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Abstract

Statistical studies of the properties of different plasma regions, such as the magnetosheath and outer magnetosphere found

near the boundaries of planetary magnetospheres, require knowledge of boundary (bow shock and magnetopause) crossings for

purposes of classification. These are commonly detected by visual inspection of the magnetic field and / or particle data sampled

by the relevant spacecraft. Automation of this type of activity would thus improve the efficiency of boundary and region studies,

which benefit from large crossing datasets, and could also have implications for future development of onboard data-processing

protocols in the pre-downlink stage. The Cassini mission at Saturn (2004-2017) provided an invaluable dataset for testing

the viability of automated boundary classification. The training dataset consists of BS and MP crossings for the time period

2004 to 2016 (Jackman et al. (2019)). We have employed a series of techniques which involve pre-processing the calibrated

magnetometer data, unsupervised training of a LSTM recurrent neural network on magnetometer data to filter magnetosheath

regions where crossings are most likely to be found, isolating large rotations in magnetic field using minimum variance analysis

(MVA), feature engineering such as magnetic field strength ratio either side of the field rotation to form a ‘feature vector’ for

each candidate, and finally applying a gradient-boosting decision-tree-based algorithm to predict the probability that a given

interval of data contains the signature of a bow shock (BS), a magnetopause (MP), or None (not a boundary crossing). The

resulting model performs better on bow shock events, with a precision (fraction of true events in the retrieved sample) and

recall (fraction of the total true events which were retrieved) of ˜86% and ˜90% respectively, as compared to ˜50% and ˜68%

for the MP. The ongoing work focuses on augmenting the feature space for improved classification of MP, based on a magnetic

pressure model of MP crossings derived using a local pressure balance condition (e.g. Pilkington et al. 2015) and using the

distinct energetic particle flux changes across the MP in MIMI data (e.g. Liou et al. 2021). We expect that these promising

new features will help us to better constrain the retrieval of candidate events which are true MP crossings.
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Motivation
Manually searching by eye for bow shock (BS) and magnetopause 

(MP) boundaries in spacecraft data is: Time consuming, prone to 

human error, requires expertise.

Automation will allow: Reproducibility, discovery potential in

unlabeled data, reusability in existing and future planetary missions.

BS and MP boundaries contain interesting physics such as: 

Morphology in which the 3-d shape and size of the magnetosphere 

(SP), MP and BS affect plasma flows in the magnetosheath (SH). 

Dynamics like current systems, magnetic reconnection, shock physics 

and plasma energization. Instabilities like R-T waves, K-H waves, 

Kinetic waves, Mirror mode waves, Helical instability, Heat-flux driven 

instability, Modified two-stream instability, Lower-hybrid drift Instability 1, 
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Pipeline

Fig. 3: Five stages of the data pipeline for automating boundary detection:

1) Data collection. 2) Pre-processing. 3) Modelling the data with different 

methods. 4) Validating and tunning the algorithm. 5) Deployment on new data.

Results

BS and MP Crossing Signatures

Fig. 1: MAG13 Data and CAPS14 ELS Anode 5 and 7 with pitch angle 

information for intervals of example BS (left) and MP (right) crossings. 

Adapted from cassinimag.space.swri.edu.

Typical signatures of BS crossings include (Fig 1 left):

• Magnetic field: The SW magnetic field is weaker (typ. <1nT) than 

in the SH; often with magnetic overshoot feature due to ion 

reflection and gyration 5. 

• Plasma: The SH plasma is denser and hotter than solar wind 

plasma due to conversion of kinetic to thermal energy by the BS.

Typical signatures of MP crossings include (Fig 1 right):

• Magnetic field: The 𝐵𝑧 component is usually negative 

(southward) inside the low-latitude magnetosphere, whereas the 

SH 𝐵𝑧 is typically close to zero but highly variable. Plasma: The 

magnetospheric plasma is less dense and hotter than SH plasma. 

For both boundaries, the field fluctuations typically increase in the SH 

due to turbulence.

Define the problem
To simplify the problem, binary classification is performed (Fig 2).  

Fig. 2: Schematic of the problem. Question: Is there a BS or MP crossing or 

not?

Preprocessing
Data collection is complete thanks to Cassini. The next step (Fig. 3) is 

preprocessing the data for automated BS/ MP boundary detection.

1. To reduce the search scope, sections of Cassini’s orbits were pre-

selected (Fig 4) based on expected BS and MP locations using 

empirical models. This filtering reduced the amount of data to 4.2 ×
106 minutes (between 2004- 2016). 

2. To further reduce the scope, a LSTM autoencoder (Fig. 5) was 

employed for unsupervised outlier detection. Over-parameterized 

neural networks (NN) have been shown to prioritize learning simple 

patterns that generalize across data samples 6. This property was 

well-suited for filtering intervals with sudden changes in field which 

typically signal BS and MP boundary crossings.

Validating and Tunning

To tune the threshold method, the best parameter thresholds were 

found using Bayesian optimization10 to maximize F1 score (a metric of 

both (1) how many of the ground truth are detected (recall) and (2) how 

many of these detections are true crossings (precision)). A tolerance of 

±60 minutes from a ground truth crossing was defined as correct. 

To validate the CNN, Grad-CAM11 was used to visualize what the 

network was using to make its predictions (see Fig. 8). 

Additional checks were implemented to ‘screen’ for genuine MP 

crossings as these tended to be the most difficult to detect especially in 

the dusk sector. These included: Angular deviation between MP model, 

TD and MVA normal, power spectra of parallel and perpendicular 

magnetic field, candidate crossing location on magnetic pressure map, 

predicted plasma beta based on pressure balance assumption, 

fluctuations of normal component of magnetic field from MVA, the ratio 

𝐵𝑅/𝐵 at low latitudes assuming closed MP. 

Conclusion and Future Work
1. It is possible to automate the detection of BS and MP crossings 

using magnetic field data and electron energy spectrogram as 

demonstrated with Cassini data at Saturn.

2. Two methods were compared: Threshold (Fig. 6), CNN (Fig. 7).

3. Based on 2012 test data and the latest BS and MP catalogue at 

Saturn, the CNN approach outperforms the threshold approach (Fig. 

9 and Fig. 10). 

4. Both are lightweight and effective tools for large scale boundary 

surveys of spacecraft data and speed up catalogue creation. 

5. Potential case studies from shortlisted events (e.g., Fig. 11). 

Error analysis of cnn-caps 

misclassifications revealed:

• 48.5% were MP 

• 26.5% were BS

• 12.2% occurred in SH

• 11.7% occurred in SP

• 1.0 % occurred in SW

• Causes include missing 

BS and MP in ground 

truth and intervals with 

no CAPS data but exists 

in ground truth using 

MAG-based crossings.

Fig. 10: Error analysis of the cnn-caps and 

post-correction performance for test year 

2012, with all metrics exceeding 90%.

Ground Truth
The BS and MP ground truth catalogue used contains over 2100 MP 

crossings, and over 1200 BS crossings 3,4. They are recorded as single 

timestamps. 

Fig. 4: Orbit selection based on 

expected BS and MP locations 

and crossings catalogue.

Fig. 5: Schematic of LSTM 

autoencoder used for filtering 

intervals of magnetic field data with 

abrupt changes.

Modelling
Two methods are compared in this poster: 

1. Threshold method 7 : MAG and CAPS parameter values were 

computed using two sliding windows of length 30 minutes with a 

fixed gap of 8 minutes in between (shown by the red squares in Fig. 

6). This method is easily explainable due to the physical meaning of 

the parameters such as fluctuations in the field. A positive detection 

occurs when a fixed threshold is exceeded in all the parameters.

2. Deep learning with convolutional neural network (CNN) 8 : 

Motivated by the ability of human eyes to recognize BS and MP 

features from multi-instrument plots (like Fig 1). A CNN 

automatically creates discriminative features from the input image in 

order to output the correct class label using labelled training data. A 

ResNet architecture was used due to the benefits of skip-

connections 9 , where inputs are directly added to the output of a 

layer (see Fig. 7 right).

     

   
    

                

                  

                                       
                               

                                       
                                  

             
              

                 

                      
                   

                      

             
              

            
                        

                         
           

                 
             
          

                    
                  

                

            

               
      

             

   

           
                      
               

          
                  

                     

Fig. 6: MAG threshold method (left) to detect MP using four magnetic 
field parameters: 1) B standard deviation in SH, 2) ratio of B standard 
deviation between SH and SP, 3)  North-south/ radial component of B in 
SP, 4) ratio of Bz or Br between SP and SH. Thresholds optimised using 
Bayesian optimisation. CAPS threshold method (right) to detect MP 
using four density and temperature parameters: 1) log density in SH, 2) 
ratio of density between SH and SP, 3) log temperature in SP, 4) ratio of 
temperature between SP and SH. 

ResNet18 architecture

Crossing

Not

crossing

CAPS Electron

Energy Spectrogram
ResNet18 2 fully- connected layers

Fig. 7: Schematic of CNN classifier (left) showing how an input image of 

CAPS electron energy spectrogram is passed through the convolutional 

layers, generating deeper and deeper feature maps, eventually flattened 

to be passed through a fully connected network for classification giving 

output ‘crossing’ or ‘notCrossing’. Schematic of ResNet architecture (right) 

used in the feature learning part with arrows showing skip-connections. 

Fig. 9: 2d histogram of crossing prediction locations in 2012 by thresh-
caps (left), cnn-caps (middle), and current ground truth (right). There is a 
region of crossing predictions (marked by red square) in cnn-caps which 
is not seen in thresh-caps or ground truth.

Fig. 8: Grad-CAM applied to cnn-mag (left) and cnn-caps (right). The 
heatmap shows regions which are most discriminative for the output class 
(red regions highlight the most important pixels).  Both models highlight the 
region with discontinuity as most important, which is what our eyes would 
focus on too for deciding between crossing or not. 

Fig. 11: A ‘crossing’ event flagged by CNN method not previously 

recorded. This event situated on the dusk flank near the equator is similar 

to the K-H vortex encounter discussed in Masters et al. (2010) 12. 
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