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Abstract

We conducted field work in South San Francisco Bay to examine cohesive sediment flocculation dynamics in a shallow, wave- and

current-driven estuarine environment. Drawing on data collected using a suite of acoustic and optical instrumentation over three

distinct seasons, we found that the factors driving floc size variability differed substantially when comparing locally-sourced

sediment (i.e., through wave-driven resuspension) to suspended sediment advected from upstream. Statistical analysis of our

extensive field data revealed additional seasonal variability in these trends, with wave stress promoting floc breakup during the

summer and winter months, and biological processes encouraging floc growth during the spring productive period. Combining

these data with fractal dimension estimates, we found that seasonally-varying floc composition can lead to differences in floc

settling velocity by a factor of approximately two to five for a given floc size. Finally, by analyzing co-located turbulence

and sediment flux measurements from the bottom boundary layer, we present evidence that the relationship between floc size

and the inverse turbulent Schmidt number varies with floc structure. These results can be used to inform sediment transport

modeling parameterizations in estuarine environments.
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Key Points:10

• Wave shear stress is the strongest contributor to floc breakup in our field data.11

• Water temperature likely serves as a proxy measurement for biological processes12

that encourage floc growth during productive periods.13

• Sediment transport modeling parameters such as fractal dimension and inverse14

turbulent Schmidt number vary seasonally.15
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Abstract16

We conducted field work in South San Francisco Bay to examine cohesive sediment17

flocculation dynamics in a shallow, wave- and current-driven estuarine environment. Draw-18

ing on data collected using a suite of acoustic and optical instrumentation over three dis-19

tinct seasons, we found that the factors driving floc size variability differed substantially20

when comparing locally-sourced sediment (i.e., through wave-driven resuspension) to sus-21

pended sediment advected from upstream. Statistical analysis of our extensive field data22

revealed additional seasonal variability in these trends, with wave stress promoting floc23

breakup during the summer and winter months, and biological processes encouraging floc24

growth during the spring productive period. Combining these data with fractal dimen-25

sion estimates, we found that seasonally-varying floc composition can lead to differences26

in floc settling velocity by a factor of approximately two to five for a given floc size. Fi-27

nally, by analyzing co-located turbulence and sediment flux measurements from the bot-28

tom boundary layer, we present evidence that the relationship between floc size and the29

inverse turbulent Schmidt number varies with floc structure. These results can be used30

to inform sediment transport modeling parameterizations in estuarine environments.31

Plain Language Summary32

Sediment is a ubiquitous natural material that comprises everything from the earth33

beneath our feet to the sandy beaches along our coasts. Manmade infrastructure and nat-34

ural ecosystems alike depend on adequate supplies of sediment for their stability. There-35

fore, it is critical that we understand how sediment moves through coastal environments.36

One of the greatest challenges when predicting sediment transport in estuaries and coastal37

regions is accurately depicting how quickly sediment falls through the water due to grav-38

ity. This seemingly simple process is complicated by the tendency for individual sediment39

particles to stick together, or “flocculate,” which can cause them to settle more quickly.40

In this study, we took measurements in South San Francisco Bay to understand what41

natural processes exert the strongest influence on sediment flocculation, and how that42

flocculation affects sediment settling. We found that settling behavior is very different43

from season to season, but that the effects of waves and biological material in the wa-44

ter can be particularly impactful in determining whether or not sediment particles will45

stick to each other.46
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1 Introduction47

The properties of aggregated marine particles, or flocs, exert an influence on nu-48

merous estuarine processes (Dyer, 1989). For example, suspended sediment settling fluxes49

are a strong function of both particle size and composition (Manning & Bass, 2006), and50

predicting these fluxes is critical as sea level rise drives unprecedented morphological changes51

along coastlines and within estuaries worldwide (Prandle & Lane, 2015). Additionally,52

the transport of contaminants that readily adhere to sediment aggregates are largely de-53

termined by the transport properties of the aggregates themselves (Lick, 2008; Mehta54

et al., 2014), necessitating a comprehensive understanding of how flocs move and evolve55

in wavy, turbulent flows. Rates of photosynthesis and the potential for algal blooms, too,56

are controlled by the vertical distribution of particles throughout the water column (Cloern,57

1996), which itself depends on the interplay between hydrodynamic forcing and parti-58

cle characteristics.59

Numerical models often simulate the transport of flocs by separating them into dis-

crete size classes (James et al., 2010; Soulsby et al., 2013; Verney et al., 2009). Each size

class is then treated as an Eulerian concentration field with a superimposed settling ve-

locity, ws, assumed to follow Stokes Law (Stokes et al., 1851),

ws =
(ρf − ρ0)gd2f

18µ
. (1)

Here, ρf is the floc density, ρ0 is the background fluid density, g is acceleration due to

gravity, df is the floc diameter, and µ is the dynamic viscosity of water. The floc diam-

eter varies with aggregation and breakup, ranging from the primary particle size, dp, to

the Kolmogorov scale, η (Kolmogorov, 1941; Eisma, 1986). These size variations further

affect the floc density, which can be described following Kranenburg (1994) as

ρf = ρ0 + (ρp − ρ0)

(
df
dp

)nf−3

, (2)

where ρp is the primary particle density, and nf is the floc fractal dimension. A commonly

used value for the fractal dimension is nf = 2.1, but field studies have shown that this

can vary widely (Dyer & Manning, 1999). Taking variations in floc density and fractal

dimension into account, Khelifa and Hill (2006) proposed a more complex model for the

floc settling velocity,

ws =
1

18
θg
ρp − ρ0
µ

d
3−nf
p

d
nf−1
f

1 + 0.15Re0.687
φ. (3)
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Here, Re =
wsdf
ν is the particle Reynolds number, θ is a dimensionless floc shape fac-60

tor, and φ describes the size distribution of floc-forming primary particles. Though Equa-61

tion 3 can account for a wide range of particle population characteristics, recent high-62

resolution imaging studies have shown that fractal theory does not adequately describe63

the structure of natural flocs (Spencer et al., 2021). Nevertheless, casting the evolution64

of settling velocity as a power law with coefficients derived from regressions to observa-65

tional data is a widely-used and pragmatic approach, so we will analyze floc settling within66

this framework despite the flaws of the fractal assumption.67

Not only do flocs settle under the influence of gravity, but their turbulent diffusiv-

ity differs from that of a passive tracer. This is parameterized through the inverse tur-

bulent Schmidt number,

β =
κT
νT
, (4)

where κT is the turbulent floc diffusivity and νT is the turbulent eddy viscosity. Numer-68

ous studies have examined how β evolves with flow and sediment properties (see Gualtieri69

et al. (2017) for a review), with general agreement that β decreases with increasing tur-70

bulence (as particles cannot fully track the turbulent fluctuations) and decreasing par-71

ticle settling velocity. However, other results (e.g., Lees, 1981; Brand et al., 2010) have72

proven inconclusive regarding the effects of particle properties on β, so in practical sed-73

iment transport modeling applications where a sediment diffusivity is required, a con-74

stant value of β = 1 is often prescribed.75

Despite the ubiquity of suspended marine particles, the precise rates at which they76

flocculate and break up in the environment, and thus their transport properties, remain77

difficult to quantify. This is primarily due to the large number of flocculation mechanisms78

and the vast range of relevant spatiotemporal scales, which span turbulent particle-scale79

dynamics to seasonally varying estuary-scale conditions. Laboratory experiments have80

been used extensively to examine flocculation, but are generally conducted in jars or set-81

tling columns, which cannot recreate field-scale conditions. Nevertheless, a great deal82

has been learned from these studies. For example, reduced pH and increased salinity have83

both been shown to encourage floc growth (Mietta et al., 2009). Water column biology84

affects flocculation too, as the presence of extracellular polymeric substances (EPS) can85

act as a glue holding discrete sediment particles together (Eisma, 1986; Tolhurst et al.,86

2002). In terms of physical mechanisms, neither Brownian motion (McCave, 1984) nor87
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differential settling (Stolzenbach & Elimelech, 1994) are expected to contribute signif-88

icantly to flocculation. Turbulence can have competing effects, as it can either increase89

flocculation by enhancing particle collision rates, or decrease it through shear-induced90

breakup (Van Leussen, 1997; Manning & Dyer, 1999; Winterwerp, 1998).91

These particle dynamics have been studied numerically as well. Treating flocs as92

self-similar fractal entities, Winterwerp (2002) proposed an Eulerian model for the floc93

number density accounting for turbulent shear and hindered settling processes. Expand-94

ing on that work, Son and Hsu (2011) were able to better represent field data with a nu-95

merical model when they accounted for variable fractal dimension and floc yield strength.96

One recent study has shown particular promise by directly resolving individual particles97

and examining their flocculation dynamics through a first-principles cohesion function98

(Vowinckel et al., 2019), though as of yet this approach is limited to quiescent flows.99

Field deployments using a range of instrumentation have also been used to study100

flocculation, and have an inherent advantage over laboratory and numerical work in that101

the particle dynamics are affected by the full range of physical, chemical, and biological102

forcing mechanisms. Heffler et al. (1991) developed an in situ floc camera termed an FCA103

to simultaneously measure floc size, shape, and settling velocity. The FCA has been used104

to elucidate the evolution of floc properties like effective density over timescales ranging105

from minutes to seasons (Syvitski & Hutton, 1996). Additional FCA studies have found106

significant variability in floc size–density relationships (Hill et al., 1998), potentially due107

to natural variability in particle composition. Similar in situ floc cameras have been de-108

veloped as well (e.g., the Benthos 373 of Milligan, 1996), with studies showing that higher109

suspended sediment concentration (SSC) can encourage flocculation (Hill et al., 2000).110

More recent studies have augmented floc settling column video data using advanced im-111

age processing techniques, further reducing uncertainty in fractal dimension and effec-112

tive density estimates (Smith & Friedrichs, 2011, 2015).113

Another in situ video imaging device (and the one used in this study) is the INSSEV-114

LF (In Situ Settling Velocity - Laboratory Spectral Flocculation Characteristics; Manning115

et al. (2007, 2017)), which has been used to track the evolution of floc size and fractal116

dimension with turbulent shear and SSC (Dyer & Manning, 1999). Results showed that117

weak shear enhances flocculation while stronger shear disrupts it, and that increased SSC118

tends to increase the floc fractal dimension. Another INSSEV-LF study observed mixed119
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sand-mud flocs, casting doubt on the ability of self-similar fractal models to adequately120

describe flocculation dynamics (Manning & Schoellhamer, 2013). The authors also pos-121

tulated that this type of mixed floc was encouraged by the presence of sticky organic poly-122

mers that arise during phytoplankton blooms, indicating that biological activity could123

play a major role in determining sediment floc composition.124

Though video-based systems like the INSSEV-LF provide simultaneous measure-125

ments of particle size and settling velocity, moored particle size analyzers such as the LISST126

(Laser In-Situ Scattering and Transmissometry; Sequoia Scientific) used in conjunction127

with absorption and attenuation meters (e.g., WetLabs ac-9) can provide superior tem-128

poral sampling resolution when measuring particle size and composition. Following the129

methods of Roesler et al. (1989), ac-9 measurements can reveal information on particle130

composition by analyzing absorption and attenuation spectra. In terms of measuring par-131

ticle size distributions (PSDs), LISSTs have been used extensively, allowing for quantifi-132

cation of mean particle size, along with higher order moments and their evolution over133

time (Agrawal & Pottsmith, 2000). For an extensive review of the utility and limitations134

of these types of optical measurements, see Boss et al. (2018).135

In this study, we present results from three field campaigns studying flocculated136

particle characteristics in South San Francisco Bay, California, USA. By deploying a suite137

of moored optical instruments in conjunction with high resolution turbulence measure-138

ments and INSSEV-LF sampling, we examined variability in particle properties over three139

seasons as a function of local physical, chemical, and biological properties of the water140

column. Results point to two distinct regimes of suspended sediment: locally sourced141

via resuspension and non-locally sourced via advection. A Least Absolute Shrinkage and142

Selection Operator (LASSO) regression analysis was able to better-predict floc size in143

the resuspension regime, with floc size negatively correlated to wave strength in the sum-144

mer and winter, and positively correlated to water temperature during the spring phy-145

toplankton bloom period. The positive correlation to temperature (which increased in146

strength with chlorophyll concentration) indicates a strong biological control on floc size,147

which we show has implications for particle settling velocity parameterizations in numer-148

ical sediment transport models.149
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2 Methods150

2.1 Field Deployments151

The dataset presented herein was collected as part of a larger study examining co-152

hesive sediment erosion and boundary layer dynamics in South San Francisco Bay. Com-153

prehensive descriptions of the study site and field deployments can be found in our pre-154

vious papers analyzing other aspects of the data (Egan et al., 2019; Egan, Manning, et155

al., 2020; Egan, Chang, et al., 2020; Egan et al., 2021). The details most pertinent to156

this manuscript will be repeated here for clarity.157

Data were collected on the shallow (1.5 m mean lower low water, 2 m tidal range)158

shoals of South San Francisco Bay from 07/17/2018 - 08/15/2018 (summer deployment),159

01/10/2019 - 02/07/2019 (winter deployment), and 04/17/2019 - 05/15/2019 (spring de-160

ployment). Our primary platform contained a suite of optical instruments, including two161

Sequoia Scientific Inc. LISST-100x’s mounted at 15 and 45 centimeters above the bed162

(cmab), respectively. Each LISST measured suspended sediment particle size distribu-163

tions (PSDs) once per hour. The platform also held an SBE ac-9 mounted at 15 cmab164

and an SBE ac-s mounted at 45 cmab. Both sensors measured spectral absorption and165

attenuation once per hour, coinciding with LISST measurements, with the ac-9 provid-166

ing data at 9 wavelengths, and the ac-s providing data at 87 wavelengths. At both 15167

and 45 cmab, we mounted an SBE ECO BB backscatter sensor and ECO FL fluorom-168

eter, which took measurements every 20 minutes. Over the course of the summer and169

spring deployments, we recovered and redeployed the platform twice to clean the opti-170

cal windows on each instrument. During the winter, biofouling was less severe so the in-171

struments were cleaned once.172

Approximately 30 m from the optics platform, we deployed a sawhorse frame con-173

taining acoustic Doppler velocimeters (ADVs) at 5, 15, and 45 cmab, and a Vectrino Pro-174

filer (Vectrino) with its measurement volume overlapping the bed from 0–1.5 cmab. The175

ADVs sampled the 3D velocity, pressure, and acoustic backscatter at 8 Hz for 14 min-176

utes each hour, and the Vectrino sampled the 3D velocity and acoustic backscatter over177

30 1 mm-spaced vertical bins at 64 Hz for 12 minutes each hour in the summer, and 14178

minutes each hour in the spring (it did not sample in the winter due to a battery fail-179

ure). The platform also held an RBR Bottom Pressure Recorder (BPR) mounted at 100180

cmab sampling pressure at 6 Hz, and an SBE37 CTD mounted at 67 cmab measuring181
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salinity, temperature, and pressure once per minute. Approximately 10 m from the main182

platform, we mounted an upward-facing Aquadopp acoustic Doppler profiler (ADP) on183

an auxiliary plate, which measured vertical current profiles every three minutes based184

on 72 seconds of averaging.185

The day following platform deployment each season, we conducted INSSEV-LF sam-186

pling adjacent to the sawhorse platform to simultaneously measure floc size and settling187

velocity within the bottom boundary layer. Flocs were sampled from within 2 cm of the188

sediment bed using a custom pipette fitted within a 3D-printed halo frame to prevent189

direct contact between the pipette and the bed. Samples were then immediately deposited190

into the INSSEV-LF settling chamber. Sampling was repeated every 15 minutes for ap-191

proximately 8 hours in order to capture a wide range of tidal current magnitudes.The192

pipette/halo sampler was tested in laboratory flume dye study prior to the field work193

to ensure that sampling did not significantly disturb the flow.194

2.2 Data Processing195

Though LISSTs were deployed at two measurement heights, we did not find signif-196

icant variability in the PSDs between 15 and 45 cmab. Therefore, our analysis will fo-197

cus on the near-bed data at 15 cmab. Specific data processing methods for calculating198

hydrodynamic variables can be found in our previous papers and here we will analyze199

particle properties as a function of: bottom wave-orbital velocity, ub, mean current ve-200

locity in the principal tidal direction, u, and turbulent kinetic energy (TKE) dissipation201

rate, ε, each of which were calculated using 15 cmab ADV data. The ADV and Vectrino202

data also privided estimates of the mean sediment concentration, c, by calibrating acous-203

tic backscatter readings against known concentrations of suspended sediment in the lab,204

using mud collected from the study site. Calibration curves can be found in Egan, Man-205

ning, et al. (2020).206

Optical sensors were calibrated prior to each deployment following manufacturer-207

recommended protocols. The LISSTs and ac-meters were calibrated with MilliQ water.208

Chl-a concentration from ECO-fluorometer measurements were factory calibrated using209

a mono-culture of the diatom, Thalassiosira weissflogii. It is recognized that Chl-a con-210

taining material at the study site is not composed of strictly Thalassiosira weissflogii and211

therefore absolute concentrations of Chl-a from fluorescence techniques may not be ac-212
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curate. However, the derived variability of Chl-a can be considered true. ECO BB and213

ECO FL sensors were corrected to dark count calibrations conducted prior to deployment;214

any deviation from factory calibrations resulted in new dark counts.215

Optical properties and products were analyzed according to the literature or fac-216

tory recommended procedures. Backscattering coefficients were derived from ECO BB217

sensors according to Boss and Pegau (2001) after subtraction of backscattering by pure218

seawater (Zhang et al., 2009). The ac-9 and ac-s corrections for temperature and salin-219

ity effects were applied to absorption coefficients according to Zaneveld and Pegau (1993)220

and Sullivan et al. (2006). The specific absorption ratios we report, where the subscript221

indicates wavelength, are a676/a650 (Chl-a absorption peak), and a450/a676 and a412/a650,222

both of which indicate increased detrital and/or dissolved material relative to phytoplank-223

ton. LISST data were processed using the manufacturer-provided MATLAB processing224

code; additional processing involved removal of data affected by scintillation. Scintilla-225

tion is a known issue with LISST data, where laser light may defocus and cause erroneous226

(spiky) data at the largest or smallest particle sizes. These effects were identified by com-227

paring volume PSD data across size bins. Erroneous data were identified as data spikes228

of 40% or greater across consecutive size bins at the five smallest and five largest instru-229

ment rings. Once these data were removed, mean particle size was calculated from the230

resulting volumetric distribution measurements using the manufacturer-provided scripts.231

INSSEV-LF high resolution video floc measurements were processed following the232

methods described by Manning et al. (2017) in order to produce spectra of floc size and233

settling velocity. Floc fractal dimensions were calculated following the methods of Kranenburg234

(1994) and Winterwerp (1998).235

Combining hydrodynamic and sediment data, we also calculated the inverse tur-

bulent Schmidt number (β, Equation 4) using Vectrino Profiler data. The turbulent Reynolds

stress, u′w′, was estimated with the phase method (Bricker & Monismith, 2007), and the

turbulent sediment flux, c′w′, was calculated as the covariance between the Vectrino sed-

iment concentration and vertical velocity. Combining the fluxes with vertical gradients

of the mean profiles, the inverse turbulent Schmidt number is given by

β =
c′w′

(
∂c
∂z

)−1

u′w′
(
∂u
∂z

)−1 . (5)
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This produces a profile of β, which we averaged over the range 0.3–1.0 cmab, neglecting236

the low signal-to-noise ratio portions at the top of the profile and near the bed (Koca237

et al., 2017).238

3 Results & Discussion239

3.1 Site conditions240

A wide range of estuarine conditions were sampled over the course of the three de-241

ployments, as shown by the time series data in Figure 1. During the summer, diurnal242

northwesterly winds resulted in strong wave-orbital velocities each afternoon (Figure 1a).243

The spring wave conditions were similar to the summer, though they contrasted with the244

winter deployment, when strong waves were restricted to isolated storm events. Mixed245

semidiurnal tidal currents were broadly similar for all three deployments, with peak depth-246

averaged velocities nearing 50 cm s−1 (not shown). Water temperatures were highest in247

the summer followed by spring and winter (Figure 1b). Salinity was highest in the sum-248

mer and comparable (though steadily decreasing) throughout winter, with far lower val-249

ues in the spring (Figure 1c). Chlorophyll-a fluorescence was highest at the beginning250

of the spring deployment, lowest throughout the winter, and reached moderate levels co-251

inciding with the peak water temperature every afternoon in the summer (Figure 1d).252

Turning to particle properties, the summer and winter deployments saw floc size inversely253

correlated to wave strength (Figure 1e). In the spring, df was generally larger, especially254

during the productive period at the beginning of the deployment. In Section 3.3, vari-255

ations in floc size will be discussed and analyzed in the context of the diverse set of phys-256

ical, chemical, and biological conditions observed during the field campaigns.257

–10–



manuscript submitted to JGR: Oceans

0.0

0.2

u
b

(m
s−

1
)

Summer Winter

(a)
Spring

10

20

T
(◦
C

)

(b)

20

30

S
(P

S
U

)

(c)

0

10

C
h

l-
a

(µ
g

L
−

1
) (d)

07
-2

0-
18

07
-2

5-
18

07
-3

0-
18

08
-0

4-
18

100

200

d
f

(µ
m

)

01
-1

2-
19

01
-1

7-
19

01
-2

2-
19

01
-2

7-
19

02
-0

1-
19

(e)

04
-2

2-
19

04
-2

7-
19

05
-0

2-
19

05
-0

7-
19

Figure 1: Site conditions for all three field deployments, showing (a) bottom wave-orbital

velocity measured by the ADV at 15 cmab, (b) water temperature measured by the CTD

at 67 cmab, (c) salinity measured by the CTD at 67 cmab, (d) Chlorophyll-a concentra-

tion measured by the fluorometer at 15 cmab, and (e) mean floc size measured by the

LISST at 15 cmab.
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3.2 Suspended sediment regimes258

Initial attempts to identify the drivers of particle size variability produced incon-259

clusive results, with trends outweighed by measurement noise. One contributing factor260

to the noise was inconsistency in the source of suspended sediment at our study site. Fig-261

ure 2 shows time series of LISST-derived beam attenuation coefficient (a proxy for SSC),262

along with corresponding measurements of the four-hour lagged mean current velocity263

at 15 cmab, u4, and bottom wave-orbital velocity, ub. Lagging u by four hours aligns its264

phase with the water depth, and as seen in Figure 2a, there were periods of our time se-265

ries when beam attenuation was strongly correlated to u4, suggesting that the tides ad-266

vected suspended sediment back and forth across our study site. Interestingly, c and u4267

were often positively correlated, indicating that advected sediment (which increased in268

concentration during flood tide) was primarily sourced from the channel or deeper shoals269

to the west of the platform, rather than the shallow shoals to the east. This is somewhat270

counterintuitive, as the local sediment concentration generally increases eastward due271

to wave-driven erosion on the shallow shoals. However, tidal currents are also weaker in272

shallow regions, leading to minimal horizontal transport despite significant local resus-273

pension. Furthermore, the four-hour lag supports the hypothesis of channel-sourced sed-274

iment. Platform P1 was located approximately 2.5 km east of the channel, so a four hour275

transport time would indicate 17 cm s−1 tidal currents. Depth-averaged ADP measure-276

ments at P1 indicate an average eastward flood tide velocity of 15 cm s−1, which is con-277

sistent with the optimal lag. This trend is also consistent with recent numerical mod-278

eling work in South Bay (Chou et al., 2015), which showed enhanced resuspension due279

to tidal currents during flood tide.280

Though the suspended sediment depicted in Figure 2a was likely sourced non-locally,281

the beam attenuation signal in Figure 2b (measured three days later) was better corre-282

lated to the bottom wave-orbital velocity than it was to the tidal current velocity. This283

correlation suggests that the sediment measured during that time period was primarily284

suspended from the bed by local wave shear stresses rather than advected to the site from285

another region. It is reasonable to expect that these two types of suspended sediment—local286

and non-local—would have different properties, e.g., in terms of size and composition.287

In order to elucidate the mechanisms dictating the particle properties, we gener-288

alized the results of Figure 2 and split the entire dataset into three regimes: resuspension-289
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Figure 2: Beam attenuation coefficient (c, black line) during an (a) advection-driven SSC

regime, as shown by the covariation with the four-hour lagged mean current velocity (u4,

gray line), and (b) resuspension-driven SSC regime, as shown by the covariation with the

bottom wave-orbital velocity (ub, gray line).

dominant (R), advection-dominant (A), and mixed (M, contributions from both). This290

was accomplished by regressing c against ub and u4 in sliding, forward-looking 12-hour291

windows. If the coefficient of determination, r2, of the linear regression between c and292

ub was more than 20% larger than r2 for the linear regression between c and u4, then293

the measurement burst was labeled resuspension-dominant, and vice versa for advection294

dominant. If the r2 values for both regressions were within 20% of each other, the mea-295

surement burst was labeled as mixed.296

For the summer deployment, the regime identification procedure resulted in a resuspension-297

advection-mixed split of 40.3%(R)− 45.0%(A)− 14.6%(M). The split in winter skewed298

slightly more toward resuspension (47.4%(R)−45.3%(A)−7.4%(M)), while the split in299

spring was advection-dominant (29.0%(R)−57.4%(A)−13.6%(M)). These designations300

will be used for the remainder of the paper in order to analyze floc behavior within spe-301

cific suspended sediment regimes.302
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3.3 Particle size variability303

To assess which mechanisms exerted the strongest influence on floc size, we carried304

out a feature selection analysis. A comprehensive overview of feature selection techniques305

can be found in Guyon and Elisseeff (2003), but in general it refers to the optimization306

process by which a subset of some large set of independent variables, or “features”, is307

chosen in order to best predict a dependent variable. In our case, the dependent variable308

was df , the mean floc diameter, and the full set of independent variables was ub (bot-309

tom wave-orbital velocity), u (mean current velocity), u4 (four-hour lagged mean cur-310

rent velocity), apg(676)/apg(650) (Chl-a absorption spectral peak), apg(450)/apg(676) (de-311

trital/dissolved spectral peak), apg(412)/apg(650) (detrital/dissolved spectral peak), Chl-312

a (Chlorophyll-a concentration), S (salinity), T (water temperature), and c (mean SSC).313

The feature selection was implemented by feeding the output from a LASSO regres-314

sion (Tibshirani, 1996) into scikit-learn RFECV (Pedregosa et al., 2011), an algorithm315

that recursively eliminates features from the full set, producing a cross-validated subset316

of features that maximizes the regression coefficient of determination, r2. LASSO regres-317

sion (which is simply ordinary least squares with an L1-norm regularization term) is par-318

ticularly well-suited to feature selection because it encourages a sparse solution, setting319

regression coefficients for redundant or unhelpful features to zero. We eliminated addi-320

tional features if their removal from the regression resulted in an r2 decrease of less than321

0.02. This procedure was carried out for the 15 cmab LISST-derived df data during all322

three deployments and within the three separate suspended sediment regimes discussed323

in Section 3.2. Results are shown in Table 1.324

Across all three deployments, df was predicted with reasonable accuracy (r2 ≥325

0.45) in the resuspension regime. In the summer and winter, this was primarily due to326

a strong negative correlation between floc size and bottom wave-orbital velocity, imply-327

ing that wave shear stresses were either a) breaking up flocs in the wave bottom bound-328

ary layer, or b) resuspending smaller flocs from the bed. Floc size was also positively cor-329

related to u4, suggesting that even when local shear stress was the dominant source of330

suspended sediment in the water column, a significant fraction of the advected flocs over331

the study site during flood tides were larger. In the spring, the negative correlation with332

wave strength persisted, but the positive correlations to water temperature and chloro-333
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Resuspension Advection Mixed

var. −∆r2 (+/−) var. −∆r2 (+/−) var. −∆r2 (+/−)

Sum

ub 0.38 (−) ub 0.16 (−) u4 0.26 (+)

u4 0.13 (+) u 0.02 (+) ub 0.17 (−)

u 0.06 (+)

S 0.03 (+)

N 179 199 65

r2 0.51 0.15 0.33

Win

ub 0.26 (−) c 0.09 (−) ub 0.17 (−)

u4 0.10 (+) u4 0.07 (+) u 0.06 (−)

ub 0.03 (−) u4 0.04 (+)
a450
a676

0.03 (+) a676
a650

0.02 (−)

Chl-a 0.02 (+)

N 270 258 42

r2 0.45 0.50 0.65

Spr

T 0.42 (+) T 0.11 (+) Chl-a 0.11 (+)

Chl-a 0.23 (+) Chl-a 0.09 (+) T 0.11 (+)

ub 0.07 (−) a450
a676

0.03 (−) c 0.04 (+)

c 0.03 (−) ub 0.03 (−)

N 96 190 45

r2 0.46 0.15 0.25

Table 1: Optimal parameters (from top to bottom in order of importance) for predicting

df during the summer, winter, and spring deployments. Results are separated by SSC

regime, with the total number of data points for the regressions, N , listed for each regime.

−∆r2 indicates the reduction in LASSO total r2 (shown in bold) that results from remov-

ing a particular variable from the regression. (+/−) indicates the sign of the correlation

between each variable and df .

phyll fluorescence were stronger, indicating a biological control on floc size during the334

spring phytoplankton bloom period.335

Compared to the resuspension regime, trends in terms of variable importance were336

broadly similar in the advection and mixed regimes, with hydrodynamic variables dom-337
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inating during the summer and winter, and biologically significant variables dominating338

in the spring. One key difference, however, was that the total regression r2 was much339

lower for the advection regime in the summer and spring. Our hypothesis is that if the340

flocs at our study site originated upstream, then local variables would not be expected341

to accurately predict the floc properties. Conversely, if the suspended sediment concen-342

tration was primarily controlled by local resuspension and settling (i.e., Rouse dynam-343

ics), then local hydrodynamic and water quality parameters should be well-correlated344

to particle properties.345

3.4 Biological effects346

One of the most striking trends from the results in Table 1 was the relative impor-

tance of water temperature and chlorophyll fluorescence in predicting floc size during the

spring relative to summer and winter. This trend can be examined explicitly through

the equilibrium floc size parameterization presented by Winterwerp et al. (2006). Assum-

ing a steady balance between turbulent shear-induced floc breakup and collision-induced

aggregation, the equilibrium floc size is given as

df =

(
kc

Gq

) 1
2q

, (6)

where c is the suspended sediment concentration, G =
√
ε/ν is the turbulent shear347

rate, and k is a fitting parameter. The parameter q is related to the fractal dimension348

with q =
nf−1
2m , where m is a coefficient that describes how the settling velocity scales349

with SSC, i.e., ws ∼ cm. Setting m = 1 (Winterwerp et al., 2006) and the fractal di-350

mension equal to nf = 2.61, nf = 2.41, and nf = 2.11 for the summer, winter, and351

spring respectively (Section 3.5), Equation 6 was fit to our data for the resuspension and352

advection regimes during each deployment using measured values of c and G. We found353

that the floc size, and thus the fitting parameter k, did not vary significantly with SSC.354

Therefore, we used the mean SSC for each deployment and regime, and regressed for df355

solely as a function of G. The result is shown in Figures 3a and 3b.356

Between the two regimes, r2 values were higher in the resuspension regime for the357

summer and spring, and higher in the advective regime for the winter. Even the best r2358

value, however, was quite poor. Because Equation 6 does not contain an intercept, it is359

possible to obtain r2 < 0. These low coefficients of determination indicate that the360

equilibrium model does not resolve many of the relevant dynamical processes affecting361
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Figure 3: Mean particle diameter as a function of (a) turbulent shear rate in the resus-

pension regime, (b) turbulent shear rate in the advective regime, (c) wave shear rate

in the resuspension regime, and (d) wave shear rate in the advective regime. Data are

shown for the summer (black dots), winter (gray dots), and spring deployments (orange

dots), with spring data colored by water temperature. The dashed lines show fits to the

equilibrium floc size curve (Equation 6), with the fitting parameter k and coefficient of

determination r2 shown in the legends.
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floc size at our study site. This is not surprising, as the dissipation rate of turbulent ki-362

netic energy, ε, was not selected as an important variable in the LASSO analysis (Table363

1). The bottom wave-orbital velocity, ub, was generally better-suited to predict floc size.364

Therefore, in Equation 6 we replaced the turbulent shear rate, G, with a representative365

wave shear rate, ubδ
−1
w , where δw =

√
2ν/ω is the Stokes wave boundary layer thick-366

ness. Carrying out the equilibrium floc size regression using the wave shear rate resulted367

in Figures 3c and 3d. Replacing G with ubδ
−1
w improved all but one of the r2 values, though368

in general they all remained low. Nevertheless, comparing the fitting parameters between369

deployments can provide insight into the time-varying particle properties.370

The relationship between floc size and both the wave and turbulent shear rates is371

fairly consistent between the summer and winter deployments, though the optimal k value372

is larger during the winter, indicating a modest increase in aggregation potential for a373

given shear rate. The increase in k was even larger, however, from winter to spring, and374

in both regimes a significant number of data points fell above the best-fit line. That trend375

suggests an additional flocculation mechanism that was present in the spring and absent376

in the summer and winter. Coloring the spring data by water temperature, many of the377

larger flocs were measured when the water was relatively warm, which is consistent with378

the positive correlation between floc size and temperature shown in Table 1.379

It is unlikely that water temperature on its own increases the potential for parti-380

cle aggregation. Water temperatures were higher in the summer compared to the spring,381

yet there was no relationship between temperature and floc size. Therefore, temperature382

is likely a proxy for another process that encourages floc growth. For example, labora-383

tory studies have shown that benthic diatoms increase EPS production with increased384

temperature and irradiance (Wolfstein & Stal, 2002). Maximum water temperatures in385

our spring data were often measured in the late afternoon, nearing the time of maximum386

integrated daily irradiance. Therefore, we expect that under conditions favorable to pho-387

tosynthesis (phytoplankton blooms occur nearly every spring in South San Francisco Bay388

(Cloern, 1996)), temperature and df were positively correlated because of additional cor-389

relations between temperature, irradiance, and EPS production. This hypothesis is probed390

further in Figure 4, which shows the correlation between temperature and df (param-391

eterized by r2 from a linear regression) as a function of chlorophyll concentration.392
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Figure 4: The coefficient of determination from a linear regression between water tem-

perature and mean particle diameter during the spring deployment as a function of

chlorophyll concentration. Data are shown in both the resuspension regime (black line)

and advective regime (gray line).
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In the advective regime, there is no clear trend between r2 and Chl-a. This is ex-393

pected from Table 1, where the correlation between T and df was weak to begin with.394

In the resuspension regime, however, r2 generally increases with Chl-a, peaking at ap-395

proximately 6 µg L−1. The increase in correlation between T and df with increasing chloro-396

phyll concentration supports our hypothesis that temperature and floc size are positively397

correlated due to increased productivity and EPS production that accompany temper-398

ature increases. Absent sufficient chlorophyll in the water column, though, increased wa-399

ter temperature will not tend to increase floc size.400

3.5 Fractal dimension and settling velocity401

The results presented so far have focused on the factors driving floc size variabil-402

ity. In the context of sediment transport modeling, however, the floc settling velocity (which403

is parameterized as a function of floc size) is the most important quantity to constrain.404

From Equation 3, we see that beyond first-order variability with the shape factor θ and405

size distribution factor φ, the settling velocity is controlled primarily by the floc size df406

and floc fractal dimension nf . We initially planned on using INSSEV-LF sampling to407

determine an appropriate fractal dimension to use in Equation 3. However, logistical con-408

straints limited our INSSEV-LF measurements to one day per deployment, which may409

not have provided a sufficiently comprehensive view of the monthly (or even diurnally-410

varying ) floc behavior. Nevertheless, the mean fractal dimensions derived from INSSEV-411

LF data were nf = 2.48, nf = 2.70, and nf = 2.66 for the summer, winter, and spring,412

respectively. These values are all within the range of previous INSSEV-LF measurements413

in the region (Manning & Schoellhamer, 2013), though it is surprising that the spring414

fractal dimension was larger than the summer value, given the substantial evidence of415

biologically-driven floc growth (e.g., Figures 3 and 4).416

As a comparison to the INSSEV-LF results, we followed the methods described by

Mikkelsen and Pejrup (2001), who calculated the fractal dimension as 3+α, where α is

the slope of the linear best fit line (in log-log space) between the bin-averaged floc effec-

tive density, ρe, as a function of floc size, df . We estimated ρe as

ρe =
TSM

V C
, (7)

where TSM is the total suspended matter and V C is the volume concentration. To im-417

prove the measurement fidelity, we estimated both quantities in Equation 7 at the same418
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location using the same instrument (LISST). The LISST outputs V C directly, and TSM419

was approximated by scaling the beam attenuation, c, by the linear factor (with appro-420

priate units) for each season that minimized the squared error between c and c, the acous-421

tic backscatter-derived suspended sediment concentration measured by nearby ADVs. While422

processing the data, we found that the Mikkelsen and Pejrup (2001) fitting procedure423

produced far cleaner (higher r2) fits for nf when using c as compared to c. The results424

of this procedure are shown in Figure 5.425
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Figure 5: Fractal dimension estimates derived from a linear regression between df and ρe

in log-log space for the (a) summer, (b) winter, and (c) spring deployments. Error bars

denote the standard error on the bin averaging.

Based on the best-fit slopes in Figure 5, we see a steady decrease in fractal dimen-426

sion from summer through spring. This indicates that floc structure was closest to that427

of the primary particles during summer, with more complex flocculation behavior and428

floc structure during the winter, and especially in the spring. These values are more con-429

sistent with the bulk of our results in the sense that they support a lower fractal dimen-430

sion during the spring productive period. We hypothesize that this was the case because431

they are derived from hourly LISST data over a month of varying hydrodynamic con-432

ditions, rather than the single day of INSSEV-LF sampling during each deployment. There-433

fore, we incorporated these fractal dimensions into Equation 3 to obtain the settling curves434

shown in Figure 6. This analysis assumed values of θ = 1, φ = 1, dp = 8µm (based435

on laboratory disaggregated PSD measurements) and ρp = 2256 kg m−3 (Manning &436

Dyer, 1999).437
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Figure 6: Floc size - settling curves for the summer, winter, and spring based on Equa-

tion 3 and the fractal dimensions estimated in Figure 5.

The settling curves demonstrate the importance of considering seasonal variabil-438

ity in fractal dimension. Though the summer and winter settling velocities are similar439

for a given floc size (within 25% at 100 µm), the decreased fractal dimension in the spring440

significantly alters the settling dynamics. For example, a spring floc with a mean diam-441

eter of 200 µm (nearly the maximum observed value) would settle with approximately442

the same velocity as a summer floc with mean diameter 70 µm. Put another way, a spring443

floc with a mean diameter of 200 µm would settle approximately 4.5 times slower than444

a summer floc of the same diameter. That magnitude of variability can lead to signif-445

icant differences in sediment transport modeling results. For example, Allen et al. (2021)446

demonstrated that a factor of 5 change in settling velocity led to vastly different spatial447

deposition patterns in a modeling study of San Pablo Bay, a similar environment to our448

study site. Therefore, our results can provide critical guidance to sediment transport mod-449

eling efforts over seasonal timescales.450

The settling results also implicitly highlight the key role that sediment plays in nu-451

trient cycling in South San Francisco Bay. Spring flocs, which were likely composed of452

a significant amount of biological matter, were a key mechanism transporting phytoplank-453
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ton cells to the sediment bed. Previous work has shown that isolated algal cells settle454

at rates on the order of 10−3 mm s−1 (Riebesell, 1989). This is approximately three or-455

ders of magnitude slower than a 200 µm floc during the spring, as seen in Figure 6. Such456

a vast difference in vertical settling rate would have a profound effect on any biogeochem-457

ical modeling effort, showing the importance of resolving flocculation dynamics for a wide458

range of estuarine process studies.459

3.6 Implications for inverse turbulent Schmidt number460

One challenge in analyzing the inverse turbulent Schmidt number (β, Equations461

4 and 5) as a function of floc size is the fact that the LISST data were collected at 15462

cmab, while the Vectrino sampled from 0–1.5 cmab where the turbulence statistics and463

particle properties were likely different. To account for this discrepancy, we nondimen-464

sionalized floc size by the Kolmogorov length scale, η =
(
ν3ε−1

)1/4
, using the dissi-465

pation rate at 15 cmab. This should allow for a more general examination of how sed-466

iment diffusivity varies with floc size for a given level of turbulence. The result of this467

analysis, conducted for both the summer and spring deployments, is shown in Figure 7.468

469

The inverse turbulent Schmidt number was approximately equal to unity for the470

smallest flocs sampled during the summer, indicating that the turbulent sediment dif-471

fusivity was equal to the turbulent momentum diffusivity, i.e., the flocs acted as flow trac-472

ers. In the limit of vanishingly small flocs, this is an intuitive result, as the Stokes num-473

ber associated with the particles goes to zero. As the relative floc size increases, however,474

β decreases before leveling off near β ≈ 0.3. The negative correlation between β and475

dfη
−1 can be explained as a consequence of faster settling by larger flocs, which would476

be expected given the dense, minerogenic floc populations we sampled in the summer477

(Section 3.5). Faster settling increases the near-bed concentration gradient relative to478

the turbulent sediment flux (numerator of Equation 5), so it follows that β decreases with479

increased floc size.480

Interestingly, the spring data show a different trend. Though the inverse turbulent481

Schmidt number decreases slightly with normalized floc size, the slope of the trend is sta-482

tistically indistinguishable from zero. The flocs were also much larger (maximum near483

0.8η rather than 0.3η), yet β ≈ 1 throughout the range of floc size. This relatively con-484
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Figure 7: The inverse turbulent Schmidt number (Equations4 and 5) bin-averaged by the

nondimensional floc diameter. Data are separated by summer (black dots) and spring de-

ployments (gray dots), with linear regressions denoted by the dashed lines and associated

equations in the legend. Error bars denote the standard error on the bin-averaging.
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stant diffusivity could be caused by the flocs having lower density in the spring, which485

could counter increased settling rates despite the increased particle size. Such an effect486

would allow the spring flocs to follow the turbulent flow more effectively than the dense487

summer flocs.488

Though Figure 7 suggests a strong relationship between floc size and Schmidt num-489

ber, causation is difficult to prove. There are numerous physical phenomena in this sys-490

tem that are correlated to dfη
−1 which may also contribute to variability in β. There-491

fore, it is critical to rule out possible mechanisms that could lead to a similar trend. First492

examining sediment-induced stratification: all things being equal, increased settling ve-493

locity tends to strengthen sediment-induced stratification. Stronger stratification could494

then further increase dfη
−1 by reducing both η and turbulence-induced floc breakup. How-495

ever, the near-bed turbulent eddy viscosity (denominator of Equation 4) would decrease496

as stratification intensifies, causing a corresponding increase in β. This is the opposite497

trend compared to Figure 7, indicating that the results cannot be explained by strati-498

fication.499

Another mechanism that could explain our results is wave-induced β variability. Stronger500

waves tend to reduce floc size (Table 1) while increasing the turbulent sediment flux rel-501

ative to the turbulent momentum flux (Egan et al., 2021), a combination that could cause502

the negative correlation between β and dfη
−1 seen in Figure 7. To further examine this503

possibility, we separated our dataset into three regimes of wave strength parameterized504

by the wave Reynolds number,505

Rew =
ubab
ν

, (8)

where ab = ubω
−1 is the wave orbital excursion. The wave regimes were determined506

such that there was an equal number of data points in each category (Low, Medium, and507

High) for each season. During both summer and spring, Rew values ranged from O(102)−508

O(104). An analogous binning between β and dfη
−1 was then carried out for the indi-509

vidual wave strength regimes, as shown in Figure 8.510

During the summer, stronger waves do tend to increase β for a given dfη
−1, as we511

hypothesized. Yet across Rew regimes, the trends in Figure 8 are not appreciably differ-512

ent from Figure 7, showing a negative correlation between β and dfη
−1 in the summer513

and an approximately constant β with normalized floc size in the spring (within uncer-514
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Figure 8: The inverse turbulent Schmidt number (Equations 4 and 5) bin-averaged by

the nondimensional floc diameter during the (a) summer and (b) spring deployments.

Data are separated by low Rew (light gray), medium Rew (dark gray dashed), and high

Rew conditions (black dotted). Error bars denote the standard error on the bin-averaging.

tainty). Critically, the trends within each wave regime show stronger variability than the515

differences among the wave regimes during the summer. Given that wave strength was516

the primary driver of summer floc size variability (Table 1), this deconstructed view sup-517

ports the hypothesis that dfη
−1 contributes to the s dynamics of turbulent sediment dif-518

fusion.519

In the context of numerical sediment transport modeling, the results in Figures 7520

and 8 suggest that an inverse turbulent Schmidt number value of β ≈ 1 is appropri-521

ate for a wide range of floc sizes when the floc composition is influenced by water col-522

umn biology. For denser flocs, β ≈ 1 may be reasonable for the smallest floc sizes, with523

a decrease towards a minimum of β ≈ 0.3 as dfη
−1 increases. The slope of the decrease524

is shown in the Figure 7 legend, though we are not suggesting that the trend be extrap-525

olated beyond the maximum floc sizes we measured.526

4 Conclusions527

The results presented here provide an assessment of the factors driving cohesive528

sediment floc size variability in estuarine environments. During time periods character-529
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ized largely by minerogenic sediments, floc size was negatively correlated to wave strength,530

indicating that wave shear stress in the bottom boundary layer can be a powerful mech-531

anism encouraging floc breakup. During the spring productive period when floc size was532

generally larger, we found strong correlations between temperature and floc size. We hy-533

pothesize that temperature was a proxy measurement indicative of biological processes534

(e.g., EPS production) that would promote floc growth. These seasonal trends were re-535

flected in both settling velocity and inverse turbulent Schmidt number estimates, both536

of which are critical parameters for accurately representing cohesive sediment in numer-537

ical sediment transport models (Celik & Rodi, 1988).538

The interplay between biology and floc size had a profound impact on floc settling539

velocity and turbulence dynamics. Between the summer and spring deployments, vari-540

ations in floc composition led to a nearly five-fold increase in settling velocity for a given541

floc size (Figure 6). This level of variability presents an enormous challenge for sediment542

transport modeling efforts, where settling velocity must be accurately prescribed in or-543

der to represent spatially-varying settling and depositional phenomena. We also found544

seasonal differences in the relationship between normalized floc size and inverse turbu-545

lent Schmidt number (Figure 7). Increases in dfη
−1 during the summer resulted in sig-546

nificant decreases in β, which we hypothesized was caused by faster settling of dense, minero-547

genic flocs. In contrast, β showed little variability with dfη
−1 during the spring when548

flocs were primarily biological in origin.549

Finally, the novel quantitative tools used for these analyses can likely be applied550

in a broad range of estuarine studies. For example, when separated by source (advection551

vs resuspension-driven), we found that LASSO regression can be a powerful tool for iden-552

tifying the variables that influence floc breakup and growth under a wide range of phys-553

ical, chemical, and biological forcing conditions. Sediment data are notoriously noisy, and554

cohesive sediment data particularly so, as floc characteristics (size and composition) can555

change dramatically over timescales on the order of minutes. Nevertheless, high-dimensional556

regression techniques are able to identify robust trends in these datasets. As discussed557

in the recent review by Goldstein et al. (2019) , machine learning techniques are increas-558

ingly providing insight into sediment dynamics, and may be a fruitful area of future study.559
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