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Abstract

The Brazilian Amazon provides important hydrological cycle functions, including precipitation regimes that bring water tothe
people and environment and are critical to moisture recycling and transport, and represents an important variable forclimate
models to simulate accurately. This paper evaluates the performance of 13 Coupled Model Intercomparison Projectphase 6
(CMIP6) models. This is done by discussing results from spatial pattern mapping, Taylor diagram analysis and Taylorskill
score, annual climatology comparison, and Empirical Orthogonal Function (EOF) analysis. Precipitation analysis showsl)
This region displays a more uniform spatial distribution of precipitation with higher rainfall in the north-northwest anddrier
conditions in the south. Models tend to underestimate northern values or overestimate the central to northwest averages.2)
Southern Amazon has a more defined dry season (June, July, and August) and wet season (December, January, andFebruary)
and models are able to simulate this well. Northern Amazon dry season tends to occur in August, September, andOctober and
the wet season occurs in March, April, and May, and models are not able to capture the climatology as well.Models tend to
produce too much rainfall at the start of the wet season and tend to either over- or under-estimate the dryseason, although
ensemble means typically display the overall pattern more precisely. 3) EOF analysis of models are able tocapture the dominant
mode of variability, which was the annual cycle or SAMS. 4) When all evaluation metrics are taken intoaccount the models
that perform best are CESM2, MIROC6, MRIESM20, SAMOUNICON, and the ensemble mean. Thispaper supports research
in determining the most up to date CMIP6 model performance of precipitation regime for 1981-2014for the Brazilian Amazon.
Results will aid in understanding future projections of precipitation for the selected subset ofglobal climate models and allow
scientists to construct reliable model ensembles, as precipitation plays a role in many sectorsof the economy, including the

ecosystem, agriculture, energy, and water security.
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BACKGROUND & SIGNIFICANCE
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This figure: Brazilian Amazon study area with red dotted line indicating a split domain for further analysis. Northern
Brazilian Amazon (NAZ) and Southern Brazilian Amazon (SAZ)

The Amazon rainforest provides a Wealth of ecosystem goods and services (Foley et al., 2007),
including regulation of climate and water feedbacks (Lima et al., 2014), agricultural and timber goods, hotspot for
biodiversity (Dale et al., 1994; Hopkins, 2007), watershed services (Wu et al., 2017), regulation of rainfall regimes
(Martinelli et al., 1996), and climate change regulation by acting as a carbon sink (Chambers et al., 2001).

Brazilian Amazon is a region where the precipitation regime is important to study and simulate properly as
moisture and rainfall play a large role in maintaining proper climate
regulations.
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METHODS & RESULTS
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Fig. 1: 1981-2014 mean monthly precipitation for observation and GCMs [mm/month]

(Fig. 1) Spatial monthly mean averages for the three observational datasets and all 13 GCMs from 1981-2014. Most
models display a much drier condition in the north and northeast portion of the study region
with monthly averages below 60 mm/month. The ensemble mean and SAMOUNICON show the best spatial
representation of precipitation with no large dry biases and a uniform state of precipitation throughout the study domain,
although the ensemble mean has a dry bias in the north due to most models underestimating precipitation here.
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Fig. 2: Taylor diagram of daily precipitation for the Brazilian Amazon from 1981-2014 [mm day-1]. CHIRPS is the
reference dataset and symbols indicate models, observation, and ensemble mean. Results have been normalized to

CHIRPS standard deviation

(Fig. 2): Taylor diagram provides information on the normalized standard deviation and centered root mean square,
along with the correlation coefficient of the spatially averaged time for all models and observational datasets for the

entire Brazilian Amazon. The ensemble mean performed best for the entire

Brazilian Amazon.
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Fig. 3: RMSE versus bias (left) and RMSE versus correlation coefficient (right) for 1981-2014 [mm day-1] for Northern

CCOEF

Amazon (top panels) and Southern Amazon (bottom panels)

(Fig. 3): RMSE-bias and RMSE-correlation coefficient diagrams further illustrate the relationship between these

performance metrics for the models. Overall, the t0p models include CESM. 2,

CESM2WACCM, MIROC6, SAMOUNICON, BCCCSM2MR, E3SM10,

BCCESM1, ECEarth3, ECEarth3veg, and the Ensemble Mean. aithough
BCCCSM2MR, E3SM10, BCCESM1, ECEarth3, and ECEarth3Veg did not perform as well for NAZ.

METHODS:
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Table 1:

Model NameTypelnstitution (Location) and reference

BCCCSM2MRAOGCMBEeijing Climate Center (China) (Wu et al., 2019)

BCCESM1AOGCM AER CHEMBEeijing Climate Center (China) (Wu et al., 2019)

CanESM5AOGCMCanadian Center for Climate Modeling and Analysis (Canada)

(Swart et al., 2019)

CESM2AOGCM BGCNational Center for Atmospheric Research (NCAR) (United States) (Gettelman et al., 2019)

CESM2WACCMAOGCM BGCNational Center for Atmospheric Research (NCAR) (United States) (Gettelman et al., 2019)

E3SM10AOGCM AERLawrence Livermore National Laboratory (LLNL) (United States)

(Golaz et al., 2019)

ECEarth3AOGCMEC-Earth Consortium (Europe) (Doblas-Reyes et al., (2018)

ECEarth3VegAOGCMEC-Earth Consortium (Europe) (Doblas-Reyes et al., (2018)

GISSE21GAOGCMGoddard Institute for Space Studies (NASA-GISS) (United States)

(Kelley et al., 2020)

GISSE21HAOGCMGoddard Institute for Space Studies (NASA-GISS) (United States)

(Kelley et al., 2020)

MIROC6AOGCM AERJapan Agency for Marine-Earth Science and Technology (JAMSTEC) (Japan) (Tatebe et al., 2019)

MRIESM20AOGCM AER CHEMMeteorological Research Institute (Japan) (Yukimoto et al., 2019)

SAMOUNICONAOGCM AER BGCSeoul National University (South Korea) (Park et al., 2019)

(Table 1): This study uses a subset of 13 CMIP6 models to cvaluate the representation of the historical
Brazilian Amazon precipitation regime for 1981-2014. Model types include atmosphere-ocean general circulation
models (AOGCM) with additional model components, such as aerosols (AER), chemistry (CHEM), and
biogeochemistry (BGC). Table 1 presents the 13 models, their type, and corresponding institution, location and
reference.

To evaluate the ability of CMIP6 models to simulate the historical precipitation regime for the Brazilian Amazon, results
were compared to observations for the period 1981-2014. We selected this period because it incorporates recent updates
in Global Telecommunications System and recent satellite-derived improvements in data collection. To evaluate annual

cycles, we used the statistical metrics: YOOt Hleéan square error (RMSE), bias, and the
spatial and temporal Pearson relation coefficient. Both the monthly averages and

anomalies of precipitation were evaluated. A taylor diagr A M (Taylor, 2001a) was produced for the entire
Brazilian Amazon, to give an overall idea of model performance for the region.
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In addition to the model performance comparison, we performed EOF analysis to characterize the precipitation
intraseasonal variability of the 13 CMIP6 models. To quantify the EOF eigenvector sampling error, we used the method
described in (North et al., 1982). Finally, the Taylor Skill Score (Xia et al., 2015 and Taylor, 2001), was used
to give an overview of model performance (Eqn.3). Where S is the skill score, R is the correlation between the simulated
and reference datasets, R_0 is the theoretical maximum correlation (assumed to be 1) and o is the standard deviation of
the simulated dataset.

S=4(14R)/[o+(1/3)]"2 (1+R_0)
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EOF ANALYSIS
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Fig. 2: EOF eigenvector two for each dataset (1981-2014) with long-term mean removed
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Fig. 3: Principal component (PC) Time Series of first two modes for each dataset

Only the two first modes of EOF analysis are described in this section as together they explain over 67% of the
precipitation variability (Fig. 7 and 8)

The first EOF (Fig. 1) explains approximately 52.9% within observational datasets and around 68 %
for CMIP6 models and follows a temporal pattern similar to the annual
cycle Of Pr ecipitation, with a dry season around JJA and a wet season mainly in the months of DJF. There is

a dipole nature to this eigenvector around the equator for the 0 value eigenvector and represents how these two regions
of South America differ in terms of the temporal evolution of the SAMS.

The second EOF (Fig. 2) explains approximately 14.4% within observational datasets and around 12 %
for CMIP6 models and most likely follows the pattern of a transition
between the SAMS and the North American Monsoon System (NAMS)

(Arias and Fu, 2010). The PC time series (Fig. 3) shows a delay in the onset ofthe wet season
for this eigenvector with observation showing its onset around April and
M, @) and models showing a similar pattern, with the exception of BCCESM1 and GISSE11H. This delay signals the
time evolution of SAMS across the vast land area of Brazil. Models seem to capture the tripole nature of the transitional
SAMS, excluding BCCSM2MR, BCCESM1, and GISSE21H. Models are more accurate in placing the correct
explanation (%) for this mode. CESM2, CESM2WAACCM, GISSE21G, MIROC6, MRIESM20, SAMOUNICON, and
the ensemble mean to appear to have captured the second eigenvector most accurately.
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This figure: Explained variance of eigenvalue with sampling error bars

Overall, models were able to capture the seasonal cycle and dipole nature of SAMS, although the variance explained by
models were much higher than observation; up to +26% for the ensemble mean (Fig. 10). Average observation
eigenvector 1 explained 52.9% while the eigenvector 2 explained 9.3% of the variability. Models had a combined
eigenvector 1 explanation of 67.2% (14.3% higher than observation) and 12.1% explanation for eigenvector 2 (2.8%
higher than observation). Models had a more difficult time simulating the temporal
progression of the second mode of variability. Aithough some models, like CESM2,
CESM2WAACCM, GISSE21G, MIROC6, MRIESM20, SAMOUNICON, and the ensemble mean, were able to simulate
the mapped eigenvector well.
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RATIO ANALYSIS
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Fig. 1: 1981-2014 ET/PR (green) and MFC/PR (blue) ratio analysis [mm day-1] with observation mean (red line) and
ensemble mean (black dashed line) ET/PR analysis for NAZ (top panel) and SAZ (bottom panel) for GLDAS and
20cRv2C reanalyses and GCMs

(Fig. 1): To explore GCM performances, we use ET/PR and MFC/PR ratio analysis to investigate how
CMIP6 models partition the source of rainfall moisture vetween the surface source
(evapotranspiration) and atmospheric source (moisture flux convergence) for both northern and southern subdomains.
Observations show that NAZ ET/PR ratio is lower than SAZ by an average of 0.11 and therefore there were greater
amounts of MFC compared to ET values when compared to SAZ. SAZ showed greater values of ET when compared to
NAZ MFC ratio analysis for observations. Models show a higher average mean by 0.21 for NAZ and 0.01 for SAZ.
Models were better at capturing SAZ partition of precipitation sources between ET and MFC for 1981-2014.

Despite generally higher values of simulated ET, the meOdels might not be producing enough
moisture from convergence flux to simulate PR accurately, resulting in low PR when
compared to CHIRPS, CMAP, and UDEL. This is not the only research that has found that models tend to underestimate
PR, as other studies have shown that CMIP models tend to underestimate precipitation in this region (Gulizia and
Camilloni, 2015). More work needs to be completed to analyze the physical mechanisms and schemes within each
model which produce the biases in precipitation, ET, and MFC which is beyond the scope of this paper. Understanding
the underlying physics of each GCM is an important component of model evaluation, which individual modeling teams
can contribute towards.
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CONCLUSIONS
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Fig. 1: Taylor skill score for NAZ (green) and SAZ (orange) for all GCMs compared to CHIRPS observational
precipitation for 1981-2014

(Fig. 1): To evaluate overall model effectiveness, the taylor skill score was calculated for all GCMs and the ensemble
mean for both subdomains. Overall, mOdels performed best in SAZ when compared to
INAZ Model ensembles can be constructed based on the highest performing GCMs for this region.

The Brazilian Amazon is an important region to study, as it provides a significant amount of resources, not just locally,
but globally. The PF eczpltatlon régime and the significance it represents for the people, environment, and

ccosystem is One of Amazon’s most significant ecosystem goods (Worldbank, 2016), and
therefore should be studied and modeled properly.

Precipitation analysis for L.egal Amazon of Brazil (1981-2014) shows:

1) This region displays a more uniform spatial distribution of precipitation with higher rainfall in the north-northwest
and drier conditions in the south. Models tend to underestimate northern values or overestimate the central to northwest
averages.

2) SAZ has a much more defined dry season (JJA) and wet season (DJF) and models are able to simulate this well. NAZ
dry season tends to occur in ASO and the wet season occurs in MAM, and models are not able to capture the
climatology as well. Models tend to produce too much rainfall at the start of the wet season and tend to either over-or
underestimate the dry season (although the ensemble mean captures the anomalies for SAZ very well). The ensemble
mean for NAZ is able to simulate the wet season decline.

3) EOF analysis of GCMs was able to capture the dominant mode of variability, which is largely the annual cycle or
SAMS. Some models tend to overestimate precipitation over the Andes and place too high of explanation (%) on the
first eigenvector by up to 26% for the ensemble mean. The second mode showed a triple difference and displays a
transition from the SAMS to the NAMS, as there is a delay in the onset of the principal component time series when
compared to the first.

4) When all evaluation metrics are taken into account the models that perform best are CESM2, MIROC6, MRIESM20,
SAMOUNICON, and the ensemble mean.
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ABSTRACT

The Brazilian Amazon provides important hydrological cycle functions, including precipitation regimes that bring water to
the people and environment and are critical to moisture recycling and transport, and represents an important variable for
climate models to simulate accurately. This paper evaluates the performance of 13 Coupled Model Intercomparison Project
phase 6 (CMIP6) models. This is done by discussing results from spatial pattern mapping, Taylor diagram analysis and Taylor
skill score, annual climatology comparison, and Empirical Orthogonal Function (EOF) analysis. Precipitation analysis shows
1) This region displays a more uniform spatial distribution of precipitation with higher rainfall in the north-northwest and
drier conditions in the south. Models tend to underestimate northern values or overestimate the central to northwest averages.
2) Southern Amazon has a more defined dry season (June, July, and August) and wet season (December, January, and
February) and models are able to simulate this well. Northern Amazon dry season tends to occur in August, September, and
October and the wet season occurs in March, April, and May, and models are not able to capture the climatology as well.
Models tend to produce too much rainfall at the start of the wet season and tend to either over- or under-estimate the dry
season, although ensemble means typically display the overall pattern more precisely. 3) EOF analysis of models are able to
capture the dominant mode of variability, which was the annual cycle or SAMS. 4) When all evaluation metrics are taken into
account the models that perform best are CESM2, MIROC6, MRIESM20, SAMOUNICON, and the ensemble mean. This
paper supports research in determining the most up to date CMIP6 model performance of precipitation regime for 1981-2014
for the Brazilian Amazon. Results will aid in understanding future projections of precipitation for the selected subset of
global climate models and allow scientists to construct reliable model ensembles, as precipitation plays a role in many sectors
of the economy, including the ecosystem, agriculture, energy, and water security.
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BACKGROUND & SIGNIFICANCE
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This figure: Brazilian Amazon study area with red dotted line indicating a split domain for further analysis. Northern
Brazilian Amazon (NAZ) and Southern Brazilian Amazon (SAZ)

The Amazon rainforest provides a Wealth of ecosystem goods and services (Foley et al., 2007),
including regulation of climate and water feedbacks (Lima et al., 2014), agricultural and timber goods, hotspot for
biodiversity (Dale et al., 1994; Hopkins, 2007), watershed services (Wu et al., 2017), regulation of rainfall regimes
(Martinelli et al., 1996), and climate change regulation by acting as a carbon sink (Chambers et al., 2001).

Brazilian Amazon is a region where the precipitation regime is important to study and simulate properly as
moisture and rainfall play a large role in maintaining proper climate
regulations.
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METHODS & RESULTS
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Fig. 1: 1981-2014 mean monthly precipitation for observation and GCMs [mm/month]

(Fig. 1) Spatial monthly mean averages for the three observational datasets and all 13 GCMs from 1981-2014. Most
models display a much drier condition in the north and northeast portion of the study region
with monthly averages below 60 mm/month. The ensemble mean and SAMOUNICON show the best spatial
representation of precipitation with no large dry biases and a uniform state of precipitation throughout the study domain,
although the ensemble mean has a dry bias in the north due to most models underestimating precipitation here.
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Fig. 2: Taylor diagram of daily precipitation for the Brazilian Amazon from 1981-2014 [mm day-1]. CHIRPS is the
reference dataset and symbols indicate models, observation, and ensemble mean. Results have been normalized to

CHIRPS standard deviation

(Fig. 2): Taylor diagram provides information on the normalized standard deviation and centered root mean square,
along with the correlation coefficient of the spatially averaged time for all models and observational datasets for the

entire Brazilian Amazon. The ensemble mean performed best for the entire

Brazilian Amazon.
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Fig. 3: RMSE versus bias (left) and RMSE versus correlation coefficient (right) for 1981-2014 [mm day-1] for Northern

CCOEF

Amazon (top panels) and Southern Amazon (bottom panels)

(Fig. 3): RMSE-bias and RMSE-correlation coefficient diagrams further illustrate the relationship between these

performance metrics for the models. Overall, the t0p models include CESM. 2,

CESM2WACCM, MIROC6, SAMOUNICON, BCCCSM2MR, E3SM10,

BCCESM1, ECEarth3, ECEarth3veg, and the Ensemble Mean. aithough
BCCCSM2MR, E3SM10, BCCESM1, ECEarth3, and ECEarth3Veg did not perform as well for NAZ.

METHODS:
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Table 1:

Model NameTypelnstitution (Location) and reference

BCCCSM2MRAOGCMBEeijing Climate Center (China) (Wu et al., 2019)

BCCESM1AOGCM AER CHEMBEeijing Climate Center (China) (Wu et al., 2019)

CanESM5AOGCMCanadian Center for Climate Modeling and Analysis (Canada)

(Swart et al., 2019)

CESM2AOGCM BGCNational Center for Atmospheric Research (NCAR) (United States) (Gettelman et al., 2019)

CESM2WACCMAOGCM BGCNational Center for Atmospheric Research (NCAR) (United States) (Gettelman et al., 2019)

E3SM10AOGCM AERLawrence Livermore National Laboratory (LLNL) (United States)

(Golaz et al., 2019)

ECEarth3AOGCMEC-Earth Consortium (Europe) (Doblas-Reyes et al., (2018)

ECEarth3VegAOGCMEC-Earth Consortium (Europe) (Doblas-Reyes et al., (2018)

GISSE21GAOGCMGoddard Institute for Space Studies (NASA-GISS) (United States)

(Kelley et al., 2020)

GISSE21HAOGCMGoddard Institute for Space Studies (NASA-GISS) (United States)

(Kelley et al., 2020)

MIROC6AOGCM AERJapan Agency for Marine-Earth Science and Technology (JAMSTEC) (Japan) (Tatebe et al., 2019)

MRIESM20AOGCM AER CHEMMeteorological Research Institute (Japan) (Yukimoto et al., 2019)

SAMOUNICONAOGCM AER BGCSeoul National University (South Korea) (Park et al., 2019)

(Table 1): This study uses a subset of 13 CMIP6 models to cvaluate the representation of the historical
Brazilian Amazon precipitation regime for 1981-2014. Model types include atmosphere-ocean general circulation
models (AOGCM) with additional model components, such as aerosols (AER), chemistry (CHEM), and
biogeochemistry (BGC). Table 1 presents the 13 models, their type, and corresponding institution, location and
reference.

To evaluate the ability of CMIP6 models to simulate the historical precipitation regime for the Brazilian Amazon, results
were compared to observations for the period 1981-2014. We selected this period because it incorporates recent updates
in Global Telecommunications System and recent satellite-derived improvements in data collection. To evaluate annual

cycles, we used the statistical metrics: YOOt Hleéan square error (RMSE), bias, and the
spatial and temporal Pearson relation coefficient. Both the monthly averages and

anomalies of precipitation were evaluated. A taylor diagr A M (Taylor, 2001a) was produced for the entire
Brazilian Amazon, to give an overall idea of model performance for the region.
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In addition to the model performance comparison, we performed EOF analysis to characterize the precipitation
intraseasonal variability of the 13 CMIP6 models. To quantify the EOF eigenvector sampling error, we used the method
described in (North et al., 1982). Finally, the Taylor Skill Score (Xia et al., 2015 and Taylor, 2001), was used
to give an overview of model performance (Eqn.3). Where S is the skill score, R is the correlation between the simulated
and reference datasets, R_0 is the theoretical maximum correlation (assumed to be 1) and o is the standard deviation of
the simulated dataset.

S=4(14R)/[o+(1/3)]"2 (1+R_0)
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EOF ANALYSIS
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Fig. 3: Principal component (PC) Time Series of first two modes for each dataset

Only the two first modes of EOF analysis are described in this section as together they explain over 67% of the
precipitation variability (Fig. 7 and 8)

The first EOF (Fig. 1) explains approximately 52.9% within observational datasets and around 68 %
for CMIP6 models and follows a temporal pattern similar to the annual
cycle Of Pr ecipitation, with a dry season around JJA and a wet season mainly in the months of DJF. There is

a dipole nature to this eigenvector around the equator for the 0 value eigenvector and represents how these two regions
of South America differ in terms of the temporal evolution of the SAMS.

The second EOF (Fig. 2) explains approximately 14.4% within observational datasets and around 12 %
for CMIP6 models and most likely follows the pattern of a transition
between the SAMS and the North American Monsoon System (NAMS)

(Arias and Fu, 2010). The PC time series (Fig. 3) shows a delay in the onset ofthe wet season
for this eigenvector with observation showing its onset around April and
M, @) and models showing a similar pattern, with the exception of BCCESM1 and GISSE11H. This delay signals the
time evolution of SAMS across the vast land area of Brazil. Models seem to capture the tripole nature of the transitional
SAMS, excluding BCCSM2MR, BCCESM1, and GISSE21H. Models are more accurate in placing the correct
explanation (%) for this mode. CESM2, CESM2WAACCM, GISSE21G, MIROC6, MRIESM20, SAMOUNICON, and
the ensemble mean to appear to have captured the second eigenvector most accurately.
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This figure: Explained variance of eigenvalue with sampling error bars

Overall, models were able to capture the seasonal cycle and dipole nature of SAMS, although the variance explained by
models were much higher than observation; up to +26% for the ensemble mean (Fig. 10). Average observation
eigenvector 1 explained 52.9% while the eigenvector 2 explained 9.3% of the variability. Models had a combined
eigenvector 1 explanation of 67.2% (14.3% higher than observation) and 12.1% explanation for eigenvector 2 (2.8%
higher than observation). Models had a more difficult time simulating the temporal
progression of the second mode of variability. Aithough some models, like CESM2,
CESM2WAACCM, GISSE21G, MIROC6, MRIESM20, SAMOUNICON, and the ensemble mean, were able to simulate
the mapped eigenvector well.
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RATIO ANALYSIS
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Fig. 1: 1981-2014 ET/PR (green) and MFC/PR (blue) ratio analysis [mm day-1] with observation mean (red line) and
ensemble mean (black dashed line) ET/PR analysis for NAZ (top panel) and SAZ (bottom panel) for GLDAS and
20cRv2C reanalyses and GCMs

(Fig. 1): To explore GCM performances, we use ET/PR and MFC/PR ratio analysis to investigate how
CMIP6 models partition the source of rainfall moisture vetween the surface source
(evapotranspiration) and atmospheric source (moisture flux convergence) for both northern and southern subdomains.
Observations show that NAZ ET/PR ratio is lower than SAZ by an average of 0.11 and therefore there were greater
amounts of MFC compared to ET values when compared to SAZ. SAZ showed greater values of ET when compared to
NAZ MFC ratio analysis for observations. Models show a higher average mean by 0.21 for NAZ and 0.01 for SAZ.
Models were better at capturing SAZ partition of precipitation sources between ET and MFC for 1981-2014.

Despite generally higher values of simulated ET, the meOdels might not be producing enough
moisture from convergence flux to simulate PR accurately, resulting in low PR when
compared to CHIRPS, CMAP, and UDEL. This is not the only research that has found that models tend to underestimate
PR, as other studies have shown that CMIP models tend to underestimate precipitation in this region (Gulizia and
Camilloni, 2015). More work needs to be completed to analyze the physical mechanisms and schemes within each
model which produce the biases in precipitation, ET, and MFC which is beyond the scope of this paper. Understanding
the underlying physics of each GCM is an important component of model evaluation, which individual modeling teams
can contribute towards.
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CONCLUSIONS
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Fig. 1: Taylor skill score for NAZ (green) and SAZ (orange) for all GCMs compared to CHIRPS observational
precipitation for 1981-2014

(Fig. 1): To evaluate overall model effectiveness, the taylor skill score was calculated for all GCMs and the ensemble
mean for both subdomains. Overall, mOdels performed best in SAZ when compared to
INAZ Model ensembles can be constructed based on the highest performing GCMs for this region.

The Brazilian Amazon is an important region to study, as it provides a significant amount of resources, not just locally,
but globally. The PF eczpltatlon régime and the significance it represents for the people, environment, and

ccosystem is One of Amazon’s most significant ecosystem goods (Worldbank, 2016), and
therefore should be studied and modeled properly.

Precipitation analysis for L.egal Amazon of Brazil (1981-2014) shows:

1) This region displays a more uniform spatial distribution of precipitation with higher rainfall in the north-northwest
and drier conditions in the south. Models tend to underestimate northern values or overestimate the central to northwest
averages.

2) SAZ has a much more defined dry season (JJA) and wet season (DJF) and models are able to simulate this well. NAZ
dry season tends to occur in ASO and the wet season occurs in MAM, and models are not able to capture the
climatology as well. Models tend to produce too much rainfall at the start of the wet season and tend to either over-or
underestimate the dry season (although the ensemble mean captures the anomalies for SAZ very well). The ensemble
mean for NAZ is able to simulate the wet season decline.

3) EOF analysis of GCMs was able to capture the dominant mode of variability, which is largely the annual cycle or
SAMS. Some models tend to overestimate precipitation over the Andes and place too high of explanation (%) on the
first eigenvector by up to 26% for the ensemble mean. The second mode showed a triple difference and displays a
transition from the SAMS to the NAMS, as there is a delay in the onset of the principal component time series when
compared to the first.

4) When all evaluation metrics are taken into account the models that perform best are CESM2, MIROC6, MRIESM20,
SAMOUNICON, and the ensemble mean.
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ABSTRACT

The Brazilian Amazon provides important hydrological cycle functions, including precipitation regimes that bring water to
the people and environment and are critical to moisture recycling and transport, and represents an important variable for
climate models to simulate accurately. This paper evaluates the performance of 13 Coupled Model Intercomparison Project
phase 6 (CMIP6) models. This is done by discussing results from spatial pattern mapping, Taylor diagram analysis and Taylor
skill score, annual climatology comparison, and Empirical Orthogonal Function (EOF) analysis. Precipitation analysis shows
1) This region displays a more uniform spatial distribution of precipitation with higher rainfall in the north-northwest and
drier conditions in the south. Models tend to underestimate northern values or overestimate the central to northwest averages.
2) Southern Amazon has a more defined dry season (June, July, and August) and wet season (December, January, and
February) and models are able to simulate this well. Northern Amazon dry season tends to occur in August, September, and
October and the wet season occurs in March, April, and May, and models are not able to capture the climatology as well.
Models tend to produce too much rainfall at the start of the wet season and tend to either over- or under-estimate the dry
season, although ensemble means typically display the overall pattern more precisely. 3) EOF analysis of models are able to
capture the dominant mode of variability, which was the annual cycle or SAMS. 4) When all evaluation metrics are taken into
account the models that perform best are CESM2, MIROC6, MRIESM20, SAMOUNICON, and the ensemble mean. This
paper supports research in determining the most up to date CMIP6 model performance of precipitation regime for 1981-2014
for the Brazilian Amazon. Results will aid in understanding future projections of precipitation for the selected subset of
global climate models and allow scientists to construct reliable model ensembles, as precipitation plays a role in many sectors
of the economy, including the ecosystem, agriculture, energy, and water security.
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