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Abstract

The dual-frequency precipitation radar (DPR) onboard the Global Precipitation Measurement (GPM) core satellite can provide

information on drop size distribution (DSD) to improve rainfall estimation. The ground-based dual-polarization radar has great

advantages for rainfall estimation, owing to the greater accessibility to information about the DSD and hydrometeor type. In

this study, the three-dimensional rainfall products from DPR, with normal scan (NS), matched scan (MS), and high sensitivity

scan (HS) mode, and C-band dual-polarization radar (CDP) were compared based on the volume matching algorithm and

hydrometeor identification. The reliability of CDP rainfall and DSD parameter estimation for liquid samples was evaluated

using rain gauge and disdrometer data. Rainfall relations for non-liquid samples for CDP were obtained via scattering simulation.

An intercomparison of reflectivity revealed correlations of more than 0.8 for all three DPR scanning modes for stratiform and

convective precipitation. Rainfall comparison performance of the MS mode was slightly better than that of the NS mode

for liquid samples, especially for convective precipitation, which may be attributed to MS mode having the best consistency

of mass-weighted mean diameter estimation. The HS mode showed good agreement, with respect to stratiform rainfall, but

poor agreement, with respect to convective rainfall. For non-liquid samples, the biases were within 0.8 mm/h. The NS mode

showed the best agreement, followed by the HS mode; however, the consistency was worse than that for liquid samples. Given

the different physical characteristics of hydrometeors, our findings highlight the importance of rainfall estimation based on

hydrometeor phases.
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Abstract 19 

The dual-frequency precipitation radar (DPR) onboard the Global Precipitation Measurement 20 

(GPM) core satellite can provide information on drop size distribution (DSD) to improve rainfall 21 

estimation. The ground-based dual-polarization radar has great advantages for rainfall estimation, 22 

owing to the greater accessibility to information about the DSD and hydrometeor type. In this 23 

study, the three-dimensional rainfall products from DPR, with normal scan (NS), matched scan 24 

(MS), and high sensitivity scan (HS) mode, and C-band dual-polarization radar (CDP) were 25 

compared based on the volume matching algorithm and hydrometeor identification. The reliability 26 

of CDP rainfall and DSD parameter estimation for liquid samples was evaluated using rain gauge 27 

and disdrometer data. Rainfall relations for non-liquid samples for CDP were obtained via 28 

scattering simulation. An intercomparison of reflectivity revealed correlations of more than 0.8 for 29 

all three DPR scanning modes for stratiform and convective precipitation. Rainfall comparison 30 

performance of the MS mode was slightly better than that of the NS mode for liquid samples, 31 

especially for convective precipitation, which may be attributed to MS mode having the best 32 

consistency of mass-weighted mean diameter estimation. The HS mode showed good agreement, 33 

with respect to stratiform rainfall, but poor agreement, with respect to convective rainfall. For non-34 

liquid samples, the biases were within 0.8 mm/h. The NS mode showed the best agreement, 35 

followed by the HS mode; however, the consistency was worse than that for liquid samples. Given 36 

the different physical characteristics of hydrometeors, our findings highlight the importance of 37 

rainfall estimation based on hydrometeor phases. 38 

1 Introduction 39 

Accurate rainfall estimation is essential in various applications, including flood estimation, 40 

water resource management, weather forecasting, agriculture, and understanding the cycling of 41 

global water (Camille et al., 2020; Cannon et al., 2017). Precipitation radar (PR) carried on the 42 

satellite view from top to bottom, which can provide quasi-global three-dimensional (3D) 43 

precipitation measurement (Kou et al., 2018; Skofronick-Jackson et al., 2017; Tang et al., 2017). 44 

The PR onboard the Tropical Rainfall Measuring Mission (TRMM) satellite was the first 45 

spaceborne weather radar. It has provided a large amount of precipitation data, enabling scientific 46 

studies and societal benefits over the tropics. With the success of TRMM, the Global Precipitation 47 

Measurement Mission (GPM) core satellite was launched in February 2014. The dual-frequency 48 
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precipitation radar (DPR) on the GPM operates at 13.6 GHz (Ku-band) and 35.5 GHz (Ka-band). 49 

Through dual-band measurement, the DPR can obtain the drop size distribution (DSD) information 50 

and improve the accuracy of quantitative precipitation estimation (Hou et al., 2014; Skofronick-51 

Jackson et al., 2018). In addition, compared with TRMM, the coverage of DPR was extended to 52 

±65°, and the ability to detect weak and strong precipitation was further strengthened. 53 

To evaluate and verify the performance of precipitation products measured by spaceborne 54 

radar for better applications, it is essential to compare and validate the precipitation data of 55 

spaceborne radar based on ground-measured data. After the launch of the GPM, GPM ground 56 

validation field campaigns were carried out, e.g., the Integrated Precipitation and Hydrology 57 

Experiment (IPHEx) and the Olympic Mountains Experiment (OLYMPEx) (Barros et al., 2014; 58 

Houze et al., 2017). OLYMPEx evaluated the GPM satellite rainfall retrieval algorithm and 59 

hydrological application of precipitation products in the Washington area, based on S-band dual-60 

polarization radar, rain gauge, and other ground observations (Houze et al., 2017). Studies 61 

conducted globally have performed validation tests and data comparison (D’Adderio et al., 2018; 62 

Gao et al., 2021; Jiang et al., 2020; Liao & Meneghini, 2019; Pettacra et al, 2018; Watters et al., 63 

2018; Zhang et al., 2019). Lasser et al. (2019) evaluated three types of DPR surface rainfall 64 

products based on a local-scale terrestrial network of 153 meteorological stations in 65 

southeastern Austria. The results showed that the DPR has good consistency with ground 66 

stations. Ka-MS was noted to perform the best because of the higher number of light rain 67 

events. Speirs et al. (2017) evaluated the estimated surface precipitation products of the DPR 68 

in complex terrain over Switzerland against measurements from a C-band operational radar 69 

network. D’Adderio et al. (2019) compared the single-frequency (SF) and double-frequency 70 

(DF) PR products over the Mediterranean area to investigate the reliability of SF-based 71 

products with DF-based products as references. Biswas et al. (2018) cross-validated 72 

reflectivity measurements at the Ku- and Ka-bands and DPR instantaneous rain rate products 73 

against five dual-polarization radars from the GPM GV network, which showed that the 74 

matched DPR and GR reflectivity were in good agreement. Liao et al. (2014) assessed the 75 

uncertainties of DSD parameters employed in DPR precipitation retrievals. The study pointed 76 

out that DPR provides accurate rainfall and attenuation estimates with a fixed-μ gamma DSD 77 

model.  78 
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Ground-based dual-polarization radar is advantageous for quantitative precipitation 79 

estimation because of its potential to characterize precipitation microphysics and identify 80 

different hydrometeor types (Bringi et al., 2001; Chandrasekar et al., 2008; Liu et al., 2007). The 81 

optimal DSD parameters and hydrometeor classification can be obtained using a certain 82 

retrieval algorithm using polarization information (Cao et al., 2010; Huang et al., 2020; Mahale 83 

et al., 2019; Zhang et al., 2001). In addition, a dual-polarization radar system can provide 84 

measurements that are immune to absolute radar calibration and partial beam blockage and can 85 

further improve the accuracy of rainfall estimation (Bringi et al., 2001; Chen et al., 2017). With 86 

these advantages, dual-polarization radar is a powerful tool that can cross-validate the 87 

precipitation products and the microphysical properties parameterized in DPR. In our studies, the 88 

3D rainfall products of DPR with different scanning modes, precipitation types, and precipitation 89 

phases were compared with the rainfall estimation from C-band ground-based dual-polarization 90 

radar (CDP). The reflectivity factors (hereafter called reflectivity) and retrieval DSD parameters 91 

from the dual-polarization radar are also used to assess parameters in the evolving DPR 92 

precipitation retrieval algorithm. The reliabilities of ground-based dual-polarization radar 93 

estimations for liquid samples have been tested using rain gauge and disdrometer data. The main 94 

goal of such comparative studies is to analyze the differences between different precipitation 95 

products of DPR under various precipitation conditions and provide a possible indication for the 96 

improvement of DPR precipitation retrieval. On the other hand, comparative research helps to 97 

understand the characteristics of different observation data better and utilize the various 98 

advantages of different sensors to yield an optimal multisensor estimate of rainfall. 99 

This paper is organized as follows: Section II provides an overview of the data set 100 

considered, in addition to brief descriptions of hydrometeor classification, rainfall estimation, and 101 

mass-weighted mean diameter (Dm) retrieval of CDP. The optimal rainfall estimation of CDP was 102 

validated using rain gauge data. The Dm retrieval of CDP was also tested using the disdrometer 103 

data. In Section III, the comparison results are presented. First, the comparisons of bright band 104 

(BB) height and phase identification from DPR and CDP are shown. Second, the measurement 105 

data of reflectivity from CDP and DPR are compared based on the volume matching method, and 106 

the band conversion is considered. Then, quantitative comparisons of rainfall estimates are 107 

reported for DPR in NS, MS, and HS modes for different precipitation types and precipitation 108 

phases concerning the optimal rainfall estimation of CDP. Finally, Section V concludes the paper. 109 
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2 Datasets and Methods 110 

2.1 DPR products 111 

The GPM DPR consists of two radars operating in the Ku-band (35.5 GHz) and Ka-band 112 

(13.6 GHz). One reason for adding the Ka-band is to obtain DSD retrievals based on different 113 

scattering and attenuation effects at the Ka- and Ku-bands (Hou et al., 2014; Seto et al., 2013). A 114 

major source of error in rainfall estimates from TRMM PR is the uncertainty in the conversion of 115 

radar reflectivity into rainfall rate, mainly caused by variations in the DSDs that change by region 116 

and rain type (Liao et al., 2014). More detailed microphysical information from the DPR could 117 

lead to improved rainfall estimates. The dual-band returns will also allow us to distinguish regions 118 

of liquid, frozen, and mixed-phase precipitation (Le et al., 2013). Another reason for adding the 119 

Ka-band is to improve the detection thresholds for light rain and snow. In general, the DPR 120 

onboard the GPM can provide more detailed information on microphysics and better accuracy in 121 

rainfall estimation from dual-wavelength radar measurements. 122 

Three scanning modes were included in DPR (Hou et al., 2014; Iguchi et al., 2017). For  123 

normal scan (NS), the scan pattern is similar to that of TRMM PR, which has 49 footprints in a 124 

scan. The footprint size is approximately 5 km in diameter. In the matched scan (MS), the beams 125 

are matched to the central 25 beams of Ku-band footprints, providing a swath of 120 km. The high-126 

sensitivity scan (HS) Ka-band footprints were interlaced with Ku-band footprints and had 24 angle 127 

bins. The range resolution of the NS and MS measurements was 250 m. The range resolution was 128 

125m for HS measurement because the radar echoes were oversampled at twice the rate. The 129 

minimum rainfall rate is 0.2 mm/h for Ka-band of DPR and 0.5 mm/h for Ku-band. This study 130 

used DPR Level-2A products (2ADPR) based on dual-wavelength information. Three modes of 131 

2ADPR products, 2ADPR-NS, 2ADPR-MS, and 2ADPR-HS, were used. It should be noted that 132 

the inner swath (footprints 13–37) of 2ADPR-NS is the same as that of 2ADPR-MS. The key 133 

variables used in this study include zFactorCorrected, PrecipRate, paramDSD, heightBB, 134 

typePrecip, and phase. 135 

2.2 CDP data  136 

Dual-polarization weather radar is a type of radar that can transmit and receive both 137 

horizontal and vertical polarization waves. Only three basic data, including radar reflectivity 138 
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factors (Z), radial velocity, and velocity spectrum width, can be obtained using conventional 139 

single-polarization radar. More parameters can be measured from the dual-polarization radar, such 140 

as differential reflectivity (ZDR), differential propagation phase (DP), specific differential phase 141 

shift (KDP), and cross-correlation coefficient (ρhv). Compared with conventional weather radar, 142 

dual-polarization radar has notable advantages in identifying different hydrometeor types and 143 

retrieving DSD parameters (Bringi et al., 2001). Moreover, the polarization parameters were 144 

relatively insensitive to variations in the DSD. Therefore, the accuracy of quantitative precipitation 145 

estimation can be further improved using dual-polarization radar measurements. Data from the 146 

CDP at Nanjing University of Information Science and Technology were used in this study. The 147 

wavelength of the CDP is 5.3 cm, and the beam width is 0.54 degrees. The radar has a range 148 

resolution of 75 m, with a coverage of 144 km. During the precipitation operation mode, the CDP 149 

conducts a volume coverage pattern with 14 elevation scans. For one volume scan, the CDP 150 

typically takes approximately 7–8 min. Before application, the measured data of CDP is quality 151 

controlled with a series of preprocessing (Kou et al., 2018), such as recognition and removal of 152 

ground clutter with a fuzzy logic algorithm, median filtering of KDP and ZDR, and the attenuation 153 

correction of radar reflectivity at horizontal polarization (Zh) with the KDP-Zh joint correction 154 

method (Park et al., 2005). 155 

2.3 Hydrometeor identification 156 

Dual-polarimetric radar measurements are sensitive to hydrometeors' type, shape, and size 157 

distribution in a resolution volume. Classifying hydrometeors is important for optimizing the 158 

rainfall retrieval algorithm and evaluating the assumptions made in the rainfall retrieval processes. 159 

The hydrometeor identification will be utilized following optimization of rainfall retrieval with 160 

different hydrometeor classes and rainfall comparison between DPR and CDP for different phases. 161 

Currently, the algorithms frequently used for hydrometeor identification are, in general, based on 162 

the fuzzy logic approach. Fuzzy logic classification generally has three steps: fuzzification, 163 

aggregation, and defuzzification. In this study, we use a fuzzy logic algorithm similar to the scheme 164 

in Park et al. (2009) but in a simplified manner. This module applies three radar measurements, Zh, 165 

ZDR, and ρhv, as the input; the weighting functions were assumed to be 1. Ten classes of radar echo 166 

were identified as the output: ground clutter or anomalous propagation (GC/AP), biological 167 

scatterers (BS), dry aggregated snow (SW), wet snow (WS), crystals (CR), graupel (GR), big drops 168 



Journal of Geophysical Research: Atmospheres 

7 

 

(BD), light and moderate rain (RA), heavy rain (HR), and a mixture of rain and hail (HA). Some 169 

restrictions were set according to the location of the melting layer (Schuur et al., 2003). 170 

2.4 Optimization of rainfall retrieval 171 

Dual-polarization radar can provide both back-scatter and differential propagation phase 172 

information. Thus, it can constrain the uncertainty of quantitative rainfall estimation resulting from 173 

DSD variations. The parameters Zh, ZDR, and KDP, are typically used either alone or in combination 174 

to estimate rainfall (Chen et al., 2017; Cifelli et al., 2011), such as the relationships of R(Zh), R(Zh, 175 

ZDR), and R(KDP), where R indicates the rainfall rate. Each rainfall relationship has its advantages 176 

and disadvantages. No standard criterion can be applied to determine the optimal estimator for a 177 

given set of dual-polarization measurements. In this study, the rainfall estimators were combined. 178 

The most appropriate rainfall relation was selected based on the hydrometeor classification and 179 

logistic regression algorithm. First, the rainfall estimators of R(Zh), R(Zh, ZDR), and R(KDP) were 180 

established through the disdrometer data in the Nanjing area using a neural network algorithm. 181 

Then, particular rainfall estimators were selected for the liquid samples determined by the 182 

hydrometeor identification results. A logistic regression model was built based on the CDP rainfall 183 

retrieved from the rainfall estimators and spatial-temporal matched rain gauge data. During logistic 184 

modeling, we randomly selected a part of the data for training and the other part for testing. The 185 

optimization selection of rainfall estimators was performed for the liquid samples according to the 186 

established logistic model.  187 

Figure 1 shows the scatter plots of rainfall from the rain gauge and CDP with different 188 

rainfall algorithms. The data are from all precipitation events that CDP matched with DPR during 189 

2015–2017. Figure 1a-c shows the scatter plot of rain gauge data and CDP rainfall with individual 190 

rainfall estimators of R(Zh), R(Zh, ZDR), and R(KDP). The optimization retrieval algorithm obtained 191 

the rainfall from the CDP in Figure 1d. The statistical indices for quantitative comparisons are 192 

shown in Figure 1, where CC is the correlation coefficient, and Bias is the mean bias of the data 193 

on the y-axis minus the data on the x-axis. MAE is the mean absolute error that measures the 194 

average magnitude of the error, and RMSE is the root mean square error. From Figure 1, it is seen 195 

that R(KDP) is noisy at low rainfall rates but is good at high rainfall rates. R(Zh) and R(Zh, ZDR) do 196 

not work well in heavy rain but perform well in light rain. The results of the optimization retrieval 197 

algorithm were in good agreement with the rain gauge data, and the correlation coefficient reached 198 
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approximately 0.83. The bias decreased to -0.19 mm/h. The optimization retrieval algorithm 199 

considers the hydrometeor type and the rainfall estimation performance of different rainfall 200 

estimators, which provide superior rain estimates for a given set of polarimetric variables. The 201 

optimization of rainfall retrieval result of the CDP will be used for later rainfall comparison with 202 

DPR. 203 

 204 

Figure 1. Scatter density plots of rainfall rate obtained by different rainfall retrieval algorithms of CDP and rain 205 

gauge. (a) R(Zh), (b) R (Zh, ZDR), (c) R(KDP), and (d) optimization of rainfall retrieval. 206 

2.4 Dm retrieval 207 

The mass-weighted mean diameter Dm is one of the DSD parameters that are especially 208 

important for rainfall estimation. The V05 version of the DPR level-2 algorithm assumes constraint 209 

relationships between the rainfall rate R and Dm, namely, R(Dm). To better understand the rainfall 210 

comparisons from DPR and CDP, Dm comparisons were introduced. Dm was estimated from the 211 

CDP using a variational retrieval approach (Chen et al., 2021). A variational method utilized 212 

forward observation operations that converted state variables into observations. The Dm and liquid 213 
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water content W were state variables, and Zh, ZDR, and KDP were observations. After establishing 214 

the forward model, the optimal Dm and W estimates were obtained using the nonlinear iteration to 215 

minimize the cost function. The variational retrieval method considers the uncertainty of the DSD 216 

and measurement error, which can produce an improved Dm estimate. The Dm estimate from the 217 

dual-polarization radar can also be obtained by an empirical relationship between Dm and ZDR 218 

based on DSD data from a disdrometer. To demonstrate the reliability of the Dm estimate from the 219 

CDP, the retrieved Dm was compared with the Dm from the calculation result of the disdrometer 220 

data with scatterplot and time sequence diagram. Figure 2a comprise the Dm estimate from CDP 221 

and Dm calculated from the disdrometer data available for 2015, where the disdrometer is at 222 

atmospheric comprehensive observatory of Nanjing University of Information Science and 223 

Technology. The data in Figure 2b is from a time series of 3:00 to 14:00 UTC on August 10, 2015. 224 

As shown in Figure 2, the retrieved Dm with the variational algorithm was consistent with the Dm 225 

calculated from the disdrometer, and the correlations were above 0.85. The Dm-ZDR method 226 

produced an underestimation at a larger Dm. The variational retrieval results for Dm were selected 227 

in this study.  228 

 229 

Figure 2. Comparison between Dm estimated with variational approach and Dm calculated from disdrometer. (a) 230 

Scatter density plot. (b) Time sequence diagram. 231 
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3 Results and discussion 232 

3.1 Comparison of BB height and phase recognition 233 

Accurate depiction of the BB is important for rain type classification and phase 234 

identification of the DPR. Before evaluating the DPR reflectivity measurements and rainfall 235 

products of different types and phases, the BB height estimation from DPR and CDP was first 236 

compared. The BB appears near 0°C and returns a strong echo at the radar measurement. The 237 

detection of BB for DPR is involved in the classification (CSF) module. A dual-frequency ratio 238 

(DFR) method was used to detect BB (Iguchi et al., 2017). Then, the height of the BB was obtained 239 

by searching the BB reflectivity peak height. In this study, we extracted DPR BB height data 240 

directly from the 2ADPR product of the heightBB variable. For CDP, BB detection was performed 241 

using a fuzzy logic algorithm. The height of the BB was calculated assuming an equivalent Earth 242 

radius to account for standard beam refraction (Cao et al., 2018). 243 

Figure 3 shows a scatter plot of the BB height from CDP and 2ADPR. Among the 17 244 

matching cases with extensive stratiform regions, the DPR NS and MS modes recognized the BB 245 

of 17 cases, consistent with CDP. In comparison, the DPR HS mode only recognized the BB of 10 246 

cases. In the case of the HS mode at the Ka-band, the BB peak may not be clear, and the peak 247 

position of Ka-band may be displaced from that of the Ku-band (Iguchi et al., 2017, Le & 248 

Chandrasekar, 2013). As shown in Figure 3, the differences in BB height from the CDP and DPR 249 

NS and MS modes were very small, and the correlation coefficients for the NS and MS modes 250 

were more than 0.9. The statistical comparison results for the BB height are presented in Table 1. 251 

The MAE and RMSE for the NS and MS modes were less than 0.2 km. The slight difference in 252 

BB height detection between the DPR and CDP may be mainly due to the scanning types and 253 

sampling differences.  254 
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 255 

Figure 3. Comparison of BB height from CDP and DPR with NS, MS, and HS scanning modes. The blue, red, and 256 

orange colors represent NS, MS, and HS modes, respectively. 257 

Table 1 Statistical comparison of BB height from CDP and DPR  258 

 CC Bias MAE RMSE 

2ADPR-NS 0.9153 0.0561 0.1764 0.1927 

2ADPR-MS 0.9269 0.0508 0.1623 0.1792 

2ADPR-HS 0.7849 -0.1242 0.2288 0.278 

Precipitation type classification and hydrometeor phase state detection are two critical 259 

aspects of the microphysical retrieval algorithm of DPR. In addition to the BB height comparison, 260 

the hydrometeor phase recognition of DPR was also validated with the ground dual-polarization 261 

radar. High-resolution measurement and dual-polarization capability make the CDP prominent in 262 

distinguishing between different hydrometeor types. Eight classes of hydrometeors were identified 263 

in the CDP using the fuzzy logic algorithm presented in Section 2.3. For DPR, the dual-frequency 264 

ratio (DFR) profile was used to distinguish the frozen, mixed-phase, and liquid regions (Le et al., 265 

2016). In this study, we divided the matched samples into liquid and non-liquid particles based on 266 

the hydrometeor identification results from the CDP. The large drops and light, moderate, and 267 

heavy rain determined by CDP were classified as liquid samples. The other hydrometeors were 268 

classified as non-liquid samples. In a matched volume of CDP, a particular hydrometeor type with 269 

the highest volume is regarded as the final sample type. 270 
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 The conditional probability of liquid and non-liquid phase identification of DPR for all 271 

samples is summarized in Table 2; it was defined as the ratio of the number of samples identified 272 

as a certain phase by both DPR and CDP to the number of samples identified as a certain phase by 273 

CDP. Conditional probability of the liquid phase for the three scanning modes was more than 95%. 274 

Conditional probability of non-liquid identification for the NS mode was slightly worse than that 275 

of the liquid phase. However, the conditional probability of non-liquid identification of the HS 276 

mode was low, indicating a large difference for non-liquid identification from CDP and DPR HS. 277 

For the DPR HS mode, the DF method was also used by interpolation (Iguchi et al., 2017). For 278 

non-liquid samples, the vertical resolution of the CDP becomes coarse as the range increases. Data 279 

re-sampling could contribute to large differences in DPR and CDP hydrometeor identification. The 280 

BB height and phase identification agreed well between the CDP and DPR NS and MS modes, 281 

and the agreement for the HS mode was slightly worse.  282 

Table 2 Conditional probability of liquid and non-liquid phase identification of DPR 283 

Scanning modes Liquid  Non-liquid  

DPR NS 95.34% 90.38% 

DPR MS 95.41% 95.55% 

DPR HS 97.69% 78.97% 

3.2 Comparison of reflectivity 284 

Radar reflectivity is a fundamental product used to retrieve rainfall from radar data. Before 285 

proceeding to comparisons of rainfall, we considered comparisons of reflectivity measured by 286 

DPR and CDP. Owing to the attenuation of reflectivity in C-band measurements, a KDP-Zh joint 287 

correction method was used to correct the attenuation of the reflectivity of CDP (Park et al., 2005). 288 

The attenuation correction was evaluated via comparison with the reflectivity from the S-band 289 

radar at Longwangshan, which is close to the CDP. The figures for attenuation correction 290 

evaluation are not shown here. The volume matching method, used for comparison, was performed 291 

at each geometric intersection of the DPR and CDP beams by averaging the data samples within 292 

the volume (Bolen & Chandrasekar, 2003). The matching method minimized the error due to re-293 

sampling. 294 

Volume-matched reflectivity from CDP was compared with attenuation-corrected 295 

reflectivity from 2ADPR-NS, 2ADPR-MS, and 2ADPR-HS. The minimum detectable signal was 296 
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approximately 12 and 18 dBZ for the DPR Ka- and Ku-bands. To improve the matching effect, 297 

the threshold value of CDP was set to 18 dBZ when matching the DPR NS and MS modes and 12 298 

dBZ when matching the DPR HS mode. Figure 4 shows the reflectivity scatter density plots of the 299 

CDP and DPR in the NS, MS, and HS modes for stratiform and convective samples. The 300 

precipitation type was noted according to the typePrecip product of DPR. The first, second, and 301 

third columns of Figure 4 show scatter density plots between CDP reflectivity and 2ADPR-NS, 302 

2ADPR-MS, and 2ADPR-HS reflectivity, respectively. The first, second, and third rows of Figure 303 

5 represent the reflectivity comparison for all, stratiform, and convective samples, respectively.  304 

 305 

Figure 4. Scatter density plots of volume matched reflectivity between CDP and DPR NS, MS, and HS modes for 306 

different precipitation types. (a-c) All NS, MS, and HS data samples. (d-f) Stratiform samples for NS, MS, and HS 307 

data. (g-i) Convective samples for NS, MS, and HS data. 308 

From Figure 4, we can see that the agreement was good for all the DPR scanning modes, and 309 

the CCs were more than 0.8 for both stratiform and convective precipitation. The NS mode showed 310 

the best agreement for both stratiform and convective precipitation. The CCs were higher for 311 

convective precipitation for the NS and MS modes than for stratiform precipitation. However, the 312 
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MAE and RMSE were smaller for stratiform precipitation. The bias for convective precipitation 313 

for the NS and MS modes was approximately 1.9 dB, consistent with the band difference between 314 

the C-band and Ku-band (Liao & Meneghini, 2009). The number of convective samples was small 315 

for the HS mode, and the bias was much smaller than that of the NS and MS modes. Thus, the 316 

reflectivity observed in the HS mode is lower, and its capability to detect convective precipitation 317 

is relatively weak. Nevertheless, the reflectivity measurement of the DPR HS was consistent with 318 

the CDP measurement overall.  319 

To further demonstrate the influence of the hydrometeor phase, reflectivity data were 320 

compared based on the hydrometeor types of CDP. Cao et al. (2013) revealed that the reflectivity 321 

could be 2 dB higher in the Ku-band than that of the S-band for rain measurements in the range of 322 

40–50 dBZ, owing to the different back-scattering cross-sections measured by the radars at 323 

different bands. The different types of hydrometeors have different back-scattering cross-sections 324 

at different radar bands, resulting in reflectivity measurement discrepancies. In the current study, 325 

we performed theoretical simulations of radar reflectivity factors to better explain the reflectivity 326 

comparisons between DPR and C-band ground radar. The radar reflectivity factor Z is given by 327 

4

25 0
( ) ( , )Z N D D dD

K


 





=                                                      (1) 328 

where is  the radar wavelength, 
2

K  is the dielectric constant of water, D is the effective particle 329 

diameter, ( , )D  is the back-scattering cross-section, and N(D) is the particle size distribution 330 

(PSD). Here, the normalized three-parameter ( , ,w mN D  ) gamma PSD model is used in the 331 

simulation: 332 

4

4
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D D
N D N

D D


 



+    + +
=    

 +    
                                     (2) 333 

The parameter settings in the gamma PSD model for different hydrometeors are similar to those 334 

in (Cao et al., 2013). The back-scattering cross-section of hydrometeors was derived from the T-335 

matrix calculation. Here, we introduce the DFR to quantify the scattering differences between the 336 

two frequencies: 337 
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−

= −

= −
                                             (3) 338 

The DFRs between the C-band and Ku- and Ka-band for different hydrometeors are shown 339 

in Figure 5. For liquid water, the simulated reflectivity differences were concordant with the results 340 

reported by Wen et al. (2011). Beyond 40 dBZ, the Ku-band reflectivity can be 2 dBZ higher. In 341 

contrast, the Ka-band reflectivity can be 4 dBZ lower than that of the C-band. For non-liquid 342 

hydrometeors, the DFR is positive because of the non-Rayleigh scattering effect when the 343 

reflectivity increases above 30–40 dBZ. Owing to the more serious non-Rayleigh scattering effect 344 

for the Ka-band, the DFR between the C and Ka-bands was much larger than that of the Ku-band.  345 

 346 

Figure 5. DFR between reflectivity factors at C-band and Ku- and Ka-band for different hydrometeors. (a) DFR 347 

between C- and Ku-band. (b) DFR between C- and Ka-band. 348 
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 349 

Figure 6. Scatter density plots of volume matched reflectivity between CDP and DPR NS, MS, and HS modes for 350 

different hydrometeor types. (a-c) Liquid samples. (d-f) Dry snow. (g-i) Wet snow. (j-l) Graupel. (m-o) Crystal. 351 

Figure 6 shows the scatter density plots of reflectivity measurements between CDP and 352 

DPR for different hydrometeor types obtained by CDP hydrometeor classification. The first, 353 
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second, and third columns of Figure 6 show scatter density plots between CDP reflectivity and 354 

2ADPR-NS, 2ADPR-MS, and 2ADPR-HS reflectivity, respectively. The first, second, third, 355 

fourth, and fifth rows of Figure 6 represent the reflectivity comparison for liquid, dry snow, wet 356 

snow, graupel, and crystal samples. Very few heavy rain samples were identified, and no mixture 357 

of rain and hail samples was identified. The liquid samples mainly included big drops and light 358 

and moderate rain. The liquid samples agreed well with the three scanning modes. An obvious 359 

positive bias existed in the NS and MS modes, consistent with the simulated results shown in 360 

Figure 5. The scatterplots of wet snow and graupel show obvious negative biases in the HS mode. 361 

The bias was small for the NS mode, consistent with the expectations shown in the simulated 362 

results of Figure 5. The consistency of dry snow for the three scanning modes was slightly worse, 363 

and the comparison results did not agree with the simulations. One possible reason is that the 364 

geometry of dry snow observed by dual-polarization radar is different in the horizontal and vertical 365 

directions, resulting in the deviation of the reflectivity factor; another reason may be that the 366 

complex geometry of dry snow makes the Mie scattering simulation results different from the 367 

actual situation, resulting in a small amount of band correction. The scatterplots of the crystal show 368 

that they are almost irrelevant between CDP and DPR for NS and MS modes, which may be 369 

specific or perhaps indicate a poor capability for crystal measurement of DPR NS and MS. 370 

However, the consistency of the crystal for the HS mode was improved, and this may partially 371 

demonstrate that the high sensitivity of the Ka-band is beneficial for crystal measurement. Overall, 372 

the reflectivity comparison for different hydrometeor types is consistent with the simulation results, 373 

except for the measurement of crystal samples.  374 

3.3 Comparison of rainfall 375 

3.3.1 Comparison of rainfall for liquid samples 376 

Volume matched samples of instantaneous rainfall products from DPR with NS, MS, and 377 

HS modes were compared against rainfall from CDP with the optimization retrieval algorithm in 378 

Section 2.3. The DPR products used in this study were the 2ADPR products retrieved using a DF 379 

algorithm. The DF algorithm was executed for the pixels of all three scanning modes. In the DF 380 

algorithm, pixels in the inner swath of the NS mode are categorized as dual-beam (DB) pixels, and 381 

the other pixels are categorized as single-beam (SB) pixels. The DB pixels in the DF algorithm 382 

can produce DSD information; therefore, the rainfall estimate can be improved. For SB pixels, the 383 
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DF algorithm can use data from DF observations at neighboring pixels (Iguchi et al., 2017). The 384 

DF algorithm can provide better rainfall estimates at SB pixels using the characteristics of the DSD 385 

estimated by DF measurements at DB pixels.  386 

Figure 7 shows the scatter density plots between the matched liquid samples of CDP 387 

rainfall and 2ADPR rainfall products with NS, MS, and HS scanning modes. A minimum threshold 388 

of 0.1 mm/h, and a maximum threshold of 60 mm/h, was set for both CDP and DPR rainfall 389 

intensity. The V05 version of the DPR rainfall algorithm assumes constraint relationships between 390 

the rainfall rate R and Dm. The Dm values were also compared, as shown in Figure 8. The samples 391 

were again classified according to the precipitation type. The first rows of Figures 7 and 8 indicate 392 

scatter plots of all matched samples, and the second and third rows indicate stratiform and 393 

convective samples. The first, second, and third columns represent the NS, MS, and HS modes, 394 

respectively. 395 

From Figure 7, it is seen that the comparison performances of NS, MS, and HS are similar 396 

for all liquid samples, with a correlation of approximately 0.58 and MAE of approximately 3.3 397 

mm/h. For the NS and MS modes, there is a slight underestimation for light rain and an 398 

overestimation for heavy rain compared with the CDP rainfall estimation. This might be partially 399 

due to the underestimation of the CDP in heavy rain, as shown in Figure 1. Although optimization 400 

retrieval has been performed for CDP and the overall performance is optimal compared with the 401 

rain gauge data, the CDP rainfall is slightly underestimated in heavy rain. Another reason may be 402 

that Dm is overestimated at large particle sizes, as shown in Figure 8a-b. For HS mode, the mean 403 

bias is -1.13 mm/h, which means that the rainfall estimates of HS are low compared to those of 404 

NS and MS modes. The comparative performance of stratiform samples improved compared to all 405 

samples, and the correlation coefficients increased. The correlation of HS mode for stratiform 406 

precipitation reached 0.63, and the mean bias was about -0.15 mm/h, which showed the best 407 

agreement with CDP estimation. This proves that the HS mode has advantages in the estimation 408 

of stratiform precipitation and light rain. However, the HS mode shows poor performance for 409 

convective samples. Although the CC was only 0.38, the reflectivity comparison showed good 410 

agreement. Affected by the band, the HS mode is not suitable for estimating convective 411 

precipitation and heavy rain. The MS mode showed the best performance in convective rainfall 412 

estimation, with CC of 0.66 and MAE of 3.02 mm/h. Many factors may affect the rainfall 413 

estimation performance in convective cases, such as DSD variation, attenuation error, and non-414 
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uniform beam filling. The MS mode can utilize the DF method to obtain relatively accurate DSD 415 

and attenuation parameters, making the MS mode perform well in convective precipitation. The 416 

CC, MAE, and RMSE of the NS mode are slightly worse than those of the MS mode in convective 417 

precipitation, which may be because the pixels in the outer swath of NS belong to the SB pixels.  418 

 419 

Figure 7. Scatter density plots of volume matched rainfall between CDP and DPR NS, MS, and HS for liquid 420 

precipitation. (a-c) All NS, MS, and HS data samples, (d-f) Stratiform samples for NS, MS, and HS data, (g-i) 421 

Convective samples for NS, MS, and HS data. 422 

Dm is one of the two DSD parameters used in estimation of the DPR, important for rainfall 423 

estimation. To better understand the rainfall estimation and identify conditions that affect the 424 

goodness of the estimation, Dm comparisons are shown in Figure 8. From Figure 8, we can see that 425 

the DPR NS and MS scan modes show good agreement of Dm with CDP for both stratiform and 426 

convective precipitation, and the MAE is within 0.25 mm. Relative to the NS mode, the 427 

consistency of Dm for the MS mode is better, which can partially explain the better agreement of 428 

rainfall estimation of the MS mode. Z and Dm are extremely important factors that influence the 429 

rainfall estimation of DPR. In Figure 6, we can see that the Z measurements of the NS and MS 430 
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modes are similar for the liquid samples, and the agreement for the MS mode is slightly worse 431 

than that of the NS mode. Nevertheless, the MS mode showed advantages in convective rainfall 432 

estimates concerning the NS mode, thereby verifying the importance of DF measurement for DSD 433 

retrieval and rainfall estimation. The HS mode had a relatively worse result for the Dm comparison, 434 

and it exhibited an upper limit of Dm at 3 mm. The threshold of Dm of HS is related to the setting 435 

of the DPR HS retrieval algorithm (D’Adderio et al., 2018; Iguchi et al., 2017). Despite the Dm 436 

problem, the HS showed good agreement with stratiform rainfall estimates.  437 

 438 

Figure 8. Scatter density plots of volume matched Dm between CDP and DPR NS, MS, and HS modes for 439 

liquid precipitation. (a-c) All NS, MS, and HS data samples. (d-f) Stratiform samples for NS, MS, and HS 440 

data. (g-i) Convective samples for NS, MS, and HS data. 441 

3.3.2 Comparison of rainfall for non-liquid samples 442 

The liquid precipitation products of DPR can be evaluated using ground-based radars, rain 443 

gauges, and disdrometers (Chen et al., 2017; Lasser et al., 2019; Radhakrishna et al., 2016), 444 
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whereas it is relatively difficult to compare and validate non-liquid precipitation. Non-liquid 445 

particles are usually far from ground-based radar. They have a poor spatial matchup with surface 446 

precipitation estimation. However, there is no suitable measured PSD data to fit the rainfall 447 

relations of non-liquid precipitation. In 3D precipitation, a large number of particles are non-liquid 448 

samples. It is necessary to cross-validate the rainfall estimation of non-liquid samples between 449 

DPR and ground-based dual-polarization radar. 450 

Owing to the lack of measured PSD data, we developed the radar rainfall relations of non-451 

liquid particles based on theoretical simulations, which assumed appropriate scattering and 452 

microphysical models. From Figure 6, it is seen that the scatters of the crystal are almost irrelevant 453 

for the DPR NS and MS modes. Thus, the crystal samples are not considered. The Z-R relations 454 

for non-liquid hydrometeors, including dry snow, wet snow, and graupel, were obtained from 455 

simulations. The scattering amplitudes were computed using the T-matrix method. The Z 456 

calculation and PSD model are based on formulas (1) and (2). The rainfall rate R can be calculated 457 

by 458 

0
( ) ( ) ( )R N D M D v D dD



=                                                              (3) 459 

where M(D) is the mass of a particle with D and v(D) is the terminal fall velocity. v(D) can be 460 

calculated as follows (Brandes et al., 2002):  461 

2 3 4( ) -0.1021+4.932 0.9551 0.07934 0.002362v D D D D D= − + −                         (4) 462 

The fitted rainfall relations for dry snow, wet snow, and graupel are as follows: 463 

0.6968

0.6538

0.6752

0.0392 ( )

0.0201 ( )

0.0183 ( )

R Z dry snow

R Z wet snow

R R graupel

=

=

=

                                                        (5) 464 

where Z is in mm6/m3 and R is in mm/h. 465 

Figure 9 shows the simulated rainfall relation of dry snow, wet snow, graupel, and 466 

corresponding Z-R relations in Giangrande et al. (2008), as well as the Z-R relation obtained in 467 

Section 2.4 from the measured DSD data of rain. The simulated rainfall relations (red lines) for 468 

dry snow and graupel are similar to those in Giangrande et al. (2008) (blue dashed lines), and their 469 

differences are small. The black dotted dashed lines represent the rainfall relations obtained from 470 
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the DSD data from the disdrometer for liquid precipitation. The differences between the red and 471 

black lines were significant, which again proved the microphysical difference of liquid and non-472 

liquid hydrometers. We will use the simulated rainfall relations to estimate CDP rainfall estimation 473 

for non-liquid hydrometers. 474 

 475 

Figure 9. Comparisons of Z-R relations with different methods for non-liquid hydrometeors. (a) Dry snow. (b) Wet 476 

snow. (c) Graupel. 477 

Figure 10 shows the scatter density plots between matched samples of CDP rainfall 478 

obtained by simulated rainfall relations and 2ADPR rainfall products for dry snow, wet snow, and 479 

graupel with NS, MS, and HS scanning modes. The CDP hydrometeor classification determined 480 

the hydrometeor types. The first, second, and third rows of Figure 10 indicate the scatter plots of 481 

matched samples for dry snow, wet snow, and graupel samples, respectively. The first, second, 482 

and third columns represent the DPR NS, MS, and HS modes, respectively. We can see that the 483 

rainfall rates of the dry snow, wet snow, and graupel from DPR are consistent with those recorded 484 

via CDP on the whole, and the bias are within 0.8 mm/h for all scanning modes. A slight 485 

overestimation in the DPR estimate exists, especially for the NS and MS modes, which may be 486 

related to the rainfall algorithm of DPR. An R-Dm relation is used for the entire atmospheric column 487 

in the DPR algorithm, regardless of whether the gates are classified as liquid or solid (Chase et al., 488 

2020). The only difference between liquid and solid phase retrieval is the complex refraction index 489 

and v(D) (Iguchi et al., 2017). The correlation coefficient of non-liquid precipitation estimation for 490 

the NS mode is the highest, which is partially explained by the best agreement of reflectivity 491 

comparison of the NS mode. The agreement of the HS mode is slightly worse than that of the NS 492 

mode. Despite the high sensitivity, the HS mode shows no apparent advantage in the non-liquid 493 

rainfall estimation of snow and graupel, which may be related to its low conditional probability of 494 

non-liquid hydrometeor identification. For the three types of non-liquid hydrometeors, the MAE 495 
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for dry snow for the three scanning modes was between 1 and 1.4 mm/h, the MAE for wet snow 496 

was approximately 2 mm/h, and the MAE for graupel varied in the range 2.3–3 mm/h. Due to the 497 

complex physical properties of wet snow and graupel, rainfall relation simulations are difficult, 498 

resulting in errors. The difference between DPR and CDP rainfall estimation for graupel is obvious 499 

when the rainfall is above 10 mm/h. However, the reflectivity comparisons of graupel samples for 500 

the three scanning modes show good agreement. The large difference in rainfall estimation of the 501 

graupel may be related to the DPR rainfall algorithm. Comparing Figures 7 and 10, it is seen that 502 

in general, the agreement of rainfall estimation of liquid precipitation is better than non-liquid 503 

precipitation. The physical characteristics of liquid and non-liquid hydrometeors are different. 504 

There are no special rainfall relations for non-liquid precipitation for DPR. Due to the lack of 505 

measured PSD data, rainfall retrieval via ground radar for non-liquid precipitation is also difficult. 506 

The improvement of the rainfall algorithm for non-liquid hydrometeors is necessary for both DPR 507 

and ground dual-polarization radar. 508 

 509 
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Figure 10. Scatter density plots of volume matched rainfall between CDP and DPR NS, MS, and HS modes for 510 

snow and graupel. (a-c) Dry snow samples for NS, MS, and HS. (d-f) Wet snow samples for NS, MS, and HS. (g-i) 511 

Graupel samples for NS, MS, and HS. 512 

5 Conclusions 513 

The combination of hydrometeor classification and DSD parameter retrieval of dual-514 

polarization radar is of great interest for the cross-validation of DPR rainfall retrieval. The 3D 515 

rainfall data from the CDP and DPR NS, MS, and HS modes were compared for different 516 

precipitation types and precipitation phases. To better explicate the rainfall products, comparisons 517 

of the BB, reflectivity, and DSD parameter of Dm were performed. The main conclusions are as 518 

follows. 519 

1) The comparison of the BB revealed that the correlation coefficients for the NS and MS 520 

modes are greater than 0.9. The consistency of the HS mode is relatively worse, which may be due 521 

to its unclear BB peak. The conditional probability of liquid phase identification by DPR, with 522 

respect to CDP, exceeded 94%. In comparison, it was only 78% for the non-liquid phase 523 

identification of the DPR HS mode. 524 

2) The agreement of reflectivity for the three modes of DPR is good for both stratiform and 525 

convective precipitation, with correlation coefficients greater than 0.81 and bias within 1 dB. By 526 

comparing reflectivity associated with different hydrometeor types, the differences among 527 

hydrometeor types conform to the scattering simulation for different bands, except for the crystal. 528 

The agreement of the crystal in the HS mode is much better than that in the NS and MS modes, 529 

which may be due to the high sensitivity to a weak echo of the Ka-band. 530 

3) The comparisons of rainfall rate for liquid samples revealed that the performance of DPR 531 

NS and MS modes are similar, with correlations of approximately 0.58 and bias within 1 mm/h. 532 

The agreement of the MS mode is slightly better, especially for convective precipitation. This may 533 

be attributed to the best consistency in the Dm retrieval of the MS mode. The HS mode shows good 534 

consistency at stratiform precipitation despite relatively poor Dm retrieval performance. In contrast, 535 

the correlation coefficient for convective precipitation is only 0.39, with a bias that reaches -1.6 536 

mm/h. 537 

4) The rainfall relations of non-liquid hydrometeors of dry snow, wet snow, and graupel for 538 

CDP were obtained by scattering simulations. With the simulated rain relations, the mean biases 539 



Journal of Geophysical Research: Atmospheres 

25 

 

of rainfall estimate comparisons of non-liquid hydrometeors from CDP and DPR are within 1 540 

mm/h. The NS mode exhibited the best agreement for the non-liquid rainfall estimation, followed 541 

by the HS mode. The agreement of rainfall estimation of non-liquid samples is worse than that of 542 

liquid samples on the whole, which may be because there are no special rainfall relations for non-543 

liquid hydrometeors for DPR. 544 

The comparison results show that the DPR NS, MS, and HS modes have advantages and 545 

disadvantages. The NS mode shows good comprehensive performance, with better agreement at 546 

comparing reflectivity, liquid, and non-liquid rainfall. The HS mode shows the best performance 547 

in stratiform precipitation because of its high sensitivity to low rainfall rates. At the same time, the 548 

MS mode performs best at convective precipitation, which may be attributed to its high accuracy 549 

of Dm retrieval with the DF method. Although the HS mode has a high sensitivity to light rain, it 550 

exhibits no obvious superiority in rainfall estimation of non-liquid hydrometeors. The comparison 551 

with respect to different hydrometeor phases shows that the rainfall estimation based on 552 

hydrometeor types is meaningful for both DPR and ground dual-polarization radar because the 553 

physical characteristics of different hydrometeors vary greatly. The rain relations between liquid 554 

and non-liquid precipitation are different. Furthermore, the comparisons in this study provide a 555 

basis for radar precipitation data error characterization and further optimal integration of 556 

multisensor data by capitalizing on the benefits from different sensors. 557 
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