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Abstract

Detecting a seismic event from Europa’s silicate interior would provide information about the geologic and tectonic setting of

the moon’s rocky interior. Reflections off a metallic core would indicate the presence, size, and state of the hypothesized core.

However, the subsurface ocean will attenuate the signal, possibly preventing the waveforms from being detected by a surface

seismometer. Here, we investigate the minimum magnitude of a detectable event originating from Europa’s silicate interior. We

analyze likely signal-to-noise ratios and compare the predicted signal strengths to current instrument sensitivities. We show

that a magnitude M w >3.5 would be sufficient to overcome the predicted background noise. However, a minimum magnitude

of M w > 5.5 would be required for current instrumentation to be able detect the event. A thinner ice shell transmits greater

ground acceleration amplitudes than a thicker ice shell, which might allow for M w > 4.5 to be detectable.
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Abstract15

Detecting a seismic event from Europa’s silicate interior would provide information about16

the geologic and tectonic setting of the moon’s rocky interior. Reflections off a metal-17

lic core would indicate the presence, size, and state of the hypothesized core. However,18

the subsurface ocean will attenuate the signal, possibly preventing the waveforms from19

being detected by a surface seismometer. Here, we investigate the minimum magnitude20

of a detectable event originating from Europa’s silicate interior. We analyze likely signal-21

to-noise ratios and compare the predicted signal strengths to current instrument sensi-22

tivities. We show that a magnitude Mw ≥ 3.5 would be sufficient to overcome the pre-23

dicted background noise. However, a minimum magnitude of Mw ≥ 5.5 would be re-24

quired for current instrumentation to be able detect the event. A thinner ice shell trans-25

mits greater ground acceleration amplitudes than a thicker ice shell, which might allow26

for Mw ≥ 4.5 to be detectable.27

1 Plain Language Summary28

Europa, one of Jupiter’s moons, has an icy surface overlying a subsurface ocean and29

rocky interior. Europa’s surface is likely geologically active and its rocky interior may30

also produce seismic events. Here, we investigate if a data from a seismometer could de-31

tect and record signals originating from the rocky interior, thus allowing a science team32

to accurately determine if the interior is also geologically active. We model the poten-33

tial signal strengths of an event from the deep interior, and compare the signal ampli-34

tude to predicted background noise and instrument capabilities. We find that an event35

with a magnitude of at least a 3.5 would overcome background noise. However, current36

instrumentation would require an event of at least a magnitude 5.5 to be detectable from37

anywhere on Europa’s surface. If such an event were to occur, a seismometer on Europa’s38

surface may be able to use the recorded signal to constrain the near-surface and deep39

interior structure, and also to study the geologic setting and activity of the rocky inte-40

rior.41

2 Introduction42

Jupiter’s moon Europa is of high scientific interest for several reasons. Europa has43

a surface ice layer overlying a potentially habitable subsurface ocean (Reynolds et al.,44

1983). Europa’s surface is covered in fractures and faults, with few craters (Schenk &45

Mckinnon, 1989; Hoppa et al., 1999; McEwen, 1986) suggesting an active and geolog-46

ically young surface (Bierhaus et al., 2009; Zahnle et al., 2003). Many of Europa’s sur-47

face features are likely caused by tidal forces between Jupiter, Europa, and other Galilean48

moons, Io and Ganymede, which share a resonance with Europa (Greenberg et al., 1998,49

2003; Hurford & Greenberg, 2005; Lee et al., 2005). Due to the great interest in the search50

for life in icy ocean worlds, there are planned missions such as ESA’s JUpiter ICy moons51

Explorer (JUICE)(Grasset et al., 2013) and NASA’s Europa Clipper (Phillips & Pap-52

palardo, 2014) as well as conceptual missions including the Europa lander (Hand et al.,53

2017). These missions would explore Europa’s ice shell and subsurface ocean through54

several geophysical investigations. A seismometer on a lander could record seismic events55

originating from Europa’s interior and surface (Pappalardo et al., 2013; Lee et al., 2003).56

The primary science goals of a seismic investigation are to constrain interior structure—57

mainly the thickness of the ice shell and depth of the ocean—and to determine the level58

of Europa’s seismicity.59

Published estimates place Europa’s ice shell between 5-50 km thick overlying an60

ocean roughly 125 km deep (Green et al., 2021; Quick & Marsh, 2015; Vilella et al., 2020;61

Billings & Kattenhorn, 2005; Howell, 2020). These studies mostly rely on thermodynamic62

and geophysical modeling, and observations of geologic surface features. The thickness63

of the ice shell depends on the temperature of the ice-ocean interface and the compo-64
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sition of the ocean and ice. The temperature profile will affect the seismic velocity pro-65

file of Europa as well as the waveform characteristics. On icy ocean worlds, seismic ve-66

locities through ice are expected to have a negative gradient such that velocities decrease67

with depth (Vance, Panning, et al., 2018). Surface waves will be influenced by this gra-68

dient, and Rayleigh and Crary waves have characteristic frequencies which depend on69

the ice shell thickness. Thicker ice shells (≥20 km) are predicted to allow convection to70

occur within the ice shell. Convection alters the thermal profile the ice shell by increas-71

ing the thermal gradient in the near-surface, and maintaining a higher temperature in72

the convective regime. The changes in temperature reduce the seismic quality (increas-73

ing attenuation) (Cammarano et al., 2006). For these reasons, seismic waves traveling74

in a thinner ice shell will likely have stronger ground motion at lower frequencies com-75

pared to a thicker ice shell (Panning et al., 2018; Maguire et al., 2021).76

Even a seismometer on a short-lived lander would likely record numerous seismic77

events. Previous studies have estimated that Europa could experience higher rates of seis-78

micity than Earth (Panning et al., 2018; Hurford et al., 2020). Europa’s seismicity is likely79

driven by diurnal tides, which would produce frequent but low magnitude events, and80

non-synchronous rotation, which produce less frequent but potentially higher magnitude81

events up to magnitude ≈ 5.3 (Nimmo & Schenk, 2006) or ≈ 6.0 (Panning et al., 2006),82

depending on the shear modulus of the ice shell. In addition to events in the surface ice83

shell, seismic events may occur in Europa’s silicate interior. Here, we refer to seismic events84

as euroquakes (short for Europa-quake) to include events that occur both in the ice shell,85

normally referred to as icequakes, and in Europa’s silicate interior.86

However, understanding the detection limits of deep seismic events is paramount87

for understanding Europa’s thermal history and its habitability. Detected seismic infor-88

mation from Europa’s silicate interior would help reveal the current state of geologic ac-89

tivity of the silicate interior. Clusters of euroquakes could point to magmatic activity90

near the rock-ocean boundary, or to tidal dissipation near the boundary with the core91

(if it exists). These euroquakes could hint at the required heat flux and rheology of the92

interior, which in turn could be used to infer elemental inventory and mineralogy. Con-93

firming the presence of hydrothermal or magmatic euroquakes would also have implica-94

tions for the habitability of Europa’s ocean, as such activity could supply thermal en-95

ergy and key elements for life to exist (Vance et al., 2016; Barge & White, 2017). A re-96

cent study by Běhounková et al. (2021) suggests that tidal forces might create large mag-97

matic pulses analogous to Large Igneous Provinces (LIPS). On Earth, LIPs are large in-98

traplate volcanic events which may be tied to magma plumes and were responsible for99

widespread extinction events (Ernst, 2014). Lindström et al. (2015) suggests that strong100

seismic events likely occurred when magma moved within the near surface and erupted.101

Magmatic pulses or hydrothermal activity on Europa (Lowell & DuBose, 2005), as have102

also been hypothesized to occur in Enceladus (Choblet et al., 2017; Waite et al., 2017),103

would produce seismic activity. On Earth, volcanic seismicity (McNutt & Roman, 2015;104

McNutt, 1996) and seismic events from hydrothermal activity (Tolstoy et al., 2008) are105

well documented.106

In addition to magma-driven seismic events, Europa may also experience deep eu-107

roquakes analogous to the deep tidally-driven moonquakes recorded by Apollo seismome-108

ters (Goulty, 1979; Bulow et al., 2007). Deep moonquakes (700-1000 km), the most com-109

monly occurring seismic event on the Moon, tend to be located in clusters deep in the110

lunar mantle. These deep moonquakes have only been observed on the near-side, pos-111

sibly due to a detection bias resulting from stations being deployed only on the near-side112

(Nunn et al., 2020), or due to heterogeneity within the Moon’s deep interior (Nakamura,113

2005).114

Here, we model seismic events originating in Europa’s silicate interior with ice shells115

ranging from 5 to 50 km. Our goals are to 1) compare the waveforms of deep euroquakes116

(depth = 155 km) to shallow euroquakes in the ice shell (depth = 3 km) to investigate117
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any reduction in ground motion amplitudes, 2) use realistic noise models (Panning et118

al., 2018) to determine the magnitude of a deep euroquakes needed to provide a suffi-119

cient signal-to-noise ratio (SNR), 3) compare the signal strength of deep euroquakes to120

current instrument capabilities, and 4) investigate if ice thickness plays a role in detec-121

tion limits. These goals will determine the minimum magnitude of a euroquake that could122

be detected by a future lander mission.123

3 Methods124

3.1 Interior Models125

In order to generate models of seismic waveforms from Europa’s interior, we cre-126

ate basic interior structure model with a range of possible ice shell thicknesses. We gen-127

erate the interior models using PlanetProfile (Vance, Panning, et al., 2018)(Figure 1),128

an open-source code that creates geophysically and thermodynamically consistent radial129

models based on available constraints from spacecraft data. We assume the ice shell is130

composed of pure, solid, water and the ocean composition is standard reference seawa-131

ter (Millero et al., 2008). We set the silicate interior to a chondritic composition with132

a bulk composition (in weight percent) of 45.93% SiO2, 28.52% MgO, 19.66% FeO, 2.18%.133

CaO, 2.55% Al2O3, and 1.17% Na2O. The solid metallic core is mostly iron, with 1%134

sulfur. The models vary only in ice shell thickness and temperature profile of the ice shell135

and ocean: from a minimum ice shell thickness of 5 km up to a maximum of 50 km and136

corresponding ice-ocean interface temperatures ranging from 266 K (50 km ice shell) to137

271 K (5 km ice shell). The radius of the silicate interior is roughly consistent, such that138

a thinner ice shell has a thicker ocean and vice versa. Seismic velocities in the ice lay-139

ers are calculated using the SeaFreeze library (Journaux et al., 2019), assuming a pure140

water ice composition and no porosity. In the ocean compressional sound speeds are com-141

puted using the Gibbs Seawater toolbox in TEOS-10 (McDougall & Barker, 2011). At-142

tenuation in the ice shell is calculated using the approach of Cammarano et al. (2006).143

Seismic velocities in the silicate interior and core are calculated using the Perple X li-144

brary (Connolly, 2009, 2005).145

3.2 Synthetic Waveforms146

Once we generate the interior structure models with PlanetProfile, we use the seis-147

mic velocity models as inputs for AxiSEM (Nissen-Meyer et al., 2014) and Instaseis (van148

Driel et al., 2015) (Figure 2). We set the dominant period to 1 second and create wave-149

forms 3600 seconds long. This time and period allow us to best characterize multiple re-150

flections off the ice-ocean interfaces, as well as seismic phases passing through and re-151

flecting off the silicate interior and core. We are also able to capture most of the major152

and minor arcs of surface waves. We space receivers every 1 degree over 180 degrees to153

fully encompass distance ranges. For each model, we set event depths at 3 km and 155 km,154

representing euroquakes originating in the icy shell and in the silicate interior near the155

ocean-rock boundary.156

3.3 Background Noise157

After we create the seismograms, background noise is added. We create time se-158

ries waveforms using the preferred seismicity, catalog 0 model from Panning et al. (2018).159

It is worth noting that Panning et al. (2018) shows the expected background noise of Eu-160

ropa is significantly lower than Earth’s New Low Noise Model (Peterson, 1993). This Eu-161

ropa noise model consists of single cracks following a Gutenberg-Richter distribution in162

size and random geographic locations in Europa’s ice shell. The resulting time series of163

noise contains a larger euroquake with a maximum displacement amplitude of ≈ ±400 nm164

and then time between euroquakes with amplitudes below ≈ ±0.1 nm. To arrive at a165
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Figure 1. Example of seismic phases passing through the interior of Europa. On the left the

euroquake (yellow star) occurs at a depth of 155 km and a distance of 15 degrees from the sta-

tion (red triangle). On the right is a shallow euroquake at a depth of 3 km and a distance of 15

degrees. The ice shell (light blue) is 20 km thick, overlying an ocean (dark blue), silicate interior

(brown, radius 1411 km), and metallic core (gray, radius 390 km). We generate the ray paths us-

ing a modified version of TauP (Crotwell et al., 1999). The seismic phases are labeled according

to the nomenclature presented in Stähler et al. (2017) such that c refers to a core reflected phase,

F are P waves in fluids. Note that different phases and triplications are seen for the deep versus

shallow event.

temporally more homogeneous time series that still retains the spectral character, we per-166

turb it as follows: We calculate the Fourier-transform and power spectral density of the167

original time series to determine the mean value across a broad frequency band (0.002168

- 3 Hz). We then perform an inverse fast Fourier-transform to convert the mean power169

back into a time series. This new time series represents an average value for background170

noise with a maximum value of ≈ ±0.5 nm, rather than the large variability of the orig-171

inal time series. The final time series of noise is added to each of the euroquake wave-172

forms to create a realistic seismic signal that a seismometer might record on Europa’s173

surface. Once we add the noise, we assess whether the signal strength is greater than the174

background, assigning an SNR according to Equation 1. We use the absolute value of175

the ground acceleration amplitude to account for any negative values in amplitude. The176

root mean square (rms) provides an average value for the background noise level.177

SNR =
|RecordSignal|

rms(BackgroundNoise)
(1)

–5–
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Figure 2. Comparison of raw waveforms from models with different ice shell thicknesses and

event depths. Note the difference in y-axis scale. A deeper euroquake (red) has smaller arrivals

compared to a more shallow event (blue).

4 Results178

4.1 Surface vs Deep comparison179

We first compare waveforms without added noise (Figure 3). The acceleration am-180

plitudes are smaller by a factor of 2.5-10 for a thinner ice shell, but a thicker shell has181

even greater reductions of 12-140x for a deep versus shallow euroquake. The vertical com-182

ponent tends to have slightly lower reductions in amplitude compared to the radial com-183

ponent. We choose not to show to show the transverse component since shear waves do184

not travel through the ocean. The resulting waveform is mostly numerical noise and would185

be difficult to interpret correctly. A seismometer placed on Europa’s surface would be186

able to measure the transverse component due to scattering effects in Europa’s ice shell.187

–6–
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Figure 3. Ratio of the acceleration amplitudes between shallow (3 km) and deep (155 km)

euroquakes. Both radial (blue) and vertical (red) components are shown for a 20 km (solid) and

a 5 km (dashed) ice shell. For each distance, the ratio of the root mean square (RMS) for the

deep event to the RMS of the shallow event is displayed. We smooth the values over 5 degrees

to reduce the effects of constructive/deconstructive interference when seismic phases overlap.

The 5 km shell shows deep euroquakes have amplitudes about one tenth of shallow euroquakes

amplitudes, while the 20 km ice shell shows an even greater reduction in amplitudes.

However, our modeling does not include the effects of scattering, as it would be too com-188

putationally expensive for the global scale of our investigation.189

4.2 Realistic Noise estimation190

We use the preferred seismicity model and catalog 0 from Panning et al. (2018),191

along with the AxiSem generated databases we generated for each ice shell thickness, to192

determine if a signal from a deep euroquake could be resolved over a background signal.193

For both shallow and deep euroquakes we test several magnitude euroquakes with the194

same background signal to determine which euroquakes have visible signals. At a dis-195

tance of 10 degrees, a Mw 3.0 euroquake, cannot easily been seen in the raw seismograms,196

and would require additional filtering and signal processing. At the same distance, high197

ground acceleration amplitude phases from a deep euroquake can be seen on both the198

radial and vertical for a Mw 3.5 (Figure 4a,i, but many phases aren’t readily visible un-199

til Mw ≥ 4.0 (Figure 4b,f).200
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Figure 4. All euroquakes are for a 10 km ice shell with a 155 km source depth. Different

magnitude deep euroquakes (columns) with the same background noise are plotted for both the

radial (top row) and vertical components (bottom row). Plots d and h show spectrograms for the

time series in c and g, respectively.

In addition to viewing the time series data to identify an event, a common approach201

is to use periodograms or spectrograms to view the signals in the frequency domain. This202

approach is being used by the InSight mission to identify marsquakes (Giardini et al.,203

2020). Background noise tends to dominant at high frequencies, while euroquakes tend204

to dominant at longer periods and lower frequencies. When spectra indicate high power205

at low frequencies, this can indicate there is a seismic event. We apply this approach to206

determine if small magnitude euroquakes could be more identifiable in the frequency do-207

main than in the time domain. We use a frequency range of 0.7-2 Hz. Here we show how208

a Mw 4.0 euroquake can be seen easily on the spectrogram with signal strengths several209

decibels over background noise. A signal that is difficult to see in the time series is not210

necessarily easier to see in the spectral domain. A Mw 3.5 deep euroquake with a 10 km211

ice shell has phases that are only about a decibel or two above the background noise.212

Overall, the SNR depends both on the magnitude of the euroquake and the thick-213

ness of the ice shell. Although a Mw 3.5 euroquake has high SNRs when the ice shell is214

5 km thick (Fig. 5 a), the SNRs are much lower when the ice shell thickness increases215

to 35 km (Fig. 5 b). For thicker ice shells, a Mw ≥ 4.0 may be required in order to iden-216

tify key body wave phases from any distance.217

4.3 Comparison to Instrument Capabilities218

Although a deep euroquake may have a sufficient SNR relative to ambient seismic219

noise, that does not guarantee a seismometer would be able to record its signal. Panning220

et al. (2018) show that several candidate instruments are unlikely to record Europa’s back-221

ground noise due to the low ground acceleration amplitudes of the signals (predominately222

Mw ≤ 2.5) compared to instrument self-noise. We test different magnitudes to deter-223

mine the required signal strength to be detected by several seismic instruments (Figure224

7) and investigate whether the ice shell thickness affects the detectability. For simplic-225

ity we use the noise floor of a Trillium Compact (TC), a broadband STS2 seismometer,226

the Silicon Seismic Package (SSP) (a lunar microseismometer currently being developed227

(Nunn et al., 2021)) and InSight’s SEIS Short Period sensor (SP) (Mimoun et al., 2017)228

recorded noise levels during its flight to Mars. We assume the seismometer would only229

record the signal plus the added background noise; we do not add in lander noise or noise230

from other instrumentation.231

Although a Mw 3.5 euroquake is sufficient to rise above the background noise (at232

least for thinner ice shells (< 20 km)), a euroquake of that size is unlikely to be recorded233
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Figure 5. SNRs against ambient noise for deep source euroquake Mw 3.5 (a,c) and Mw 4.0

(b,d) for a 5 km (a,b) and 35 km (c,d) thick ice shell. The vertical components can easily be seen

at most distances with a Mw 3.5 with a thinner ice shell, but are not easily visible until a Mw

4.0 with a thicker ice shell. Gray scale bar is set so an SNR of 0 (meaning signal equals noise) is

white and the scale saturates at SNR of 10.

by even an STS2 seismometer, one of the more sensitive instruments used in terrestrial234

deployments. As seen in Figure 7, at a distance of 10 degrees, a Mw 4.5 euroquake prop-235

agating through a 20 km ice shell, can be detected by sensitive instruments but not the236

TC or SP instruments. A Mw 5.0 euroquake would be required to be detectable over a237

wide range of distances by the less sensitive instruments. It is plausible a Mw 4.5 euro-238

quake might be detectable by more sensitive equipment if it happens to occur within a239

short epicentral distance and the ice shell is thinner than 35 km. A Mw 5.0 euroquake240

could be recorded by an STS2 or SSP, regardless of ice shell thickness.241

The detection of a deep euroquake will be highly dependent on ice shell thickness.242

Thinner ice shells maintain higher amplitude seismic waves compared to thicker ice shells243

over a range of distances. In Figure 3 we show a deep source, Mw 5.0 euroquake is glob-244

ally detectable if the ice shell is ≤ 20 km. For the 5 km and 10 km ice shell models, the245

euroquake produces signals that are over 10 dB above the detection threshold for the TC.246
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Figure 6. left) Comparison of vertical component acceleration amplitudes using the 20 km ice

shell model for Mw 3.5 (blue), Mw 4.5 (black), and Mw 5.0 (yellow) euroquakes at an epicentral

distance of 10 degrees. The short-period seismometer of the InSight mission (Lognonné et al.,

2019) (red), Trillium Compact (TC) (dashed green) are the least sensitive instruments shown

here. The STS2 (dashed cyan) and Silicon Seismic Package (SSP, dashed magenta) are more

sensitive. The Mw 3.5 euroquake is not detectable, but the Mw 4.5 euroquake could be detected

by STS2 and SSP. All instruments could detect the Mw 5.0 euroquake. Right) The strength of a

Mw 5.0 signal in a 20 km ice shell compared to the TC instrument over all distances and periods

between 1-15 seconds, the period range most likely to record a signal. While the Mw 5.0 euro-

quake can be seen at most distances, a thicker ice shell would require a Mw ≥ 5.5 euroquake to

be globally detected.

The same euroquake can be detected at most distances with a 35 km ice shell but only247

at distances ≤ 20 degrees or ≥ 170 degrees with a 50 km ice shell.248

5 Discussion249

Euroquakes originating from Europa’s deeper interior will have reduced ground ac-250

celeration amplitudes compared to near-surface euroquakes, by a factor of 3-140 depend-251

ing on the distance from the source and thickness of the ice shell. Deep euroquakes have252

surface waves that are more difficult to identify, as their amplitudes are severely damp-253

ened by the ocean and less energy is trapped within the ice shell. Thicker ice have a greater254

reduction in amplitude than thinner ice shells. The greater reduction in amplitudes is255

likely due to warm convecting ice which has greater attenuation than cold brittle ice found256

in thin ice shells.257

5.1 Limitations of Models258

To be globally detectable by flight-candidate seismometers, a euroquake with a deep259

source and ice shell thinner than 35 km needs to be at least a Mw 5.0. For this inves-260

tigation, we compare euroquakes with deep source depths to euroquakes with shallow261

sources. Our main assumption is that the ice shell is laterally homogeneous and that there262

is no topography along any boundary. Although we assume Europa’s ice shell is solid,263

pure water ice, the ice likely contains some impurities (Kargel et al., 2000), including the264

possibility of clathrate hydrates (Hand et al., 2006). Uneven distribution of impurities265

within Europa’s ice shell should have only minor effects on seismic quality factors and266

–10–
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Figure 7. Signal strength of a Mw 5.0 euroquake based on ice shell thickness and distance.

A value above 0.0 indicates the signal strength exceeds detection limits for a Trillium Compact

(TC)-like instrument. A 5 km (blue), 10 km (red), and 20 km (yellow) ice shell are globally de-

tectable. However, a 35 km ice shell would only allow a signal from a Mw 5.0, deep source euro-

quake, to be detectable at certain ranges. Likewise, a 50 km ice shell suppresses the euroquake’s

signal at distances greater than 20 degrees and less than 170 degrees.

scattering, and are unlikely to reduce waveforms’ amplitudes at Europa’s surface—our267

main criteria for detection.268

We initially investigated the effects of porosity but our investigation revealed that269

the ground acceleration amplitudes of the euroquakes are not strongly reduced, but it270

is likely we have underestimated the effects. Porosity decreases seismic velocities and cre-271

ates a scattering effect that can make it difficult to identify body waves. Lunar seismic272

investigations have been hampered by the strong scattering effects (Dainty et al., 1974;273

Nakamura, 1977). For this reason, we wanted to test if porosity would increase the min-274

imum magnitude of a euroquake that could be detected. However, the investigation was275

limited in that we modeled changes in velocity and density but not scattering effects. We276

would need to use three-dimensional modeling or reduce the scale of our investigation277

to a local or regional scale to properly account for scattering effects that can reduce am-278

plitudes further. Because of the limitations of our modeling, we do not show the results279

of the porosity investigations.280
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5.2 Instrumentation Capabilities281

Several of the instruments, including the commercial Trillium Compact, are more282

sensitive at higher frequencies (≥ 1 Hz), not pictured here. Our synthetic waveform mod-283

eling approaches are limited to lower frequencies. Higher frequencies are more compu-284

tationally expensive, and thus we limit ourselves to a dominant period of 1 s (1 Hz). The285

less sensitive instruments might be able to detect smaller euroquakes than our study pre-286

dicts, particularly if the euroquakes are located at short distances that lead to retain-287

ing more of the high frequency signal. More sensitive equipment might be able to de-288

tect a Mw 4.5 euroquake over a larger range of distances. Flight candidate seismome-289

ters under development, such as the Seismometer to Investigate Ice and Ocean Struc-290

ture (Marusiak et al., 2020, 2021), the Europa Seismic Package (Kedar et al., 2020), and291

the SSP (Nunn et al., 2021) may improve the chances of detecting a deep euroquake.292

The Europa lander mission concept (Hand et al., 2017) uses the detection limits293

of the Trillium Compact as a guide for the seismic instrument payload. On this basis,294

a magnitude Mw 4.5 euroquake might be detected if the euroquake has a small epicen-295

tral distance and the ice shell is relatively thin (≤ 10 km). An additional difficulty arises296

from the lander concept design, which places the seismometer in the lander vault to pro-297

tect from Europa’s harsh surface radiation. Terrestrial analog studies in icy ocean world298

locations (Marusiak et al., 2021, 2020) and in martian settings (Panning et al., 2020) show299

that placing seismometers on lander decks can introduce coda and additional noise, al-300

though these effects are greatly reduced in the absence of wind. The additional noise from301

the lander resonant frequencies tends to occur at high frequencies (≥ 50 Hz) and depends302

on specifics of the lander design and placement of the seismometer (Marusiak et al., 2021).303

Placing seismometers on lander decks can add ≈ 20 dB of noise at the lander’s resonant304

frequencies, but otherwise lander-based instrumentation records signals within 5 dB of305

a surface coupled seismometer. For simplicity, we do not account for the added noise from306

on-deck placement.307

Based on our results, a seismic euroquake with a deep source needs to be at least308

a Mw 5.0 to be globally detectable with a TC-like instrument for ice shells < 35 km or309

at least a Mw 5.5 if the ice shell is ≥ 35 km. While such events are common on Earth,310

the two largest recorded moonquakes were a body wave magnitude 5.6 and 5.8 (Oberst,311

1987), and they were shallow events. Although Europa is assumed to be more seismi-312

cally active than the Moon (Vance, Kedar, et al., 2018), it is currently unknown whether313

the deep interior is capable of producing a euroquake large enough to be detected. Such314

an investigation is beyond the scope of this study. Additional analyses regarding the rhe-315

ology, estimated tidal dissipation, and other physical parameters of the interior need to316

be studied in more detail to assess if the silicate interior could produce a sufficient event.317

6 Summary and Conclusion318

We test how euroquakes originating from Europa’s silicate interior compare to eu-319

roquakes originating in Europa’s icy shell. Compared to shallow euroquakes, deep eu-320

roquakes will have acceleration amplitudes 2-140x smaller. A euroquake from the inte-321

rior could overcome background noise if the event’s magnitude exceeds Mw ≥ 3.5, but322

a Mw ≥ 4.0 would allow for better identification of seismic waves regardless of ice shell323

thickness and epicentral distance between the source and seismometer. However, even324

sensitive seismic instrumentation would be unlikely to detect a euroquake with Mw ≤325

4.5, particularly if the ice shell is thick (≥ 20 km). In order for a euroquake from Eu-326

ropa’s silicate interior to be globally detected, regardless of ice shell thickness, it would327

likely need to be at least a Mw 5.5 to meet the capabilities of likely flight candidate seis-328

mometers. Further studies on the possible rheology and tidal dissipation within the rocky329

interior would help in determining if Europa’s interior could produce an event with large330

–12–
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enough signals. Improvement in flight-candidate seismometers would also improve the331

chances of recording a euroquake from the interior.332
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Běhounková, M., Tobie, G., Choblet, G., Kervazo, M., Melwani Daswani, M., Du-345

moulin, C., & Vance, S. D. (2021, 2). Tidally Induced Magmatic Pulses on the346

Oceanic Floor of Jupiter’s Moon Europa. Geophysical Research Letters, 48 (3),347

e2020GL090077. Retrieved from https://doi.org/10.1029/2020GL090077348

doi: 10.1029/2020GL090077349

Bierhaus, E. B., Zahnle, K., Chapman, C. R., Pappalardo, R. T., McKinnon, W. R.,350

& Khurana, K. K. (2009). Europa’s crater distributions and surface ages.351

Europa, 161–180.352

Billings, S. E., & Kattenhorn, S. A. (2005, 10). The great thickness debate:353

Ice shell thickness models for Europa and comparisons with estimates354

based on flexure at ridges. Icarus, 177 (2), 397–412. Retrieved from355

https://linkinghub.elsevier.com/retrieve/pii/S0019103505001211356

doi: 10.1016/j.icarus.2005.03.013357

Bulow, R. C., Johnson, C. L., Bills, B. G., & Shearer, P. M. (2007). Temporal358

and spatial properties of some deep moonquake clusters. Journal of Geophysi-359

cal Research: Planets, 112 (9), 1–12. doi: 10.1029/2006JE002847360

Cammarano, F., Lekic, V., Manga, M., Panning, M. P., & Romanowicz, B.361

(2006). Long-period seismology on Europa: 1. Physically consistent in-362

terior models. Journal of Geophysical Research-Planets, 111 (E12). doi:363

ArtnE1200910.1029/2006je002710364
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