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Abstract

Seismologists working with fiber-optic sensing, commonly referred to as Distributed Acoustic Sensing (DAS), have yet to find

an established way of automatically detecting signals of interest within its recordings. We propose a new research perspective

within the field by examining the output of a DAS array as an image and processing the image to find signals of interest. In

this manuscript, we show an example of such a method, where we automatically detect seismic events of interest within two

different DAS datasets, finding, respectively 99 % and 96 % of the local earthquakes previously identified within the data by

manual analysis. The method is based on simple image processing and computer vision techniques, which clean the image, and,

ideally, leave nothing but the signal of interest. These simple image processing steps yield promising results, indicating that

computer vision and image processing might have an immediate impact in geophysical applications of fiber-optic sensing.
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Solvi Thrastarson1, Robert Torfason2, Sara Klaasen1, Patrick Paitz1, Yeşim3

Çubuk-Sabuncu3, Kristín Jónsdóttir3, Andreas Fichtner14

1ETH Zürich, Sonneggstrasse 5, 8092, Zürich, Switzerland5
2Genki Instruments, Klapparstígur 25-27, 101 Reykjavík, Iceland6

3Icelandic Meteorological Office, Bústaðavegur 9, 150 Reykjavík, Iceland7

Key Points:8

• DAS datasets are too large for manual inspection, and detection algorithms built9

for seismometers do not exploit the benefits of DAS.10

• Recordings from DAS arrays can be viewed as images, making it possible to use11

computer vision techniques to detect earthquakes.12

• We develop a computer vision pipeline that automatically detects seismic events13

and we test it on two separate datasets.14
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Abstract15

Seismologists working with fiber-optic sensing, commonly referred to as Distributed Acous-16

tic Sensing (DAS), have yet to find an established way of automatically detecting sig-17

nals of interest within its recordings. We propose a new research perspective within the18

field by examining the output of a DAS array as an image and processing the image to19

find signals of interest. In this manuscript, we show an example of such a method, where20

we automatically detect seismic events of interest within two different DAS datasets, find-21

ing, respectively 99% and 96% of the local earthquakes previously identified within the22

data by manual analysis. The method is based on simple image processing and computer23

vision techniques, which clean the image, and, ideally, leave nothing but the signal of in-24

terest. These simple image processing steps yield promising results, indicating that com-25

puter vision and image processing might have an immediate impact in geophysical ap-26

plications of fiber-optic sensing.27

Plain Language Summary28

Detecting earthquakes in large volumes of data becomes challenging, as the data29

can no longer be manually inspected within a reasonable timeframe. We formulate a de-30

tection algorithm that automatically detects the presence of earthquakes in a large data31

volume. We treat the data as an image, making the earthquakes visually distinctive from32

the noise. Our method is based on image processing techniques, and, step-by-step, we33

process the data until only physical signals of interest remain in the image. The algo-34

rithm has been tested on two different data sets, finding 99% and 96%, respectively, of35

all local earthquakes. This is a promising result, showing the potential of image-based36

processing techniques to deal with sizeable seismic data volumes.37

1 Introduction38

Distributed Acoustic Sensing (DAS) is an emerging technology in geophysics that39

yields a densely sampled array of seismic measurements. An interrogation unit sends light40

pulses into a fiber-optic cable, and naturally occurring heterogeneities in the cable cause41

back-scattering of the light pulses (Hartog, 2017). The axial strain of the cable causes42

phase shifts in the back-scattered signals as it deforms. The entire fiber-optic cable is43

sampled, and the recorded phase shifts are averaged over a gauge length, generally a few44

meters. The result is a dense seismic network with closely-spaced stations (down to 2545

cm) that extends up to several kilometers with a high temporal sampling rate (up to sev-46

eral kHz).47

The high spatial and temporal resolutions of DAS create large data volumes (up48

to tens of TB) that can be challenging to process and store. An effort is made to auto-49

mate processing procedures of DAS measurements, as manual processing becomes infea-50

sible. However, automated processing techniques that have been developed for seismome-51

ters do not necessarily translate well to data collected with DAS for the following rea-52

sons. (1) They are designed for either three-component or single vertical component sen-53

sors instead of uni-directional strain measurements. (2) They do not harness the dense54

spatial sampling which may enable the identification of additional low magnitude events.55

(3) Applying them individually to each DAS channel might become prohibitively expen-56

sive computationally.57

1.1 Event Detection Algorithms58

Many earthquake detection algorithms have been developed for single seismic sta-59

tions throughout the years, e.g., short-term average over long-term average (Allen, 1978).60

Among the most established detection algorithms are similarity-based algorithms, such61

as template matching (e.g. Shelly et al., 2007; Peng & Zhao, 2009; Skoumal et al., 2015).62

–2–



manuscript submitted to Geophysical Research Letters

Using cross-correlation, previously recorded waveforms (templates) from seismically ac-63

tive regions are used to detect comparable earthquakes in similar areas. Machine learn-64

ing methods have been developed to detect events (e.g. Perol et al., 2018; Ross et al.,65

2018), classify them (e.g. Falsaperla et al., 1996; Masotti et al., 2006; Maggi et al., 2017),66

or both (e.g. Beyreuther & Wassermann, 2008; Hammer et al., 2013; Dammeier et al.,67

2016; Wenner et al., 2021).68

DAS poses a challenge for template matching as it is often deployed as a tempo-69

rary array where a catalog of recurring waveforms does not exist. To employ template70

matching with a temporary DAS array, a careful selection of template waveforms needs71

to be done a priori. Given the data volumes recorded by a DAS array, searching for a72

collection of templates may already be prohibitive. To circumvent this problem, Li and73

Zhan (2018) used a catalog of events detected by a permanent seismic array to find tem-74

plate waveforms recorded by the DAS array. They showed that this could help detect75

events with a low signal-to-noise ratio. It does, however, not guarantee that the template76

events represent all the signals of interest that the array might record, and the compu-77

tational requirements may be high due to the need for two-dimensional correlations.78

The use of single channels of the DAS array to detect earthquakes does not fully79

exploit the potential of a DAS array, which is its dense, spatial sampling. Consequently,80

developments within the field of array seismology may be better suited to exploit the high81

spatial resolution of DAS. Chmiel et al. (2019) developed a matched field processing method82

that detects and localizes events with seismic arrays. Such methods could translate well83

to DAS measurements. However, they would require significant adaptations to take the84

in-line strain-rate measurements into account, and the fiber-optic cable layout would need85

to be planned with such a method in mind.86

Rather than considering individual DAS measurements, we propose to visualize the87

data as a two-dimensional image where the axes represent space and time, and the color88

shows the intensity of the recorded signals. Signals that are challenging to identify on89

individual channels become apparent when visualizing the entire array. We aim to ex-90

ploit the patterns in the data caused by earthquakes in order to detect them. We use91

computer vision techniques to identify the patterns in two-dimensional images, making92

it a potential earthquake detection tool.93

1.2 Computer Vision and Image Processing94

On a high level, computer vision is image processing with the goal of image under-95

standing. The image processing involves algorithms to reduce noise or enhance certain96

features of an image (Sonka et al., 2014). Image processing is usually a step within com-97

puter vision pipelines prior to the final step of image understanding. As an example, for98

a typical neural network, the values of the image need to be normalized to a specific range99

and resized before the image can be interpreted (He et al., 2016).100

Most of the recent advances in computer vision have used convolutional neural net-101

works, and typical tasks for modern computer vision systems include classification (e.g.102

He et al., 2016), object detection (e.g. Redmon & Farhadi, 2017) and image segmenta-103

tion (e.g. L. Chen et al., 2017). There are, however, drawbacks related to using deep learn-104

ing methods (neural networks) in the small-data regime with a heavy class imbalance.105

Large volumes of data are needed to train those neural networks, and the data need to106

be meticulously labeled, which is time-consuming. Without a sufficient amount of data,107

the task could be impossible to solve with deep learning methods (Karimi et al., 2020).108

While a single DAS survey does not necessarily create enough data to train a neu-109

ral network properly, the quantities of data are still large enough to make it prohibitively110

time-consuming for manual inspection and expensive for long-term storage.111

A large majority of passive recordings do not include any signals of interest, and112

it is thus a viable option to only store the recordings which contain interesting signals113

and delete the rest. As the datasets are too large to inspect manually, we need a method114

that automatically detects seismic events within the dataset. Ideally, we do not want to115
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miss any interesting data, so the occurrence of false-negative results needs to be min-116

imized.117

Recent applications of machine learning techniques with DAS and conventional seis-118

mic data focused on de-noising of data (Beckouche & Ma, 2014; Martin et al., 2018; Zhu119

et al., 2019; Yu et al., 2019; Y. Chen et al., 2019; van den Ende et al., 2021) and arrival-120

time picking (Zhu & Beroza, 2019). There have been attempts at using deep learning121

based computer vision techniques to detect seismic events within DAS recordings. Binder122

and Chakraborty (2019) and Stork et al. (2020) applied a convolutional neural network123

to the measurements from a downhole DAS system to detect microseismic events. They124

trained the network using synthetic data superimposed with real recorded ambient noise.125

Whereas these detection methods show promise on synthetic data, they have a prob-126

lem producing robust results with actual data. Even though the neural network detected127

multiple events in both cases, it also missed many events, which we aim to minimize with128

our proposed detection algorithm.129

Even though non-deep learning methods may be less, they are usually easy to un-130

derstand and can be tuned based on prior information about the task (Otsu, 1979; Duda131

& Hart, 1972; Vincent, 1993). They can thus be a logical first step before using deep learn-132

ing based methods.133

Neural networks are especially useful in object detection when the characteristics134

of the objects cannot be described to a computer easily (e.g., a cat) (Girshick et al., 2014).135

However, when the general characteristics of the objects can be described, more straight-136

forward approaches become more accessible and are easier to tune.137

The approach we present here is, to our knowledge, the first step in the direction138

of event detection from DAS recordings using simple image processing techniques. We139

believe that the method still has unfulfilled potential, yet we want to describe our cur-140

rent solution and encourage people to further experiment with such an approach.141

2 Description of Algorithm142

We designed the algorithm to identify a signal of interest from the background noise143

with image processing techniques. To achieve this, it is essential to differentiate the sig-144

nal from the noise. This includes ambient and anthropogenic noise, as well as instrumen-145

tal noise, which may appear in the form of horizontal stripes, as can be seen in Figure 1.146

The data are initially represented as a two-dimensional array, where the recorded147

strain-rate is represented in space and time. The strain-rate is color-coded, yielding a148

two-dimensional image, such as the top row of Figure 1. The image processing algorithm149

works on inverted grayscale images, while the top row of Figure 1 is represented in in-150

tensities of red, green, and blue (RGB). We convert from RGB to inverted grayscale (G)151

with a formula from Poynton (1997),152

G = 1.0− 0.2125R+ 0.7154G+ 0.0721B

255
, (1)

which results in an image where brightness is a proxy for strain-rate intensity. The im-153

age can be viewed as a two-dimensional array of strain-rate intensities where time is on154

the x-axis, and DAS channels are on the y-axis. Using our prior knowledge of how a seis-155

mic event would distinguish itself from the noise, we constructed an algorithm that re-156

duces the noise step-by-step, ideally leaving only the signal of interest in the image. The157

steps are described in detail in the following subsections (along with their tuning param-158

eters), and a visual guide is provided in Figure 1 along with references to relevant sec-159

tion numbers.160

2.1 General Noise Reduction161

The noise level of a DAS measurement often varies between channels as they are162

separated in space, and coupling to the ground varies. To lower the noise level of the im-163

age, we remove the median and/or mean brightness per channel, bringing anything be-164
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Figure 1. The algorithm shown step-by-step for three different cases. Each step is mentioned
above the row of figures where the step has been applied, and the numbers at the right end of
the columns refer to the section numbers in the text where the step is explained. The grayscale
colormap is inverted for easier visibility. From the thresholding step, black denotes True, and
white denotes False. The steps are detailed in section 2. a): Small earthquake in top left corner
detected. Two True regions left after processing. b): No data of interest, nothing detected. No
True regions left after processing. c): Large earthquake on the right side detected. 60 True re-
gions left after processing. All figures have the same axes, 30 s time window on the horizontal
one and 12 km along cable on the vertical one.
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low the median/mean intensity of its respective channel to zero. The tuning possibili-165

ties here are whether to remove the median, the mean, or both, and which channels to166

include in the image. Parts of the fiber-optic cable may have such bad coupling to the167

ground that it affects the channels around it. This happens, for example, on a glacier168

when a part of the cable is hanging in the air between the two sides of a crevasse. In such169

a case, when that part of the cable vibrates due to wind, the vibrations can propagate170

along the cable, which would cause multiple false detections. One way to combat such171

an effect is to remove the relevant channels from the image. Preparing the data for the172

detection algorithm is application-specific and will be further discussed in section 4.173

2.2 Brightness Thresholding174

Many image processing algorithms work on binary images. Therefore, we apply a175

thresholding algorithm to convert the data into binary images. The thresholding decides176

at which intensity level the signal is classified as True, and below it, as False.177

The method we use for thresholding is Otsu’s method (Otsu, 1979). The method178

can be applied to find a single threshold to separate images into foreground/background.179

It can also be used to find several thresholds to further separate the image into differ-180

ent classes. The thresholding uses the histogram of pixel brightness and separates it into181

two classes by minimizing the intra-class variance, or equivalently maximizing the inter-182

class variance. This can also be seen as maximizing the distance between the average bright-183

nesses of the clusters. The tuning parameters here are the number of thresholds and at184

which values the True/False boundary lies.185

2.3 Coherency Thresholding186

The binary image will include multiple True regions, most of which not being co-187

herent in space. This results from the noise in the recordings not being coherent between188

channels. Any actual signal of interest will consist of multiple contiguous True pixels,189

as it is a physical signal recorded by multiple channels. As we consider earthquake sig-190

nals, the signals have to satisfy the wave equation. A signal which satisfies the wave equa-191

tion will propagate along the array, displaying a coherent signal from its onset at an an-192

gle between 0◦and 90◦. In contrast, instrumental noise appears as thin, horizontal stripes,193

as can be seen in Figure 1. That is why we can clean the image by setting every True194

pixel to False if it is not a part of a larger cluster of True pixels. The tuning parame-195

ter here is the minimum size that a cluster of True pixels needs to have to remain True.196

2.4 Remove Unwanted Shapes197

As previously mentioned, the signal of interest propagates along the array in space198

and time and is thus neither strictly horizontal nor vertical within an image. We can thus199

safely remove any True pixels which are a part of a narrow horizontal or vertical line of200

Trues. This is done by making a horizontal/vertical template move through the image.201

When the template is matched, purely horizontal/vertical patterns are deleted. When202

a signal arrives from directly below the array, it can affect the whole array simultane-203

ously, resulting in a vertical line in the image. The vertical line removal does not affect204

such signals, as it will remove only narrow vertical stripes, and a broader pattern in the205

image due to an earthquake will thus not be removed.206

This step is not limited to horizontal/vertical lines. The template can be any ex-207

pected, unwanted signal e.g., a car driving along a cable in urban seismology. In the pre-208

sented examples, we will limit ourselves to horizontal and vertical lines as the measure-209

ments were taken in remote environments. The tuning parameter here is the size and210

shape of the templates.211
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2.5 Final Cleaning of Image212

Removing the horizontal and vertical lines does not always work consistently, as213

the width of the lines varies, and it occurs that lines are only partially removed. How-214

ever, the small noisy lines get interrupted, which reduces their True cluster size. A rep-215

etition of the same method as described in section 2.3 will now remove the smaller True216

clusters that remain of the horizontal and vertical lines. After this step, virtually all noise217

has been removed from the image. Therefore, the proposed algorithm can be described218

as an image cleaning process, where the remaining signal is likely to be of interest.219

2.6 Count Regions220

As the remaining signal is likely to be some coherent physical signal (i.e., earth-221

quake, volcanic tremor, icequake, explosion), we can count the number and size of True222

regions to estimate a probability of an event of interest being the signal’s origin. This223

is a tuning parameter that can affect the true/false positives/negatives of the results. The224

optimal value of this parameter depends on the objective of the algorithm. In the ex-225

ample below, we assigned the earthquake label to any image which was not fully False,226

as our objectives were primarily to minimize the loss of any physical signals, and sec-227

ondly, to reduce the data volume.228

3 Test Case229

We tested the classifier on two existing datasets, described in details below. To en-230

able the establishment of a ground truth catalog, we limited ourselves to subsets of the231

two datasets that are small enough to permit manual analysis. The length of our time232

window in the examples is 30 s, as we expect it to be large enough to contain the sig-233

nal of an entire event and small enough to make it unlikely to have more than one event234

present. Our presented algorithm is not limited to 30 s windows and can scale to big-235

ger or smaller window sizes.236

The application that this classifier was initially designed for is to reduce the amount237

of data from a DAS survey without losing any signal of interest. The goal is thus twofold:238

to make sure no data of interest gets lost and reduce the amount of data that needs closer239

attention and further analysis as much as possible. Ideally, we would like to delete the240

data that the classifier marks as uninteresting for our purposes.241

For both tested datasets, the algorithm was tuned by taking 3-4 examples of dif-242

ferent types of signals and noise from different times in the dataset. The algorithm was243

tuned to classify these correctly and then run with these settings on the entire test pe-244

riods. The example signals can be events of various sizes plus one or more examples with-245

out a signal of interest. Increasing diversity in the signals used for tuning, results in in-246

creased generalization to unseen measurements.247

When evaluating the performance of a binary classifier with a high class-imbalance248

such as the one presented in this study, two metrics are generally used. Firstly, it is pre-249

cision,250

PR =
TP

TP + FP
, (2)

where TP and FP are the numbers of true and false positives, respectively. Secondly,251

it is recall,252

RC =
TP

TP + FN
, (3)

where FN stands for the number of signals falsely classified as negative. Precision mea-253

sures how many of the detections were correct, while recall measures the portion of the254

signals of interest which were detected. There is a trade-off between the two metrics, so255

classifiers are often tuned to optimize more for one while trying to achieve reasonable256

performance in the other (Davis & Goadrich, 2006).257
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Figure 2. The cable layout of the Grímsvötn dataset (left) and Mount Meager dataset (right).
The cables are represented with a red line.

With our primary objective of not losing any signal of interest, we optimized more258

for recall rather than precision.259

3.1 Grímsvötn260

Grímsvötn is Iceland’s most active volcano, with its most recent eruption occur-261

ring in 2011. It is situated underneath the Vatnajökull ice cap, and our DAS dataset was262

acquired by trenching a fiber-optic cable 50 cm into the snow cover. The total length of263

the cable was 12 km, and its layout can be seen in Figure 2. A Silixa iDAS(TM) inter-264

rogation unit was running for one month from May to June 2021, generating approxi-265

mately one terabyte of data. Due to the deep trenching, the dataset has a relatively high266

signal-to-noise ratio. Physical signals were easily visible within the data by looking at267

images such as the top right one in Figure 1, which inspired the construction of the pre-268

sented detection algorithm. The performance evaluation was done for a single day of data,269

as it is still at a size where the creation of ground truth is possible within a reasonable270

amount of time. The data were converted from light intensity to nanostrain-rate, and271

no further processing was applied. The results of the evaluation can be seen in Table 1,272

where it is evident that out of the 145 signals of interest manually detected during the273

day, 143 were detected with our proposed detection algorithm. The misclassified seis-274

mic events both contained weak signals barely visible by eye. By running our new de-275

tection algorithm on the dataset, 99 % of the signals, i.e., 143 out of 145 events, previ-276

ously defined as signals of interest, were recovered. Out of the total 2880 time windows,277

196 were classified to contain a signal of interest, meaning that only 7 % of the original278

data require longer-term storage.279

3.2 Mount Meager280

Mount Meager is an active volcano in the Garibaldi Volcanic Belt in British Columbia,281

Canada. The area is characterized by a range of natural hazards, as it was home to the282

largest recorded landslide in Canada in 2010 (Read, 1990; Roberti et al., 2018). In ad-283

dition, the environment may be further destabilized by the melting glaciers due to cli-284

mate change. However, the area also has the greatest geothermal potential of Canada285

(Jessop et al., 1991). The DAS experiment on Mount Meager was part of a larger project286

to map the feasibility of geothermal exploration on the Mount Meager complex.287

A 3 km long fiber-optic cable was installed along a ridge of Mount Meager and in-288

terrogated by an OptaSense ODH3 interrogation unit continuously for one month be-289

tween September and October 2019 (Klaasen et al., 2021). The cable layout can be seen290

in Figure 2.291
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We evaluated the classification performance of our algorithm over two days of data.292

The performance is displayed in Table 1. The data were converted from light intensity293

to nanostrain-rate and bandpass filtered between 5 and 45 Hz. The algorithm found 96294

% of the events previously identified during these two days, within only 4 % of the en-295

tire dataset, again easing the inspection of the signals of interest. The identified events296

which were not detected by our algorithm had signals which were too faint to pass the297

brightness thresholding step.298

Table 1. Classification table for the test cases. The algorithms achieves 99 % recall and 73
% precision for the Grímsvötn test case. It achieves 96 % recall and 60% precision for Mount
Meager

Classification

Grímsvötn Mount Meager

Positive Negative Positive Negative

Positive 143 2 104 4
Truth

Negative 53 2682 69 4672

4 Discussions and Conclusions299

We have presented an example of an algorithm that can automatically detect seis-300

mic events recorded with a DAS array. The algorithm is simplistic and easy to under-301

stand while still showing promising results on two different datasets. This hints at the302

potential of such an approach, and we aim to take the idea further in future work.303

An emerging problem with DAS is that the data volumes are simply too large to,304

on the one hand, analyze manually, and on the other hand, store. An application like305

this enables working with a small fraction of the dataset, making it easier to both pro-306

cess and store event-specific data in the long term.307

So far, we have used the method to create an event catalog for Grímsvötn by run-308

ning the autodetection on the entire dataset and then manually going through the event309

detections to find false positives. With more development, we are confident that the man-310

ual part of that workflow can be cut down further or even removed entirely.311

Preprocessing of the waveforms can greatly affect the performance of the algorithm,312

and we believe that it could improve the performance of the classifier. One such method313

is frequency-wavenumber filtering, which can be applied to DAS recordings due to its314

high spatial and temporal resolution. This could further remove unwanted noise in the315

images, easing the image processing afterward.316

After a number of seismic events have been identified, a diverse selection of events317

can be isolated as two-dimensional templates. These templates could be used in two-dimensional318

cross-correlation to look for similar earthquakes within the data, creating a DAS vari-319

ant of the template matching algorithm.320

Currently, the presented tool works as a reliable way of reducing the data volume321

to work with while not losing a significant part of the signals of interest. We believe that322

with further work in this direction, the algorithm’s precision can be significantly increased,323

making it a reliable way to automatically create earthquake catalogs from DAS arrays.324

In order to exploit the power of deep learning based methods to the fullest, the re-325

sults from DAS experiments need to be generalized in a way that a single neural network326

can read the results of various experiments. By doing that, enough data could be gath-327
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ered to train a fully convolutional neural network to detect earthquakes in images from328

various DAS surveys.329

5 Code and Data Availability Statement330

The dataset collected on Grímsvötn is currently not publicly available. However,331

the images used to test the algorithm are available (Thrastarson et al., 2021). The dataset332

collected on Mount Meager is archived at BC Geoscience, and is available upon request.333

The code to use the detection algorithm (Thrastarson, 2021) is publicly open and avail-334

able along with a showcase Binder notebook: www.github.com/solvithrastar/DAS_Auto.335
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