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Key Points: 19 

• Nepal underwent a record breaking fire season in 2021 with active fire counts ten times 20 
greater than the historical average.  21 

• This fire season was exacerbated by climate change and future projections suggest 22 
increased drought conditions and more active fire seasons.  23 

• In response to this risk, a simple empirical prediction model is made to forecast active 24 
fire counts one to two months in advance. 25 

 26 
  27 
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Abstract 28 

In 2021, Nepal underwent its most severe fire season, resulting in a fire rate 10 times greater than 29 
the historical average in many areas of the country with record-high air pollution levels. Leading 30 
the fire outbreaks in March of 2021, the country experienced an extreme precipitation deficit and 31 
drought in the post-monsoon season. Current community forest management practices and 32 
resultant forest growth may have exacerbated the conflagration, but an analysis using 33 
observational, reanalysis, and climate model ensemble data indicates that climate variability and  34 
climate change induced severe drought conditions that resulted in the anomalous fire season. 35 
While warning of the likely re-occurrence of extremely active fire seasons in Nepal through the 36 
end of the 21st century, this research also proposes a statistical model for sub-seasonal prediction 37 
that could help mitigate the projected effects of the drought-fire paradigm. 38 

1 Introduction 39 

 In the winter of 2020 through the spring of 2021, Nepal experienced a historic fire 40 
season. While seasonal fires after the summer monsoon are commonly used to manage farmlands 41 
and pastures (Matin et al., 2017), extremely dry conditions resulted in uncontrollable blazes 42 
throughout April. Impacts were felt throughout the nation. Almost 20 lives were claimed by fire, 43 
school closures were widespread due to hazardous air quality conditions, and black carbon 44 
fallout was observed across the Himalayas which has been linked to more rapid melt of glaciers 45 
and mountain snow (Qian et al., 2011). This extreme fire season was concomittent with the 46 
lowest average precipitation for October through March since 1980 (Figure S1). Similar cases of 47 
drought have been identified as one of the primary forcings for several severe fire seasons in 48 
Nepal, most notably in 2008 and 2016 (Matin et al., 2017). Although there is a general 49 
understanding that high-fire years in Nepal follow severe winter droughts, the historical 50 
relationship between meteorological drought and fire potential is largely unknown.  51 

Research also suggests that this drought is part of trend towards drier winter conditions 52 
partly fueled by anthropogenic climate change (S.-Y. Wang et al., 2013). Decreased precipitation 53 
from satellite and rain gauge observations and decreased soil water have been noted in tandem 54 
with increased temperature – a recipe for enhanced drought stress (Hamal et al., 2020; Shrestha 55 
et al., 2012; Wang et al., 2013). Warming in the Himalayan region has outpaced the global 56 
average (A. B. Shrestha et al., 1999) and the potential for climate change to have greater 57 
ecosystem impacts on high elevation regions further implicates that Nepal is highly vulnerable to 58 
drought (Alamgir et al., 2014; Bhatta & Aggarwal, 2016; Macchi et al., 2015; Pandey & 59 
Bardsley, 2015). Additionally, fires in Nepal are managed by communities rather than a 60 
centralized agency. Community forest management is very successful for forest sustainability, 61 
however, an increase in forest fires and changing land use practices may jeopardize the 62 
effectiveness of community management (Sapkota et al., 2015). The potential for climate change 63 
to disproportionately impact Nepal makes it imperative to understand the impact of climate 64 
change on drought and fire in the region.  65 

Sub-seasonal drought and fire prediction has emerged as an important tool for 66 
environmental planning and fire management (Chen et al., 2020; Marshall et al., 2021; Turco et 67 
al., 2018) and Nepal’s community fire management may similarly benefit from prediction tools 68 
that are generally accessible. Humans are a major source of fire frequecy and fire ignitions in 69 
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Nepal, with approximately 58% of the fires in Nepal started intentionally by people (Kunwar & 70 
Khaling, 2006). This suggests that changes to community management in response to sub-71 
seasonal drought forecasts might mitigate fire potential. 72 

As drought has been anecdotally associated with recent fire extremes, we will analyze the 73 
historical relationship between drought and fire frequency for Nepal. Given the vulnerability of 74 
Nepal to climate change and the recent extreme fire season, we will then provide climate change 75 
projections of the relationship between drought and fire frequency using the Coupled Model 76 
Intercomparison Project Version 6 (CMIP6). As a potential tool for adaptation to the expected 77 
impacts of climate change on regional fire, we produce a simple empirical prediction model to 78 
provide fire outlooks one-to-two months in advance.  79 

2 Data and Methods 80 

2.1 Observational Data 81 

 Observed data in this study is obtained from meterological stations in Nepal (Department 82 
of Hydrology and Meteorology, Government of Nepal) that recorded temperature precipitation 83 
data for at least 80% of the days in the record from 1980–2021. This criteria resulted in the use 84 
of 117 stations, of which the daily data was converted into monthly averages. We use this data to 85 
compute the Standardized Precipitation and Evapotranspiration Index (SPEI) (Vicente-Serrano et 86 
al., 2010), using precipitation and potential evapotranspirtation (PET) from the Thornthwaite 87 
method (Thornthwaite, 1948). SPEI was used at monthly (SPEI-1), seasonal (SPEI-3) and annual 88 
(SPEI-12) timescales.  89 

For active fire points, we used the Moderate Resolution Imaging Spectroradiometer 90 
(MODIS) (aqua and terra combined) active fire detection products (Giglio & Justice 2015). The 91 
combined MODIS data are available from 2002 that are used in this study. MODIS detects active 92 
fire points not individual fire events, and one large fire can consist of many active fire points. 93 
Therefore, it is analogous to burned area and the correlation coefficient between burned area and 94 
active fire points from November through March is 0.96 from 2001 through 2021. The rest of 95 
this study will use these active fire points as an analog of burned area and fire potential. Further 96 
description of observational data can be found in the supporting information, Text S1.  97 

2.1 Model Data 98 

We also use the CMIP6 ensemble with the historical, natural and SSP585 high-emissions 99 
scenario. To attribute changes in the historical fire record for Nepal, we compare the SPEI-1 and 100 
SPEI-12 in the historical (incuding anthropogenic greenhouse gas emissions) and natural runs 101 
from 1981–2014. SPEI-1 and SPEI-12 are computed from these scenarios using the 102 
Thronthwaite method. For the future projection of active fire counts in Nepal under the SSP585 103 
scenario, we use the historical relationship of SPEI-3 and fire count to project the relationship of 104 
anthropogenically driven drought on active fire counts to the end of century. All CMIP6 data 105 
considered in this study represent the multi-model ensemble mean. Monthly mean temperature 106 
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and precipitation were bias corrected relevant to the observed data. More information about 107 
biased-correction scheme can be found on Hawkins et al. (2013) and Mishra et. al., (2020). 108 

2.3 Empirical fire outlook 109 

We use a nonlinear regression model to evaluate the empirical predictability of active fire count 110 
from SPEI-3: 111 

𝑎𝑐𝑡𝑖𝑣𝑒	𝑏𝑢𝑟𝑛	𝑐𝑜𝑢𝑛𝑡𝑠(𝑡) = 𝑎 ∗ 	𝑒!"∗$%&'((*) + 𝜀	, 112 

where 𝛼 and b are regression coefficients, 𝑒 is Euler’s number (approximately 2.718), 𝑡 is the year, 113 
and e is an error term. The SPEI-3 index from January and February are used as predictor variables 114 
for March fire count. The b parameter is optimized at an a of 250 using non-linear least squares 115 
to fit the model to the training data. The model is cross-validated, using a leave-one-out and a 116 
leave-three-out cross validation. In the leave-one-out validation, the model is trained with all the 117 
observed data except for the value which is to be predicted. The leave-three-out cross validation 118 
entails training the model without one-sixth of the observed data to provide a more robust 119 
validation (L. Wang et al., 2017). The correlation and the R2 value between the observed fire count 120 
and the predicted fire count used to measure the skill of the prediction. 121 

4 Results 122 

4.1 Observed relationships between drought and fire  123 

Starting in November 2020, the SPEI more than doubled across Nepal compared to an average 124 
of the 18 previous seasons (Figure 1a, top). Drought conditions were persistent from November 125 
through March (Figure 1a), and the associated number of fires was well above normal  (Figure 1a, 126 
bottom). The cumulative active fire points by March and April surpassed each dry season in the 127 
historical record (Figure S2). During Nepal’s fire seasons between 2003 and 2020, the months of 128 
November through April averaged 2,327 active fire points; this six-month aggregate was exceeded 129 
in just one month–March of 2021. The surges were greatest in Nepal’s western lowlands, the 130 
region immediately southeast of the Annapurna Conservation Area, and the countryside 131 
surrounding the Kathmandu Valley; all of which saw a 10-fold increase in the active fire points in 132 
2020-21 compared to the long-term mean (Figure 1b,c).  133 

This record-setting fire season did not occur in a static fire fuels environment. An analysis of 134 
leaf area index (LAI), obtained from a global reanalysis of vegetation phenology during 1981–135 
2012 indicates that the January-April average of LAI increased by about 10% from that period 136 
(Figure 1c). Satellite-derived LAI change from 2003 to 2020 suggests a continual increase (result 137 
not shown). The LAI analysis aligns with recent research showing forest cover expansion across 138 
Nepal (Fox et al., 2019; Van Den Hoek et al., 2021).   139 



manuscript submitted to Geophyiscal Research Letters 

 

 140 

Figure 1: MODIS (Aqua and Terra satellite) measured fire detection points and observed 141 
precipitation and SPEI for November through April (long-term average and 2020–2021) in Nepal. 142 
a) Total monthly fires during 2020–2021, long-term average from 2003-2020, and the SPEI 3-143 
month drought index. b) Topography of Nepal. c) ratio of the number of fires in 2020–2021 to the 144 
long-term average (2003–2020) for November through March. d) change in LAI (%) from 1981-145 
1990 compared to 2001–2010. Inserted Map in upper right shows South Asia and Nepal with 146 
average JFMA LAI outlining the forests. 147 

 148 

Our examination of the relationship between monthly precipitation deficits and drought 149 
(Figure 2a) shows a robust correlation between SPEI and the number of active fire points, ranging 150 
from a strong signal (p<0.1) when November and December precipitation are considered together, 151 
to a very strong signal (p<0.01) when January and February are included as well. Including the 152 
months of March and April nominally strengthens the relationship (Figure 2a). The relationship 153 
between the active fire points and SPEI-3 (Figure 2b) is best quantified by a nonlinear model based 154 

c)

d)

a)
b)
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on the correlation coefficient (Figrue 2a). The fire prediction model for each month from January 155 
to May with the lead time 0- and 1-month shows good correlation with observational fire (Table 156 
S1) however the bias is large, mainly during the high fire months (March and April). The aim of 157 
the prediction model is to predict the qualitative fire prediction, not the quantitative. The record 158 
number of active fire points in 2021 were associated with the most severe SPEI-3 values observed 159 
in the last 18 years. Drought quantified by the SPEI-3 explains a crucial 75% of the variability in 160 
active fire points.  161 

 162 

 163 

Figure 2: The relationship between 2002–2020 monthly precipitation deficits and subsequent fire 164 
season behavior in Nepal. a) shows the correlation coefficient between the total number of fires, 165 
starting in November, and average precipitation from the preceding month, average SPEI-1 from 166 
Oct to a given month, a given month’s SPEI-3 and SPEI-6, and preceding month lag for SPEI-3 167 
from left to right, respectively.  The 99% (p<0.01), 95% (p<0.05), and 90% (p<0.1) significant 168 
levels are shaded with purple, green and yellow, respectively. b) shows the scatter plot relationship 169 
between November-March total fire frequency and the SPEI-3 in March and the non-linear 170 
regression fit (red line).  2021 is highlighted via an arrow. 171 

4.2 Attribution of drought and future projections fire 172 

Observed dry-season drought frequency and intensity in Nepal has increased over the past four 173 
decades and the strong relationship between drought and fire for the region indicates that this 174 
increase in drought is partially responsible for enhanced fire potential. It is noteworthy that SPEI-175 
1 and SPEI-12, which both exhibit fluctuating but predominantly positive values between 1981 176 
and 2005, has been mostly negative since then (Figure S3), underscoring the drought trend. 177 
However, low-frequency climate variability can also result in drought conditions over Nepal 178 
(Wang & Gillies, 2013), so we evaluate the role of anthropogenic climate change to determine if 179 
these trends are associated with changes to the climate mean state.  180 

This analysis was conducted using the CMIP6 ensemble of single-forcing experiments, based 181 
on the multi-model and multi-realization average 1981–2014 trends of seasonal SPEI-1 and annual 182 
SPEI-12. The historical simulations of SPEI-1 and SPEI-12, which included all anthropogenic 183 
forcings, are both substantially negative. Histograms comparing trends from the 68 “historical” 184 
simulations to the 50 “natural”, as shown in Figure 3, were found to be distinguishable at a high 185 
level of statistical significance via a Student’s t-test (p<.01). Comparison of the observations to 186 
the model over the same 1981–2014 periods reveals that the trend over the entire 1981–2020 187 
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observations could not be attained in any of the simulations without human changes to the 188 
composition of the atmosphere. We therefore conclude that anthropogenic climate change has 189 
contributed to the noticeable drying trend in Nepal during the winter-dry season; this is comparable 190 
to previous work based on earlier-generation simulations of CMIP5 (Wang et al., 2013). 191 

 192 

 193 

Figure 3: Histograms of CMIP6 simulated 1981–2014 trends in October-March SPEI-1 (a) and 194 
annual SPEI-12 (b). Red bars are the historical all-forcing runs and gray bars are the natural runs. 195 
The observed trends over this simulation period are shown as a black vertical line and the observed 196 
trends are shown as the blue vertical line. 197 

Given the significant correlations between SPEI-3 and seasonal fires (Figure 2) and the role of 198 
anthropogenic warming on drought (Figure 3), we provide a projection of active fire counts in 199 
Nepal based on the calculation of SPEI-3 from the CMIP6 high-emission ensemble simulations. 200 
To calculate SPEI-3, model monthly precipitation and temperature were bias-corrected within the 201 
historical period. The CMIP6 SPEI-3 was then used to estimate the November-March active fire 202 
counts using the regression model from Figure 2b. The CMIP6 ensemble mean of March SPEI-3 203 
and its spread, under the SSP585 warming scenario, indicates a distinct decreasing trend has begun 204 
and is projected to continue through the end of 21st century (Figure 4a), giving rise to more periods 205 
of worsening drought. Based on statistical modeling, the derived active fire counts are projected 206 
to increase in association with drought driven by climate change (Figure 4b). Notably, the spread 207 
in active fire count anomalies across individual CMIP6 model projections becomes amplified in 208 
the latter part of the 21st century (Figure 4b). Regardless of the spread, active fire counts are 209 
projected to increase above the average historic levels. 210 
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 211 

Figure 4: a) CMIP6 future projection of active fire counts from November to March over Nepal 212 
with observed active fire counts (orange bars). b) Inter Quartile Range (IQR) box plots of historical 213 
and projected active fire counts with the purple arrow indicating the observed median for active 214 
fire counts.  215 

a)

b)
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4.3 Sub-seasonal empirical prediction 216 

The strong historical and projected relationships between drought and fire suggest that 217 
nationwide fire outlooks are possible at short lead times with antecedent drought conditions. 218 
Using nonlinear regression, Figure 5 depicts the two-month (Figure 5a,b) and one-month 219 
predictions (Figure 5c,d) of March active fire counts in Nepal using SPEI-3 from January and 220 
February respectively. The regression model trained with all data points, the hindcast, accounts 221 
for a significant amount of variance in the total time series of March active fire points at both the 222 
two-month and one-month lead times. The regression model has modest skill for the cross-223 
validation as well, with the leave-one-out and leave-three-out methods producing similar results 224 
to the hindcast. These regression models predicted the active fires in March of 2021 but fell short 225 
of the record-setting magnitude. This shortcoming may be caused by anthropogenic forcings (the 226 
regression model does not account for changes to the frequency of human ignitions or the 227 
impacts of climate change) or the inability of SPEI-3 alone to account for fuel moisture and 228 
abundance. Regardless, these simple regression models show good skill (high r2 values, low error 229 
and bias) towards fire outlooks for March in Nepal with information about the fire tendency 230 
(Table S2). Fire count in April is highly predictable at a 1-month lead using these same methods 231 
but the 2-month prediction lacks skill (Figure S4). Summary statistics of model error, bias and 232 
parameter estimates are provided in Table S2.   233 

 234 

Figure 5: a) Observed active fire count in March along with the hindcast from the regression of 235 
January (two-month lead) SPEI-3. Leave-one and leave-three-out cross-validated models are 236 
shown in orange and red respectively. b) Twelve-year rolling correlation of observed March active 237 
fire counts and regressed active fire counts from January SPEI-3. c) Same as 5a, but for February 238 
SPEI-3. d) Same as 5b, but for February SPEI-3. The black dotted line indicates the 95% 239 
confidence level for 10 degrees of freedom.  240 
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 241 

5 Discussion and conclusions  242 

Anthropogenic impacts on fire in Nepal are not restricted to climate change however, as 243 
community forest management has also changed. Under localized control policies, which began 244 
in 1976, about 3 million hectares of forests in Nepal are now under the control of community-245 
based forest management groups, and these groups have been widely credited with driving 246 
significant increases in forest growth via restoration efforts over the past 45 years, an uncommon 247 
phenomenon in developing nations over recent decades (Ghimire & Lamichhane, 2020). Despite 248 
clear benefits in sequestering carbon (Devkota, 2020; Ghimire, 2019) and sustaining biodiversity, 249 
the fact that Nepal’s forests feasibly cover more area now than in past years (Figure 1d) may well 250 
impact fire potential, particularly in association with the increasing trend of post-monsoonal 251 
drought. Of note, the largest forest restoration developments are observed in the western lowland 252 
and western mid-mountain regions of Nepal, where the recent, more numerous, and fierce 253 
conflagrations occurred in 2009, 2016 and the most recent fire season (Figure 1c). Two other areas 254 
of high 2020–21 fire activity, i.e., in the southeast of Annapurna and the Kathmandu Valley, were 255 
also areas of significant LAI gain (Figure 1c). In summary, increased forest area and/or forest 256 
density is an ideal circumstance with respect to the addition of fire fuel. These reforestation gains, 257 
concurrent with decades of increasingly prolonged and severe droughts (Figure S3), are arguably 258 
prospective grounds for a marked increase in fires (Figure 4).  259 

The CMIP6 results for Nepal echo prior research that projects declining winter precipitation, 260 
alongside moderately increased monsoon precipitation, under the SSP585 high-emissions scenario 261 
(Almazroui et al., 2020). Arguably, this transition may already be underway, as significant declines 262 
have been identified in Mediterranean-originating winter precipitation sources (Dakhlaoui et al., 263 
2019; Marchane et al., 2017). In addition, persistent warming in the Indian Ocean has acted to 264 
enhance the winter drought trend in Nepal through modifications in the local branch of the Hadley 265 
circulation, associated with strengthened subsidence over northern India and the Himalayas (Wang 266 
et al., 2013a). While the 2020–21 fire season was exacerbated by climate change, climate 267 
variability likely played an important role in the seasonal drought conditions. The winter of 2020–268 
21 saw a strong La Niña event which often induces drought conditions in Nepal (Hamal et al., 269 
2020). As some El Niño and La Niña teleconnections have strengthened in the warming climate 270 
(Wang et al., 2015; Stevenson, 2012), the increased spread in projected fire frequency near the end 271 
of century (Figure 4b) may be partially attributed to natural variability amplified by global 272 
warming. These observed impacts of climate change and model-based projections suggest drought 273 
conditions will likely continue and are expected to amplify, enabling a higher potential for fire risk 274 
through to the end of the 21st century. 275 

Mitigating risk will require an improved understanding of the factors that contribute to fire in 276 
Nepal, but the nation currently lacks a significant and active drought and fire forecasting efforts. 277 
Previous studies have succeeded in generating fire-risk maps for Nepal (Parajuli et al., 2020; 278 
Sharma et al., 2014), however the society at large lacks predictive models that can be employed to 279 
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better prepare for fire on a monthly, seasonal, or long-term basis. To these ends, the study 280 
undertaken here offers: i) a practical statistical tool, derived from easily obtainable climate 281 
variables, towards sub-seasonal fire outlooks for the nation as whole, ii) knowledge through 282 
CMIP6-based projections that indicate the likelihood of more drought and fire events through the 283 
remainder of this century, and iii) an account of the suspected anthropogenical, climatological and 284 
sociological drivers of the anomalous 2020–21 fire season. Thus, this study provides a platform 285 
for Nepal to formulate future strategies to ameliorate the environmental hazards the country will 286 
face in a changing climate. 287 
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