscale currents enhance the variability in upper-ocean heat content and128

SST over spatial scales smaller than about 1000 km and timescales up to several decades129

in regions with strong extratropical current systems (Sérazin et al., 2017, 2018; Constanti-130
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nou & Hogg, 2021). Fully-coupled simulations show similar results, and further indicate131

that the THF variability is also enhanced (Small et al., 2020; Chang et al., 2020). The132

importance of ocean phenomena on driving changes in SST and THF over intraseasonal133

to decadal timescales was also revealed in an eddy-resolving simulation of an idealized134

western boundary current system (Martin et al., 2021) and by the Estimating the Cir-135

culation and Climate of the Ocean v4 (ECCO) ocean state estimate in the extratrop-136

ics (Patrizio & Thompson, 2021a, 2021b).137

The results from these previous studies indicate that ocean processes can overcome138

the large-scale, atmosphere-driven modulation of THF and SST over spatial and tem-139

poral scales that are larger and longer (potentially much more so) than that of individ-140

ual mesoscale eddies. They also indicate that, although the main differences between the141

large-scale and mesoscale air-sea coupling regimes are well established, the spatial and142

temporal scales where each regime prevails are still not well characterized, nor are the143

physical mechanisms that give rise to their scale dependence. This work addresses these144

gaps. The main hypotheses are that the relative importance of the ocean processes driv-145

ing the SST and THF variability146

(a) Increases toward the ocean mesoscales due to a strong intrinsic ocean variability147

coinciding with a weaker atmospheric modulation of THF (and consequently of148

SST) than at larger spatial scales, owing to the weaker variability of atmospheric149

processes at smaller spatial scales; and150

(b) Increase toward longer timescales, because ocean processes induce low-frequency151

SST fluctuations via a mechanism similar to that caused by atmospheric stochas-152

tic forcing (Hasselmann, 1976; Frankignoul & Hasselmann, 1977) where the large153

heat capacity of the upper-ocean integrates the forcing noise to produce a red spec-154

trum response in SST.155

The present study tests these hypotheses by examining the SST and THF power156

spectra and cross-spectral statistics resolved by a satellite product and by fully-coupled157

climate model simulations run with eddy-resolving and eddy-parameterized horizontal158

ocean resolutions. The obtained spectral quantities are interpreted using a stochastic model159

of air-sea interactions forced by noise terms representing the action of atmospheric and160

oceanic processes. Here, the noise terms are defined with realistic variance distributions161

as a function of frequency and zonal wavenumber taken from the climate model simu-162

lations. This approach contrasts with that typically adopted in the literature, where the163

forcing terms are represented as randomly-generated white noise signals with variances164
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approximately constant across all scales (e.g., Frankignoul et al., 1998; von Storch, 2000;165

Wu et al., 2006; Bishop et al., 2017; Sun & Wu, 2021).166

The remainder of this paper is organized as follows: Sec. 2 describes the satellite167

and climate model datasets used (2.1), the spectral data analysis methods (2.2), and the168

methods involved in the stochastic climate model analysis (2.3). Sec. 3 examines the spec-169

tra predicted by the stochastic model and how they compare with corresponding esti-170

mates obtained using white noise forcing. Sec. 4 first briefly describes the global SST171

and THF variance distribution resolved by the satellite and model datasets (4.1), then172

presents the power spectral densities and cross-spectral statistics computed using SST173

and THF data as well as corresponding results predicted using the stochastic model (4.2).174

Sec. 5 discusses the results in light of the existing literature, and Sec. 6 summarizes this175

study and its conclusions.176

2 Methods177

2.1 Data description178

2.1.1 J-OFURO3 observational product:179

Observational estimates of SST and THF are from the Japanese Ocean Flux Data180

Sets with Use of Remote-Sensing Observations version 3 (J-OFURO3, Tomita et al., 2019).181

Briefly, the J-OFURO3 dataset gives estimates of THF (defined as positive upwards) and182

its components. THF is estimated using the COARE 3.0 bulk formulations (Fairall et183

al., 2003), whose variables are retrieved from various satellite data sources except for 2-184

m height temperature, which is from an atmospheric reanalysis. In turn, SST is the daily185

median of values taken from multiple satellite missions and regularly-gridded SST prod-186

ucts, an approach designed to provide a robust SST estimate while minimizing uncer-187

tainties intrinsic to any single data source (Kubota et al., 2002; Tomita et al., 2019). The188

J-OFURO3 data (OBS) used in this study was produced at a 0.25◦×0.25◦× 1-month189

resolution for January 1988 to December 2013.190

2.1.2 CESM1.3 climate model simulations:191

This study uses climate simulations generated with the Community Earth System192

Model version 1.3 (CESM1.3, Meehl et al., 2019; S. Zhang et al., 2020) by the Interna-193

tional Laboratory for High-Resolution Earth System Prediction (iHESP, Chang et al.,194

2020). The CESM1.3 is a global climate model composed of the Community Atmosphere195

Model version 5 (Neale et al., 2012), the Parallel Ocean Program version 2 (Smith et al.,196

2010; Danabasoglu et al., 2012), the Community Ice Code version 4 (Hunke & Lipscomb,197
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2010), and the Community Land Model version 4 (Lawrence et al., 2011). The model198

components exchange state information and fluxes via the CESM Coupler 7, which com-199

putes the fluxes at the air-sea interface using the Large and Yeager (2004) bulk param-200

eterizations.201

Outputs from two iHESP CESM1.3 preindustrial control simulations are analyzed,202

run at contrasting horizontal resolutions in the ocean and atmosphere. The first (low-203

resolution, LR) uses a nominal 1◦ horizontal resolution in both model components that204

cannot resolve mesoscale ocean eddies, whose effects are parameterized (Gent & McWilliams,205

1990). The second (high-resolution, HR) is configured with a nominal 0.25◦ horizontal206

resolution in the atmosphere and 0.1◦ in the ocean, which is eddy-resolving in the ocean207

except at high latitudes. Both the HR and LR experiments use an atmospheric CO2 con-208

centration fixed at 1850 levels and are integrated for 500 years (Chang et al., 2020).209

The HR and LR data used in this work are monthly global fields of SST, THF, and210

2-m height humidity, and three-dimensional monthly global fields of ocean heat flux con-211

vergence (OHFC), computed using horizontal and vertical components of the heat flux,212

that are vertically-integrated for the upper 50-m of the water column. The 50-m inte-213

gration level is chosen for consistency with the stochastic climate model formulation de-214

scribed in Sec. 2.3. All quantities obtained from LR (HR) are mapped onto a regular215

1◦ × 1◦ (0.25◦ × 0.25◦) spatial grid and are retrieved for the simulation years 21-500216

(338-500) based on their availability in the model output files.217

2.2 Spectral analysis218

This work examines the power spectra of SST and THF and their cross-spectra in219

HR, LR, and OBS as a function of frequency and zonal wavenumber. This spectral anal-220

ysis is similar to that described in Laurindo et al. (2019) for SST and 10-m wind speed.221

More specifically, it examines spectra varying as a function of both zonal wavenumber222

and frequency (k and ω, respectively) computed from zonal-temporal (x, t) diagrams of223

the considered quantities at every 1◦ (0.25◦) latitude in LR (HR and OBS) between 55◦S224

and 60◦N in the Pacific Ocean. This analysis is performed within a Pacific basin mask225

(Fig. 1h) that excludes regions shallower than 1000-m around the continental shelves to226

avoid the influence of coastal processes. The mask also ignores small islands at the basin’s227

interior, whose gaps in the data are filled using linear interpolation.228

Zonal-temporal diagrams of SST and THF obtained at each latitude increment are229

demeaned in both (x, t) directions, and the time series at each grid point is further de-230

trended and deseasonalised using annual and semiannual harmonics. The processed zonal-231
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Figure 1. Global maps of the SST and THF variances resolved by the J-OFURO3 satellite

product (OBS, panels a and b, respectively), and the ratios of the corresponding variances re-

solved by the HR (c-d) and LR (e-f) to those of respective OBS. Panels (g) and (h) show the

ratios between the variances resolved in HR and LR. The black contour in (h) delineates the

basin mask for the Pacific Ocean used for the zonal-temporal spectral analysis.
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temporal diagrams of SST [T (x, t)] and THF [Q(x, t)] are then subdivided into 80-year232

segments for HR and LR, and into 19-year segments for OBS, with a 50% temporal over-233

lap. The resulting data segments are selected within 4◦ meridional bands centered at each234

grid point of the latitudinal axis, forming ensembles containing multiple realizations of235

T (x, t) and Q(x, t) (48 for HR, 44 for LR, and 34 for OBS), that are used to compute236

the spectral functions at each latitude.237

Following Bendat and Piersol (1986), the power spectral density functions (also known238

as autospectral density functions) of T (x, t) and Q(x, t) are defined as:239

GTT (k, ω) =
2

lklω

〈
|T̃ (k, ω)|2

〉
, and (1)

GQQ(k, ω) =
2

lklω

〈
|Q̃(k, ω)|2

〉
, (2)

where the tilde denotes a two-dimensional Fourier transform to the k and ω domains,240

lk (lω) is the length of T̃ and Q̃ in the zonal wavenumber (frequency) domain, and the241

brackets represent ensemble-averages over the |T̃ (k, ω)|2 and |Q̃(k, ω)|2 realizations.242

Similarly, the cross-spectral density function between T (x, t) and Q(x, t) is given243

by:244

GTQ(k, ω) =
2

lklω

〈
T̃ ∗(k, ω)Q̃(k, ω)

〉
, (3)

where the asterisk denotes complex conjugation.245

The spectral functions are computed as functions of both k and ω. The results are246

then integrated in frequency domain to obtain estimates as a function of zonal wavenum-247

ber and latitude, and separately integrated in the zonal wavenumber domain to obtain248

estimates as a function of frequency and latitude. The integrated estimates are also used249

to compute the magnitude-squared coherence γ2TQ as:250

γ2TQ =
|GTQ|2

GTTGQQ
, (4)

where GTQ = |GTQ|e−iθTQ , with θTQ (known as phase factor) describing the phase re-251

lationship between the sinusoidal components of T̃ and Q̃. γ2TQ varies between zero and252

one, reflecting the fraction of the variance of Q that can be explained by T for each spec-253

tral coordinate.254
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2.3 Stochastic upper-ocean temperature anomaly model255

2.3.1 Model description:256

This work uses a stochastic model for the upper-ocean temperature evolution pro-257

posed by Frankignoul et al. (1998) (hereafter FCL98) to guide the physical interpreta-258

tion of the spectral quantities computed for SST and THF (Sec. 2.2).259

The FCL98 formulation can be written as:260

ρ0cph
∂T

∂t
= Na +Nm − (λq + λ0)T , (5)

where T is the temperature of a well-mixed upper-ocean layer of thickness h, density ρ0,261

and specific heat cp. Na represents the stochastic forcing of the turbulent heat fluxes by262

intrinsic atmospheric variability, and Nm denotes the forcing by other processes, iden-263

tified in FCL98 as primarily representing the action of wind stress variability. Lastly, λq264

and λ0 are feedback factors responsible for damping the temperature anomalies, the for-265

mer associated with THF and the latter to terms unrelated to the air-sea fluxes, such266

as radiative cooling and turbulent mixing.267

In this work, Eq. (5) is modified by attributing the origin of the Nm stochastic forc-268

ing term to internal ocean variability (thus renaming it No), the origin of the λ0 feed-269

back factor solely to radiative cooling (being renamed λr), and by considering that the270

stochastic forcing term Na represents stochastic variability in the near-surface atmospheric271

temperature rather than in THF, approach similar to that used in Barsugli and Battisti272

(1998). With these, Eq. (5) becomes:273

∂T

∂t
= −α (T −Na)− βT + νNo, (6)

where ν = 1/(ρ0cph), α = λqν, and β = λrν. Here, THF is defined as Q = λq(T −274

Na), with positive values denoting fluxes out of the ocean. The values of the coefficients275

α, β, ν, and λq are computed for a h = 50-m thick ocean layer as described in Barsugli276

and Battisti (1998), and are listed in Table 1.277

The stochastic model defined in Eq. (6) was developed for mid-latitudes and is un-278

able to represent important air-sea coupling mechanisms at work within the tropics, such279

as the Bjerknes feedback and the Wind-Evaporation-Sea Surface Temperature (WES)280

feedback (e.g., Mahajan et al., 2009). For this reason, the present work uses Eq. (6) to281

support the interpretation of spectral estimates obtained at latitudes poleward of 15◦.282

Other limitations are discussed in Sec. 5.3.283
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Table 1. Values of the FCL98 model parameters [Eqs. (6)-(9)].

Parameter Value

ρ0 1025.0 kg m−3

cp 3900.0 J kg−1 K−1

h 50.0 m

λq 23.4 W m−2 K−1

λr 1.3 W m−2 K−1

The stochastic model defined by Eq. (6) is Fourier transformed to zonal wavenum-284

ber and frequency domains (k, ω) and used to obtain analytical expressions for GTT , GQQ,285

and GTQ, given by:286

GTT =
2

lklω

[
ν2〈|Ño|2〉+ α2〈|Ña|2〉

4π2ω2 + (α+ β)2

]
, (7)

GQQ =
2λ2q
lklω

{
ν2〈|Ño|2〉+ [4π2ω2 + β2]〈|Ña|2〉

4π2ω2 + (α+ β)2

}
, and (8)

GTQ =
2λq
lklω

{
ν2〈|Ño|2〉+ α[i2πω − β]〈|Ña|2〉

4π2ω2 + (α+ β)2

}
. (9)

where Ño and Ña are Fourier transformed stochastic noise terms.287

Cross-terms between Ño and Ña are small by design assuming that intrinsic vari-288

ability in the ocean and the atmosphere are unrelated to each other, and are thus omit-289

ted in Eqs. (7)-(9). The analytical expressions shown in Eqs. (7)-(9) are also substituted290

in Eq. (4) to obtain stochastic model estimates of coherence (γ2TQ) and phase factor (θTQ).291

2.3.2 Calculating the 〈|Ño|2〉 and 〈|Ña|2〉 forcing spectra:292

In the context of air-sea interactions, previous studies have defined stochastic mod-293

els varying solely as a function of time, representing the forcing by oceanic and atmo-294

spheric processes as stochastic signals with a “white” spectral power density in frequency295

space – i.e., with approximately the same variance (power) at every frequency. While296

observations support the white noise assumption in frequency space (e.g., Frankignoul297

et al., 1998; Patrizio & Thompson, 2021b), they also show that the spectra of intrinsic298

atmospheric and oceanic motions are “red” in wavenumber space, with more variance299

at larger wavelengths (e.g., Nastrom & Gage, 1985; Ducet et al., 2000). The variance300

distribution in wavenumber space also differ between each medium, likely reflecting the301
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distinct intrinsic scales of synoptic weather systems and mesoscale ocean eddies. The present302

work hypothesizes that these distinct variance distributions in time and space can give303

rise to the spatial scale dependence of thermodynamic air-sea interactions revealed by304

recent assessments (Bishop et al., 2017; Laurindo et al., 2019; Small et al., 2019, 2020).305

To test this hypothesis, data from HR and LR are used to attribute realistic variance306

distributions in zonal wavenumber and frequency domains to the 〈|Ño|2〉 and 〈|Ña|2〉 forc-307

ing spectra in Eqs. (7)-(9).308

More specifically, 2-m height specific humidity is used to define 〈|Ña|2〉 because (a)309

this quantity is related to the latent turbulent heat flux bulk formulation (Fairall et al.,310

2003; Large & Yeager, 2004); (b) the latent heat fluxes are usually larger than the sen-311

sible heat fluxes; and (c) time-domain correlations and coherence estimates show that312

the 2-m height specific humidity variability is weakly related to (and thus largely inde-313

pendent from) mesoscale SST anomalies in most oceanic regions (not shown), suggest-314

ing that atmospheric processes predominantly drives its variability. In turn, OHFC is315

used to define 〈|Ño|2〉 considering that it corresponds to the main driver of mesoscale316

SST variability (Putrasahan et al., 2017; Small et al., 2020).317

To compute 〈|Ño|2〉 and 〈|Ña|2〉, zonal-temporal diagrams of OHFC and 2-m height318

humidity data from HR and LR are selected at each latitude within the Pacific basin as319

defined by the mask (Fig. 1h). These diagrams are first normalized by their respective320

standard deviations to render their variances equal to one, and then undergo the the same321

processing steps applied to SST and THF data for obtaining their power spectra (Sec.322

2.2), here producing 〈|Ño|2〉 and 〈|Ña|2〉. Finally, to approximate the stochastic model323

solutions to the GTT , GQQ, γ2TQ, and |θTQ| spectra resolved by HR and LR, the vari-324

ances that 〈|Ño|2〉 and 〈|Ña|2〉 should integrate to (σ2
o and σ2

a) are estimated using a least-325

squares approach described in Appendix A.326

3 Analysis of the stochastic model solutions327

This Section contrasts 〈|Ño|2〉 and 〈|Ña|2〉 forcing spectra defined using HR and328

LR data (hereafter referred to as geophysical noise) with those defined using with white329

noise, and compares stochastic model estimates of GTT , GQQ, γ2TQ, and |θTQ| computed330

using each type of forcing separately. Here, estimates computed using geophysical noise331

are illustrated for HR and 40◦S in the Pacific. This latitude is chosen to demonstrate332

characteristics that are representative of the extratropics.333
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Figure 2. Top (a-b): 〈|Ño|2〉 and 〈|Ña|2〉 power spectral densitites (PSD) computed as a func-

tion of zonal wavenumber (k) and frequency (ω) using HR data at 40◦S in the Pacific Ocean.

The overlaid curved line represent the dispersion relation for first mode baroclinic oceanic Rossby

waves, while the straight line shows the non-dispersive wave limit. Bottom (c-d): 〈|Ño|2〉 and

〈|Ña|2〉 integrated over one dimension to highlight their variation as a function of either k or ω

(red and blue lines, respectively). The black lines are correspondent estimates computed using

white noise.

3.1 Geophysical noise vs. white noise forcing spectra334

Estimates of 〈|Ño|2〉 and 〈|Ña|2〉 defined using geophysical noise and white noise335

are shown Fig. 2. These are computed for σ2
o and σ2

a equal to one in order to highlight336

differences between the shape of the oceanic and atmospheric geophysical noise power337

spectra when compared to white spectra.338

The geophysical 〈|Ña|2〉 includes slightly larger variances toward lower frequencies339

than the correspondent white noise estimate – thus, it is slightly more red (Fig. 2d). It340

is also prominently red in zonal wavenumber domain, with the power decaying toward341

higher wavenumbers at an approximate k−3 rate over scales ∼1000-4000 km and at a342

slower k−2 rate over scales smaller than 1000 km (Fig. 2c). This distribution resembles343

that estimated for tropospheric winds using aircraft measurements (Nastrom & Gage,344
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1985; Cho et al., 1999; Tulloch & Smith, 2009; Callies et al., 2014), although the latter345

was found to decay at a k−5/3 rate over scales smaller than 1000 km.346

In turn, the geophysical 〈|Ño|2〉 is white in frequency space (Fig. 2d). In zonal wavenum-347

ber domain, it has a plateau between ∼300-6000 km and a k−2 slope at smaller spatial348

scales (Fig. 2c). The spectrum computed as a function of both k and ω (Fig. 2b) show349

that the variances are larger near the dispersion relation for first mode baroclinic Rossby350

waves and its non-dispersive limit, here computed using an observational climatology of351

the first internal Rossby radius of deformation (Chelton et al., 1998). This correspon-352

dence was also previously reported in satellite-based estimates of SST, sea surface height,353

ocean color (Early et al., 2011; Chelton, Schlax, & Samelson, 2011; Chelton, Gaube, et354

al., 2011; O’Brien et al., 2013), and in positively-correlated SST and 10-m wind signals355

(Laurindo et al., 2019). This characteristic can reflect variability induced by linear Rossby356

waves and by nonlinear mesoscale ocean phenomena such as coherent eddies and zonal357

jets (Early et al., 2011; Chelton, Gaube, et al., 2011; Berloff & Kamenkovich, 2013a, 2013b;358

Polito & Sato, 2015). Here, it is observed over much of the extratropics except at the359

latitudes of strong current systems such as the ACC and the Kuroshio Current, poten-360

tially owing to the influence of strong currents on the dispersion characteristics (Laurindo361

et al., 2019). Corresponding 〈|Ño|2〉 and 〈|Ña|2〉 estimates for LR (not shown) reveal char-362

acteristics similar to those described for HR, except that 〈|Ño|2〉 decay at an ∼k−1 rate363

over zonal wavelengths between ∼600-6000 km.364

3.2 Spectra predicted by the stochastic model solutions365

Stochastic model estimates of the SST power spectra (GTT ), and of the THF power366

spectra (GQQ) for 〈|Ño|2〉 (ocean-driven, OCN) or 〈|Ña|2〉 (atmosphere-driven, ATM)367

forcing are illustrated in Fig. 3, contrasting results obtained using geophysical and white368

noise forcing. Here, the forcing spectra also integrate to variances equal to one with the369

goal of illustrating the shape of the GTT and GQQ response spectra rather than show370

estimates with realistic magnitudes.371

The stochastic model solutions do not depend on k by construction [Eqs. (7)-(9)],372

such that variations in zonal wavenumber domain must originate in 〈|Ño|2〉 and 〈|Ña|2〉.373

Thus, the OCN and ATM components of GTT and GQQ computed using white noise are374

also white in k, while estimates obtained using geophysical noise mirror the shape of the375

forcing spectra (Fig. 3, left panels).376

In turn, GTT and GQQ estimates computed as a function of ω (Fig. 3, right pan-377

els) indicate that both types of noise forcing give rise to similar results, although ATM378
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Figure 3. Estimates of atmosphere-driven (ATM) and ocean-driven (OCN) components of the

GTT and GQQ power spectral densities (PSD) computed as a function of zonal wavenumber (k,

left panels) and frequency (ω, right) using 〈|Ño|2〉 and 〈|Ña|2〉 forcing spectra defined using white

noise (black lines) and HR data referent to 40◦S in the Pacific Ocean (geophysical noise, orange

lines).
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estimates computed using geophysical noise show more power at low frequencies than379

estimates obtained with white noise (Figs. 3b and 3f) because the former is slightly red-380

der in frequency space to begin with (c.f. Fig. 2d). Starting with the ATM component381

of GTT (Fig. 3b), the spectrum is prominently red and shows a plateau over periods be-382

tween ∼1000 days and 80 years, whose power decays at an approximate ω−5/3 rate to-383

ward higher frequencies. To understand how the stochastic forcing drives a red spectrum384

SST response in frequency domain, attention is called to the denominator of the ana-385

lytical solution of GTT [Eq. (7)]. At high frequencies, 4π2ω2 � (α+β)2 and the spec-386

trum varies as an inverse function of ω2, thus increasing toward longer periods. In con-387

trast, 4π2ω2 � (α+β)2 at low frequencies thereby scaling solely as a function of 1/(α+388

β)2. These characteristics were widely used in the past to explain the low-frequency SST389

variability emerging in response to stochastic atmospheric forcing at oceanic regions away390

from strong current systems (e.g., Hasselmann, 1976; Frankignoul & Hasselmann, 1977;391

Barsugli & Battisti, 1998; Frankignoul et al., 1998; von Storch, 2000). Here, the stochas-392

tic model solutions predict a similar red spectrum structure for the OCN component of393

GTT , suggesting that stochastic forcing by ocean processes can also give rise to low-frequency394

variability in SST.395

The ATM component of GQQ shows more power over higher frequencies (a “blue”396

spectrum) (Fig. 3f). The analytical solution [Eq. (8)] indicates that the blue spectrum397

response arises from the presence of 4π2ω2 +β2 on the numerator and of 4π2ω2 +α+398

β)2 in the denominator. Over periods shorter than ∼1000 days, the dependence on ω2
399

in both the numerator and denominator approximately cancel each other, resulting in400

a white power spectrum. Toward lower frequencies, however, the absence of α in the nu-401

merator implies a larger relative importance of ω2 relative to the damping terms than402

in the denominator, causing the total power to diminish for increasing periods. In turn,403

the OCN component of GQQ (Fig. 3h) show a red spectrum structure similar to that of404

GTT , indicating that the low-frequency SST variability induced by ocean processes are405

mirrored in THF.406

The stochastic model estimates of the cross-spectral statistics coherence (γ2TQ) and407

absolute phase factor (|θTQ|) are sensitive to the relative strength of the ocean and at-408

mosphere forcing (Fig. 4), reason for which they are analysed as a function of the ra-409

tio between the integrated variances of 〈|Ño|2〉 and 〈|Ña|2〉 (σ2
o and σ2

a, respectively). Here,410

the ratio is normalized by λ2q so that values equal to one indicate that the oceanic and411

atmospheric forcing contribute equally to the integrated SST variance.412

Estimates of γ2TQ and |θTQ| reveal distinct linear spectral relationships when ei-413

ther the atmosphere or ocean forcing are strong (Fig. 4). When the atmosphere forc-414
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Figure 4. Stochastic model estimates of the coherence (γ2
TQ) and absolute phase factor

(|θTQ|) between upper-50 m ocean temperature and THF as a function of zonal wavenumber

(k, left column) and frequency (ω, right column). The results are computed using 〈|Ño|2〉 and

〈|Ña|2〉 defined using white noise (panels a-d) and using HR data for 40◦S in the Pacific (geo-

physical noise, panels e-h), and vary as a function of the ratio between the integrated variances of

the forcing spectra [(σa/σo)2].
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ing is dominant, estimates in k domain show ∼0.4 coherences associated with 90◦ phase415

factors, while estimates computed in as a function of ω show coherences equal to one and416

phases varying from 90◦ at periods shorter than ∼1000 days to 180◦ at periods close to417

80 years. The smaller coherences in k results from weak relationships between SST and418

THF at zero temporal lag. In turn, the coherences approaches one while associated with419

a 0◦ phase in both k and ω domains when the ocean forcing is dominant.420

γ2TQ and |θTQ| shows no dependence in k when computed using white noise, vary-421

ing solely as a function of (σa/σo)
2 (Figs. 4a and 4c). In contrast, estimates obtained422

using geophysical noise (Figs. 4e and 4g) reveal a clear dependence on k, with γ2TQ and423

|θTQ| values characteristic of atmosphere-driven variability transitioning to ocean-driven424

at wavelengths varying from ∼2500 to 300 km for (σa/σo)
2 increasing from ∼10−1 to 101.425

This indicates that stronger ocean forcing leads to transitions from ocean to atmosphere-426

driven variability at longer wavelengths. In the frequency domain, γ2TQ and |θTQ| esti-427

mates for white and geophysical noise both show that ocean forcing can influence the428

cross-spectral statistics more efficiently at low-frequencies than at high-frequencies (Fig.429

4, right column). This feature arises as a consequence of the low-frequency response in430

both SST and THF induced by ocean forcing while the atmosphere modulates THF at431

high frequencies (c.f. Fig. 3).432

In summary, this Section demonstrates that using 〈|Ño|2〉 and 〈|Ña|2〉 defined with433

geophysical noise rather than white noise in the FCL98 stochastic model solutions give434

rise, in the zonal wavenumber domain, to variance distributions in the OCN and ATM435

components of GTT and GQQ that mirror that of the forcing spectra. The use of geo-436

physical noise also introduce a spatial-scale dependence in γ2TQ and |θTQ| that is absent437

in estimates obtained using white noise. In the frequency domain, the results are sim-438

ilar for both types of forcing signals and show that, while stochastic atmosphere forc-439

ing produces a red spectrum response in GTT , it induces a blue spectrum response in440

GQQ. In contrast, ocean forcing induces a red spectrum response in both GTT and GQQ,441

suggesting that ocean processes are more effective in determining γ2TQ and |θTQ| at low442

frequencies than the atmosphere.443

4 Results444

4.1 SST and THF variances from observations, HR, and LR445

To provide a background to the analysis of the spectral quantities computed us-446

ing HR, LR, and OBS data, this Section briefly describes the horizontal distributions of447

the monthly SST and THF variances for each of the datasets.448
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The SST variance from OBS is larger in strong current systems and in the trop-449

ics (Fig. 1a). More specifically, the largest values (> 1.0 K2) coincide with western bound-450

ary currents and their seaward extensions, the equatorial current system in the Pacific,451

the ACC, the Brazil-Malvinas Confluence, and the Agulhas Retroflection. Within the452

Tropical Pacific, high variances are associated with El Niño-Southern Oscillation (ENSO)453

events and with zonally-progapating intraseasonal Rossby waves and Tropical Instabil-454

ity Waves (TIWs), while at the extratropical current systems it is predominantly driven455

by mesoscale ocean phenomena such as coherent eddies and meanders. Away from these456

energetic systems, variances of O(0.1-1.0 K2) are found within the subtropical gyres of457

all major ocean basins. Over monthly timescales, the SST variability in these regions458

is predominantly driven by the atmosphere via turbulent heat fluxes (Bishop et al., 2017;459

Small et al., 2019), although it also includes the signature of westward-propagating ocean460

eddies (Chelton, Schlax, & Samelson, 2011; Laurindo et al., 2019). The THF variance461

from OBS (Fig. 1b) noticeably lacks the enhanced variances at the tropical Pacific found462

in the SST estimates, but similar spatial features (as in SSTs) are found in the extra-463

tropics. THF variances of ∼1000-5000 (W/m2)2 are seen in the Labrador Sea and at strong464

current systems, most prominently the Gulf Stream and the Kuroshio Currents, while465

the interior of the subtropical gyres show values between ∼500-1500 (W/m2)2.466

The SST and THF variance distributions in HR are similar to that of OBS, although467

ratios between the datasets indicate that the HR values can be two to ten times larger468

than OBS within the extratropical current systems (Figs. 1c-d). In contrast, the lack469

of resolved mesoscale phenomena in LR leads to the underestimation of the SST and THF470

variances relative to HR and OBS over much of the extratropics, specifically by factors471

of ∼10 in the eddy-rich regions and of ∼2 within the subtropical gyres (Figs. 1e-h). Pre-472

vious assessments showed that the higher SST variability in HR relative to LR is caused473

by the larger upper-ocean heat flux convergence by the resolved mesocale ocean variabil-474

ity, which induces a corresponding increase on the THF variability (Kirtman et al., 2012;475

Putrasahan et al., 2017; Small et al., 2019, 2020). The results of the spectral analysis,476

described next, determines the spatial and temporal scales where resolved ocean phe-477

nomena induce such a response in both quantities.478

4.2 Power spectra and cross-spectral statistics479

4.2.1 Zonal wavenumber spectra:480

The zonal wavenumber SST power spectra (GTT ) from all datasets (HR, LR and481

OBS) show similar magnitudes at zonal wavelengths between ∼2500-7000 km and vary482

as k−3 as also seen at 40◦S (Fig. 5a). Toward smaller scales, HR and OBS estimates no-483
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Figure 5. Power spectral density (PSD) of SST (GTT ) computed as a function of zonal

wavenumber (k) for the Pacific Ocean using HR, LR, and OBS data. Panel (a) show the power

spectra retrieved for 40◦S, (b) is the latitudinal spectrogram for OBS, (c-d) show the ratio of

the OBS estimates relative to the HR and LR results, and (e) the ratio between the HR and LR

results. The left and right thick dashed lines in (b-e) represent the zonally-averaged first internal

Rossby radius of deformation for the ocean and the atmosphere, respectively, the thin dashed

line marks the spatial Nyquist frequency for the spectral analysis, and the black horizontal line

denotes the 40◦S latitude used to plot the results shown in (a).

ticeably diverge from LR, showing a plateau between ∼300-2000 km and then decaying484

at a ∼k−4 rate between ∼70-300 km, while the LR estimates maintain the steep k−3 de-485

cay rate until ∼300 km zonal wavelengths. These distinct shapes result in a much larger486

SST variance in HR and OBS relative to LR over scales smaller than about 2000 km.487

Similar results are found for the THF power spectra (GQQ) (not shown).488

The spectrograms of GTT as a function of latitude (Figs. 5b-e) indicate that the489

spectral characteristics observed at 40◦S occur over much of the extratropics. The same490

is observed in corresponding GQQ estimates (not shown). To support the interpretation491

of the spectrograms, they are overlaid by the meridional profile of the zonally-averaged492

first internal Rossby radius of deformation (R1) for the atmosphere and the ocean. Here,493

the atmospheric R1 is computed using time-averaged potential temperature data for the494

troposphere obtained from the National Centers for Environmental Prediction (NCEP)495
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reanalysis model (Kalnay et al., 1996), while the oceanic R1 is taken from the Chelton496

et al. (1998) observational climatology.497

The ratio between the power spectra resolved by each dataset indicate that the largest498

differences between HR and OBS relative to LR (factors of ten or more) usually occurs499

at wavelengths smaller than the atmospheric R1, which increases from ∼600 km at 60◦500

latitude in both hemispheres to ∼2000 km within the tropics. Despite the SST and THF501

spectra resolved by HR are closer in magnitude and overall shape to OBS than LR, in502

the extratropics they exceed the magnitude of OBS at most wavenumbers, most promi-503

nently at the latitudes of strong current systems, such as between 35-50◦N where the sea-504

ward extensions of the Kuroshio and Oyashio Currents occur (Fig. 5c). The ratio be-505

tween the SST (THF) variances resolved by HR and OBS, averaged over all latitudes506

and wavenumbers, is 1.60 (1.13). For 35-50◦N, this value increases to 2.69 (2.16).507

The coherence (γ2TQ) for all of the datasets is low (∼0.2) and the phase (|θTQ|) is508

∼90◦ at wavelengths larger than approximately 2000 km (Fig. 6). A detailed examina-509

tion at 40◦S (Figs. 6a-b) shows that, towards smaller scales, γ2TQ increases in HR and510

OBS reaching ∼0.9 between 250-500 km, while |θTQ| approaches zero. At scales smaller511

than 250 km, the coherence in OBS steadily decrease until ∼0.2 at about 100 km. The512

coherence is larger in HR than in OBS over most spatial scales, maintaining values above513

0.7 at 100 km, which then sharply decreases to ∼0.2 near the limit of the analysis at ap-514

proximately 50 km. In contrast, at 40◦S LR shows a coherence of about 0.2 throughout515

the analyzed wavenumber range, with minimum phase factors of about 50◦ between ∼700-516

2500 km that return to 90◦ toward smaller scales.517

The latitudinal spectrograms of γ2TQ and |θTQ| (Figs. 6c-h) indicate that OBS and518

HR resolves the band of high coherences associated with near-zero phase factors at most519

latitudes, with the largest γ2TQ values (> 0.5) observed in the extratropics and over spa-520

tial scales smaller than the atmospheric R1. Interestingly, the LR results also show smaller521

phase factors at smaller spatial scales in the extratropics, with |θTQ| approaching zero522

at the the latitudes of the Kuroshio and Oyashio Currents (∼35◦-50◦N) and within the523

tropics, both features associated with coherences of about 0.4.524

To enable a physical interpretation of the spectra computed using OBS, HR, and525

LR data, Figs. 7 and 8 show corresponding estimates obtained using the FCL98 stochas-526

tic model. These are best-fit estimates computed using the methods described in Sec.527

2.3 and Appendix A, and are distinguished from the spectra obtained using SST and THF528

data (hereafter referred to as reference results) by variables adorned by primes (hence529

G′TT , G′QQ, γ2
′

TQ, and |θ′TQ|). Here, OCN denotes stochastic model estimates computed530
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Figure 6. Coherence (γ2
TQ) and absolute phase factor (θTQ) between SST and THF in zonal

wavenumber domain (k) for the Pacific Ocean resolved by HR, LR, and OBS. The top row (a-

b) exemplify estimates for 40◦S while the middle (c-e) and bottom (f-h) rows show latitudinal

spectrograms. The left and right thick dashed lines in (c-h) represent the zonally-averaged first

internal Rossby radius of deformation for the ocean and the atmosphere, respectively, the thin

black dashed denotes the spatial Nyquist frequency for the spectral analysis, while the black

horizontal line marks the 40◦S latitude that the estimates in panels (a-b) refer to.
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Figure 7. Best-fit stochastic model estimates of the zonal wavenumber (k) power spectral

density (PSD) of SST (G′TT ) for HR and LR (panels a and b, respectively) for 40◦S in the Pacific

Ocean. The panels show the ocean-driven (OCN) and atmosphere-driven (ATM) components of

the stochastic model solutions (blue and red lines, respectively), and of their sum (ATM+OCN,

black). The continuous lines are results obtained using the stochastic model formulation proposed

in Sec. 2.3, while the dashed lines denote estimates denote estimates obtained using a formula-

tion extended to include a diffusion term, assuiming an eddy diffusivity coefficient equal to 100

m2/s. The thick gray lines are the reference SST spectra computed using CESM data.

using solely the 〈|Ño|2〉 forcing spectra (where 〈|Ña|2〉 = 0), while ATM denotes esti-531

mates obtained using 〈|Ña|2〉 (〈|Ño|2〉 = 0).532

The G′TT estimate for HR at 40◦S (Fig. 7a) indicates that ATM has larger mag-533

nitudes than OCN at zonal wavelengths longer than ∼2500 km. Toward smaller scales,534

the variance in ATM decreases steeply at an approximate k−3 rate and is then surpassed535

by OCN, which accounts for the plateau observed between ∼300-2000 km – hence im-536

plying that this feature arises from the action of ocean processes. Corresponding results537

for LR (Fig. 7b) show that the ATM component is similar in shape and magnitude to538

that obtained for HR, however significantly smaller variances in OCN, resulting in a to-539

tal G′TT spectrum with shape similar to that of ATM. Estimates of G′QQ for both HR540

and LR (not shown) reveal characteristics similar to those described for G′TT .541

At wavelengths smaller than ∼300 km, G′TT (Fig. 7a) and G′QQ (not shown) es-542

timates for HR are found to decay at a slower k−4 rate than the k−2 found in reference543

HR results. However, the stochastic model solutions can reproduce the approximate k−4544

slope if a diffusion term [κ(∂2T/∂x2)] is added to Eq. (5) with an eddy diffusivity co-545

efficient κ = 100 m2/s, defined empirically. The impact of including a diffusion term in546
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Figure 8. Best-fit stochastic model estimates of the coherence (γ2′
TQ) and absolute phase fac-

tor (|θ′TQ|) between SST and THF as a function of zonal wavenumber (k) for HR. The top row

(a-b) exemplifies the ocean and atmosphere-driven components of the stochastic model solutions

(OCN and ATM, blue and red lines, respectively), their sum (ATM+OCN, black), and the ref-

erence estimates from the HR simulations (thick gray line). The middle (c-e) and bottom (f-h)

rows are latitudinal spectrograms of the ATM+OCN, OCN, and ATM components of γ2′
TQ and

|θ′TQ|, respectively. The left and right dashed lines in (c-h) represent the zonally-averaged first

internal Rossby radius of deformation for the ocean and the atmosphere, respectively, the thin

dashed line is the spatial Nyquist frequency for the spectral analysis, and the black horizontal

line marks the 40◦S latitude used to plot the results in (a-b).

–24–



manuscript submitted to JGR: Oceans

corresponding LR estimates was negligible. The justification for adding the diffusion term547

to the FCL98 stochastic model is further discussed in Sec. 5.3.548

Further, γ2
′

TQ and |θ′TQ| estimates reproduce spectral characteristics seem in the ref-549

erence HR results (Fig. 8) and LR results (not shown). For HR, they demonstrate that550

the low coherence/90◦ phase relationship at spatial scales larger than the atmospheric551

R1 in the extratropics reflects variability in SST and THF driven by atmospheric pro-552

cesses. In addition, the high coherence and near-zero phase at smaller scales reflects vari-553

ability predominantly driven by ocean processes (Figs. 8c-h). Moreover, Figs. 8a-b con-554

trasts best-fit estimates including and not including diffusion effects, and indicate that555

neglecting the diffusion leads to coherences that remain high (∼0.9) at zonal wavelengths556

smaller than about 300 km rather than decaying to ∼0.2 values as shown by the refer-557

ence results. Interestingly, the diffusion term introduces a dependence on k in the ATM558

component of |θ′TQ|. Here, the phase gradually increase from 90◦ at about 1000 km to559

180◦ near the limit of the analysis at ∼50 km. It is noted that the latitudinal spectro-560

grams in Figs. 8c-h are stochastic model solutions that include the diffusion effect.561

Finally, corresponding γ2
′

TQ and |θ′TQ| estimates for LR (not shown) indicate that562

the smaller variance in OCN significantly reduces the coherence at spatial scales smaller563

than the atmospheric R1 and tend to produce larger values of |θ′TQ| relative to the ref-564

erence HR estimates (Fig. 8). Although the imprint of ocean processes in the best-fit565

cross-spectral statistics are stronger than implied by the reference LR estimates (Figs.566

6e and 6h), these results suggest that the reduction in the phase factors from 90◦ to ∼50◦567

over scales smaller then the atmospheric R1 associated with the slightly enhanced co-568

herences of ∼0.4 near the equator and at the latitude of the Kuroshio and Oyashio Cur-569

rents reflect a response of the air-sea coupling characteristics to the ocean dynamics re-570

solved in LR, albeit one that is much weaker than that present in HR and OBS.571

To summarize, this Section demonstrates that HR resolves a more realistic SST and572

THF power spectra and cross-spectral statistics in the zonal wavenumber domain than573

LR at most latitudes. It also shows that, in the extratropics, corresponding stochastic574

model estimates can reproduce key spectral features in both simulations, suggesting that575

the stochastic model is a valid physical model for interpreting the roles of oceanic and576

atmospheric processes in their control of the spectra. In particular, these results show577

that the atmosphere dominates the SST and THF variability over zonal wavelengths larger578

than about 2000-2500 km. Toward smaller wavelengths, HR and OBS estimates suggest579

resolved mesoscale ocean processes explain most of the SST and THF variability and co-580

variability over wavelengths between 100 km and the atmospheric R1 (∼600-2000 km),581

scales that are thus longer than the typical mesoscale range [O(101-102 km)]. Diffusion582
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effects also become important at scales of ∼300 km or less. The significant influence of583

ocean processes is seen not only at the latitudes of intense, nearly zonal extratropical584

current systems (such as the Kuroshio and Oyashio Currents) but also at more quies-585

cent regions such as the subtropical gyres.586

4.2.2 Frequency spectra:587

This Section now examines spectral quantities computed in frequency domain for588

the Pacific Ocean. First considering GTT estimates for OBS, HR, and LR, the spectra589

from all datasets is red throughout the analyzed latitudes (Figs. 9a-b). In the extrat-590

ropics, the ratio between estimates from each dataset (Figs. 9c-e) indicate that OBS and591

HR resolve variances larger than LR at most frequencies, with the largest differences at592

periods shorter than about 1000 days. In contrast, GQQ is approximately white in LR593

for all for frequencies (Fig. 9f). Corresponding OBS and HR estimates show GQQ vari-594

ance levels similar to LR at intraseasonal timescales, which increase significantly rela-595

tive to LR over intraseasonal to annual periods. At periods longer than annual, the GQQ596

for HR and OBS then becomes approximately white (Figs. 9f-j).597

To interpret the differences of GTT and GQQ resolved by LR relative to those in598

HR and OBS, focus is given on 40◦S as representative of their behaviour in the extra-599

tropics (left panels in Fig. 10). The contrast between the reference estimates with cor-600

responding best-fit stochastic model results (G′TT and G′QQ) suggest that the larger SST601

and THF variances in HR relative to LR likely arises from the action of ocean processes,602

since best-fit estimates of the atmosphere-driven component (ATM) for both HR and603

LR show similar shape and magnitudes while the ocean-driven component (OCN) are604

significantly larger in HR.605

The stochastic model solutions predict that both oceanic and atmospheric processes606

both produce a red spectrum response in G′TT (Figs. 10a and 10c), although its ATM607

component is redder than OCN because the forcing spectrum defined for the atmosphere608

is slightly red while for the ocean it is nearly white (c.f. Sec. 3.2, Figs. 3, 4b, and 4d).609

In HR, this leads to ATM with magnitudes generally larger than OCN at periods longer610

than about 1000 days, and to larger variances in OCN over higher frequencies. In LR,611

OCN is weaker than ATM throughout.612

In contrast, G′QQ estimates for HR (Figs. 10e and 10g) indicate that ATM accounts613

for most of the turbulent heat flux variability at periods shorter than 500 days while OCN614

is dominant at longer periods. In LR, even though the ocean-driven component is much615

smaller than in HR, it also explains most of the THF variability over periods longer than616
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Figure 9. Power spectral density (PSD) of SST (GTT ) and THF (GQQ) computed as a func-

tion of frequency (ω) for the Pacific Ocean using HR, LR, and OBS data. Panel (a) show GTT

estimates retrieved for 40◦S, (b) is the latitudinal GTT spectrogram for OBS, (c-d) show the ratio

of the OBS estimates shown in (b) relative to the HR and LR results, and (e) the ratio between

the HR and LR results. Panels (f-g) show corresponding results for GQQ. The black horizontal

line denotes the 40◦S latitude used to plot the results in panels (a) and (f).
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Figure 10. Best-fit stochastic model estimates of the frequency (ω) power spectrum of SST

(G′TT , panels a-d) and THF (G′QQ, e-h) for HR and LR, illustrated for 40◦S in the Pacific Ocean.

The left column show estimates integrated over all zonal wavelengths, while the results in the

right column are integrated over wavelengths smaller than 1000 km. In all panels, the blue and

red lines refers to the ocean and atmosphere-driven components of the stochastic model solutions

(OCN and ATM, respectively), and the black lines shows their sum (ATM+OCN). The thick

gray lines show the reference SST and THF spectra from HR and LR.
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about 1000 days. These characteristics are explained by the fact that, while ocean forc-617

ing produces a red spectrum response in the turbulent heat fluxes, the atmospheric forc-618

ing drives a blue response spectrum where the variances decrease toward lower frequen-619

cies (c.f. Sec. 3.2, Figs. 4f and 4h).620

To further evaluate the importance of resolved ocean processes in the SST and THF621

variability, the right panels in Fig. 10 show frequency-domain GTT and GQQ (and cor-622

responding best-fit stochastic model G′TT and G′QQ) estimates for HR and LR computed623

for zonal wavelengths smaller than 1000 km, thus isolating scales that the zonal wavenum-624

ber analysis (Sec. 4.2.1) suggests to be dominated by ocean processes. For HR, filter-625

ing out the large scales produce reference GTT and GQQ spectra (Figs. 10b and 10f) that626

are both red and similar to OBS (not shown), with corresponding best-fit estimates in-627

dicating that OCN accounts for most of the variance of both quantities. LR estimates628

show significantly smaller variances in GTT and GQQ relative to HR and OBS, attributed629

by the best-fit results to a small ocean-driven variability (Figs. 10d and 10h).630

Estimates of the cross-spectral statistics γ2TQ and |θTQ| computed for OBS and HR631

considering zonal wavelengths smaller than 1000 km (Fig. 11) reveal near-zero phase fac-632

tors at all latitudes and over the entire frequency range, with the highest coherences (>0.4)633

occurring in the extratropics. The γ2TQ for OBS and HR also indicate that enhanced val-634

ues usually appear over higher frequencies toward the equator, characteristic compat-635

ible with oceanic Rossby waves and coherent eddies (Laurindo et al., 2019), and tend to636

persist until the lowest frequencies resolved by the analysis (Figs. 11c-d). In LR, the γ2TQ637

and |θTQ| estimates show sharp variations in frequency domain at most latitudes, although638

a tendency for near-zero phases can be observed near the equator and at 40◦N at most639

frequencies (Fig. 11h). In addition, near-zero phase is also seen at most latitudes over640

periods longer than about 2500 days.641

Best-fit estimates of the coherence and absolute phase factor (γ2
′

TQ and |θ′TQ|, re-642

spectively) for HR (Fig. 12) are visually similar to the OBS and HR results in Fig. 11.643

Thus, in the extratropics, ocean forcing is responsible for the highly coherent and in-phase644

relationship between SST and THF over the entire analyzed frequency range, although645

the coherence in the best-fit results is generally larger than in corresponding OBS and646

HR estimates. In support of this interpretation, corresponding best-fit estimates for LR647

(not shown) indicate that the reduced variances in OCN leads to smaller coherence and648

generally larger phase relative to HR. However, the best-fit estimates also reveal a stronger649

imprint of ocean processes than implied by the results obtained using SST and THF data650

from LR (Figs. 11e and 11h). While this suggest that the best-fit estimates overestimate651

the influence of ocean processes, the cross-spectral statistics are sensitive to the amount652
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Figure 11. Similar to Fig. 6, but for coherence and absolute phase factor estimates (γ2
TQ

and |θTQ|, respectively) computed for HR, LR, and OBS as a function of frequency (ω) for zonal

wavelengths smaller than 1000 km.

of uncorrelated noise in the data. Due to simplified nature of the FCL98 stochastic model653

formulation defined by Eq. (6), it is possible that the best-fit results produces a larger654

signal-to-noise ratio than that present in the HR and LR outputs.655

These results indicate that, at most extratropical latitudes, the resolved ocean vari-656

ability induce a red spectrum response in frequency space in both SST and THF, and657

that both quantities remain highly coherent and in-phase with each other over periods658

from two months until the limit at the analysis at about eighty years in HR and nine-659

teen years in OBS. The signature of ocean processes is significantly smaller in LR ow-660

ing to a weaker temperature forcing by ocean processes relative to HR and OBS.661

5 Discussion662

5.1 Origins of the spatial-scale dependency of air-sea interactions663

The results of the zonal wavenumber spectral analysis (Sec. 4.2.1) suggests that,664

in OBS and HR, atmospheric processes dominate the extratropical SST and THF vari-665

ability and co-variability at zonal wavelengths larger than ∼2000 km while ocean pro-666

cesses dominate at smaller scales. Variability driven by ocean processes dominates at these667
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Figure 12. Similar to Fig. 8, but for best-fit stochastic model estimates of coherence and

absolute phase factor (γ2′
TQ and |θ′TQ|, respectively) computed as a function of frequency (ω) for

zonal wavelengths smaller than 1000 km.

scales because the atmospheric forcing spectra, while very energetic at large scales, de-668

cay toward higher wavenumbers at a steep k−3 rate that allows the ocean influence to669

become important. Supporting this interpretation, the weaker ocean forcing in LR leads670

to GTT and GQQ with shapes similar to that of the atmospheric forcing spectra.671

The transition between atmosphere- to ocean-driven variability resolved by OBS672

and HR occurs at zonal wavelengths longer than implied by other studies. In particu-673

lar, Bishop et al. (2017) computed time-domain correlations between SST tendency and674

THF and between SST and THF using data low-pass filtered in space using a moving675

average procedure (Boxcar filter), defining the transition scale as the size of the aver-676

aging window for which both pairs of quantities produce the same absolute correlations.677

Using satellite data, the authors obtained values smaller than 500 km in eddy-rich re-678

gions such as western boundary current systems and the ACC. The follow-up study of679

Small et al. (2019) investigated these relationships in an eddy-resolving climate simu-680

lation, and obtained transition scales of about 700 km at eddy-rich regions. While the681

differences relative to the results of the present work still need to be reconciled, they can682

potentially be associated with the fact that the size of the spatial averaging window does683
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not correspond to the filter cutoff scale. This implies that the spatial filtering operation684

applied in these studies potentially attenuated variability over wavelengths longer than685

reported, thus biasing low the estimated transition scales.686

The results of the present work indicate that the influence of ocean processes be-687

comes apparent in HR and OBS at zonal wavelengths near and below the atmospheric688

R1, and the latitudinal dependence of R1 resembles that of the scales where ocean pro-689

cesses start to dominate. Laurindo et al. (2019) finds a similar spatial scale dependency690

on the linear spectral relationship between SST and equivalent-neutral 10-m wind speed691

from satellite data and an eddy-resolving climate model simulation, observing negative692

correlations between SST and wind speed indicative of an atmosphere-driven air-sea cou-693

pling regime transitioning to positive correlations typical of an ocean-driven regime also694

near the atmospheric R1. Their results relate to those of this study considering that the695

SST-driven anomalies in THF induce atmospheric boundary layer responses that ulti-696

mately lead to near-surface wind anomalies positively correlated with the underlying SST697

signal (c.f. Small et al., 2008; Chelton & Xie, 2010).698

The potential physical connection between the atmospheric R1 and the transition699

scale from atmosphere-driven to ocean-driven SST and THF variability warrants further700

investigation, although one possibility can be found at the geostrophic turbulence the-701

ory of Charney (1971). The theory predicts that the kinetic energy of synoptic-scale baro-702

clinic atmospheric systems, that scale as a function of the Rossby radius of deformation,703

will be transferred to smaller spatial scales at a k−3 rate (Charney, 1971; Lindborg, 2006;704

Tulloch & Smith, 2009). Indeed, the power spectra of near-surface humidity (the quan-705

tity used to represent the atmospheric forcing signal in the FCL98 stochastic model) show706

a meridional variation that resembles that of the atmospheric R1 (not shown). Since the707

presented results indicate that the ocean-driven SST and THF variability dominates as708

atmospheric motions become progressively weaker toward higher wavenumbers, the vari-709

ation of the transition scale between atmosphere- and ocean-driven regimes as a func-710

tion of the atmospheric R1 is potentially underpinned by a dependence of the functional711

structure of the spectra of atmospheric motions on the Rossby radius of deformation.712

5.2 SST and THF response to ocean forcing in frequency domain713

At spatial scales smaller than 1000 km, the SST and THF variability resolved by714

OBS and HR show a red spectrum structure in frequency space, with both quantities715

remaining highly coherent and in-phase with each other over timescales from two months716

until the limit of the analysis at about eigthy years in HR and nineteen years in OBS717

at most extratropical latitudes. Corresponding stochastic model estimates (Secs. 3.2 and718
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4.2.2) suggest that these features arise from a red spectrum SST response to stochas-719

tic ocean forcing analogous to that induced by the atmosphere (e.g., Hasselmann, 1976;720

Frankignoul & Hasselmann, 1977), that is mirrored in THF due to the dependence of721

this quantity on SST.722

The stochastic model results indicate that, in HR, ocean forcing prominently en-723

hances extratropical SST variability over periods shorter than about 500 days and shows724

magnitudes similar to atmospheric forcing toward longer timescales, a result compati-725

ble with the findings of Patrizio and Thompson (2021b) and Martin et al. (2021). More726

specifically, Patrizio and Thompson (2021b) employed a stochastic climate model for-727

mulation similar to the one used here, further accounting for a feedback term associated728

with ocean dynamics computed as the 1-month lag-regression coefficient between OHFC729

and SST, and found that ocean processes enhanced the temperature variability over pe-730

riods shorter than about two years. The study by Martin et al. (2021), based on a frequency-731

space temperature variance budget analysis of an idealized, high-resolution air-sea cou-732

pled simulation of a western boundary current system analogous to the Gulf Stream, found733

that the ocean dynamics prominently contributes to the upper-ocean temperature vari-734

ability over annual timescales and shorter.735

The influence of resolved mesoscale currents in the SST variability over a wide range736

of timescales is also consistent with the results of Sérazin et al. (2015, 2017, 2018) and737

Constantinou and Hogg (2021). In particular, Sérazin et al. (2015, 2018) showed that,738

in eddy-resolving ocean-only simulations, intrinsic ocean variability dominated the SSHA739

variance over spatial scales smaller than six geographical degrees over much of the ex-740

tratropics at interannual to decadal timescales, also accounting for large fractions (∼30-741

50%) of the variance over large spatial scales (>12◦) at eddy-rich regions such as the ACC742

and the seaward extensions of western boundary currents. Sérazin et al. (2017) and Constantinou743

and Hogg (2021) found a similar influence of ocean processes in the ocean heat content744

resolved by eddy-permitting and eddy-resolving ocean simulations.745

The THF response to ocean-driven SST variability over a wide range of timescales746

has been reported previously. Bishop et al. (2017) showed that the influence of internal747

ocean dynamics in driving SST and THF anomalies increase toward lower frequencies748

on the vicinity of energetic ocean currents, a characteristic later examined in observa-749

tional products and in an eddy-resolving CESM simulation up to annual timescales Small750

et al. (2019). Laurindo et al. (2019) also showed that, at zonal wavelenghts smaller than751

∼1000 km, satellite observations and an eddy-resolving climate simulation both resolve752

SST variability positively-correlated with near-surface winds over periods between 10-753
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days and the limit of the analysis at about 2.5 years at most latitudes of all three ma-754

jor ocean basins.755

Lastly, Gulev et al. (2013) and O’Reilly et al. (2016) reported decadal THF fluc-756

tuations driven by SST anomalies associated with the AMV (Buckley & Marshall, 2016;757

R. Zhang et al., 2019). Gulev et al. (2013) computed the coherence between SST and758

THF fluctuations inferred from historical ship-based measurements and found that they759

are highly coherent and approximately in-phase with each other on decadal scales. The760

later study of O’Reilly et al. (2016) found that this relationship was present in coupled761

climate simulations with active ocean dynamics but not in simulations coupled to a slab762

ocean. Spectral estimates obtained by the present study for the North Atlantic between763

40-60◦N (not shown) reveal characteristics similar to those described for the Pacific, thus764

supporting the conclusions of Gulev et al. (2013) and O’Reilly et al. (2016) that ocean765

processes can drive SST and THF variability over long timescales at the region. It is noted,766

however, that significant debate remains on the roles of the ocean and atmosphere in driv-767

ing decadal THF fluctuations in the subpolar North Atlantic (e.g., Clement et al., 2015;768

R. Zhang et al., 2016; Delworth et al., 2017; Cane et al., 2017), suggesting that a ded-769

icated analysis expanding on the methods used in this study is warranted.770

5.3 Limitations of the stochastic model analysis771

While the FCL98 stochastic model described by Eq. (6) can reproduce key char-772

acteristics of the extratropical SST and THF power spectra and cross-spectral statistics,773

it is an idealized formulation that does not represent important processes involved in ther-774

modynamic air-sea interactions. This Section discusses such limitations and those emerg-775

ing from other assumptions of the presented analysis.776

First, the FCL98 stochastic model does not account for the atmospheric adjust-777

ment to SST, a process that is represented by the stochastic, coupled ocean-atmosphere778

energy balance model proposed by Barsugli and Battisti (1998) (hereafter BB98) em-779

ployed by previous studies (Wu et al., 2006; Sura & Newman, 2008; Bishop et al., 2017;780

Sun & Wu, 2021). However, tests with the BB98 formulation showed that obtaining SST781

power spectra with magnitudes comparable to that resolved by HR and LR underesti-782

mated the THF power spectra by about two orders of magnitude. This issue potentially783

reflects the ocean and atmosphere becoming too strongly coupled to each other in the784

BB98 model, reducing the air-sea temperature contrast and consequently the THF vari-785

ability. Conversely, the FCL98 model produced SST and THF power spectra with mag-786

nitudes comparable to that resolved by HR and LR, reason for which it was preferred787

for use in this work over the BB98 formulation.788
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Moreover, the FCL98 formulation used here assumes that atmospheric processes789

solely modulates THF by inducing stochastic variability in near-surface atmospheric tem-790

perature, thus neglecting:791

(a) The role of the atmosphere on the generation of Ekman currents, which is a sig-792

nificant contributor to OHFC at large spatial scales (e.g., Larson et al., 2018; Small793

et al., 2020) and at long time-scales (Martin et al., 2021). This implies that us-794

ing OHFC to represent the stochastic forcing by internal ocean processes [〈|Ño|2〉795

in Eqs. (7)-(9)] potentially overestimates the ocean forcing at these scales.796

(b) The atmospheric modulation of THF by the surface wind speed, factor that ac-797

counts for significant fractions of the THF variability at synoptic timescales (e.g.,798

Alexander & Penland, 1996; Frankignoul et al., 1998; Proistosescu et al., 2018).799

Accounting for this effect would likely affect the stochastic model estimates of the800

frequency-domain THF response to atmospheric forcing, potentially leading to a801

higher influence of atmospheric motions over lower frequencies than implied by802

current results. It is noted that mesoscale SST-driven anomalies also induce anoma-803

lies in near-surface winds (c.f. Small et al., 2008; Chelton & Xie, 2010), meaning804

that a potential influence of this coupled response to THF are also absent in the805

stochastic model estimates.806

(c) Radiative forcing associated with stochastic cloud variability, a process known to807

induce SST anomalies negatively correlated with cloud cover over seasonal timescales808

(e.g., Alexander et al., 2006; Spencer & Braswell, 2010; Proistosescu et al., 2018).809

This process can potentially also influence SST variability associated with mesoscale810

ocean processes, considering the observed association between mesoscale features811

and cloud cover (Bryan et al., 2010; Frenger et al., 2013; Desbiolles et al., 2021).812

The damping of SST anomalies by upper-ocean mixing is also neglected in Eq. (6).813

As shown in Sec. 4.2.1, adding a diffusion term to the stochastic model formulation and814

assuming an eddy diffusivity coefficient κ=100 m2/s leads to best-fit SST and THF power815

spectra that, at zonal wavelengths smaller than 300 km, decay at the approximate k−4816

rate shown by corresponding HR and OBS estimates (Fig. 7). Best-fit results obtained817

without the diffusion effect decay at the slower k−2 rate, mirroring that of the OHFC818

data used to represent the stochastic ocean forcing. While this in principle suggests that819

diffusion can play a role determining the air-sea coupling characteristics at high wavenum-820

bers, it is noted that the prescribed κ value is about one order of magnitude smaller than821

observational measurements (e.g. Koszalka et al., 2011; Zhurbas et al., 2014; Peng et al.,822

2015; Mariano et al., 2016), an underestimation that can potentially stem from the ide-823

alized nature of the FCL98 formulation. On the flip side, high-resolution, along-track824
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satellite SST data resolve a k−2 slope over wavelengths smaller than 500 km (Chin et825

al., 2017) – curiously similar to that of best-fit estimates without the diffusion effect. This826

raises the possibility that the k−4 slope shown by OBS and HR reflect mapping biases827

and/or resolution issues rather than actual geophysical characteristics (Chin et al., 2017).828

Finally, this study assumes that the feedback terms α and β of Eq. (6) are con-829

stant throughout the extratropics while they in fact show significant spatial and tem-830

poral variability (e.g., Frankignoul et al., 1998; Frankignoul & Kestenare, 2002; Park et831

al., 2005; Patrizio & Thompson, 2021b). This limitation is partially offset by the fact832

that the magnitudes of the atmospheric and oceanic forcing spectra are estimated by least-833

squares fitting the stochastic model solutions to the SST and THF spectra resolved by834

HR and LR at each latitude (Appendix A). However, assuming constant coefficients can835

influence the frequencies where the GTT and GQQ response spectra becomes approxi-836

mately white toward lower frequencies, and also increase the misfit between the stochas-837

tic model solutions and the reference CESM estimates.838

6 Summary and conclusions839

This work examines the SST and THF power spectra and cross-spectral statistics840

resolved by the J-OFURO3 observational product (OBS) and by multi-century climate841

model simulations run at eddy-parameterized and eddy-resolving ocean resolutions (LR842

and HR, respectively). These quantities are computed for the Pacific between 55◦S and843

60◦N, over zonal wavelengths between ∼50 and 10000 km and periods from two months844

to nineteen years using OBS and eighty years using model data. The roles of atmospheric845

and oceanic processes in conditioning the spectral characteristics in the extratropics are846

interpreted using a stochastic model of the upper-ocean temperature evolution forced847

by noise terms representing the action of intrinsic variability in both mediums. Here, the848

noise terms are defined using actual geophysical data from HR and LR to simulate re-849

alistic variance distributions in spectral space.850

Spectral estimates obtained as a function of zonal wavenumber indicate that, at851

most latitudes, all datasets resolve similar SST and THF variability at wavelengths larger852

than 2500 km. However, toward smaller spatial scales, their variances in HR and OBS853

increase relative to LR, with the most significant differences (one order of magnitude or854

more) found at zonal wavelengths near and smaller than the atmospheric first internal855

Rossby deformation radius (R1). At these scales, SST and THF variability are highly856

related to each other in HR and OBS but not in LR. The corresponding stochastic model857

results indicate that the large-scale SST and THF variability is predominantly driven858

by the atmosphere and that the tight relationship between both quantities toward higher859
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wavenumbers in HR and OBS arise from the action of ocean processes. This relation-860

ship is virtually absent in LR due to the much weaker ocean forcing relative to HR.861

The stochastic model analysis further suggests that the transition from the atmosphere-862

driven variability to ocean-driven in HR and OBS occurs owing to the steep k−3 decay863

of the atmosphere noise spectrum starting at zonal wavelengths larger than about 3000-864

4000 km. This characteristic, combined with the approximately constant (white) ocean865

noise spectra from the largest resolvable wavelengths until ∼300 km, allows the ocean-866

forced SST and THF variability to become larger than that forced by the atmosphere867

at scales below ∼2000 km. It is hypothesized that the similar meridional variation of the868

transition scale with that of the atmospheric R1 reflects the dependence of atmospheric869

motions’ power spectrum on the Rossby radius.870

Spectral quantities computed as a function of frequency show that HR and OBS871

has larger SST variances than LR at most frequencies in the extratropics, most promi-872

nently over periods shorter than about 1000 days. In contrast, THF variability is enhanced873

relative to LR over annual periods and longer. Isolating zonal wavelengths smaller than874

1000 km, HR and OBS reveal a red SST and THF power spectra (with more power over875

lower frequencies), with corresponding cross-spectral statistics indicating that these quan-876

tities are highly related to each other at all timescales. Corresponding stochastic model877

estimates suggest that these characteristics arise from the action of ocean processes. The878

observed red spectral response in SST to ocean forcing is analogous to that induced by879

stochastic atmospheric variability, where the ocean integrates the noise to induce low-880

frequency oscillations. This red spectrum response is also seen in THF due to the de-881

pendence of this quantity on SST.882

These results support the conclusion that climate models with eddy-resolving oceans883

resolve more realistic air-sea coupling characteristics than their eddy-parameterized coun-884

terparts. In particular, they indicate that resolved mesoscale ocean phenomena can mod-885

ulate a significant fraction of the extratropical SST and THF variability over a wide range886

of spatial scales [O(101-103 km)] and from intraseasonal to multidecadal timescales. Fi-887

nally, it is noted that, while stochastic models can be used to infer the roles of the at-888

mosphere and ocean in driving SST and THF variability, these idealized systems can-889

not represent all the physical complexity of the processes involved in the thermodynamic890

air-sea interactions, nor inform about the nature of the phenomena in both mediums re-891

sponsible for the generation and dissipation of SST anomalies. With this in mind, a po-892

tential follow-on investigation involves using spectral methods to examine the key terms893

in the upper-ocean heat balance equation and in the turbulent heat flux bulk formula-894
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tions responsible for maintaining the SST and THF variability over different spatial and895

temporal scales across the global ocean, as resolved by high-resolution climate models.896
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at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. The data anal-915

yses were carried out using computing resources provided by the Texas A&M High Per-916

formance Research Computing and by the Climate Simulation Laboratory at NCAR’s917

Computational and Information Systems Laboratory. L. Laurindo, R. Small, and F. Bryan918

gratefully acknowledge Stuart Bishop, Patrizio Casey, and Yiming Guo for very help-919

ful discussions throughout the development of this work. The authors also thank Claude920

Frankignoul for his feedback on an early version of this manuscript.921

Appendix A Approximating the stochastic model solutions to HR and922

LR estimates923

This work estimates the variances σ2
o and σ2

a that the forcing spectra 〈|Ño|2〉 and924

〈|Ña|2〉 should integrate to for approximating the stochastic model solutions to the SST925

and THF power spectra and cross-spectral statistics resolved by HR and LR. This is done926

by least-squares fitting the GTT and GQQ analytical solutions [Eqs. (7)-(8)] to the SST927

and THF spectra resolved by the CESM simulations.928
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First, these expressions are rewritten as:929

GTT (k, ω, j) =

{
2ν2|Ño(k, ω, j)|2

lklω [4π2ω2 + (α+ β)2]

}
σ2
o +

{
2α2|Ña(k, ω, j)|2

lklω [4π2ω2 + (α+ β)2]

}
σ2
a, (A1)

GQQ(k, ω, j) =

{
2λ2qν

2|Ño(k, ω, j)|2

lklω [4π2ω2 + (α+ β)2]

}
σ2
o +

{
2λ2q(4π

2ω2 + β2)|Ña(k, ω, j)|2

lklω [4π2ω2 + (α+ β)2]

}
σ2
a.

(A2)

where j = 1, 2, 3, ..., nj denotes the number of individual |Ño|2 and |Ña|2 estimates avail-930

able at each latitude (equal to 48 for HR and 44 for LR).931

Using known GTT (k, ω, j), GQQ(k, ω, j), |Ño(k, ω, j)|2, and |Ña(k, ω, j)|2 (defined932

using HR and LR data following the methods described in Sec. 2), σ2
o and σ2

a can then933

be estimated via least-squares. Prior to the fitting operation, these spectra are randomly934

matched without replacement (i.e., shuffled) along the j dimension to reduce correlations935

arising the zonal and temporal coincidence of the data.936

Considering nk (nω) as the number of discrete coordinates in k (ω), Eqs. (A1) and937

(A2) are then redefined as a system with n = 2nknωnj linear equations, as:938

yi = Aiσ
2
o +Biσ

2
a, (A3)

where i = 1, 2, 3, ..., n. Here, yi holds the GTT and GQQ estimates, Ai and Bi are the939

terms enclosed by braces dependent on |Ño|2 and |Ña|2, respectively, and σ2
o and σ2

a are940

the unknowns of the system.941

In matrix form, Eq. (A3) can be rewritten as y = Mz, where M is an n×2 ma-942

trix containing the A and B vectors, and z is an 2×1 column vector with the unknowns943

σ2
a and σ2

o . A least-squares solution for z can then be computed as:944

z = (MTM)−1(MTy), (A4)

where the superscript “T” denotes transposed matrices.945
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