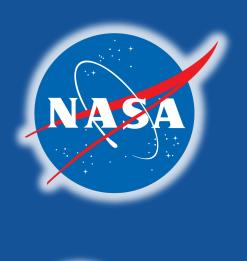
Building Capacity for Decision Makers in Ghana for Sustainable Land Use Planning using Earth Observations and Open-Source GIS Tools

Changjie Chen¹, Jasmeet Judge², Gregory Kiker¹, Julie Peeling¹, Olivier Walther¹, Aditya Singh¹, and Isabelle Walther-Duc¹


¹University of Florida

²Center for Remote Sensing, Agricultural and Biological Engineering, University of Florida

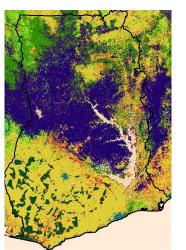
November 24, 2022

Abstract

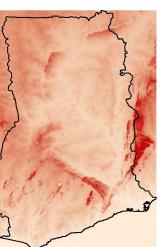
The total population of Ghana has tripled between 1960 and 2015. During the same period, the urban population, however, grew more than 11 times. Rapid urbanization and large increase in population dramatically changed the land cover of the West African country. For example, agricultural land expanded from occupying 13% in mid-1970s to more than a third of Ghana's total land area today. In the meantime, forests and savannas face a huge pressure of being converted to agricultural or urban land uses. The Ghana Land Use Project (GALUP) aims at enhancing the country's capacity in dealing with these challenges. The project engages both institutions and government agencies in Ghana to deliver a series of training workshops focused on remote sensing and geospatial technologies that can facilitate the formulation of sustainable land use plans. Inperson workshops were planned initially, but because of travel restrictions due to the COVID-19 pandemic, the first GALUP workshop—Land-Use Suitability Analysis with QGIS Tools—was conducted online. Such means of capacity building presented an exceptional opportunity to explore novel methods for transferring knowledge while also forging strong partnerships that are easier with in-person meetings. The 3-month long workshop was delivered in a hybrid mode featuring synchronous and asynchronous components. This hybrid mode was unusual for both trainers and the 41 trainees from four organizations including the Land Use and Spatial Planning Authority (LUSPA), the Center for Remote Sensing and Geographic Information Services (CERSGIS), the International Crop Research Institute for Semi-Arid Tropics (ICRISAT) and the Agro-Hydrological and Meteorological Centre (AGRHYMET) in Niger. The synchronous component involved weekly meetings and discussion session, and the asynchronous component consisted of a GitHub repository. The repository contained (a) fourteen open-source GIS tools developed for land-use suitability modeling, (b) a discussion channel for Q&A and idea-sharing, and (c) four modules of training materials, each equipped with customized videos and multiple exercises to boost the learning process. The repository has received over 13,000 views since the beginning of the workshop.

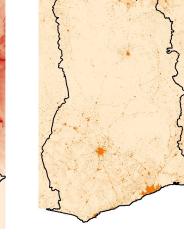
USAID USAID

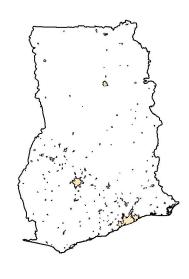
Introduction


CJEJRSGIS

The total population of Ghana has tripled between 1960 and 2015. During the same period, the urban population, however, grew more than 11 times. Rapid urbanization and large increase in population dramatically changed the land cover of the West African country. For example, agricultural land expanded from occupying 13% in mid-1970s to more than a third of Ghana's total land area today. In the meantime, forests and savannas face a huge pressure of being converted to agricultural or urban land uses. The Ghana Land Use Project (**GALUP**) aims at enhancing the country's capacity in dealing with these challenges. The project engages both institutions and government agencies in Ghana to deliver a series of training workshops focused on remote sensing and geospatial technologies that can facilitate the formulation of sustainable land use plans. This poster describes the capacity building effort made by the first GALUP workshop—*Land-Use* Suitability Analysis with QGIS Tools (see Fig 1). In-person workshops were planned initially, but because of travel restrictions due to the COVID-19 pandemic, the first GALUP was conducted online. Such means of capacity building presented an exceptional opportunity to explore novel methods for transferring knowledge while also forging strong partnerships that are easier with in-person meetings. The workshop was delivered in a hybrid mode featuring synchronous and asynchronous components. This **hybrid** mode was unusual for both trainers and the **41 trainees** who are professional planners, practitioners, and researchers from multiple local agencies and institutes.


• Synchronous component: regular meetings and "office-hour" sessions via Zoom.


 Asynchronous component: training content published on a GitHub repository. The repository contained (a) fourteen open-source GIS tools developed for land-use suitability modeling, (b) a discussion channel for Q&A and idea-sharing, and (c) four modules of training materials, each equipped with customized videos and multiple exercises to boost the learning process. The repository has received about **28,000 views** since the beginning of the workshop.



(a) Roads

(b) Land cover (c) Hydrology (d) Elevation (e) Population

(f) Cities

Fig 1. Example criteria used for land-use suitability modeling in the workshop.

Workshop Description

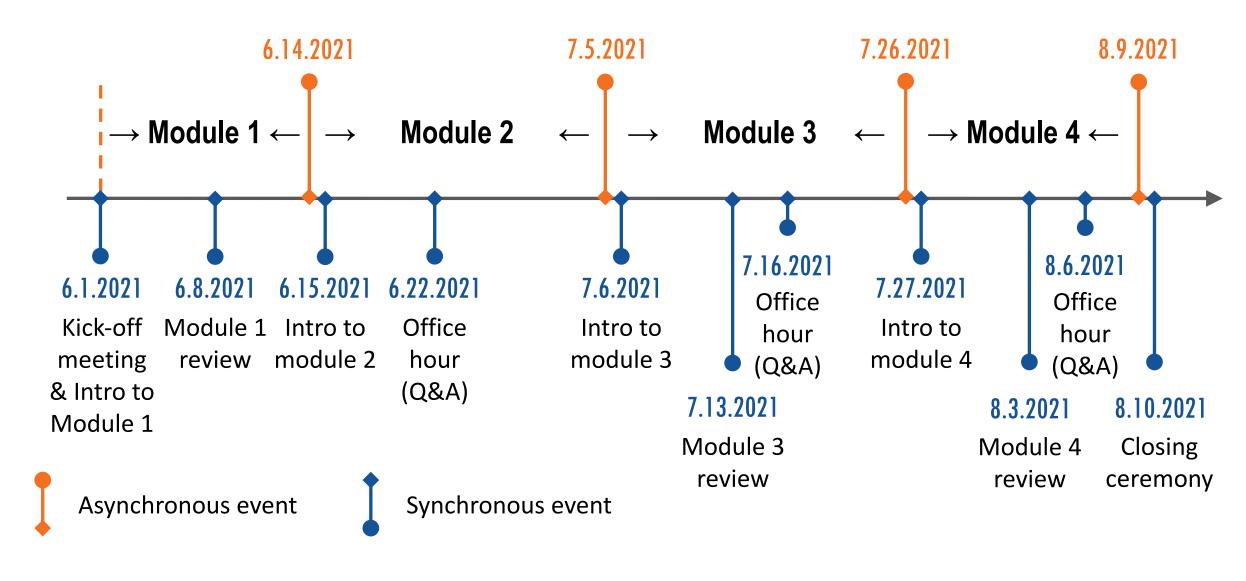
Goals & Objectives

The workshop aimed at core concepts and techniques used in land-use suitability analysis, that inform land-use decision making. Specific objectives include:

- Understand key concepts in land use analysis.
- Perform spatial analysis using QGIS.
- Create models for suitability analysis using **Graphical Modeler** in QGIS.

• Use Multi-criteria Decision making (**MCDM**) techniques to make land-use decisions. The geospatial analysis was conducted using QGIS plugin, **PyLUSATQ**, developed by the GALUP team. By the end of the workshop, the trainees could be expected to independently visualize GIS data, conduct geospatial analysis, interpret results of suitability analysis, and identify suitable areas for a particular land use.

BUILDING CAPACITY FOR DECISION MAKERS IN GHANA FOR SUSTAINABLE LAND USE PLANNING USING EARTH OBSERVATIONS AND OPEN-SOURCE GIS TOOLS UF FLORIDA


Changjie Chen^{1,2}, Jasmeet Judge^{2,3}, Greg Kiker³, Julie Peeling^{2,3}, Olivier Walther⁴, Aditya Singh³, Isabelle Walther²

titute for Built Environment Resilience, U. Florida, 2. Center for Remote Sensing, U. Florida, 3. Department of Agricultural and Biological Engineering, U. Florida, 4. Department of Geography, U. Florida

Workshop	Content
The workshop consisted four training modules	hat included video demos and tailored
exercises to facilitate learning.	
Module 1 - Software and data preparation Install QGIS and PyLUSAT, and loading Visualize GIS data and creating maps 	
 Module 2 - Introduction to PyLUSATQ Learn when and how to use different a Use the tools to answer planning-rela 	
 Module 3 - Create suitability models with C Understand the workflow of suitability Get to know the QGIS Graphical Mode Learn how to build suitability models 	y modeling,
Module 4 - Aggregate results to make land-	use decisions
 Understand the LUCIS workflow and h 	ierarchical structure,
 Integrate row crop model into the LUC 	CIS framework,
 Understand and run the Analytic Hiere 	archy Process (AHP) using PyLUSATQ.
Surve	eys
Three types of survey were conducted for the w	orkshop as follows:
1. Pre-training survey (anonymous) was	conducted a week before the workshop to
understand participants' interests, pro	fessional background and experience, and
workshop expectations.	
2. Post-module surveys (non-anonymou	s) were conducted after each module to
get feedbacks about new skills and know	owledge learned as well as difficulties face
3. Post-training survey (anonymous) was	s conducted to learn participants overall
evaluation of the workshop content ar	nd instructors.

Timeline

Comparing to in-person training, the agenda of an online capacity building workshop was much more accommodating and flexible. The training offered by the first GALUP workshop included over **12 hours** (in total) of synchronous instructions via Zoom teleconferences accompanied by **20 hours** of asynchronous materials and exercises on the GALUP GitHub repository.

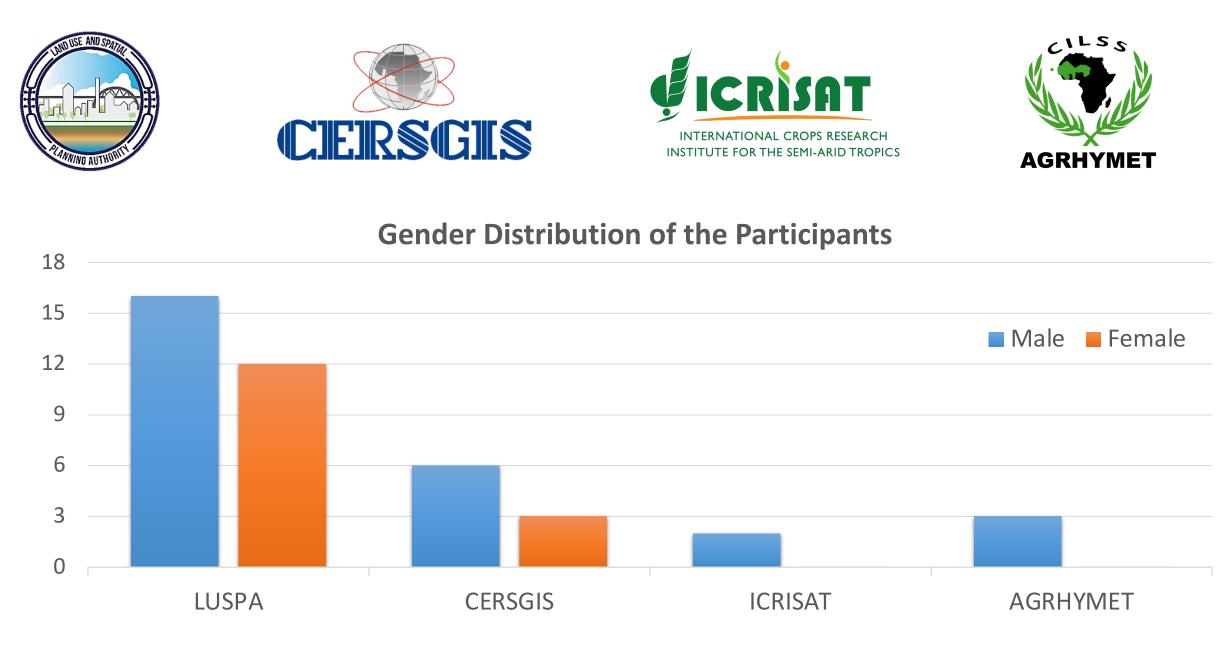
GitHub Platform

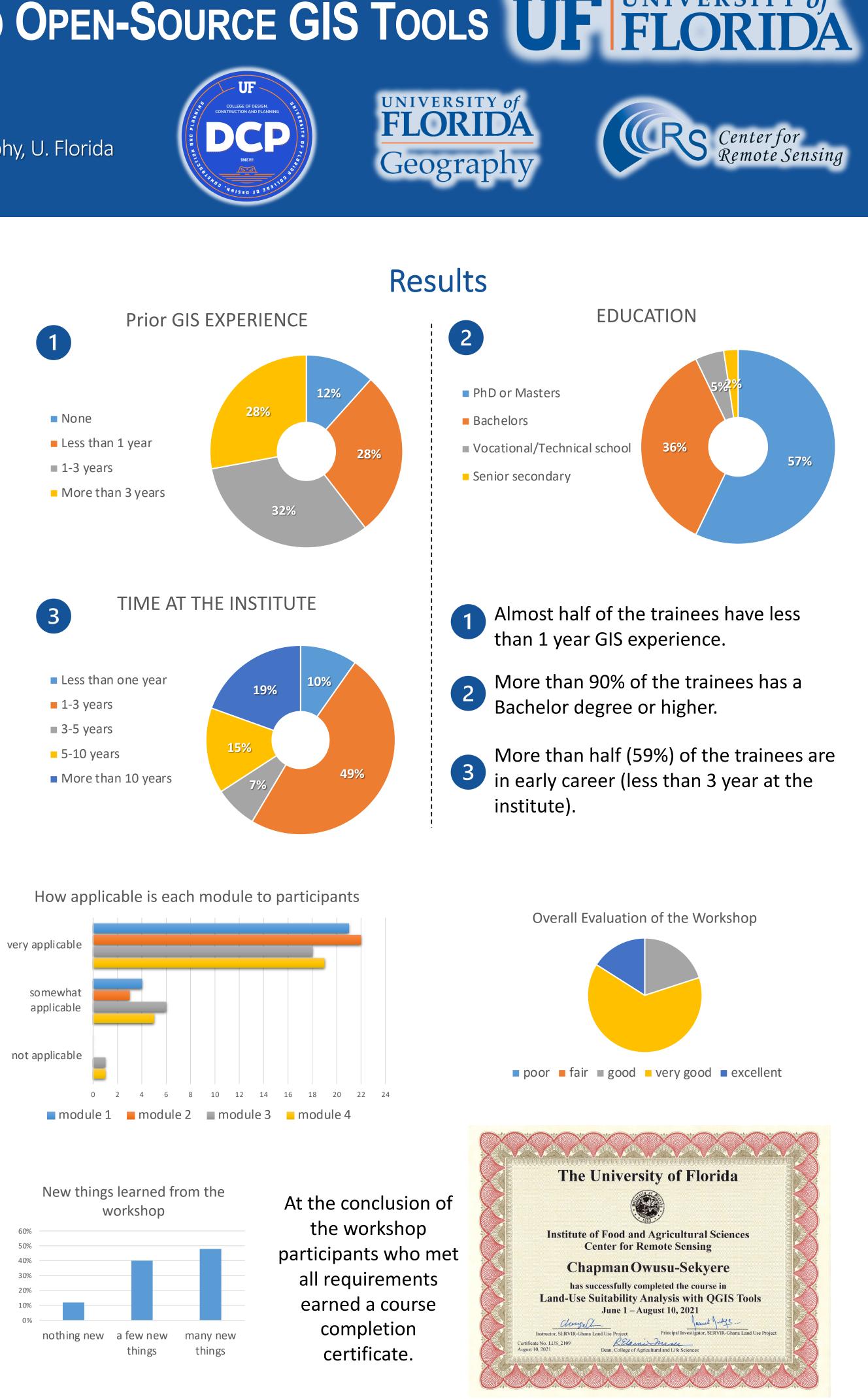
A GALUP GitHub repository (<u>https://github.com/SERVIR-WA/GALUP</u>) was the portal for all training workshops to (a) host training materials, (b) distribute PyLUSATQ, (c) receive exercise submissions and provide feedbacks about them, (d) engage with trainees through the **Discussion** channel.

₹ <u>₩</u> \$ \$ \$ \$ \$ \$		4 4			53																					
		43 4																								
Announcements 🌮 🤌 🤣																										
👋 Welcome to GALUP	Disc	ussiq	ons!																							
💽 chịch 🚓 🚓 🚓	\$	\$ \$	3 53	\$	\$	4	3	53	\$	\$	3	43	3	3	43	\$ B	3	B	3	43	4	4	4	4	43	43
Q Search all discussions									Ν	ew	Тор	o: All	•	Filt	er 🔻	Labe	el •							New	discu	issior
tegories		Ø						doir																		
∞ View all		D		↑ 1	-				esolv ed 2 da	ye syn Iys ago				d										7-		?
∞ View all ≽ Announcements				↑ 1 ↑ 1			³ ar-bar Modu	ra aske I le 4 (ed 2 da	ys ago	in Q&	A · An	swere		d											
							3ar-bar Modu edythno Modu	ra aske I le 4 (eska as I le 3	ed 2 da exerc sked 3 Exerc	ys ago c ise days a	in Q&	A • An Q&A •	swere	swered												

Open-source Geospatial Tools Processing Toolbox PyLUSATQ: A QGIS Plugin for land-use suitability analysis. Search.. 🔹 🕸 PyLUSAT Suitability Modeling • Consists of 14 tools for vector-based GIS analysis Aggregation Sompute AHP Weights 😻 Weighted Sum of Fields Multi-criteria decision making (MCDM) Density Density of Line Features Integrated into QGIS's processing framework Density of Point Features Distance Distance to Line Features Available at https://plugins.qgis.org/plugins/pylusatq 🕸 Distance to Point Features 😻 Distance to Raster Cell • For details visit: <u>https://github.com/chjch/pylusat-qgis</u> Interpolation Inverse Distance Weighting Overlay 😻 Spatial Join 😻 Zonal Statistics Input Polygon In Selection 🏶 Root Zone Depth - Soil depth Identify records by ranking 🗄 Root Zone Depth 🛛 💧 📚 Select by Location Transformation 🍀 Rec RZD Out 😻 Reclassify Field 遂 Rescale Field Linearly 🏶 Drainage Out 🕒 🕆 Drainage - Soil permeability Soil pH value 🍀 Rec Drainage Out 🕒 🗄 🛛 Soil (100-200 cm) PH... 人 Soil (0-5 cm) PH Value 🧹 Soil (60-100 cm) PH Va... 🏶 PH (60-100 cm) 🏶 PH (100-200 cm) 🏶 PH (0-5 cm) PH (30-60 cm) 🏶 PH (15-30 cm) 🏶 PH (5-15 cm) Out Out Out 🏶 Rec PH (60-100 cm) 🏶 Rec PH (15-30 cm) 🏶 Rec PH (100-200 cm) 🏶 Rec PH (5-15 cm) 🕸 Rec PH (30-60 cm) 🏶 Rec PH (0-5 cm)

🖗 Weights for RZD, Drain...🤇 🔶 Vector Layer Raster Layer 🏶 Weighted Sum of Fiel ... 📘 Out • 🔷 String rcrp_SoilCondition Zonal Statistics Reclassify Field Weighted Sum of Fields


Participation


Aggregation

There were **41 trainees** representing **4 organizations**:

★ Output

- 1. Land Use and Spatial Planning Authority (LUSPA),
- 2. Center for Remote Sensing and Geographic Information Services (CERSGIS),
- 3. International Crop Research Institute for Semi-Arid Tropics (ICRISAT),
- 4. Agro-Hydrological and Meteorological Centre (AGRHYMET).

Key Takeaways

- Combination of synchronous and asynchronous components delivers effectiveness for online capacity building.
- A GitHub organizational account has been established for **SERVIR-WA** to be used for workshops by the entire West Africa Hub.
- Not just for developers, the GitHub platform is an **efficient** and **versatile** platform for online capacity building.
- Surveys indicated (1) the **video demos** with step-by-step instructions, (2) the **readiness** of the GALUP team to assist them, and (3) the **flexibility** built in the workshop schedule were the most helpful features for the participants.
- Institutional support from our primary stakeholder, LUSPA, was critical for the workshop's success.

Acknowledgement

The GALUP project and the capacity building efforts along with it is made possible by a SERVIR Award, grant # 80NSSC20K0153. We thank the support from all our partners including NASA, USAID, SERVIR, LUSPA, and CERSGIS.

