Investigating Potential Melt Sources for the Magma-Poor
Albertine-Rhino Graben of the East African Rift System Using 3D
Geodynamic Modeling with ASPECT

Asenath Kwagalakwe!

VWirginia Tech

November 21, 2022

Abstract

The leading paradigm for rift initiation suggests “magma-assisted (wet)” rifting is required to weaken strong lithosphere such
that only small tectonic stresses are needed for rupture to occur. However, there is no surface expression of magma along the
300 km long Albertine-Rhino Graben (except at its southernmost tip within the Tore Ankole Volcanic Field), which is the
northernmost rift in the Western Branch of the East African Rift System. The two prevailing models explaining magma-poor
rifting are: 1) Melt is present at depth weakening the lithosphere, but it has not reached the surface or 2) far-field forces driving
extension are accommodated along weak pre-existing structures without melt at depth. The goal of this study is to test the
hypothesis that melt is generated below the Albertine-Rhino Graben from Lithospheric Modulated Convection (LMC) using the
3D finite element code ASPECT. We develop a regional model of a rigid lithosphere and an underlying convecting sublithospheric
mantle that has dimensions 1000 by 1000 by 660 km along latitude, longitude, and depth, respectively. We solve the Stokes
equations using the extended Boussinesq approximation for an incompressible fluid which considers the effects of adiabatic
heating and frictional heating. We include latent heating such that we can test for melt generation in the sublithospheric
mantle from LMC. Using LITHO1.0 as the base of our lithosphere, our preliminary results suggest melt could be generated
beneath the Albertine-Rhino graben given a mantle potential temperature of 1800 K. These early results indicate LMC can
generate melt beneath the northernmost Western branch of the East African Rift System.
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The amount of force required to break strong lithosphere is not always available in nature
(“Tectonic Force Paradox”)

There are weakening mechanisms that facilitate rifting of strong lithosphere:

a) Melt (Buck, 2004; Wright et al., 2006; Muirhead et al., 2016; Jones et al., 2019)
b) Pre-existing structures (Dunbar & Sawyer, 1988; Peace et al., 2018).

c) Fluids (Leseane et al., 2015, Muirhead et al., 2016, Weinstein et al., 2017)
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In this study, we are investigating melt as a weakening mechanism. However, there is no
surface expression of magma along the 300 km Albertine-Rhino Graben (magma-poor rift)
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b) Pre-existing structures (Dunbar & Sawyer, 1988; Peace et al., 2018).

c) Fluids (Leseane et al., 2015, Muirhead et al., 2016, Weinstein et al., 2017)
In this study, we are investigating melt as a weakening mechanism. However, there is no
surface expression of magma along the 300 km Albertine-Rhino Graben (magma-poor rift)
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Hypotheses we are testing for magma-poor rift segments

A: Melt is present at depth but has not reached the surface yet, and has weakened the
lithosphere, allowing for strain localization during the onset of rifting.

B: Pre-existing structures or fluids weaken the lithosphere, allowing for strain localization

during the onset of rifting.
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The objective of this study is to test the hypothesis that melt is present beneath the
Albertine-Rhino graben, and is generated from Lithospheric Modulated Convection (LMC)
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The objective of this study is to test the hypothesis that melt is present beneath the
Albertine-Rhino graben, and is generated from Lithospheric Modulated Convection (LMC)

LMC is mantle convection driven by variations in lithospheric thickness that constrain the initial temperature.
The base of the lithosphere (LAB) is a constant temperature below which the temperature increases
adiabatically. When the lithosphere is thinner, we expect to have a hotter asthenosphere.
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We use the CIG ASPECT (Advanced Solver for Problems in Earth's ConvecTion) code
to solve the Stokes equation, the conservation of mass, and the energy equation to
generate melt.

(Kronbichler et al., 2012; Bangerth et al., 2019; Dannberg and Heister, 2016)
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We use the CIG ASPECT (Advanced Solver for Problems in Earth's ConvecTion) code
to solve the Stokes equation, the conservation of mass, and the energy equation to
generate melt.

(Kronbichler et al., 2012; Bangerth et al., 2019; Dannberg and Heister, 2016)

a) Conservation of Momentum (Newton’s Second Law; surface forces (Viscous & pressure forces) =
body forces (buoyancy forces)

-Vp + V7 = 0g (Stokes Equation)

(pressure forces) (Viscous forces) ( buoyancy forces)

where 7, p, 9, and g is the shear viscosity, pressure, density, and gravitational acceleration
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to solve the Stokes equation, the conservation of mass, and the energy equation to
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a) Conservation of Momentum (Newton’s Second Law; surface forces (Viscous & pressure forces) =
body forces (buoyancy forces)

-Vp + V7 = 0g (Stokes Equation)

(pressure forces) (Viscous forces) ( buoyancy forces)

b) Conservation of Mass (we assume incompressible flow where small variations of density are

neglected except for the buoyancy term) Vu = 0

where 7, p, @, g, and u is the shear viscosity, pressure, density, gravitational acceleration, and velocity
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We use the CIG ASPECT (Advanced Solver for Problems in Earth's ConvecTion) code
to solve the Stokes equation, the conservation of mass, and the energy equation to
generate melt.
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a) Conservation of Momentum (Newton’s Second Law; surface forces (Viscous & pressure forces) =
body forces (buoyancy forces)

-Vp + V7 = 0g (Stokes Equation)

(pressure forces) (Viscous forces) ( buoyancy forces)

b) Conservation of Mass (we assume incompressible flow where small variations of density are

neglected except for the buoyancy term) Vu = 0

c) Conservation of Energy (include latent heat)
eC [0T/Rt+u.VT] - kV?T = we + aT(uVp) +oTAS(@X/dr+u.VX)

(Advection) (conduction)  (Frictional heating) (Adiabatic heating) (Latent heat)

where Cp,T, k, a, AS, and X is specific heat capacity, temperature, thermal conductivity. thermal expansivity, change in
entropy, and melt fraction
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We use the CIG ASPECT (Advanced Solver for Problems in Earth's ConvecTion) code
to solve the Stokes equation, the conservation of mass, and the energy equation to
generate melt.

(Kronbichler et al., 2012; Bangerth et al., 2019; Dannberg and Heister, 2016)

a) Conservation of Momentum (Newton’s Second Law; surface forces (Viscous & pressure forces) =
body forces (buoyancy forces)

-Vp + V7 = 0g (Stokes Equation)

(pressure forces) (Viscous forces) ( buoyancy forces)

b) Conservation of Mass (we assume incompressible flow where small variations of density are

neglected except for the buoyancy term) Vu = 0

c) Conservation of Energy (include latent heat)
ng [Tt +u.VT] - xVT = «xe + aT(uVp) +oTAS(IX/0t+ u.VX)
(Advection) (conduction)  (Frictional heating) (Adiabatic heat) (Latent heat)

where Cp,T, k, a, AS, and X is specific heat capacity, temperature, thermal conductivity. thermal expansivity, change in
entropy, and melt fraction

Approximation of the governing equations:The extended Boussinesq approximation (Christensen and Yuen, 1985;
Oxburgh and Turcotte, 1978). We also use the Eulerian method.
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We use two seismicall
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Model Set-up _—

Initial temperature conditions:

Surface: 273 K

Lithosphere-Asthenosphere
Boundary (LAB): 1643, 1653, 1693, .

1700, 1763K (Tp based on Rooney et al.,
2012)

Below the LAB: T varies with thickness

Temperature (K)

IIIII_ "

724

1333 km

1556 km

1175

LABTp =1763K

1625

2076
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Model Set-up _— N

Initial density conditions:

Crust - constant of 2700 kg/m?

Mantle lithosphere - constant of
3300 kg/m? c60 kit

Below the LAB - Density is depends
on temperature and pressure

Density (kg/m3)
2700

Psolid, melt = P(T,P) = Po [1 - a(T -T )]e[ﬂ(P_pO)] 1333 km

a- thermal expansion and g8 is the compressibility coefficient

2895
| 3089
3284
3478
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Model Set-up

Initial viscosity conditions:
Lithosphere: 10 Pa.s (Lithosphere is
made rigid by imposing a higher viscosity)

660 km

Below the LAB: Apply a composite
rheology, which is the harmonic average of
dislocation creep and diffusion creep for the
viscous deformation.

1333 km

1556 km Viscosity (Pa.s)

- 2.058e+17

7.2e+18

| ;
Naify, dist = EA "d"e " exp

1 m 1-n
iy P E; + pV; o
———— | wheren, A, & d, m,n, p, Ea, Va, R, and T is viscosity,

nRT material constant, differential stress, grain size, grain
size exponent, stress exponent, pressure, activation ! 2519e+20
Naigr X Maist energy, activation vqlume, gas constant, and ‘
Deomp = temperature respectively. - AT
Naige + Maist I
3.082e+23
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Experimentation

Information obtained from the plots

e Find at what time step the model
reaches “steady-state”.

e \We make the assumption that the
peak of melt generation after the
initial decay happens when the
model reaches “steady-state”.

The peak of melt generation after the
initial decay for Tp 1763 K based on
Fishwick model is at time-step 500
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Experimentation

The peak of melt generation after

the initial decay for Tp 1643 K
based on LITHO1.0 model is at

time-step 160
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Experimentation

The highest melt fraction after the
initial decay for Tp 1643 K based
on Fishwick model is at time-step
155

Introduction Objective

Melt fraction Vs Model time/timestep plots
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Workflow

Start the Project

Used for Lithospheric thickness of the
study area. LITHO1.0 uses the
Fortran language. We downloaded
the LITHO1.0 Model data from

https://igppweb.ucsd.edu/~gabi/lith LITHO1.0 FISHWICK
01.0.html model model
Use GMT together with
AWK to make Lithospheric
thickness files that can be Generic Mapping Tool
read by ASPECT code (GMT)

(plot_litho4daspect_file.sh)

AWK language
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Workflow

This is a code that is ran
to solve the equations
that describe
Lithospheric Modulated
Convection (LMC) in the
upper mantle

Visualize the model
with Vislt, and make
melt fraction vs
timestep/model time
plots with GMT

Extract .csv files that are
used as input files in
MATLAB

Convert ASPECT output (.csv
file) to GMT and determine
if there is melt

Introduction Objective

Advanced Solver for Adjust the Mantle potential
Problems in Earth’s temperature in the
Convection model parameter file found in the
(ASPECT) ASPECT code

Generic Mapping Tool
(GMT)
(plot_melt_vs_timestep.sh)

ParaView software

MATLAB (aspect2gmt_2.m)

Y
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Workflow

Make melt fraction
maps

End the Project

Introduction Objective

Generic Mapping Tool (GMT)
(melt_frac_plot_albertine.sh)
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Melt Generation from LMC based on the LITHO1.0 model

LAB depth beneath Albertine-Rhino Graben based on LITHO1.0 = 60 to 220 km

Tp =1643 K at 65 km depth

Tp =1643 K at 145 km depth
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24°E

Melt Generation from LMC based on the LITHO1.0 model

LAB depth beneath Albertine-Rhino Graben based on LITHO1.0 = 60 to 220 km

Tp =1653 K at 65 km depth
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Melt Generation from LMC based on the LITHO1.0 model

LAB depth beneath Albertine-Rhino Graben based on LITHO1.0 = 60 to 220 km

Tp =1673 K at 65 km depth

Tp =1673 K at 145 km depth
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Melt Generation from LMC based on the LITHO1.0 model

LAB depth beneath Albertine-Rhino Graben based on LITHO1.0 = 60 to 220 km

Tp =1693 K at 65 km depth
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Melt Generation from LMC based on the LITHO1.0 model

LAB depth beneath Albertine-Rhino Graben based on LITHO1.0 = 60 to 220 km

Tp =1700 K at 65 km depth
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Melt Generation from LMC based on the LITHO1.0 model

LAB depth beneath Albertine-Rhino Graben based on LITHO1.0 = 60 to 220 km

Tp =1763 K at 65 km depth Tp =1763 K at 145 km depth Tp =1763 K at 225 km depth
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24°E

Melt Generation from LMC based on the Fishwick (2010,updated) model

LAB depth beneath Albertine-Rhino Graben based on Fishwick = 105 to 165 km

Tp =1643 K at 110 km depth
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24°E

Melt Generation from LMC based on the Fishwick (2010,updated) model

LAB depth beneath Albertine-Rhino Graben based on Fishwick = 105 to 165 km

Tp =1653 K at 110 km depth
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Melt Generation from LMC based on the Fishwick (2010,updated) model

LAB depth beneath Albertine-Rhino Graben based on Fishwick = 105 to 165 km

Tp =1673 K at 110 km depth

Tp =1673 K at 140 km depth
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Melt Generation from LMC based on the Fishwick (2010,updated) model

LAB depth beneath Albertine-Rhino Graben based on Fishwick = 105 to 165 km

Tp =1693 K at 110 km depth

Tp =1693 K at 140 km depth
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Melt Generation from LMC based on the Fishwick (2010,updated) model

LAB depth beneath Albertine-Rhino Graben based on Fishwick = 105 to 165 km

Tp =1700 K at 110 km depth

Tp =1700 K at 140 km depth
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Melt Generation from LMC based on the Fishwick (2010,updated) model

LAB depth beneath Albertine-Rhino Graben based on Fishwick = 105 to 165 km

Tp =1763 K at 110 km depth
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These results indicate Lithospheric Modulated Convection does not generate much
melt beneath the Albertine-Rhino Graben, even with high T,

This implies that melt is likely not the weakening mechanism facilitating rifting of the
Albertine-Rhino graben.

The next step is to investigate the physics of pre-existing structures or fluids as
weakening mechanisms that enable rifting beneath the Albertine-Rhino Graben.
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