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Abstract

We developed a numerical thermodynamics laboratory called “Thermolab” to study the effects of the thermodynamic behavior

of non-ideal solution models on reactive transport processes in open systems. The equations of state of internally consistent

thermodynamic datasets are implemented in MATLAB functions and form the basis for calculating Gibbs energy. A linear

algebraic approach is used in Thermolab to compute Gibbs energy of mixing for multi-component phases to study the impact

of the non-ideality of solution models on transport processes. The Gibbs energies are benchmarked with experimental data,

phase diagrams and other thermodynamic software. Constrained Gibbs minimization is exemplified with MATLAB codes and

iterative refinement of composition of mixtures may be used to increase precision and accuracy. All needed transport variables

such as densities, phase compositions, and chemical potentials are obtained from Gibbs energy of the stable phases after the

minimization in Thermolab. We demonstrate the use of precomputed local equilibrium data obtained with Thermolab in

reactive transport models. In reactive fluid flow the shape and the velocity of the reaction front vary depending on the non-

linearity of the partitioning of a component in fluid and solid. We argue that non-ideality of solution models has to be taken

into account and further explored in reactive transport models. Thermolab Gibbs energies can be used in Cahn-Hilliard models

for non-linear diffusion and phase growth. This presents a transient process towards equilibrium and avoids computational

problems arising during precomputing of equilibrium data.

Hosted file

essoar.10509513.1.docx available at https://authorea.com/users/526981/articles/596522-

thermolab-a-thermodynamics-laboratory-for-non-linear-transport-processes-in-open-systems

1

https://authorea.com/users/526981/articles/596522-thermolab-a-thermodynamics-laboratory-for-non-linear-transport-processes-in-open-systems
https://authorea.com/users/526981/articles/596522-thermolab-a-thermodynamics-laboratory-for-non-linear-transport-processes-in-open-systems


manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

 

 

Thermolab: a thermodynamics laboratory for non-linear transport processes in open 1 

systems 2 

J. C. Vrijmoed1, and Y. Y. Podladchikov2  3 

1Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany. 4 

2Institute of Earth Science, University of Lausanne, Lausanne, Switzerland. 5 

 6 

Corresponding author: Johannes Vrijmoed (j.c.vrijmoed@fu-berlin.de)  7 

   8 

Key Points: 9 

• Thermolab: a set of MATLAB codes is presented to perform equilibrium and non-10 

equilibrium thermodynamic calculations. 11 

• Local thermodynamic equilibrium is used to study effects o non-ideality of solution 12 

models non-linear transport processes. 13 

• Non-linear diffusion processes are investigated with Thermolab providing a transient 14 

natural physical process towards equilibrium.    15 

mailto:j.c.vrijmoed@fu-berlin.de)


manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

Abstract 16 

We developed a numerical thermodynamics laboratory called “Thermolab” to study the effects 17 

of the thermodynamic behavior of non-ideal solution models on reactive transport processes in 18 

open systems. The equations of state of internally consistent thermodynamic datasets are 19 

implemented in MATLAB functions and form the basis for calculating Gibbs energy. A linear 20 

algebraic approach is used in Thermolab to compute Gibbs energy of mixing for multi-21 

component phases to study the impact of the non-ideality of solution models on transport 22 

processes. The Gibbs energies are benchmarked with experimental data, phase diagrams and 23 

other thermodynamic software. Constrained Gibbs minimization is exemplified with MATLAB 24 

codes and iterative refinement of composition of mixtures may be used to increase precision and 25 

accuracy. All needed transport variables such as densities, phase compositions, and chemical 26 

potentials are obtained from Gibbs energy of the stable phases after the minimization in 27 

Thermolab. We demonstrate the use of precomputed local equilibrium data obtained with 28 

Thermolab in reactive transport models. In reactive fluid flow the shape and the velocity of the 29 

reaction front vary depending on the non-linearity of the partitioning of a component in fluid and 30 

solid. We argue that non-ideality of solution models has to be taken into account and further 31 

explored in reactive transport models. Thermolab Gibbs energies can be used in Cahn-Hilliard 32 

models for non-linear diffusion and phase growth. This presents a transient process towards 33 

equilibrium and avoids computational problems arising during precomputing of equilibrium data. 34 

Plain Language Summary 35 

The behavior of Earth materials, rocks, minerals, melts, fluids and gases is important to predict 36 

physical processes in the Earth with computer models. The purpose of this is to study how the 37 

changes of variables such as fluid and solid composition influence the diffusion, fluid flow and 38 

reaction in rocks. Here we present a set of computer codes, called Thermolab, to calculate 39 

important physical properties such as density and chemical composition of solids, fluids and 40 

melts in chemical equilibrium. The calculations are based on the Gibbs energy that exists for 41 

every material. We use computer codes, written in MATLAB/OCTAVE language, to show how 42 

this Gibbs energy is calculated and used to compute chemical equilibrium and find the physical 43 

properties such as density, and chemical composition. We discuss techniques for accurate 44 

calculation of chemical equilibrium and physical properties in real rocks. Finally, we use 45 

Thermolab to formulate a computer model of fluids reacting with rocks. We find that chemical 46 

composition of the fluid and rock strongly affect the speed and shape of the boundary between 47 

reacted and unreacted rock. Thermolab can be used in phase growth models to investigate the 48 

way in which rocks develop towards equilibrium.  49 

1 Introduction 50 

One of the primary goals in Earth Science is to understand the physical processes that 51 

govern natural phenomena. This will facilitate prediction of potential hazardous events, such as 52 

earthquakes, volcanic eruptions, and related threats such as tsunamis (Fagents et al., 2013; 53 

Geller, 1997; Rundle et al., 2021; Ulrich et al., 2019). Predicting causes and effects of climate 54 

change, the reduction of global warming by storing CO2, or the safety of storing nuclear waste, 55 

strongly rely on the understanding of underlying coupled physical processes (Orr, 2018; X. 56 

Zhang et al., 2022). Furthermore, the exploration of fossil fuels and raw materials in economic 57 

ore deposits, and most importantly the transition to renewable energy rely on a good 58 

understanding of the physics of geological processes (Feng et al., 2021; Vehling et al., 2020; 59 
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Weis et al., 2012). In many cases, numerical models that solve the mathematical equations 60 

governing the physics are the only way to predict such natural processes. Even though most 61 

coupled natural processes are non-equilibrium processes, the local equilibrium thermodynamic 62 

assumption is needed to close the system of mass, momentum, and energy equations and 63 

construct the model (De Groot & Mazur, 1984; Lebon et al., 2008). Without the knowledge of 64 

thermodynamic behavior of rocks, minerals, melts, fluids and gases involved in the process 65 

quantitative and predictive models cannot be constructed.  66 

Transport processes such as diffusion, advection, and deformation, play a major role in 67 

all the important topics and are nearly always coupled to chemical reactions. Thus, reactive 68 

transport models have been a subject of geoscience research for many years (Steefel, 2019; 69 

Steefel et al., 2005). A large number of reactive transport codes has been developed particularly 70 

with the focus of subsurface processes (Kulik et al., 2012; Steefel et al., 2014), and applied to 71 

relevant geological problems in the subsurface (e. g. Sonnenthal et al., 2005; Wanner et al., 72 

2014). A thorough review of the vast amount of work on reactive transport would be too 73 

extensive for the scope of this paper. For an overview of the main reactive transport codes in use 74 

for subsurface processes see Steefel et al. (2014).  75 

Natural observations on, for example, exposed mantle rocks exhumed from great depth 76 

can be used to learn something about natural processes of CO2 sequestration (Kelemen & Matter, 77 

2008) and may lead to new insights for human carbon storage. In this context, knowledge of the 78 

thermodynamic behavior of minerals is also important for industrial processes and may lead to 79 

useful discoveries for example for carbon sequestration (Glasser et al., 2016). 80 

Large scale geodynamic processes influence processes at the Earth’s surface and play a 81 

role in the global geochemical cycles, the water budget, melt generation at ocean ridges and in 82 

collision zones, and erosion in mountain belts. In subduction zones these processes are closely 83 

interconnected as dehydration of hydrated oceanic lithosphere generates fluids that may trigger 84 

earthquakes and induce melting in the mantle wedge that may ultimately lead to volcanism at the 85 

surface, including direct effects on climate (Bebout et al., 2018). Numerical models have been 86 

useful in gaining more understanding of the physical processes of migration fluids from the 87 

subducting slab upwards (Wilson et al., 2014). Migration and melt focusing due to reaction 88 

infiltration instabilities have been studied by Aharonov et al. (1995). Connolly (1997) showed 89 

how coupling of dehydration reactions produce fluids that travel up in a visco-elastic matrix 90 

creating porosity waves as a mechanism for fluid migration. Balashov and Yardley (1998) 91 

investigated the effect of reaction on porosity structer and fluid pressure variation. More recent 92 

models further investigated fluid focusing, transport and reaction processes (Tian & Ague, 93 

2014). 94 

Recent progress in some of the important topics above has been made possible by 95 

coupling the local equilibrium thermodynamics to transport codes. Plümper et al. (2017) showed 96 

how the initialization of dehydration in subduction zones is dominated by chemical 97 

heterogeneities that control the thermodynamics on the micro-scale. Coupled to mass 98 

conservation and fluid flow, these local chemical heterogeneities lead from an initially formed 99 

local porosity to the development of fluid pathways.  100 

The time scales of geological processes can vary between milliseconds to billion of years 101 

(Beinlich et al., 2020). With the use of numerical models combined with field observations, the 102 

duration of geological processes originally thought to be on the geological time scales have been 103 
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shown to be much faster (Ague & Baxter, 2007; Beinlich et al., 2020; John et al., 2012). 104 

Therefore, the prediction of the speed of reaction fronts, and elemental transport hinges on 105 

quantitative models obeying mass, momentum and energy conservation. Beinlich et al. (2020) 106 

used a reactive transport code coupled to local equilibrium thermodynamics to constrain the 107 

speed of natural CO2 sequestration in serpentinites. The details behind the thermodynamic 108 

calculations in Beinlich et al. (2020) are given in this paper.  109 

Nonideality of the solution models and its impact on the convexity of the flow functions 110 

(the so-called ‘isotherms’) has long been recognized as an important control on mass transport in 111 

porous reactive flows (Guy, 1993; Lichtner & Carey, 2006). However, it is underexplored mostly 112 

due to lack of transport models coupled to thermodynamically complex nonideal models 113 

including coupled substitutions, non-convex energy functions and ordering. 114 

We present a numerical thermodynamics laboratory which we shall call “Thermolab”, to 115 

do thermodynamic calculations on rocks, minerals, melts, and fluids involving aqueous species. 116 

We further show how this can be used in reactive transport models that are based on laws of 117 

mass, momentum, and energy conservation. Code examples are written in MATLAB/OCTAVE 118 

as it provides a transparent way of translating the mathematics and documenting the algorithms. 119 

Matlab also provides a prototype coding development platform. Short matlab codes serve as 120 

‘flow charts’ used in the past to document the algorithms. The advantage of the 121 

MATLAB/OCTAVE codes compared to the ‘flow charts’ is that those are actually working 122 

computer programs, and can be copy-pasted from the figure and executed. Once working these 123 

codes can also be easily translated to any preferred programming language for optimization and 124 

supercomputing. The focus in this contribution is entirely on the technicalities with limited 125 

example applications. We document the nonideality of the models and the impact on non-linear 126 

transport processes in open systems by showing examples of how this can be achieved with 127 

Thermolab. Future studies will be investigating the impact of the nonideality on mass transport. 128 

2 Background and motivation 129 

A typical set of equations that governs the physics of the reactive transport based on 130 

Beinlich et al. (2020) is shown to motivate the use of equilibrium thermodynamics in transport 131 

processes. Total mass conservation in which Darcy flux is used: 132 
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Mass conservation of an immobile species in the solid: 134 

 ( )( )1 0
ims sC

t
 


− =


 (2) 135 

Mass concentration balance of a mobile species in the fluid: 136 
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From this set of equations, we need to compute the local solid density, fluid density, 138 

chemical potential, mobile species concentration in fluid, and in solid, and one immobile species 139 
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concentration in solid. When the transport of material in the fluid is neglected, the third equation 140 

is omitted and the system reduces to the set of equations of Plümper et al. (2017). In any case, 141 

fluid and minerals have variable composition and density. This leaves a system of three 142 

equations for eight unknowns: fluid and solid density (f), and (s), weight fraction of a mobile 143 

component in fluid and solid (Cf), and (Cs), chemical composition of the component in the fluid 144 

(Cf), and the weight fraction of an immobile component in the solid (Cs,im), porosity () and 145 

fluid pressure (Pf). Background permeability (k0), fluid viscosity (f) and diffusion coefficient of 146 

mobile component Cf in the fluid (DCf) are given. Porosity, fluid pressure and either the fluid or 147 

the solid composition of each component in the system are not thermodynamically constrained 148 

and the three equations are solved for , Pf and Cs. The remaining unknown solid and fluid 149 

compositions and densities are found from thermodynamic relationships assuming local 150 

equilibrium at each point in time and in space in the model. In complex mineral, melt and fluid 151 

solutions, the non-ideal mixing behaviour leads to non-linear thermodynamic relationships. We 152 

compute these relationships with Thermolab, benchmarked with phase diagrams for rocks, fluids 153 

and melts. Using MATLAB codes, the first part of this contribution documents the technical 154 

details of the equilibrium thermodynamic calculations and the treatment of solid solutions. This 155 

is considered essential to understand the effects on non-linear transport processes. We include a 156 

description of methods to sufficiently resolve the equilibrium compositions and densities of the 157 

involved phases. This is needed to avoid numerical artefacts and instability in the transport 158 

codes. In the last part, we get back to the details of the implementation and solution of a system 159 

of transport equations in which all quantities evolve through time. For a full list of symbols and 160 

notation see Table 1.  161 

Table 1 List of symbols and abbreviations. Symbols in italics for scalar variables, bold font for 162 

vectors, and bold capitals to denote matrices. 163 

Symbol Meaning Units MATLAB 

ρf Density of fluid kg/m3 rhof 

ρs Density of solid kg/m3 rhos 

φ Porosity (volume fraction of fluid) volume fraction phi 

Cf Concentration of component in fluid weight fraction Cf 

Cs Concentration of component in solid weight fraction Cs 

k0 background permeability m2 k0 

µf fluid viscosity Pa s muf 

Pf fluid pressure Pa Pf 

t time s t 

g gravitational acceleration m/s2 grav 

DCf diffusion coefficient of component in fluid m2/s DCf 

Cf Chemical potential of component in fluid J/mol mu_Cf 

Cs,im concentration of immobile component in solid weight fraction Cs_im 

g0 Specific endmember gibbs energy  J/mol G 

s0 Specific endmember entropy  J/mol S 

h0 Enthalpy J/mol H 

T Temperature K T 

P Pressure kbar P 

R Universal gas constant J/mol/K R 

g0
r Specific endmember gibbs energy at 1 bar, 25 °C J/mol Gr 

s0
r Entropy at reference conditions (1 bar, 25 °C) J/mol Sr 

h0
r Enthalpy at reference conditions (1 bar, 25 °C) J/mol Hr 

v0
r Volume at reference conditions (1 bar, 25 °C) J/bar Vr 

a heat capacity coefficient kJ/K a 

b heat capacity coefficient kJ/K2 b 
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c heat capacity coefficient kJ K c 

d heat capacity coefficient kJ K-1/2 d 

aMRK Fluid EOS coefficient kJ2 kbar K1/2 mol-2 a 

bMRK Fluid EOS coefficient kJ kbar-1 mol-1 b 

K bulk modulus kbar k 

K’ derivative of bulk modulus kbar kp 

cP Heat capacity J/mol/K Cp 

 Stoiciometric coefficents in chemical reaction mol v 

Gsys Gibbs energy of system J Gsys 

gmix Specific gibbs energy of a mixture J/mol gmix 

gmech Specific gibbs energy of a mechanical mixing J/mol gmech 

gid Specific gibbs energy of a ideal mixing J/mol gid 

gnid Specific gibbs energy of a non-ideal mixing J/mol gnid 

p Vector of proportions of endmember in a mixture mol fraction p 

m Site multiplicity in ideal mixing energy mol mtpl 

z Vector of site fraction in a mixture mol fraction z 

St Site occupancy table mol st 

Zt Site fraction endmember matrix mol fraction zt 

Keq Equilibrium constant - Keq 

G0
rxn Difference in g0 between products and reactants J dGrxn 

 Molar amount of phase from Gibbs minimization mol alph 

phs Matrix of composition of phases in mol mol Nphs 

nsys Vector of system compositions in mol mol nsys 

Vmol Molar volume m3/mol Vmol 

mmol Molar mass of phase vector kg/mol Mmol 

molm Molar mass of components vector kg/mol molm 

 Density of a phase kg/m3 rho 

p Volume fraction of phase - phi_p 

mol Mole fraction of phase - phi_m 

wt Weight fraction of phase - phi_wt 

ss Vector of densities of solids kg/m3 rho(solid_id) 

ss Vector of volume fraction of solids - phi_p(solid_id) 

tot Total density kg/m3 rho_t 

e Effective compressibility Pa-1 beta_e 

1 Chemical potential of component 1 J/mol mu_1 

DCs Diffusion coefficient in solid m2/s Dc_s 

 Cahn-Hilliard surface energy parameter J/mol gam 

3 Gibbs energy calculation 164 

The starting point of equilibrium thermodynamic calculations in Thermolab is the Gibbs 165 

energy of a mineral, melt, or fluid. All other required properties are derived from the Gibbs 166 

energy. The calculation of Gibbs energies requires in the first place an internally consistent 167 

thermodynamic dataset for pure solids, fluids, gases, or aqueous species, often referred to as 168 

endmembers. Secondly, it needs solution models that describe the energy of mixing between 169 

endmembers dissolved in a phase, also referred to as mixing models or activity-composition 170 

relationships (e.g. Ganguly, 2020; Holland & Powell, 2003). Thermolab currently has built in 171 

several internally consistent thermodynamic datasets for minerals, melts and fluids, the most 172 

extensive and up to date are the Holland and Powell endmember databases (Holland & Powell, 173 

1998, 2011). The SUPCRT (dslop98) mineral database (Helgeson et al., 1978; Johnson et al., 174 

1992) is implemented to allow calculations with additional minerals not included in the Holland 175 

and Powell datasets. For water (and/or CO2), several equations of state (EOS) are implemented, 176 

including the EOS of the International Association for the Properties of Water and Steam 177 
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(IAPWS) (Wagner & Pruss, 2002, revised version, 2018), the EOS of Johnson and Norton 178 

(1991), Z. G. Zhang and Duan (2005), C. Zhang and Duan (2009), Pitzer and Sterner (1994), and 179 

the CORK EOS, from Holland and Powell (1991). For aqueous species, we have implemented 180 

the Holland and Powell (1998) formulation, and the Tanger and Helgeson (1988) formulation as 181 

implemented in SUPCRT92 (Johnson et al., 1992) using the 1998 database including more than 182 

1300 aqueous species. Furthermore, it includes the Deep Earth Water (DEW) model (Sverjensky 183 

et al., 2014) with the recent updates and additional species from Huang & Sverjensky (2019), 184 

Aranovich et al. (2020) and the Miron dataset for aqueous species (Miron et al., 2016). This 185 

forms the endmember basis for use in thermodynamics of mixtures and for the local equilibrium 186 

calculations. In the future, this can be extended with additional thermodynamic endmember 187 

datasets. The following documents the main code as shown in an example in Figure 1. 188 

3.1 Endmembers 189 

The Gibbs energy of an endmember, e.g., a mineral, gas, fluid, or melt species with a 190 

fixed composition, is calculated from: 191 

 0 0 0

r r

T P

r ex

T P

g g s dT v dP g= −  +  +   (4) 192 

An internally consistent database contains the Gibbs energy at reference conditions (g0
r). 193 

Alternatively, it holds enthalpy and entropy data from which the Gibbs energy at reference 194 

conditions can be obtained: 195 

 
0 0 0

r r r rg h T s= −   (5) 196 

The entropy at constant pressure is evaluated from: 197 

 00

r

T

P
r

T

c
s s dT

T
= +   (6) 198 

For every endmember, an expression for heat capacity and volume is needed to evaluate 199 

the above integrals and calculate the Gibbs energy. 200 

3.1.1 Solids 201 

An example of a heat capacity expression to be used in (6) consists of a four-parameter 202 

polynomial fit to experimental heat capacity data as used in the dataset of Holland and Powell 203 

(1998, 2011): 204 

 
2 1/2

Pc a bT cT dT− −= + + +  (7) 205 

For the pressure dependence of Gibbs energy an equation of state (EOS) is used to relate 206 

volume to pressure. For example, the Murnaghan equation of state used by Holland and Powell 207 

(1998):  208 
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 (8) 209 

Figure 1 Thermolab code example to calculate the Gibbs energies of a phase for a given 210 

composition at fixed temperature (T) and pressure (P). Here the example for the amphibole 211 

model of Green et al. (2016). This code is a possible MATLAB translation of the equations and 212 

methods documented in the Gibbs energy calculation section of the main text. The first line in the 213 

code clears MATLAB memory and figure. In line 3 and 4 T and P are defined. Line 5 and 6 214 

specify, respectively, for which phase to calculate the Gibbs energy and the name of the Excel 215 

file in which the solution model data is stored. Line 7 specifies the name of the elements in the 216 

phase, and line 8 the corresponding composition in moles for which to calculate the Gibbs 217 

energy. Line 10 is a call to read the needed thermodynamic data. Line 12 and 13 are needed for 218 

aqueous species and compute the density and dielectric constant of water. Line 15 to 24 compute 219 

the Gibbs energy of the endmembers in the solution (e. g. eq. 4&11). Proportions and site 220 
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fractions are calculated in lines 26-33. Numerical errors are removed in lines 35 and 36. In 221 

Lines 29 and 30 a grid of all possible states of order-disorder is generated for the particular 222 

composition of the phase specified in line 8. For all these compositions the mechanical, ideal 223 

and non-ideal mixing energy is calculated in lines 38, 39, and 40, respectively. The non-ideal 224 

Gibbs energy, line 40, is a call to an external function that comprises a collection of non-ideal 225 

mixing functions that can be opted. Line 43 finds the Gibbs energy that is minimum and thus 226 

finds the state of order-disorder. Line 44 displays the corresponding proportions of the 227 

endmembers. 228 

Note that the reference pressure is added to ensure the limit of standard reference 229 

conditions. The EOS can be rearranged for volume: 230 

 ( )
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 (9) 231 

Substituting expression (6), and (9) into (4), and using a suitable heat capacity formula 232 

such as (7), the integrals can be evaluated analytically, or numerically. Lines 18-21 in Figure 1 233 

show a MATLAB example of using equations (4), (5), and (6). In the example, the integrals in 234 

equation (4) are evaluated in a separate function. To use a different thermodynamic database, the 235 

heat capacity equation and EOS can be replaced by the appropriate expression. A number of 236 

important endmembers such as quartz are treated with additional volume and entropy terms to 237 

account for first or second order phase transitions such as heat capacity anomalies or order-238 

disorder in the crystal lattice (e.g. sillimanite Holland & Powell, 1996). This then requires an 239 

excess Gibbs energy contribution, which in principle can also be calculated according to 240 

equation (4) using different volume and heat capacities and integration limits (e.g. Berman & 241 

Brown, 1985). Alternatively, an expression for this additional energy is given (Holland & 242 

Powell, 1998). In the example in Figure 1, this is represented by a call to a MATLAB function 243 

(line 20 in Figure 1). For the specific details we refer to the original papers documenting the 244 

internally consistent databases (Berman, 1988; Holland & Powell, 1998, 2011; Johnson et al., 245 

1992). 246 

3.1.2 Fluids 247 

For molecular fluids such as H2O and CO2, the EOS, e.g. equation (8), is replaced by an 248 

appropriate fluid EOS. As water is one of the most important fluids on our planet, extensive 249 

work has been done on the thermodynamic formulation. The main difference between solids is 250 

that the fluid EOS, especially for water, usually cannot easily be rearranged for volume as there 251 

are multiple volumes possible for a single pressure in the region of coexisting fluid and gas. An 252 

example of this is given by the Modified Redlich Kwong (MRK) EOS, on which Holland and 253 

Powell (1991) base the fluid Gibbs energies to be compatible with the extensively used 254 

thermodynamically consistent dataset of Holland and Powell (1998):  255 

 
( )

MRK

MRK MRK

aRT
P

v b v v b T
= −

− +
 (10) 256 

Because this is a multivalued function a suitable algorithm must be used to calculate 257 

volume as function of P-T in the two-phase region (e.g. where gas and liquid coexist). In the 258 

single-phase region, the volume for the stable phase (gas or liquid) should be determined. 259 
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Holland and Powell (1991) rearranged the equation as a cubic in volume after which the correct 260 

root must be found in each phase region. Rather than solving which phase (e.g. gas, liquid, or 261 

both) is stable, the different regions were predefined and the correct volume was selected based 262 

on the P-T conditions. The MRK formulation in (10) is extended with a virial contribution and 263 

Holland and Powell (1991), give detailed instructions how to calculate the volume as function of 264 

P-T for H2O, CO2, and several other COH species. The advantage of the CORK formulation is 265 

that it can be integrated analytically and details in the original paper of Holland and Powell 266 

(1991) are sufficient for reproducing the values for use in Thermolab. The more updated 267 

thermodynamically consistent dataset of Holland and Powell (2011), that replaces the Holland 268 

and Powell (1998) dataset, uses the EOS of Pitzer and Sterner (1994). 269 

Calculating the Gibbs energy of fluids then follows equation (4) just as for solids, with an 270 

entropy integral that is consistent with the dataset for solid, melt and/or gas endmembers. The 271 

Holland and Powell (1998, 2011) datasets have parameters for heat capacity, fitted 272 

simultaneously with the minerals to ensure the Gibbs energy at room pressure and elevated 273 

temperature can be calculated consistently. 274 

In principle, the CORK or Pitzer and Sterner (1994) EOS can be used in conjunction with 275 

the SUPCRT mineral database, however for the entropy integral in (4) a consistent heat capacity 276 

formulation is needed to obtain thermodynamic calculations. The SUPCRT database does not 277 

contain heat capacity values for H2O. The specific details needed for this calculation in the 278 

original papers of Johnson and Norton (1991) and Johnson et al. (1992) could not be found. 279 

Similarly, the DEW spreadsheet does not contain H2O entries and combines Helgeson and 280 

Delaney (1978) and an internal routine for use only above at least 0.1 GPa, likely as it is intended 281 

to be used for Deep Earth applications. Moreover, at low P and T, e.g. for shallow processes, the 282 

CORK EOS should not be used (Holland and Powell, 1991). We found that by using the NIST 283 

Shomate heat capacity equations (Shomate, 1954), using parameters from the NIST website for 284 

liquid water and gas the Gibbs energies retrieved from SUPCRT can be reproduced accurately. 285 

The simplicity of the formulation and up to date online documentation of the parameters is of 286 

advantage. For calculations at elevated P, the numerical integration of the IAPWS or the EOS of 287 

Johnson and Norton (1991) give satisfactory results at low T, whereas the CORK EOS can be 288 

used above 100 °C (Holland and Powell, 1991).  289 

3.1.3 Aqueous species 290 

Gibbs energies of aqueous species are calculated in Thermolab following the formulation 291 

of Tanger and Helgeson (1988) as also outlined in Johnson et al. (1992). The resulting Gibbs 292 

energies have been compared to the output from SUPCRT and are reproduced within 1 Joule 293 

precision. The DEW model (Sverjensky et al., 2014) and the Miron dataset (Miron et al., 2016; 294 

Miron et al., 2017) use the same formulation, with refitted parameters for some of the 295 

endmember species. Although fundamentally the aqueous species are also calculated according 296 

to equation (4), there is a difference to the solid, melt and fluid endmembers because the aqueous 297 

species need the density and dielectric constant of the solvent. The contribution to Gibbs energy 298 

of solvation therefore needs the density and dielectric constant of water for the Born equation 299 

(Figure 1, Lines 12-13). This is included in the excess Gibbs energy term (Figure 1, Line 20). 300 

Note that in the example for amphibole in Figure 1, the properties of water are irrelevant, but to 301 

maintain some generality they have been left in the example. When computing the Gibbs energy 302 

of aqueous species, we change the name of the phase from Amphibole into any desired aqueous 303 
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species or fluid mixture defined in the solution model file. In Thermolab, the user can choose 304 

from a number of EOS and dielectric constants to be used in the aqueous species Gibbs energy 305 

(Fernández et al., 1997; Johnson & Norton, 1991; Sverjensky et al., 2014). The aqueous species 306 

endmembers of Holland and Powell (1998) offers a restricted set of species compared to the 307 

SUPCRT data, but it has the advantage that it is fitted in the internally consistent dataset of the 308 

mineral, melt and gas endmembers of Holland and Powell (1998, 2011). Their formulation is 309 

based on the Anderson density equation (Anderson et al., 1991) and uses the CORK EOS for the 310 

water density. These aqueous species endmember data can also be used in fluid mixtures (Evans 311 

& Powell, 2006, 2007). 312 

3.1.4 Dependent endmembers 313 

Endmembers can also be formed from a linear combination of several other endmembers 314 

(Figure 1, Line 23):  315 

 
0

depg =  0
ν g  (11) 316 

where the  holds the stoichiometric reaction coefficients. A formation energy may be associated 317 

with such a reaction and this can be captured in any functional form in the excess Gibbs energy 318 

term of (4).  319 

3.2 Gibbs energy of mixtures 320 

The Gibbs energy of a phase (mineral, gas, fluid or melt species) that can form a mixture 321 

between several endmembers is represented by the sum of mechanical, ideal, and non-ideal 322 

mixing energies (Figure 1, Line 41): 323 

 mix mech id nidg g g g= + +  (12) 324 

The mechanical part of the mixing is the sum of the Gibbs energy of all endmembers in 325 

the mixture, weighted by their proportions (p) (Figure 1, Line 38). 326 

 
0

mechg = p g  (13) 327 

The ideal mixing Gibbs energy is given by a linear combination of the site fractions in the 328 

mixture multiplied with their logarithm (Figure 1, Line 39): 329 

 ( ) ( )( )ln lnidg R T=  − 
t t

m z z Z Z p  (14) 330 

The last term in equation (14) ensures that the ideal Gibbs energy is zero in the limit of 331 

the pure endmember. 332 

Non-ideal Gibbs energy can be calculated in the simplest way with a binary mixing 333 

formula: 334 

 
nidg =  T

p W p  (15) 335 

This is essentially a sum of multiplications of binary pairs of endmembers in the mixture 336 

multiplied with their interaction parameters. These interaction parameters can depend on 337 

composition to get an asymmetric mixing formulation, referred to as subregular mixing model 338 
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(Ganguly, 2020). When p is replaced with a size parameter adjusted proportion and using the 339 

appropriate W the asymmetric formulism of Holland and Powell (2003) can be used. If the molar 340 

volumes of the endmembers are used as size parameter, it is essentially a Van Laar mixing model 341 

(Van Laar, 1906), as for example used by Aranovich and Newton (1999). The W and any size 342 

parameters are in general also temperature and pressure dependent such as also the molar volume 343 

used in Van Laar mixing models. Any other regular or subregular solution models can be used in 344 

place of (15) and ternary interaction terms may be added. In Thermolab, it is possible to expand 345 

the codes with a variety of mixing formulas for the non-ideality by adding the appropriate 346 

formulation to the function called in line 40 in Figure 1. 347 

3.3 Solution models 348 

The data for m, and Zt are retrieved from a site occupancy table, stored for example in an 349 

Excel spreadsheet. In this spreadsheet, also data for W and any size parameters for asymmetric 350 

formalism models (Holland & Powell, 2003) and the model type are stored. In Figure 1, the data 351 

is loaded in the beginning of the code (line 10, Figure 1) from a function that reads the Excel 352 

data. Site fractions z are obtained by multiplying the transpose of the site fraction speciation 353 

matrix with a column vector of proportions: 354 

 T= tz Z p  (16) 355 

After specifying proportions of the endmembers in a solution, the Gibbs energy of that 356 

particular phase and composition at a given P and T can be calculated from the above. 357 

3.3.1 Site occupancy 358 

The site occupancy of the mixture can be represented by a table listing the occupancy of 359 

crystallographic sites for each endmember. For example a binary olivine solution with only one 360 

crystallographic site M, and a fixed silica tetrahedral site (which has composition SiO4), is shown 361 

in Table 2. It can be represented by a matrix: 362 

 

2 0 1

0 2 1

 
=  

 
t

S

 (17) 363 

Table 2. Binary olivine site occupancy 364 

Site M T 

Occupancy Mg Fe SiO4 
    

Endmember    

Forsterite 2 0 1 

Fayalite 0 2 1 

The columns represent occupancy of each species on a crystallographic site for the 365 

endmember in the rows of the table. Site fractions z can be retrieved from this table by dividing 366 

each site occupancy over the sum of moles of the species on that site, which gives the site 367 

multiplicity, and can be represented by a vector: 368 

 
 2 2 1=m

 (18) 369 
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Elementwise division of each row in Table 2 or in matrix (17) with this multiplicity 370 

vector leads to a table of site fractions represented by the matrix: 371 

 

1 0 1

0 1 1

 
=  

 
t

Z

 (19) 372 

Table 3. Binary olivine site fraction table 373 

 374 

Site M T 

Occupancy Mg Fe SiO4 

Site multiplicity 2 2 1 
    

Endmember    

Forsterite 1 0 1 

Fayalite 0 1 1 

 375 

Using (16) and spelling this out in matrix-vector notation, it is essentially a set of 376 

equations where the coefficients in front of the proportions are directly read from the site fraction 377 

table and then transposed: 378 

 

4

1 0

0 1

1 1

M

Mg

foM

Fe

faT

SiO

z
p

z
p

z

   
    

=     
      

 (20) 379 

The site fractions become: 380 

 4

M

Mg fo

M

Fe fa

T

SiO fo fa

z p

z p

z p p

=

=

= +
 (21) 381 

3.3.2 Ordering 382 

In fact, in olivine, Mg and Fe can interchange on two molecular sites M1 and M2. We 383 

could rewrite the site speciation table. However using only the two endmembers, it would not 384 

lead to a different configurational entropy. There needs to be an endmember that allows different 385 

distribution of Mg and Fe on the two sites. This is the purpose of introducing an ordered 386 

endmember e.g. “Ordered Olivine”. The Gibbs energy of this endmember can be made out of 387 

two endmembers, forsterite and fayalite and an energy of reaction may be added. 388 

After this, we get three proportions that define the Gibbs energy. In principle, the 389 

endmember could also be formulated as having all Fe on M1 and all Mg on M2, however using a 390 

negative proportion of the ordered olivine listed in the table we can also reach this result (Powell 391 

& Holland, 1999).  392 

Using the speciation matrix and (16) we get: 393 
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4

1

1

2

2

1 0 1

0 1 0

1 0 0

0 1 1

1 1 1

M

Mg

M

Fe fo

M

Mg fa

M

Fe od

T

SiO

z

z p

z p

z p

z

   
   

    
    =
    
     

     

 (22) 394 

Giving the site fractions: 395 

 4

1

1

2

2

M

Mg fo od

M

Fe fa

M

Mg fo

M

Fe fa od

T

SiO fo fa od

z p p

z p

z p

z p p

z p p p

= +

=

=

= +

= + +
 (23) 396 

3.3.3 Worked example 397 

Using the multiplicities and site fractions for the olivine example we get using Equation 398 

(14): 399 

 ( ) ( )( )2 M M M M

id Mg Mg Fe Feg R T z ln z z ln z=  +   (24) 400 

The non-ideal mixing energy becomes: 401 

 ( ), ,nid fo fa fa fo fo fag w w p p= +  (25) 402 

In case we use a Holland and Powell (1998) model for olivine, the non-ideal parameters 403 

are equal to each other and reduces to the simple binary symmetric mixing parabola: 404 

 ( ),2 1nid fo fa fo fog w p p= −  (26) 405 

For the example with order-disorder the ideal mixing Gibbs energy becomes: 406 

 ( ) ( ) ( ) ( )( )1 1 1 1 2 2 2 2M M M M M M M M

id Mg Mg Fe Fe Mg Mg Fe Feg R T z ln z z ln z z ln z z ln z= + + +  (27) 407 

(Note that the T-site fraction cancels due to the logarithms because the site fraction is 408 

always 1). 409 

The non-ideal Gibbs energy becomes: 410 

 ( ) ( ) ( ), , , , , ,nid fo fa fa fo fo fa fo od od fo fo od fa od od fa fa odg w w p p w w p p w w p p= + ++ + +  (28) 411 
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3.3.4 Proportions from site fractions 412 

The proportions can be written as function of site fractions by solving the system of 413 

equations in (23) using the independent equations and the fact that proportions sum up to 1. This 414 

leads to: 415 

 

1

2

1

M

Fe fa

M

Mg fo

fo fa od

z p

z p

p p p

=

=

+ + =
 (29) 416 

Which after solving for proportions gives: 417 

 

1

2

1 21

M

fa Fe

M

fo Mg

M M

od Fe Mg

p z

p z

p z z

=

=

= − −
 (30) 418 

Hence, there are two independent site fractions together completely defining the composition and 419 

ordering of the olivine in this example.  420 

3.3.5 Proportions from composition 421 

From the olivine table we can derive a list of compositions of each endmember by 422 

summing up the moles of each atom over the sites. 423 

Again, this table can serve to set up a system of equations and may be added by the 424 

constraint that the sum of the proportions equals 1 (first equation): 425 

 4

11 1 1

2 0 1

0 2 1

1 1 1

fo

fa

od

p
Mg

p
Fe

p
SiO

  
    
     =
    
      

     (31) 426 

However, this table only has 2 independent equations (rank = 2). We need another 427 

equation to solve for all three proportions. A simple solution could be to treat the ordered 428 

endmember as a known variable on the right hand side. Our extended system can be written: 429 

 

4

11 1 1

2 0 1

0 2 1

1 1 1

0 0 1

fo

fa

od

od

p Mg

p Fe

p SiO

p

  
  

    
     =
    
     

     

 (32) 430 

Starting from the first required equation and adding equations until we have reached the 431 

rank of the matrix gives us directly the first 2 and the last equation. This means the set of 432 

independent equations becomes: 433 
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1 1 1 1

2 0 1

0 0 1

fo

fa

od od

p

p Mg

p p

     
     

=
     
          

 (33) 434 

The matrix in (33) can be inverted and used to find the expressions for the endmember 435 

proportions as function of composition: 436 

 

0 0.5 0.5 1

1 0.5 0.5

0 0 1

fo

fa

od od

p

Mg p

p p

−     
     

− − =
     
          

 (34) 437 

Instead of varying the ordered endmember proportion, it is also possible to vary one of 438 

the site fractions. For example, we can have the site fraction of Fe on M2 as variable in addition 439 

to the compositional variables. This way, we can fix the bulk composition of the mineral while 440 

varying the site occupancies due to ordering. To this end, we add the equation for site fraction of 441 

Fe on M2 (from equation (23)), to the original system of equations:  442 

 

4

2

11 1 1

2 0 1

0 2 1

1 1 1

0 1 1

fo

fa

od

M

Fe

p Mg

p Fe

p SiO

z

  
  

    
     =
    
     

       (35) 443 

Here only the first, second, and last equation are independent and so we have: 444 

 
2

1

2

fo fa od

fo od

M

fa od Fe

p p p

p p Mg

p p z

+ + =

+ =

+ =
 (36) 445 

Solved for the three unknown proportions: 446 

 

2

2

2

1

2

2 2

M

fo Fe

M

fa Fe

M

od Fe

p z

p Mg z

p Mg z

= −

= − −

= + −  (37) 447 

These equations guarantee a fixed olivine composition, while changing the distribution of 448 

Fe and Mg on M1 and M2. The site fraction equation to pick as order equation can be obtained 449 

by augmenting the system of equations in (35) with the site fraction equations in (23). Then from 450 

this complete set of equations, we pick only the independent ones by starting from the first 451 

equation in (35) and adding only equations that increase the rank of the system of equations. 452 

Taking as first equation that the sum of proportions add to one (first row in eq. (35)), is 453 

convenient as it guarantees the minimum amount of compositionally independent variables. A 454 

Matlab code that automates this procedure is used in Thermolab. This function gives the 455 
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independent components for each solution model as well as the site fraction to vary as order 456 

parameter and the matrix of converting composition to proportion. 457 

For any given composition, there are limits on the value of zM2
Fe. The easiest to see that 458 

not any value between 0 and 1 is possible is to take pure forsterite, where Mg = 2. Then there is 459 

no Fe in the olivine, and therefore zM2
Fe can only be 0. In Thermolab, the range of possible 460 

values for site fractions is found by generating the full range of values and discarding impossible 461 

site fractions (below 0 and above 1). 462 

We note that it is also possible to calculate site fractions from bulk composition as is 463 

shown in the Appendix in Vrijmoed and Podladchikov (2015). 464 

3.2.6 Aqueous fluids 465 

For mixtures of aqueous species, an approach similar to the ideal olivine example can be 466 

taken. Treating the fluid mixture with a one-site model in which all species mix in a similar 467 

fashion the mechanical and ideal mixture is calculated as in equation (13) and (14), and for the 468 

non-ideality, the Helgeson Kirkham Flowers (HKF) extended Debye-Hückel activity is used 469 

(Dolejš & Wagner, 2008; Helgeson et al., 1981). The Gibbs energy of the fluid mixture are on a 470 

molality scale when the formulation of Johnson et al. (1992) and the HKF activity model 471 

(Helgeson et al., 1981) is used and must be converted to a molar based scale as in Dolejs (2013) 472 

to be compatible with the solids. This is taken care by adding a correction term in the non-ideal 473 

Gibbs energy. 474 

4 Equilibrium calculations using reactions 475 

Gibbs energies calculated with the Thermolab codes are benchmarked with 476 

THERMOCALC (Holland & Powell, 2011), SUPCRT92 (Johnson et al., 1992), the DEW 477 

spreadsheet (Sverjensky et al., 2014) or data and phase diagrams from the relevant publications 478 

(Miron et al., 2016) and Perple_X (Connolly, 2005). Additionally, comparing with experimental 479 

data is essential to increase confidence in the method. 480 

With the Gibbs energies of endmembers, equilibrium conditions for simple reactions can 481 

be calculated. Results for several solid state and fluid-solid reactions are shown Figure 2. The 482 

curves are produced by making use of the equilibrium condition: 483 

 
00 ln( )rxn eqG RT K=  +  (38) 484 
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For pure phases (e.g. endmembers), the equilibrium constant will be 1 and the 485 

logarithmic term disappears leaving only G0
rxn = 0. Using the endmember Gibbs energies and 486 

stoichiometric coefficient of reactions the contour line of G0
rxn = 0 can be plotted to visualize 487 

the reaction in P-T space (Figure 2a). In a simple dissolution reaction Keq will be equal to 488 

solubility and so we can use G0
rxn to calculate the solubility of quartz (Figure 2b). An example 489 

of a single dissociation reaction is shown in Figure 2c. By varying activities in Keq and using 490 

them as axis on a diagram the contour lines where the right hand side is 0 are used to obtain an 491 

activity-activity plot (Figure (2d).  492 

Figure 2 Example equilibrium calculations using a basic chemical reaction approach. a) 493 

Examples of some well-known reactions between pure phases, by calculating G of reaction 494 

(including any metastable parts of reactions). b) Solubility of aqueous silica, by plotting the 495 
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equilibrium constant of the dissolution of quartz into water using the Holland and Powell (1998) 496 

database. Comparison between data from Manning (1994) shows good agreement between 497 

model and experiment. c) Comparison between experimental data and the SUPCRT (dashed 498 

lines) and Miron (solid lines) dataset for the dissociation of KCl in water. This reproduces the 499 

figure shown by Miron et al. (2016), to demonstrate their improved fit to the data. d) Activity 500 

diagram at room pressure, temperature, for basic weathering reactions using the equilibrium 501 

constants of the reaction calculated with Thermolab using the (dslop98) SUPCRT aqueous 502 

species and minerals data and Gibbs energy of water from NIST. Here a procedure to remove 503 

metastable extensions of reactions is performed in an automated way (i.e. automated 504 

Schreinemakers analysis). Gbs= Gibbsite, Ms = Muscovite, Mic = Microcline, Kln= Kaolinite, 505 

Prl = Pyrophyllite, SiO2 (am.) = amorphous silica. 506 

5 Gibbs minimization in MATLAB 507 

Using the ΔG of reaction, the metastable part of individual reactions will also be plotted 508 

(e.g. Figure 2a). For an equilibrium phase diagram, a Schreinemakers analysis or similar 509 

procedure may follow to draw the stable reactions (e.g. Figure 2d). Additionally, the phases and 510 

reactions to be calculated must be known beforehand. However, in many cases it can be desired 511 

to predict which reactions may take place. Instead of predicting the equilibrium line of a 512 

chemical reaction we calculate the stable phase assemblage at a point in P-T by determining 513 

which mineral has the minimum Gibbs energy. In the example code (Figure 3A), the calculation 514 

of Gibbs energy of the endmembers is done in line 9, a call to the main Thermolab function, 515 

which includes the code in Figure 1 to focus on the minimization algorithm. If all phases have 516 

the same composition (i.e. they are polymorphs), then the “min” function can be used (Figure 517 

3A&B). Instead of locating the coexisting phases in a reaction in P-T-X space, the Gibbs 518 

minimization delivers the stable phases everywhere except for on the reaction line. Therefore, 519 

the reaction lines reflect the resolution of the P-T grid for which the Gibbs energies of each 520 

phase are calculated. At sufficiently high resolution, the reaction lines become smooth. 521 

Natural chemical systems, e.g., rocks, generally, are multi-component systems. In this 522 

case mass balance must be considered while finding the minimum of Gibbs energy. For a more 523 

thorough thermodynamic analysis of this see e.g. Connolly (2017). Constrained Gibbs energy 524 

minimization is employed in the majority of phase diagram calculation software (Connolly, 525 

2009; Gordon & McBride, 1994). In MATLAB, the simplest way this can be achieved is using 526 

linear programming (function "linprog", e.g. Dantzig et al., 1955). With this function, 527 

minimization can be done under the constraints of mass balance equalities, which for 528 

completeness is shortly outlined in the following. 529 

The function “linprog” is used to find the minimum Gibbs energy of the system by 530 

solving the following optimization problem, 531 

 
min( )sysG = g α

 (39) 532 

where  and g are vectors of respectively, the molar amount, and the Gibbs energies of 533 

all phases. The “linprog” algorithm then searches for the components in  that make the 534 

minimum Gibbs energy of the system, while respecting the following mass balance equality: 535 

 
= sys phsn N α

 (40) 536 
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Which state that the sum of the amount of each phase multiplied by the composition of a 537 

component should equal the sum of that component in the system. A final requirement is that no 538 

negative amount  is allowed as that is physically meaningless: 539 

 0α  (41) 540 

Figure 3 Two examples of Gibbs minimization to calculate phase equilibrium with 541 

Thermolab. The Gibbs energy calculation shown in Figure 1 is used here as an external function 542 

to improve clarity of the algorithm. a) Code showing unconstrained Gibbs minimization used to 543 

calculate the aluminosilicate phase diagram. The Gibbs energies of the phases are obtained in 544 

line 9, using a unique identifier to distinguish them from the same phases in another database. 545 

Andalusite from the tc-ds55 THERMOCALC (Holland & Powell, 1998) dataset (and, tc-ds55), 546 

kyanite (ky,tc-ds55) and sillimanite (sill,tc-ds55) in the order in which they are specified in line 547 

5. The result is a 3D array with T in first dimension, P in second dimension and phase in third 548 

dimension. Line 11 then finds the minimum in the 3rd dimension, which results in a value (val) 549 

and index (ind) for each P-T. The index corresponds to the list of phases in line 5. A color coded 550 

visualization of the phase index that gives the lowest Gibbs energy is shown to the right using the 551 

pcolor function in MATLAB (code: line 13). The color bar indicates that the blue area has index 552 

1, which then means it is the first phase in the list (line 5) that is stable (i. e. 1= andalusite, 2= 553 

kyanite, 3=sillimanite). The resolution of phase diagram can be increased by decreasing the step 554 
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size of temperature and pressure (line 3&4). b) Resulting plot from code in (a). c) MATLAB 555 

example to calculate chemical equilibrium using constrained Gibbs energy minimization. For the 556 

first lines see (a). In line 7-8 the system composition is specified using total moles of SiO2 and 557 

MgO. Then the phase compositions in moles is expressed in the matrix Nphs with in each column 558 

the phase corresponding to the list in line 5. Each row holds the components (SiO2, MgO). This 559 

information is used as equality constraints in the function linprog which is called in line 14. It 560 

then finds the minimum Gibbs energy of the system out of the 4 possible phases, while satisfying 561 

the equality constraints. The second and third input arguments for ‘linprog’ are empty as they 562 

are reserved for inequalities and the fourth and fifth arguments are for the matrix of coefficients 563 

and right-hand side vector, respectively. To restrict the linear programming search for the 564 

amount of each phase to positive values we input also the lower bound vector of zeros (LB), e.g. 565 

equation (41). Then alph will hold the amount of each phase that will make minimum system 566 

Gibbs energy while obeying system composition. The phases that have an alph above zero 567 

represent the equilibrium assemblage for the given P-T-X conditions. d) G-X diagram in which 568 

the Gibbs energy of the phases are plotted against system composition (for plotting the Gibbs 569 

energy is normalized over the sum of the moles of component in each phase: i.e. the sum over the 570 

rows of Nphs). 571 

As a worked example we may consider the binary system SiO2-MgO. Possible phases 572 

that can be built from these components are quartz, periclase, enstatite, forsterite. Spelled out for 573 

this case the equations read in matrix form: 574 

 ( )min( )

qtz

per

sys qtz per en fo

en

fo

G g g g g









 
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And  576 
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   (43) 577 

Figure 3c shows the MATLAB translation and usage of “linprog” (Figure 3c, line 14) to 578 

calculate the stable phase assemblage. The required known values for the minimization are the 579 

vector of Gibbs energies (Figure 3c, line 6), a vector of system compositions (Figure 3c, line 7) 580 

with matrix of mineral compositions (Figure 3c line 10-12) as in equation (43). Note that in 581 

Figure 3C single elements have been used as components instead of the oxides, which leads to 582 

the same result. After defining the lower bounds of alpha’s as zero, linprog finds the alpha’s that 583 

make the minimum of Gibbs energy. The results are plotted in Figure 3d and shows that for a 584 

system composition between enstatite and forsterite, alpha’s of enstatite and forsterite are non-585 

zero which means that those are the stable phases and the magnitude of the alpha’s give the 586 

molar amount of each stable phase in order of definition of the list of phases in Figure 3c, line 5. 587 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

Performing a minimization at each point in a grid of pressure and temperature and 588 

evaluating at each P-T point the stable phase assemblage leads to a phase diagram in which also 589 

the amount of each phase is known because of the mass balance constraint. Figure 4a shows that 590 

this produces the same result in case of the pure Al2SiO5 system, as in the unconstrained 591 

minimization, but that it can now be used to do multi-component systems such as dehydration of 592 

antigorite in SiO2, MgO, H2O (Figure 4b). 593 

Figure 4 a) One component system phase diagram, using constrained Gibbs minimization, 594 

results in a similar diagram to the unconstrained minimization result for the aluminosilicate 595 

phase diagram in Figure 3.(ky=kyanite,sill=sillimanite,and=andalusite) b) Multicomponents 596 

system phase diagram, with pure phases, using components SiO2, MgO, H2O. The same code is 597 

used as in (a), only the composition and system components need modification (atg = 598 

antigorite,fo=forsterite,ta=talc,anth=anthophyllite). 599 

Most minerals, fluid and melts are not just pure phases, but can form mixtures of 600 

endmembers. The basic example above is shown because essentially the Gibbs minimization 601 

approach used in Thermolab is the same for systems in which phases occur that have a variable 602 

composition. In the following we shortly outline how we approximate the equilibrium in 603 

Thermolab to a reasonable degree by using the same linear programming method. 604 

5.1 Linearization of mixtures 605 

We compute the Gibbs energy of a set of discrete compositions of the mixture and add 606 

them to the list of endmembers as discrete entities, being treated as a fixed composition phase. In 607 

the following, all these entities that are the consequence of discretizing a real phase that can form 608 

a thermodynamic mixture will be arbitrarily called phase-compounds. With this approach the 609 

minimization algorithm remains unchanged from the above case for pure phases in Figure 3c. 610 

Figure 5 shows a complete code example to do a calculation with mineral solid solutions using 611 

the approach described here. 612 
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Figure 5. Complete example code for the calculation of chemical equilibrium using Gibbs 613 

energy minimization including solid solutions, aqueous species and pure phases in Thermolab 614 

for the case of serpentinite with addition of carbon (Beinlich et al., 2020). After defining a P and 615 

T of interest, the solution model Excel spreadsheet is selected (line 5). The chemical components 616 

in the system are defined in line 6 and the composition of the system is specified in line 7. The 617 

names of the phases to be considered in the calculation are specified in lines 8-10, where the tc-618 

ds55 identifies the thermodynamic dataset to be used (here THERMOCALC dataset 55). The 619 

static thermodynamic data (td) for all phases are loaded in line 11 and stored in one structure 620 

array (this replaces the command in Figure 1, line 10). The grid of compositions to linearize the 621 

solutions is obtained in line 12. Lines 13-14 compute the density (ZD05 = Z. G. Zhang & Duan, 622 

2005) and dielectric constant of water (S14 = Sverjensky et al., 2014). Line 15 computes the 623 

Gibbs energy and volumes of the endmembers in each solution. Line 17 is the call to the main 624 

function outlined in Figure 1, and calculates for all phases in the list the Gibbs energy (g), the 625 

composition of each phase compound (Npc), an identifier for each phase compound (pc_id. Line 626 

20 performs the constrained Gibbs minimization and in line 22 the data is stored for 627 

postprocessing. 628 

An important step in preparing the mixtures for Gibbs minimization is to generate a grid 629 

holding a set of discrete phase compositions representing the mineral, fluid, melt, or gas. The 630 

compositions need to cover the full range of possible site fractions or proportions that can exist 631 

for a mixture. Fixing the pressure and temperature, Gibbs energy can be calculated either by 632 

specifying the site fractions or the proportions. The simplest is to use the site fractions for grid 633 

generation because they range from zero to one. Using proportions is more complex because, 634 

although proportions sum up to one for each mixture, they can also be negative. Thus, it requires 635 

knowledge of the range of values for proportions in each different solution. The grid generation 636 

is done in the function call in Line 12, Figure 5, by varying the site fractions by default from 0 to 637 

1, and generating a multi-dimensional cartesian grid over the correct number of independent site 638 

fractions, using the MATLAB function “ndgrid” inside. With this brutal way, many non-physical 639 

site fractions are generated, but these are removed inside the grid generation function. In 640 

summary, we just generate Gibbs energies for the full range of possible site fractions in the 641 
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solution including all states of ordering and internal speciation. The resulting set of Gibbs 642 

energies and compositions is used in place of the example in Figure 3c. The call to the main code 643 

‘tl_gibbs_energy’, in Figure 5 Line 17, now includes the complete Gibbs energy code example 644 

Figure 1.  645 

Figure 6 a) T-X diagram for the binary system fo-fa, with olivine and melt as mixtures using the 646 

Holland and Powell (2011) dataset and solution model for olivine from Holland et al. (2018) and 647 

melt using the example from the text and by adapting the Margules parameters to fit the Bowen 648 

and Schairer (1935) experiments. b) T-XCO2 diagram for CaO-SiO2-H2O-CO2 system at 14 kbar. 649 

Data points from Aranovich and Newton (1999) as benchmark to the Gibbs energy and 650 

minimization approach in Thermolab. c) Benchmark KFMASH metapelite example using the 651 
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composition from the code in Figure 5. Solution models: Chlorite (Holland et al., 1998), 652 

Chloritoid, Cordierite (Holland & Powell, 1998), Muscovite (Coggon & Holland, 2002), Garnet, 653 

Biotite (R. W. White et al., 2007). d) Basalt melting to benchmark the Holland et al. (2018) 654 

melting model by reproducing main topology in Fig. 5 of Holland et al. (2018), here calculated 655 

in SiO2-TiO2-Al2O3-MgO-FeO-CaO-Na2O. 656 

As an example of including solutions, we show a variety of phase diagrams, all produced 657 

with the same code for a discrete set of P-T values. The first example in Figure 6a, applies the 658 

olivine solution model as described above together with a binary melt mixing model, replacing 659 

the solid endmembers with their liquid equivalents (liquid forsterite and fayalite). For olivine, a 660 

grid is created where 
1M

Fez and 
2M

Mgz vary independently and for the melt, the site fraction of 661 

forsterite liquid is varied. The Margules parameters in the melt are adjusted until they fit the 662 

experimental data (Bowen & Schairer, 1935). The T-X diagram including CO2 fluid using the 663 

mixing model of Aranovich and Newton (1999) is produced by changing the bulk CO2 in the 664 

system. When the amount of fluid components (H2O) in the calculation is orders of magnitude 665 

higher than the solid components, the diagram approximates the T-XCO2 diagram as the system is 666 

largely dominated by fluid. The results show good agreement with the experimental data from 667 

Aranovich and Newton (1999). A more complex calculation for a metapelite in KFMASH is 668 

done as a benchmark with the Perple_X and THERMOCALC diagrams and shows good 669 

agreement, improving the confidence of the method. Note that in complex systems, it becomes 670 

increasingly more demanding to get high resolution phase diagrams. For example a computation 671 

with the melt model of Holland et al. (2018) yields a low resolution diagram. Additionally, 672 

Cr2O3, Fe2O3 and K2O were omitted. However, the topology of the diagram is overall similar. In 673 

particular, the melt and pyroxene models used in the reproduction of phase diagram for basalt 674 

melting is computationally challenging with the method of linearizing the solutions with discrete 675 

hypothetical phase compounds. 676 

5.2 Postprocessing the minimization results 677 

To precompute a lookup table for the local equilibrium the needed unknown variables 678 

need to be retrieved from the minimization results. An example is given in Figure 7. The multi-679 

dimensional  array (Line 20, Figure 5) and the corresponding compositions are the only 680 

variables that need to be saved along with the P-T arrays.  681 

Using the discrete phase compound linearization approach, mixtures (solid solutions, 682 

fluids, melts, gas mixtures) are split into individual phases having a fixed composition. The 683 

minimization algorithm will determine which of those discrete phases are stable, and for 684 

mixtures this often results in multiple discrete phase compounds with different composition of 685 

that mixture being stable. This is a mathematical consequence of solving the optimization 686 

program and the thermodynamic meaning is that we have a divariant field in which the 687 

composition of mixtures may change. Thermodynamically, it can happen that two or three 688 

phases are stable as result of a miscibility gap. However, this needs to be determined by an 689 

algorithm that distinguishes the discrete phase compound compositions from each other. If they 690 

are significantly different for a given resolution of the discretization, then they are true separate 691 

phases. In the other case the properties are obtained from a weighted average into one 692 

composition for the true stable phase. Afterwards, only the stable phase amount and the 693 

composition are retained. A clustering algorithm is used to determine if we have multiple or 694 

single phases stable for each particular mixture (Figure 7, line 10). 695 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

To compute the molar volume of each phase we use the numerical derivative of the Gibbs 696 

energy: 697 

Figure 7. Code example of postprocessing results to prepare a lookup table for use in non-698 

equilibrium processes, such as reactive transport. After loading the result of the minimization in 699 

lines 2-3, the molar masses of the components needed in the postprocessing are obtained from an 700 
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external function in line 4. The cluster function in line 10 checks for each stable phase if the 701 

phase compounds are numerically distinct to distinguish exsolved phases. Line 12-19 then 702 

calculate the densities and dielectric constants and Gibbs energy for the stable phase 703 

compositions at P of interest and a small deviation from P of interest for numerical derivatives. 704 

Molar volume using a numerical derivative of Gibbs energy is calculated in line 21. Lines 22-31 705 

implement the equations in the text to calculate phase abundances, composition and densities. 706 

Line 33-45 calculate the chemical potentials for the components in the phases. From line 56-59 707 

the results are displayed on the screen as an example. 708 

 
mol

T

G
V

P

 
=  

 
 (44) 709 

Where the molar mass of each phase is found by: 710 

 = mol phsm molm N  (45) 711 

The density of all phases can then be computed: 712 

 = mol

mol

m
ρ

V
 (46) 713 

Volume fraction  each phase is then found from molar volume and mole fraction 714 

obtained from normalizing  to 1 (e.g. mol  =  ):  715 

 =


mol mol
p

mol mol

φ V
φ

φ V
 (47) 716 

And weight fraction of each phase: 717 

 =


mol mol
wt

mol mol

φ m
φ

φ m
 (48) 718 

Composition in weight is found from: 719 

 =


phs

wt

phs

N molm
C

N molm
 (49) 720 

Properties for total rock and fluid can be found from 721 

 s = ss ssρ φ  (50) 722 

Where the vectors hold the densities of all solid minerals including both pure phases and 723 

solid solutions, and their volume fractions. Fluid density is simply the density of the fluid 724 

mixture from equation and needs no further processing. Total solid concentrations are obtained 725 

from summing for each component the weight of all solids and dividing over the total weight. 726 

Chemical potential is calculated following: 727 
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Where np is the chemical potential of the last dependent proportions (as proportions sum 729 

up to 1) and is calculated from: 730 
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  (52) 731 

5.3 Improving the calculations 732 

Increasing the resolution of the P-T grid improves the smoothness of the lines in the 733 

diagram, but it does not ultimately lead to a better calculation. This is illustrated in Figure 8, 734 

where the resolution of the T-X grid for the olivine diagram is kept constant, while the number of 735 

discrete compositions for which the olivine and melt are calculated is increased. This means that 736 

the mixture is better approximated, and the result is that the compositions and modal abundances 737 

become better resolved and the step-like behavior that is present in the calculation with lower 738 

compositional grid gradually disappears. Although this is feasible for calculations that involve 739 

one or two simple mixtures, like binary olivine and melt, the computational demand required for 740 

more complex chemical systems and minerals makes such high-resolution compositional grids 741 

unpractical for computation. Even if computers with abundant memory are employed, we found 742 

that linprog will not find a solution for systems with more than 2 million discrete phases in the 743 

minimization. 744 

Another option to improve the calculation is therefore to refine compositions in an 745 

iterative approach as also suggested and employed since decades (Connolly, 2009; Rossi et al., 746 

2009; W. B. White et al., 1958). In Thermolab, this is open for the user to implement or improve. 747 

Here we describe a simple approach that currently is employed as a working example. First, an 748 

initial minimization is done with a suitable compositional starting grid. This initial starting grid 749 

is also subject to possible modification and improvement; however, it is possible to simply set up 750 

a coarse resolution initial grid so that each minimization is fast. Each discrete phase which has an 751 

alpha above zero is recognized as a stable phase. And the index in the list of non-zero alpha is 752 

used to find the composition of the mixture in terms of the endmember proportions and site 753 

fractions. In the next step, the proportions are used to generate a denser (i.e., higher resolution) 754 

compositional grid around the stable proportions found in the first minimization. For a binary, a 755 

simple graphical explanation of this procedure in Thermolab is illustrated in Figure 9. The new 756 

higher resolution compositional grid is added to the already existing grid and taken to the next 757 

iteration. We checked that the Gibbs energy of the system is always decreasing during the 758 

iterations. The iterations are stopped when the Gibbs energy of the system is not changing 759 

anymore within limits of machine-precision, or when the compositional spacing in the refined 760 
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grid reaches this tolerance. This leads to improved calculation of compositions, modal 761 

abundances, as shown in Figure 10 for the metapelite (KFMASH) P-T diagram from Figure 6c.  762 
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Figure 8 Influence of resolution of the discretization of solutions on the quality of the 763 

thermodynamic calculations. T-X resolution is kept constant at 300x300 steps. By increasing the 764 

number of compounds to discretize the mixtures, melt and olivine, the quality of the data is 765 

improved and the stepwise behaviour disappears. The melt and olivine binary mixing curves are 766 

approximated with 15, 50 and 100 discrete compounds (n). a) Fraction of melt with the melt and 767 

solid discretized with 15 compounds. b) Melt composition (Xfo) corresponding to (a). c) As in (a), 768 

for n = 50 compounds. d) Melt composition corresponding to (c). e) As in (a) with n = 100 769 

compounds. f) Melt composition corresponding to (e). g,h) One-dimensional profiles for melt 770 

fraction and composition at Xsys=0.5, (dashed lines in a-f). Improvement of calculation with 771 

higher number of compounds clearly visible by smoothening of the lines as resolution increases.  772 

Figure 9. Conceptual diagrams showing two steps in the refinement of the composition of 773 

mixtures. a) Shows an initial minimization result which is then zoomed in and refined around the 774 

solution in step one. b) Here the refined compositions are used for a second minimization with 775 

smaller compositional spacing between the discretized mixture, without increasing the number of 776 

discrete compounds, thereby avoiding using too much computer memory.  777 

6 Investigating non-linear transport processes in open systems 778 

Coupling local equilibrium thermodynamics to transport processes such as the system of 779 

equations introduced above has been discussed previously (e.g. Malvoisin et al., 2015). The 780 

method described here follows the approach employed in recent studies of Malvoisin et al, 2015, 781 

Plümper et al, 2017, Beinlich et al. 2020). For the transport models a complete set of equilibria 782 

for all possible external conditions, T, P, X, may be pre-computed and stored in a lookup table. 783 

To this end, loops over P, T, and X can be programmed around the linprog minimization and 784 

stored in a database. As an example, we show the soapstone formation in serpentinite from 785 

Beinlich et al. (2020). To the initial bulk serpentinite composition carbon (C) is added to produce 786 

a lookup table of 150 different bulk compositions at fixed T, and P. Employing the refinement 787 

method above, the Beinlich et al (2020), thermodynamic calculations can be improved in 788 

smoothness and computation speed (Figure 12b,d,f). However, the main results are the same. 789 
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The important aspect is that the Beinlich et al. (2020) calculation was more robust, because no 790 

iterative refinement was used and hence any chance of reaching a local-minimum rather than the 791 

true minimum was avoided. Thus, the results of Beinlich et al. (2020) serve as benchmark for the 792 

refinement algorithm described above. 793 

Figure 10. Example of a phase diagram after refinement. The mineral modes in a)-e) show 794 

smooth variations within the phase fields due to sufficiently resolving the compositions of 795 
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mixtures in a iterative refinement procedure. The final phase diagram in f) shows also 796 

improvement, but the general topology was also captured in Figure 6c. 797 

6.1 Reactive transport example 798 

After retrieving the density of solid, fluid, and concentration of fluid and solid, and the 799 

chemical potential, the system of equations described above can be solved. Here a possible 800 

numerical implementation in MATLAB is shown, using explicit finite differences. The purpose 801 

is to focus on the concept of coupling the transport processes to the precomputed local 802 

equilibrium lookup table and to show the effect of the non-ideal solution models on reactive 803 

transport.  804 

As stated above, there are three equations and 8 unknowns. The first equation is the 805 

rearranged total mass balance equation in which the only assumption is that solid is not 806 

deforming. The fluid velocities have been substituted by the Darcy flux. This equation is used to 807 

find the unknown fluid pressure. The second equation is a mass concentration balance of an 808 

immobile component in the solid. This equation can be integrated analytically in case of non-809 

deforming solid and used to calculate the unknown porosity (e. g. Appendix Malvoisin et al. 810 

2015). The last equation is the total mass concentration balance for a component that is mobile, 811 

(in Beinlich et al. 2020 this is carbon). From this equation the total mass concentration is found 812 

which subsequently can be used to find the solid concentration. 813 

Equation (1) can be written as: 814 

 ( )tot
f Dq

t





= −


 (53) 815 

With: 816 

 ( )1ftot s    += −  (54) 817 

and (Figure 11, Line 49): 818 

 
0 3

D f

f
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q P




= −   (55) 819 

When assuming a relation between total density and fluid pressure using an effective 820 

compressibility, we can write the above (Figure 11, line 55): 821 
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 (56) 822 

 And with the porosity equation (Figure 11, Line 56): 823 
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using the concentration of magnesium in solid as immobile species and specifying the 825 

initial density, porosity and concentration. Total concentration of mobile species carbon, is 826 

solved by rearranging the total mass concentration balance (Figure 11, Line 57): 827 

 ( )
f

sys

f f C f f D

c
C D C q

t
   


+=  


 (58) 828 
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Figure 11 Reactive transport code using precomputed equilibrium approach. After loading the 829 

precomputed thermodynamic equilibrium data (line 3), the physical parameters are defined in 830 

lines 8-19, the numerical parameters (e.g. number of time steps and nodes in the model) are 831 

defined (lines 21-23). Preprocessing and initialization including setup of the grid and initial 832 

conditions are done in lines 28-33. Here an incoming fluid and fluid pressure increase is setup 833 

as left boundary to initialize reactive fluid flow from left to right. In lines 36-40 all properties 834 

retrieved from local equilibrium are found by interpolating on the precomputed thermodynamic 835 

equilibrium data. Line 41 stores the initial condition for the non-mobile solid and the initial 836 

porosity distribution is set to a constant value (phi0 in line 12). Line 43 is the definition of total 837 

concentration in the system (Eq. (59)). Averaging values used in fluxes defined between the 838 

nodes are calculated in line 44-46. Lines 48-49 are the driving forces for the reactive transport, 839 

flux of diffusion (qC) and Darcy flux Eq. (55). Adaptive time steps, approximately following 840 

Courant Friedrichs-Lewy stability criterium, are calculated in lines 51-53 to constrain 841 

numerical error propagation and maintain stability of the numerics. Line 55-57 are most 842 

fundamental governing physics in the reactive transport, the main equations (1), (2), and (3), by 843 

reformulating it to the equations (56), (57), and (58). The solid concentration is found from the 844 

definition of total system mass concentration (59)). Plotting takes place during model run every 845 

‘nout’ time steps. The phase abundances can be visualized when desired as they are interpolated 846 

from the lookup table and do not enter any of the physics equations. Plotting of the 847 

mineralogical evolution is done in lines 61-63.  848 

 849 

With (Figure 11, Line 43): 850 

 ( )1sys f f f s s fc C C   = + −  (59) 851 

Then solid concentration is found by rearranging the above (Figure 11, Line 58): 852 

 
( )1

sys f f f

s

s f

c C
C

 

 

−
=

−
 (60) 853 

The remaining unknowns, f, s ,CsMg, and Cf are found from interpolation in the lookup 854 

table at each time step (Figure 11, Line 36-40). Details of the coding example are found in the 855 

caption of Figure 11 and results of the transport code are shown in Figure 12. The non-linearity 856 

of the thermodynamic relationship between solid and fluid composition is demonstrated in 857 

Figure (12,c,d,f), this is a result of both the non-ideality of solution models as well as changes in 858 

the phase assemblage. Depending on the function of solid composition versus fluid composition, 859 

the reaction fronts behave very differently in terms of shape and velocity (Figure 12, a, c,e). 860 

6.2 Cahn-Hilliard exsolution 861 

Natural processes usually are not in equilibrium and do not strictly follow the path that can be 862 

followed from a phase diagram. Instead, there will be a process that develops towards the state of 863 

global equilibrium depicted on a phase diagram although it may never reach it (e.g. due to 864 

thermal closure). With Thermolab, the Gibbs energies can be directly used instead of first 865 

calculating thermodynamic equilibrium and the process towards equilibrium can be modelled. A 866 

demonstration of this is given by solving the Cahn-Hilliard equations in which driving force for  867 
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Figure 12. Snapshot of reaction fronts produced by influx of three different incoming CO2 fluid 868 

compositions from the left boundary into a serpentinite using the code in Figure 11. For 869 

comparison all runs were stopped after the same duration. In all cases, the starting rock consists 870 

primarily of serpentine (here antigorite), with minor amounts of talc, magnesite and dolomite. a) 871 

If the incoming fluid composition lies below ~0.005 antigorite never completely disappears and a 872 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

gradual reaction front forms transforming the serpentinite to ophimagnesite (magnesite-talc-873 

serpentinite). b) The equilibrium relation between Cf and Cs (i.e. the isotherm) shown in blue 874 

with the transient (current) Cf and Cs compositions plotted as red dots. c) With an incoming fluid 875 

composition between 0.01-0.015, the pristine serpentinite to the right transforms into soapstone 876 

with a sharp reaction front when antigorite has reacted out. d) The equilibrium relation between 877 

Cf and Cs (i.e. the isotherm). The steep slope at Cs between ~0.045-0.052 is enlarged in the inset. 878 

Here antigorite disappears (the soapstone on the left in Figure c), and the steepness of the slope 879 

on the isotherm causes a sharp soapstone front. The shallow slopes below Cs=0.045 correspond 880 

to the transitional front where serpenitinite is partially transformed to soapstone. e) 881 

Development of an additional reaction front, forming listvenite (quartz-magnesite rock), as 882 

incoming fluid composition is now higher, ~ 0.086 weight fraction dissolved carbon. f) As the 883 

incoming fluid composition lies on anorther steep part of the isotherm, the listvenite front is also 884 

sharp. Inset shows the curvature of the isotherm corresponding to the listvenite stable 885 

assemblage. Endmember data from the tc-ds55 dataset (Holland & Powell, 1998), solution 886 

models: CO2-H2O Fluid (Aranovich & Newton, 1999), Antigorite (Padron-Navarta et al., 2013), 887 

Chlorite (Holland et al., 1998), Talc (Holland & Powell, 1998), Magnesite, Dolomite (R. W. 888 

White et al., 2003). t* = dimensionless time. Concentration units are in elemental carbon weight 889 

fraction. 890 

diffusion is chemical potential and an uphill diffusion process causes an initial random 891 

homogeneous system to develop into an equilibrium phase assemblage (Cahn & Hilliard, 1958). 892 

A simplified version of the Cahn-Hilliard equation consists of a balance of mass concentration 893 

and a flux equation for the diffusion. Assuming a system without fluid, and assuming constant 894 

densities a basic mass concentration balance can be written (Figure 13, line 35):  895 

 ,1,1 scs
qC

t x


= −

 
 (61) 896 

Flux of concentration in solid of a component can be defined as a function of gradients in 897 

chemical potential differences or a single chemical potential in conjuction with the Gibbs-Duhem 898 

relation (e.g. p. 80 in Lebon et al., 2008; Nauman & He, 2001), here the former is used (Figure 899 

13, line 34): 900 
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The chemical potential difference can be conveniently expressed by: 902 
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 (63) 903 

where the last term in (63) is the interfacial free energy contribution as introduced by 904 

Cahn-Hilliard (1958). Similar to Figure 7, the chemical potential can be calculated with 905 

numerical differentiation of the Gibbs energy (see Figure 13, line 31-32). 906 
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These equations describe the spinodal decomposition of a phase with strong non-ideal 907 

behaviour, such as feldspar, due to non-linear diffusion driven by chemical potential gradients. A 908 

useful review is found in Nauman & He (2001). See also caption Figure 14 for details. 909 

Figure 13 Cahn-Hilliard example code for 1D binary exsolution. The length of the domain and 910 

diffusion coefficient, assumed constant for simplicity here, are defined in line 3-4, after which the 911 

thermodynamic data is loaded for a given P-T. The phase for which Gibbs energy is calculated is 912 

input in line 8, and the components in the system can be given in line 9. Line 10 initializes static 913 

thermodynamic data as in Figure 5. Line 11 calculates the Gibbs energy of the endmembers in 914 

the solution (this is done to increase performance as they do not vary here). Numerical 915 

parameters are setup in lines 13-17, followed by preprocessing for generating the grid and the 916 

time step. An initial setup consists of a homogeneous concentration with small random 917 

perturbations. The physical process is modelled in a time loop from line 26-43. Line 27-30 shows 918 

how Thermolab is used without precomputed lookup tables. A small increment of proportions of 919 
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the endmembers is used to make a numerical derivative to calculate the chemical potential in 920 

line 31, with Cahn-Hilliard addition of energy regularization (line 32). The chemical potential 921 

gradients drive diffusion in the system via the diffusion flux in line 34 and line 35 is the mass 922 

concentration balance in simplified form. Line 36-37 are boundary conditions that ensure total 923 

concentration in the system remains constant. Line 39-42 are plotting the results as the model 924 

runs. 925 

 926 
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Figure 14 Example of using Thermolab without precomputed thermodynamic data. Physical 927 

processes develop towards thermodynamic equilibrium using the Cahn-Hilliard model at 500 928 

°C, 0.1 GPa. The 1D example code for a binary system is given in Figure 13. An initially 929 

homogenous concentration distribution in a single phase develops into a two phase system due to 930 

uphill diffusion as a result of the non-linearity of solution models (the non-ideality that leads to 931 

exsolution of phases). a) Snapshot of a 1D model during exsolution of binary feldspar 932 

(concentration corresponds to albite component in albite-sanidine mixture). Red line shows 933 

initial concentration distribution developing into separate phases represented by the blue line. b) 934 

Comparing the concentrations in the physical domain to the Gibbs energy-composition (X) curve 935 

(for clarity only the mixing energy, ideal + non-ideal is shown). Plotting the transient 936 

concentrations on the equilibrium curve shows that the system develops towards the tangent 937 

construction (i.e. equilibrium condition) shown with the yellow line and calculated with ‘linprog’ 938 

following methods described in the main text. c) Albite concentration in a 2D feldspar model 939 

after exsolving for some time from a homogeneous initial distribution. d), and e) represent the 940 

corresponding compositions of respectively, components anorthite, orthoclase (using sanidine 941 

endmember here). f) transient compositions of the feldspar for all nodes in the 2D domain 942 

plotted on the equilibrium mixing Gibbs-energy ternary represented by the contours. These 943 

compositions form a continuous yellow line (as there are many overlapping symbols). Dashed 944 

line corresponds to solvus computed with ‘linprog’, and yellow open circle corresponds to 945 

average concentration in the system. Red symbols are equilibrium compositions of the two stable 946 

phases from Gibbs minimization.    947 

7 Discussion 948 

The motivation befind the development of Thermolab is to study the effects of the non-949 

ideality of solution models in reactive transport processes in open systems. Most natural 950 

materials including minerals, rocks, melt, fluids and gases display some degree of non-ideal 951 

mixing behaviour (e.g. Ganguly, 2020). We showed that for the case study of the soapstone 952 

formation studied by Beinlich et al. (2020) both the shape and the velocity of the reaction front 953 

vary strongly depending on the non-linearity of the partitioning of carbon between fluid and solid 954 

(Figure 12). For evaluating potential risks during transport of nuclear waste material 955 

understanding this non-linear behaviour is crucial and a study of Shao et al. (2009) is line with 956 

this conclusion. 957 

For mathematical analysis the formulation of complex solution models is important to 958 

show in a transparent manner such that non-linearities in transport processes can be studied. 959 

Therefore we presented the linear algebraic approach that is used in Thermolab to compute 960 

Gibbs energy of mixing for arbitrary multi-component phases (Figure 1). The starting point was 961 

a crystallographic or structural model of a solution and a predefined set of endmembers as 962 

developed by previous workers (e.g. Green et al., 2016; Palin et al., 2016). More in depth 963 

discussion on how to newly define crystallographic and speciation models for solid solutions is 964 

given by Myhill & Connolly (2021), after which the model should then be fitted to experimental 965 

data.  966 

Complex solution models are almost exclusively used for phase diagram calculations 967 

(e.g. Connolly, 2005, 2009; de Capitani & Brown, 1987; Ghiorso et al., 2002; Holland & Powell, 968 

1998, 2011; Johnson et al., 1992), but usually not for the transport codes. To ensure the 969 

reliability of the Gibbs energy calculation and equilibrium calculation methods, Thermolab is 970 
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benchmarked versus phase diagrams and exemplified in use for reactive transport projects. 971 

Constrained Gibbs energy minimization is discussed following existing approaches (Connolly, 972 

2005; W. B. White et al., 1958) and the results are then used to calculate equilibrium 973 

compositions and retrieve the so-called isotherm that can be used in a transport code.  974 

The isotherm, introduced in chromatographic studies of metasomatism, is a relation 975 

between fluid and solid composition at fixed P-T (Hofmann, 1972). An approach in which the 976 

system is divided in solid and fluid and for which the mass conservations equations have been 977 

summed up to eliminate reaction source terms has proven very useful for reaction front 978 

propagation studies (Orr, 2005).  Shape and velocity of propagating reaction fronts strongly 979 

depend on the non-linearity of solutions models (Guy, 1993). The approach of pre-computing the 980 

equilibrium compositions and using the results as an isotherm in the transport codes is useful to 981 

study the effects of the non-linearity of solution models on reactive transport. As the studies of 982 

Hofmann (1972) and Guy (1993) focus on single phases, our results shows this is functioning 983 

similarly on multi-phase systems such as rocks. The steep reaction fronts act similar to isotherms 984 

with miscibility gaps (Fletcher & Hofmann, 1974), but the solid solutions are responsible for the 985 

continuity of the isotherm across the ‘jump-like’ curves. Previous studies usually introduced 986 

simple isotherms, also called flow functions, to study the behaviour during transport. Thermolab 987 

has been motivated by the need to generate realistic flow functions using complex solution 988 

models. 989 

Solid solutions with strong non-ideal behaviour result in phase separation due to non-990 

linear diffusion when combined with transport models. The Cahn-Hilliard model (Cahn & 991 

Hilliard, 1958) is used to stabilize the numerical solutions by introducing an energy penalty for 992 

generating surfaces between phases introduced by a surface energy parameter. This method is 993 

widely applied in material science (Nauman & He, 2001) and also some geological appliciations 994 

have been studied (Abart et al., 2009; Petrishcheva & Abart, 2009). For geological materials 995 

other than feldspar, the behaviour of such non-linear diffusion systems can be further 996 

investigated with Thermolab. 997 

Mixing of databases is possible in a flexible framework like Thermolab, however it may 998 

not be recommended since internally consistent databases are not necessarily consistent amongst 999 

each other. Nevertheless, to use aqueous species in fluids together with most up to date solution 1000 

models of minerals, the only possibility to date is to combine for example SUPCRT databases 1001 

with Holland and Powell (1998, 2011). It has been argued that such a combination may serve as 1002 

a good approximation (Dolejš, 2013), when appropriate equations of state and dielectric constant 1003 

for water are used. However, refitting the aqueous species databases from SUPCRT in 1004 

conjunction with mineral database of Holland and Powell (1998) is likely the more reliable 1005 

approach to combine datasets (Miron et al., 2016; Miron et al., 2017). 1006 

8 Conclusions 1007 

With thermolab it is possible to reproduce published phase diagrams involving complex 1008 

solution models and these solution models can then be used in transport codes to investigate the 1009 

effects of non-linearity on the open system processes. Complex flow functions can be retrieved 1010 

from Thermolab and used in mathematical analysis and numerical models of reactive transport. 1011 

Gibbs energy can be directly used to construct chemical potentials as driving force for non-linear 1012 

diffions leading to phase separation. 1013 
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The modelling framework provided by Thermolab allows users to add custom functions, 1014 

include new databases, design solution models but also improve procedures to calculate 1015 

equilibrium. Limits of the discretization of solutions approach are due to computer memory 1016 

restrictions, which for complex solution models increases computation time to unpractical 1017 

durations. Computers with increased memory would be a solution, however, we found that the 1018 

linprog algorithm will stop to converge when about 2 million discrete phases or more in systems 1019 

with more than six components are used. Refinement strategies are a potential solution to this 1020 

problem; however, these compromise the robustness of the result by possibly missing the global 1021 

minimum of the Gibbs energy. Thus, Thermolab leaves the door open for development of faster 1022 

and more robust future algorithms by a transparent open source coding environment, which due 1023 

to the compactness of MATLAB example code can be translated to other programming 1024 

languages with minimum effort. 1025 

Acknowledgments 1026 

“The Deutsche Forschungsgemeinschaft (DFG) financially supported this research for 1027 

Johannes C. Vrijmoed through grant CRC 1114 ‘Scaling Cascades in Complex Systems’, Project 1028 

Number 235221301, Project (C09) – ‘Dynamics of rock dehydration on multiple scales’.” Yuri 1029 

Y. Podladchikov was supported by the Russian Ministry of Science and Higher Education 1030 

(project no. 075‐15‐2019‐1890). There were no financial or affiliation conflicts of interest for the 1031 

authors. 1032 

 1033 

Open Research 1034 

Thermolab is made available at https://hansjcv.github.io/Thermolab/. These pages may be subject to 1035 

continuous update and development.  1036 

References 1037 

Abart, R., Petrishcheva, E., Wirth, R., & Rhede, D. (2009). Exsolution by Spinodal 1038 

Decomposition Ii: Perthite Formation during Slow Cooling of Anatexites from 1039 

Ngoronghoro, Tanzania. American Journal of Science, 309(6), 450-475.  1040 

Ague, J. J., & Baxter, E. F. (2007). Brief thermal pulses during mountain building recorded by Sr 1041 

diffusion in apatite and multicomponent diffusion in garnet. Earth and Planetary Science 1042 

Letters, 261(3-4), 500-516.  1043 

Aharonov, E., Whitehead, J. A., Kelemen, P. B., & Spiegelman, M. (1995). Channeling 1044 

Instability of Upwelling Melt in the Mantle. Journal of Geophysical Research-Solid 1045 

Earth, 100(B10), 20433-20450.  1046 

Anderson, G. M., Castet, S., Schott, J., & Mesmer, R. E. (1991). The Density Model for 1047 

Estimation of Thermodynamic Parameters of Reactions at High-Temperatures and 1048 

Pressures. Geochimica Et Cosmochimica Acta, 55(7), 1769-1779.  1049 

Aranovich, L. Y., Akinfiev, N. N., & Golunova, M. (2020). Quartz solubility in sodium 1050 

carbonate solutions at high pressure and temperature. Chemical Geology, 550.  1051 

https://hansjcv.github.io/Thermolab/


manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

Aranovich, L. Y., & Newton, R. C. (1999). Experimental determination of CO2-H2O activity-1052 

composition relations at 600-1000 degrees C and 6-14 kbar by reversed decarbonation 1053 

and dehydration reactions. American Mineralogist, 84(9), 1319-1332.  1054 

Balashov, V. N., & Yardley, B. W. D. (1998). Modeling metamorphic fluid flow with reaction-1055 

compaction-permeability feedbacks. American Journal of Science, 298(6), 441-470.  1056 

Bebout, G. E., Scholl, D. W., Stern, R. J., Wallace, L. M., & Agard, P. (2018). Twenty Years of 1057 

Subduction Zone Science: Subduction Top to Bottom 2 (ST2B-2). GSA Today, 4-10.  1058 

Beinlich, A., John, T., Vrijmoed, J. C., Tominaga, M., Magna, T., & Podladchikov, Y. Y. (2020). 1059 

Instantaneous rock transformations in the deep crust driven by reactive fluid flow. Nature 1060 

Geoscience, 13(4), 307-311.  1061 

Berman, R. G. (1988). Internally-Consistent Thermodynamic Data for Minerals in the System 1062 

Na2o-K2o-Cao-Mgo-Feo-Fe2o3-Al2o3-Sio2-Tio2-H2o-Co2. Journal of Petrology, 1063 

29(2), 445-522.  1064 

Berman, R. G., & Brown, T. H. (1985). Heat-Capacity of Minerals in the System Na2o-K2o-1065 

Cao-Mgo-Feo-Fe2o3-Al2o3-Sio2-Tio2-H2o-Co2 - Representation, Estimation, and High-1066 

Temperature Extrapolation. Contributions to Mineralogy and Petrology, 89(2-3), 168-1067 

183.  1068 

Bowen, N. L., & Schairer, J. F. (1935). The system MgO-FeO-SiO2. American Journal of 1069 

Science, s5-29(170), 151-217.  1070 

Cahn, J. W., & Hilliard, J. E. (1958). Free Energy of a Nonuniform System .1. Interfacial Free 1071 

Energy. Journal of Chemical Physics, 28(2), 258-267.  1072 

Coggon, R., & Holland, T. J. B. (2002). Mixing properties of phengitic micas and revised garnet-1073 

phengite thermobarometers. Journal of Metamorphic Geology, 20(7), 683-696.  1074 

Connolly, J. A. D. (2005). Computation of phase equilibria by linear programming: A tool for 1075 

geodynamic modeling and its application to subduction zone decarbonation. Earth and 1076 

Planetary Science Letters, 236(1-2), 524-541.  1077 

Connolly, J. A. D. (2009). The geodynamic equation of state: What and how. Geochemistry 1078 

Geophysics Geosystems, 10.  1079 

Connolly, J. A. D. (2017). A Primer in Gibbs Energy Minimization for Geophysicists. Petrology, 1080 

25(5), 526-534.  1081 

Dantzig, G. B., Orden, A., & Wolfe, P. (1955). The generalized simplex method for minimizing 1082 

a linear form under linear inequality restraints. Pacific Journal of Math, 5, 183-195.  1083 

de Capitani, C., & Brown, T. H. (1987). The computation of chemical equilibrium in complex 1084 

systems containing non-ideal solutions. Geochimica Et Cosmochimica Acta, 51(10), 1085 

2639-2652.  1086 

De Groot, S., & Mazur, P. (1984). Non-equilibrium thermodynamics. New York: Dover 1087 

Publications, Inc. 1088 

Dolejš, D. (2013). Thermodynamics of Aqueous Species at High Temperatures and Pressures: 1089 

Equations of State and Transport Theory. Reviews in Mineralogy and Geochemistry, 1090 

76(1), 35-79.  1091 

Dolejš, D., & Wagner, T. (2008). Thermodynamic modeling of non-ideal mineral–fluid 1092 

equilibria in the system Si–Al–Fe–Mg–Ca–Na–K–H–O–Cl at elevated temperatures and 1093 

pressures: Implications for hydrothermal mass transfer in granitic rocks. Geochimica Et 1094 

Cosmochimica Acta, 72(2), 526-553.  1095 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

Evans, K. A., & Powell, R. (2006). Improvements in thermodynamic models of hydrothermal 1096 

fluids through better configurational entropy terms. Geochimica Et Cosmochimica Acta, 1097 

70(18), A162-A162.  1098 

Evans, K. A., & Powell, R. (2007). DES-code: A metacode to aid calculation of the chemical 1099 

potential of aqueous solutions at elevated temperatures and pressures. Computers & 1100 

Geosciences, 33(6), 789-807.  1101 

Fagents, S. A., Gregg, T. K. P., & Lopes, R. M. C. (2013). Modeling Volcanic Processes. 1102 

Feng, G., Wang, Y., Xu, T., Wang, F., & Shi, Y. (2021). Multiphase flow modeling and energy 1103 

extraction performance for supercritical geothermal systems. Renewable Energy, 173, 1104 

442-454.  1105 

Fernández, D. P., Goodwin, A. R. H., Lemmon, E. W., Levelt Sengers, J. M. H., & Williams, R. 1106 

C. (1997). A Formulation for the Static Permittivity of Water and Steam at Temperatures 1107 

from 238 K to 873 K at Pressures up to 1200 MPa, Including Derivatives and Debye–1108 

Hückel Coefficients. Journal of Physical and Chemical Reference Data, 26(4), 1125-1109 

1166.  1110 

Fletcher, R. C., & Hofmann, A. W. (1974). Simple models of diffusion and combined diffusion-1111 

infiltration metasomatism. Geochemical Transport and Kinetics, 243-259.  1112 

Ganguly, J. (2020). Thermodynamics in Earth and Planetary Sciences / by Jibamitra Ganguly 1113 

(2nd ed. 2020 ed.). Cham: Springer International Publishing. 1114 

Geller, R. J. (1997). Earthquake prediction: a critical review. Geophysical Journal International, 1115 

131(3), 425-450.  1116 

Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., & Kress, V. C. (2002). The pMELTS: A 1117 

revision of MELTS for improved calculation of phase relations and major element 1118 

partitioning related to partial melting of the mantle to 3 GPa. Geochemistry, Geophysics, 1119 

Geosystems, 3(5), 1-35.  1120 

Glasser, F. P., Jauffret, G., Morrison, J., Galvez-Martos, J.-L., Patterson, N., & Imbabi, M. S.-E. 1121 

(2016). Sequestering CO2 by Mineralization into Useful Nesquehonite-Based Products. 1122 

Frontiers in Energy Research, 4.  1123 

Gordon, S., & McBride, B. J. (1994). Computer Program for the Calculation of Complex 1124 

Chemical Equilibrium Compositions with Applications; I. Analysis. NASA Reference 1125 

Publication, 1311.  1126 

Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., & Palin, R. M. 1127 

(2016). Activity-composition relations for the calculation of partial melting equilibria in 1128 

metabasic rocks. Journal of Metamorphic Geology, 34(9), 845-869.  1129 

Guy, B. (1993). Mathematical revision of Korzhinskii's theory of infiltration metasomatic 1130 

zoning. European Journal of Mineralogy, 5(2), 317-340.  1131 

Helgeson, H. C., Delany, J. M., Nesbitt, H. W., & Bird, D. K. (1978). Summary and Critique of 1132 

the Thermodynamic Properties of Rock-Forming Minerals. American Journal of Science, 1133 

278, 1-229.  1134 

Helgeson, H. C., Kirkham, D. H., & Flowers, G. C. (1981). Theoretical Prediction of the 1135 

Thermodynamic Behavior of Aqueous-Electrolytes at High-Pressures and Temperatures 1136 

.4. Calculation of Activity-Coefficients, Osmotic Coefficients, and Apparent Molal and 1137 

Standard and Relative Partial Molal Properties to 600-Degrees-C and 5 Kb. American 1138 

Journal of Science, 281(10), 1249-1516.  1139 

Hofmann, A. (1972). Chromatographic theory of infiltration metasomatism and its application to 1140 

feldspars. American Journal of Science, 272(1), 69-90.  1141 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

Holland, T. J. B., Baker, J., & Powell, R. (1998). Mixing properties and activity-composition 1142 

relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. European Journal 1143 

of Mineralogy, 10(3), 395-406.  1144 

Holland, T. J. B., Green, E. C. R., & Powell, R. (2018). Melting of Peridotites through to 1145 

Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr. Journal of 1146 

Petrology, 59(5), 881-899.  1147 

Holland, T. J. B., & Powell, R. (1991). A Compensated-Redlich-Kwong (Cork) Equation for 1148 

Volumes and Fugacities of Co2 and H2o in the Range 1-Bar to 50-Kbar and 100-1600-1149 

Degrees-C. Contributions to Mineralogy and Petrology, 109(2), 265-273.  1150 

Holland, T. J. B., & Powell, R. (1996). Thermodynamics of order-disorder in minerals .1. 1151 

Symmetric formalism applied to minerals of fixed composition. American Mineralogist, 1152 

81(11-12), 1413-1424.  1153 

Holland, T. J. B., & Powell, R. (1998). An internally consistent thermodynamic data set for 1154 

phases of petrological interest. Journal of Metamorphic Geology, 16(3), 309-343.  1155 

Holland, T. J. B., & Powell, R. (2003). Activity-composition relations for phases in petrological 1156 

calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy 1157 

and Petrology, 145(4), 492-501.  1158 

Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent 1159 

thermodynamic dataset for phases of petrological interest, involving a new equation of 1160 

state for solids. Journal of Metamorphic Geology, 29(3), 333-383.  1161 

Huang, F., & Sverjensky, D. A. (2019). Extended Deep Earth Water Model for predicting major 1162 

element mantle metasomatism. Geochimica Et Cosmochimica Acta, 254, 192-230.  1163 

John, T., Gussone, N., Podladchikov, Y. Y., Bebout, G. E., Dohmen, R., Halama, R., et al. 1164 

(2012). Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature 1165 

Geoscience, 5(7), 489-492.  1166 

Johnson, J. W., & Norton, D. (1991). Critical Phenomena in Hydrothermal Systems - State, 1167 

Thermodynamic, Electrostatic, and Transport-Properties of H2o in the Critical Region. 1168 

American Journal of Science, 291(6), 541-648.  1169 

Johnson, J. W., Oelkers, E. H., & Helgeson, H. C. (1992). Supcrt92 - a Software Package for 1170 

Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous 1171 

Species, and Reactions from 1-Bar to 5000-Bar and 0-Degrees-C to 1000-Degrees-C. 1172 

Computers & Geosciences, 18(7), 899-947.  1173 

Kelemen, P. B., & Matter, J. (2008). In situ carbonation of peridotite for CO2 storage. 1174 

Proceedings of the National Academy of Sciences, 105(45), 17295-17300.  1175 

Kulik, D. A., Wagner, T., Dmytrieva, S. V., Kosakowski, G., Hingerl, F. F., Chudnenko, K. V., 1176 

& Berner, U. R. (2012). GEM-Selektor geochemical modeling package: revised 1177 

algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational 1178 

Geosciences.  1179 

Lebon, G., Jou, D., & Casas-Vázquez, J. (2008). Understanding non-equilibrium 1180 

thermodynamics : foundations, applications, frontiers / G. Lebon, D. Jou, J. Casas-1181 

Vázquez. Berlin ; Heidelberg: Springer. 1182 

Lichtner, P. C., & Carey, J. W. (2006). Incorporating solid solutions in reactive transport 1183 

equations using a kinetic discrete-composition approach. Geochimica Et Cosmochimica 1184 

Acta, 70(6), 1356-1378.  1185 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

Malvoisin, B., Podladchikov, Y. Y., & Vrijmoed, J. C. (2015). Coupling changes in densities and 1186 

porosity to fluid pressure variations in reactive porous fluid flow: Local thermodynamic 1187 

equilibrium. Geochemistry Geophysics Geosystems, 16(12), 4362-4387.  1188 

Manning, C. E. (1994). The Solubility of Quartz in H2O in the Lower Crust and Upper-Mantle. 1189 

Geochimica Et Cosmochimica Acta, 58(22), 4831-4839.  1190 

Miron, G. D., Wagner, T., Kulik, D. A., & Heinrich, C. A. (2016). Internally consistent 1191 

thermodynamic data for aqueous species in the system Na-K-Al-Si-O-H-Cl. Geochimica 1192 

Et Cosmochimica Acta, 187, 41-78.  1193 

Miron, G. D., Wagner, T., Kulik, D. A., & Lothenbach, B. (2017). An internally consistent 1194 

thermodynamic dataset for aqueous species in the system Ca-Mg-Na-K-Al-Si-O-H-C-Cl 1195 

TO 800 degrees C AND 5 kbar. American Journal of Science, 317(7), 755-806.  1196 

Nauman, E. B., & He, D. Q. (2001). Nonlinear diffusion and phase separation. Chemical 1197 

Engineering Science, 56(6), 1999-2018.  1198 

Orr, F. M. (2005). Theory of Gas Injection Processes. Stanford, California: Stanford University. 1199 

Orr, F. M. (2018). Carbon Capture, Utilization, and Storage: An Update. Spe Journal, 23(06), 1200 

2444-2455.  1201 

Padron-Navarta, J. A., Sanchez-Vizcaino, V. L., Hermann, J., Connolly, J. A. D., Garrido, C. J., 1202 

Gomez-Pugnaire, M. T., & Marchesi, C. (2013). Tschermak's substitution in antigorite 1203 

and consequences for phase relations and water liberation in high-grade serpentinites. 1204 

Lithos, 178, 186-196.  1205 

Palin, R. M., White, R. W., Green, E. C. R., Diener, J. F. A., Powell, R., & Holland, T. J. B. 1206 

(2016). High-grade metamorphism and partial melting of basic and intermediate rocks. 1207 

Journal of Metamorphic Geology, 34(9), 871-892.  1208 

Petrishcheva, E., & Abart, R. (2009). Exsolution by Spinodal Decomposition I: Evolution 1209 

Equation for Binary Mineral Solutions with Anisotropic Interfacial Energy. American 1210 

Journal of Science, 309(6), 431-449.  1211 

Pitzer, K. S., & Sterner, S. M. (1994). Equations of State Valid Continuously from Zero to 1212 

Extreme Pressures for H2o and Co2. Journal of Chemical Physics, 101(4), 3111-3116.  1213 

Plümper, O., John, T., Podladchikov, Y. Y., Vrijmoed, J. C., & Scambelluri, M. (2017). Fluid 1214 

escape from subduction zones controlled by channel-forming reactive porosity. Nature 1215 

Geosci, 10(2), 150-156. Article. 1216 

Powell, R., & Holland, T. (1999). Relating formulations of the thermodynamics of mineral solid 1217 

solutions: Activity modeling of pyroxenes, amphiboles, and micas. American 1218 

Mineralogist, 84(1-2), 1-14.  1219 

Rossi, C. C. R. S., Cardozo, L., & Guirardello, R. (2009). Gibbs free energy minimization for the 1220 

calculation of chemical and phase equilibrium using linear programming. Fluid Phase 1221 

Equilibria, 278(1-2), 117-128.  1222 

Rundle, J. B., Stein, S., Donnellan, A., Turcotte, D. L., Klein, W., & Saylor, C. (2021). The 1223 

complex dynamics of earthquake fault systems: new approaches to forecasting and 1224 

nowcasting of earthquakes. Reports on Progress in Physics, 84(7).  1225 

Shao, H. B., Dmytrieva, S. V., Kolditz, O., Kulik, D. A., Pfingsten, W., & Kosakowski, G. 1226 

(2009). Modeling reactive transport in non-ideal aqueous-solid solution system. Applied 1227 

Geochemistry, 24(7), 1287-1300.  1228 

Shomate, C. H. (1954). A Method for Evaluating and Correlating Thermodynamic Data. Journal 1229 

of Physical Chemistry, 58(4), 368-372.  1230 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

Sonnenthal, E., Ito, A., Spycher, N., Yui, M., Apps, J., Sugita, Y., et al. (2005). Approaches to 1231 

modeling coupled thermal, hydrological, and chemical processes in the Drift Scale Heater 1232 

Test at Yucca Mountain. International Journal of Rock Mechanics and Mining Sciences, 1233 

42(5-6), 698-719.  1234 

Steefel, C. I. (2019). Reactive Transport at the Crossroads. Reviews in Mineralogy and 1235 

Geochemistry, 85(1), 1-26.  1236 

Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., et al. (2014). 1237 

Reactive transport codes for subsurface environmental simulation. Computational 1238 

Geosciences, 19(3), 445-478.  1239 

Steefel, C. I., DePaolo, D. J., & Lichtner, P. C. (2005). Reactive transport modeling: An essential 1240 

tool and a new research approach for the Earth sciences. Earth and Planetary Science 1241 

Letters, 240(3-4), 539-558.  1242 

Sverjensky, D. A., Harrison, B., & Azzolini, D. (2014). Water in the deep Earth: The dielectric 1243 

constant and the solubilities of quartz and corundum to 60 kb and 1200 degrees C. 1244 

Geochimica Et Cosmochimica Acta, 129, 125-145.  1245 

Tanger, J. C., & Helgeson, H. C. (1988). Calculation of the Thermodynamic and Transport-1246 

Properties of Aqueous Species at High-Pressures and Temperatures - Revised Equations 1247 

of State for the Standard Partial Molal Properties of Ions and Electrolytes. American 1248 

Journal of Science, 288(1), 19-98.  1249 

Tian, M., & Ague, J. J. (2014). The impact of porosity waves on crustal reaction progress and 1250 

CO2 mass transfer. Earth and Planetary Science Letters, 390, 80-92.  1251 

Ulrich, T., Vater, S., Madden, E. H., Behrens, J., van Dinther, Y., van Zelst, I., et al. (2019). 1252 

Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 1253 

2018 Palu, Sulawesi Tsunami. Pure and Applied Geophysics, 176(10), 4069-4109.  1254 

Van Laar, J. J. (1906). Sechs Vorträge über das thermodynamische Potential und seine 1255 

Anwendungen auf chemische und physikalische Gleichgewichtsprobleme : eingeleitet 1256 

durch zwei Vorträge über nichtverdünnte Lösungen und über den osmotischen Druck / 1257 

von J. J. van Laar. Braunschweig: Vieweg. 1258 

Vehling, F., Hasenclever, J., & Rüpke, L. (2020). Brine Formation and Mobilization in 1259 

Submarine Hydrothermal Systems: Insights from a Novel Multiphase Hydrothermal Flow 1260 

Model in the System H2O–NaCl. Transport in Porous Media, 136(1), 65-102.  1261 

Vrijmoed, J. C., & Podladchikov, Y. Y. (2015). Thermodynamic equilibrium at heterogeneous 1262 

pressure. Contributions to Mineralogy and Petrology, 170(1).  1263 

Wagner, W., & Pruss, A. (2002). The IAPWS formulation 1995 for the thermodynamic 1264 

properties of ordinary water substance for general and scientific use. Journal of Physical 1265 

and Chemical Reference Data, 31(2), 387-535.  1266 

Wanner, C., Peiffe, L., Sonnenthal, E., Spycher, N., Iovenitti, J., & Kennedy, B. M. (2014). 1267 

Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and 1268 

geothermometry. Geothermics, 51, 130-141.  1269 

Weis, P., Driesner, T., & Heinrich, C. A. (2012). Porphyry-Copper Ore Shells Form at Stable 1270 

Pressure-Temperature Fronts Within Dynamic Fluid Plumes. Science, 338(6114), 1613-1271 

1616.  1272 

White, R. W., Powell, R., & Holland, T. J. B. (2007). Progress relating to calculation of partial 1273 

melting equilibria for metapelites. Journal of Metamorphic Geology, 25(5), 511-527.  1274 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

White, R. W., Powell, R., & Phillips, G. N. (2003). A mineral equilibria study of the 1275 

hydrothermal alteration in mafic greenschist facies rocks at Kalgoorlie, Western 1276 

Australia. Journal of Metamorphic Geology, 21(5), 455-468.  1277 

White, W. B., Johnson, S. M., & Dantzig, G. B. (1958). Chemical Equilibrium in Complex 1278 

Mixtures. Journal of Chemical Physics, 28(5), 751-755.  1279 

Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). Fluid flow in 1280 

subduction zones: The role of solid rheology and compaction pressure. Earth and 1281 

Planetary Science Letters, 401, 261-274.  1282 

Zhang, C., & Duan, Z. H. (2009). A model for C-O-H fluid in the Earth's mantle. Geochimica Et 1283 

Cosmochimica Acta, 73(7), 2089-2102.  1284 

Zhang, X., Ma, F., Dai, Z., Wang, J., Chen, L., Ling, H., & Soltanian, M. R. (2022). 1285 

Radionuclide transport in multi-scale fractured rocks: A review. Journal of Hazardous 1286 

Materials, 424.  1287 

Zhang, Z. G., & Duan, Z. H. (2005). Prediction of the PVT properties of water over wide range 1288 

of temperatures and pressures from molecular dynamics simulation. Physics of the Earth 1289 

and Planetary Interiors, 149(3-4), 335-354.  1290 

 1291 


