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Abstract

Internal variability comprises all processes that occur within the climate system without any natural or anthropogenic forcing.

Climate driving variables like the surface solar radiation (SSR) are shown to exhibit unforced trends (i.e. trends due to internal

variability) of magnitudes comparable to the magnitude of the forced signal even on decadal timescales. We use annual mean

data from 50 models participating in the pre-industrial control experiment (piControl) of the Coupled Model Intercomparison

Project – Phase 6 (CMIP6) to give quantitative grid-box specific estimates of the magnitudes of unforced trends. To characterise

a trend distribution, symmetrical around 0, we use the 75th percentile of all possible values, which corresponds to a positive

trend with 25% chance of occurrence. For 30-year periods and depending on geographical location, this trend has a magnitude

between 0.15 and 2.1Wm-2/decade for all-sky and between 0.04 and 0.38Wm-2/decade for clear-sky SSR. The corresponding

area-weighted medians are 0.69Wm-2/decade for all-sky trends and 0.17Wm-2/decade for clear-sky trends. The influence of

internal variability is on average 6 times smaller in clear-sky, compared to all-sky SSR. The relative uncertainties of these

estimates, derived from the CMIP6 inter-model spread, are ±32% for all-sky and ±43% for clear-sky SSR trends. Reasons

for differences between models like horizontal resolution, aerosol handling and the representation of atmospheric and oceanic

phenomena are investigated. The results can be used in the analysis of observational time series by attributing a probability

for a trend to comprise a component due to internal variability, given its magnitude, length and location.
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Key Points:5

• Internal variability of all-sky and clear-sky surface solar radiation and associated6

decadal-scale unforced trends are quantified probabilistically.7

• Cloud variability is responsible for a large fraction of the unforced SSR trends: in-8

ternal variability is ∼ 6 times smaller in clear-sky trends compared to all-sky.9

• Unforced SSR trends are particularly strong in some regions, the regional pattern10

being different for clear-sky and all-sky trends.11
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Abstract12

Internal variability comprises all processes that occur within the climate system13

without any natural or anthropogenic forcing. Climate driving variables like the surface14

solar radiation (SSR) are shown to exhibit unforced trends (i.e. trends due to internal15

variability) of magnitudes comparable to the magnitude of the forced signal even on decadal16

timescales. We use annual mean data from 50 models participating in the pre-industrial17

control experiment (piControl) of the Coupled Model Intercomparison Project – Phase18

6 (CMIP6) to give quantitative grid-box specific estimates of the magnitudes of unforced19

trends. To characterise a trend distribution, symmetrical around 0, we use the 75th per-20

centile of all possible values, which corresponds to a positive trend with 25% chance of21

occurrence. For 30-year periods and depending on geographical location, this trend has22

a magnitude between 0.15 and 2.1 Wm−2/decade for all-sky and between 0.04 and 0.3823

Wm−2/decade for clear-sky SSR. The corresponding area-weighted medians are 0.69 Wm−2/decade24

for all-sky trends and 0.17 Wm−2/decade for clear-sky trends. The influence of inter-25

nal variability is on average 6 times smaller in clear-sky, compared to all-sky SSR. The26

relative uncertainties of these estimates, derived from the CMIP6 inter-model spread,27

are ±32% for all-sky and ±43% for clear-sky SSR trends. Reasons for differences between28

models like horizontal resolution, aerosol handling and the representation of atmospheric29

and oceanic phenomena are investigated. The results can be used in the analysis of ob-30

servational time series by attributing a probability for a trend to comprise a component31

due to internal variability, given its magnitude, length and location.32

1 Introduction33

Internal variability has been identified together with model response and emission34

scenario uncertainty as one of the sources of uncertainty in climate projections (e.g. Hawkins35

and Sutton (2009); Deser et al. (2010)). In fact, on time scales of typically a few decades36

into the future, internal variability is a major contributor to the overall uncertainty in37

climate projections. The advances in numerical modelling in recent decades (IPCC, 2013,38

2021; Eyring et al., 2016) work towards a better estimation of models’ responses to ra-39

diative forcing, but internal variability has been ruled out as an irreducible uncertainty40

source. Due to its dominant relevance on shorter time scales, internal variability has the41

potential to diminish or even reverse the long-term effect of anthropogenic forcing over42

a limited period (Hawkins & Sutton, 2009). Being stochastic in nature, internal variabil-43

ity restricts us from making a direct comparison between historical model simulations44

and observations, and concerning future projections, it interferes with the time of emer-45

gence of the forced signal. Since the effect of these natural fluctuations in the climate46

system cannot be neglected for decadal time scales, statistical approaches of quantify-47

ing and understanding them need to be considered.48

The relevance of internal variability for a climate variable may be gathered from49

the ratio between the variable’s response to a forced signal and the fluctuations which50

it exhibits due to the chaotic nature of the climate system, also known as the signal-to-51

noise ratio. A climate variable which is suspected to have a low signal-to-noise ratio, but52

still maintain a pronounced response to anthropogenic forcing on the decadal timescale,53

is the downward surface solar radiation (SSR) (Wild et al., 2005; Wild, 2009; Folini et54

al., 2017). This makes anthropogenically forced trends challenging to identify in both55

observations (Sanchez-Lorenzo et al., 2008; Wild, 2016) and models (Storelvmo et al.,56

2018; Moseid et al., 2020). The multi-decadal changes of SSR, termed dimming and bright-57

ening (Wild et al., 2005), are known to affect the climate system thorough different mech-58

anisms, concerning the hydrological cycle (e.g. Wild et al. (2008); Ramanathan (2001)),59

global warming (Wild et al., 2007), the cryosphere (Ohmura et al., 2007; Wild et al., 2008;60

Wild, 2009), the terrestrial biosphere and carbon cycle (e.g. Jones and Cox (2001); Mer-61

cado et al. (2009); Farquhar (2003)). Global dimming and brightening trends are observed62
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for example in China from 1958-1999, the sustained trend magnitudes for the 41-year63

period being −7.4Wm−2/decade for all-sky and −9.7Wm−2/decade for clear-sky SSR64

(S. Yang et al., 2019). In order to disentangle the effects of forced trends versus inter-65

nal variability, one needs to make a distinction between the processes which control them.66

The most widely accepted factors responsible for the anthropogenic effect have been nar-67

rowed down to the emissions of anthropogenic aerosols (Streets et al., 2006; Gidden et68

al., 2019; Wang et al., 2021) and their effect on clouds (e.g. Quaas et al. (2008)), both69

of which bear an enormous uncertainty; in addition, human-caused warming contributes70

to changes in the amount and lifetime of radiatively active gases relevant for short wave71

radiation like water vapour (Santer et al., 2007; Hodnebrog et al., 2019). Internal vari-72

ability, on the other hand, arises from the non-linear dynamics of the atmosphere and73

ocean and possesses the characteristics of a random stochastic process (Deser et al., 2010),74

which can be described and quantified through its corresponding distribution function.75

We take the internal variability analysis as a starting point for understanding the76

behavior of a climate variable and apply it more specifically to SSR, a key component77

of the global energy balance (Wild et al., 2014). The unforced control runs (piControl)78

of the latest generation of climate models, participating in the sixth phase of the Cou-79

pled model intercomparison project – CMIP6 (Eyring et al., 2016), comprise a collec-80

tion of processes that occur solely due to internal variability of the climate system. Mod-81

els also give us the unique opportunity to separate the effect of clouds (and their asso-82

ciated uncertainty) from other factors affecting SSR through the distinction between all-83

sky SSR (including cloudy conditions) and clear-sky SSR (removing clouds from the ra-84

diative transfer calculations). We follow a methodology developed by Folini et al. (2017)85

and based on CMIP – Phase 5 models (Taylor et al., 2012a), which links the probabil-86

ity of occurrence of an unforced all-sky SSR trend with a certain length to the standard87

deviation of the underlying SSR time series. In the current work, this methodology is88

applied to the latest generation of climate model output data (CMIP6) and extended89

also to clear-sky SSR. Clear-sky is of interest as there are no cloud effects, thus a ma-90

jor source of internal variability (noise) is absent, suggesting that any anthropogenic con-91

tribution should be more easily identifiable than under all-sky conditions.92

The structure of this paper is as follows: we briefly present the methods and data93

in section 2; we test where in the world and for what temporal scales trends of varying94

length can be statistically linked, present results and estimate uncertainty from the multi-95

model ensemble in section 3; and discuss possible applications in the analysis of obser-96

vational time series in section 4.97

2 Methods and Data98

To examine trends caused by internal variability only, we use an analytical model,99

described in Thompson et al. (2015) and applicable to data that possess an approximately100

Gaussian distribution and are stationary in time, and applied to SSR by Folini et al. (2017).101

The model links the standard deviation of the distribution of all possible N -year trends102

σN to the standard deviation of the underlying annual time series σts through σN ≈
√

12N−3/2σts103

(Weatherhead et al., 1998; Tiao et al., 1990; Nishizawa & Yoden, 2005; Hinkelman et al.,104

2009). A trend is defined as the linear regression slope for a specified N -year period in105

the variable time series. The mathematical model relies on the following two key assump-106

tions: (1) the distribution of all possible trends with length N derived from the time se-107

ries is Gaussian; (2) the variable does not exhibit significant autocorrelation in time. Our108

approach towards the problem is to first test whether, where and for what time scales109

assumptions (1) and (2) are valid and then analyse the trend magnitudes within these110

spatial and temporal constrains. We ensure a Gaussian distribution through the Kolmogorov-111

Smirnov (K-S) and Anderson-Darling (A-D) normality tests with a significance level α =112

0.05, as done in Folini et al. (2017). The tests are performed for trends with lengths of113

10, 30, 50 and 100 years. Autocorrelation in time is checked using the Pearson correla-114
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tion coefficient calculated for the whole time series against the same time series shifted115

by one time increment.116

In order to build a statistical distribution of unforced SSR trends over decadal time117

scales, one needs hundreds of years of data without anthropogenic forcing – a task that118

can only be achieved with climate models. A suitable data source for our analysis are119

the pre-industrial control runs (also known as piControl) of each model participating in120

CMIP6. The piControl experiment is designed to evaluate the climate models’ unforced121

variability through keeping constant greenhouse gases and anthropogenic aerosol con-122

centrations representative for the period prior to the 1850s (Eyring et al., 2016). The123

simulation lengths vary from a few hundred up to 2000 years between different models,124

usually only one ensemble is provided per model. To ensure statistical robustness, we125

take only models, which have submitted more than 450 years of a piControl simulation,126

which leaves us with 54 simulations from 50 models. Due to autocorrelation consider-127

ations of atmospheric and oceanic phenomena relevant to SSR, we mainly work with yearly128

average data. To obtain a suitable multi-model comparison, we interpolate the SSR vari-129

ables (“rsds” and “rsdscs” in the CMIP6 archive) to a common grid using second order130

conservative remapping. The common grid is chosen as the finest grid among CMIP6131

models, namely the CNRM-CM6-1-HR model’s grid with a spatial increment ∼ 0.5◦ or132

360 latitude and 720 longitude points. The statistical analysis is applied to each indi-133

vidual grid box, both for all-sky and clear-sky SSR. An example of the statistical dis-134

tribution per model in one grid cell (the grid cell containing Lindenberg, Germany) is135

given through the model data-derived probability density functions (PDFs) in Figure 1.136

The trend distributions are calculated for a 30-year period and are centered around 0.137

The 30-year trends all-sky distribution with a multi-model median for that grid cell of138

σ30,as = 1.16 Wm−2/decade is notably wider than that of clear-sky σ30,cs = 0.16 Wm−2/decade139

(the values correspond to the CMIP6 multi-model median, taken over the 30-year trend140

PDFs per model). The multi-model median PDF (solid black line), calculated as the me-141

dian value per bin of the trends distribution, closely follows the Gaussian, analytically142

calculated from the multi-model median of σts and a mean value of 0 (dashed black line).143

The two lines diverge for larger absolute trends in clear-sky SSR due to the large inter-144

model spread in that part of the distribution, thus the multi-model median PDF can-145

not follow the analytical Gaussian. This spread is mainly caused by the flatter distri-146

bution of EC-Earth models. In the upcoming sections, we aggregate this analysis per grid147

box and focus on the differences between grid boxes.148

To justify our modelling study, and to infer whether internal variability of SSR in149

numerical models is sound, we use the following two sources of observational evidence:150

point measurements from the Baseline Surface Radiation Network (BSRN; (Ohmura et151

al., 1998)) and gridded surface fluxes from the Clouds and the Earth’s Radiant Energy152

System (CERES) Energy Balanced and Filled (EBAF) surface data product (Kato et153

al., 2018), edition 4.1. The CERES-EBAF surface fluxes are satellite-derived and val-154

idated against surface measurements, they cover the period after 2000. For our analy-155

sis, the data is interpolated to the same 0.5◦ grid as the models.156

3 Results157

We apply the statistical method described above per grid box for each model - first158

we turn to the assumptions that are behind the approximate analytical link between the159

statistics of the SSR time series and the statistics of SSR trends of different lengths. For160

each gird box of each model we examine how well these assumptions are fulfilled (sec-161

tion 3.1); we then turn to the regional differences at grid box level (section 3.2); in sec-162

tion 3.3 we analyse the contribution of clear-sky variability to all-sky variability; lastly163

we look at differences among models in CMIP6, while considering observations-derived164

data and also extending back to CMIP5; we consider potential reasons for these differ-165

ences and estimate the general uncertainty of our analysis in Section 3.4.166
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ACCESS-CM2         500 yr, 1.9 , ts, as = 4.77, ts, cs = 0.90
ACCESS-ESM1-5     1000 yr, 1.9 , ts, as = 5.37, ts, cs = 0.75
AWI-CM-1-1-MR      500 yr, 0.9 , ts, as = 5.70, ts, cs = 0.49
BCC-CSM2-MR        600 yr, 1.1 , ts, as = 6.53, ts, cs = 0.54
BCC-ESM1           451 yr, 2.8 , ts, as = 6.77, ts, cs = 0.98
CAMS-CSM1-0        500 yr, 1.1 , ts, as = 7.06
CanESM5 (p1)      1000 yr, 2.8 , ts, as = 6.07, ts, cs = 0.95
CanESM5 (p2)      1051 yr, 2.8 , ts, as = 6.00, ts, cs = 1.01
CanESM5-CanOE      501 yr, 2.8 , ts, as = 5.81, ts, cs = 1.02
CAS-ESM2-0         549 yr, 1.4 , ts, as = 6.08, ts, cs = 1.09
CESM2             1200 yr, 1.2 , ts, as = 5.86, ts, cs = 0.72
CESM2-FV2          500 yr, 2.5 , ts, as = 5.17, ts, cs = 0.66
CESM2-WACCM        499 yr, 1.2 , ts, as = 5.91, ts, cs = 0.70
CESM2-WACCM-FV2    500 yr, 2.5 , ts, as = 5.02, ts, cs = 0.93
CIESM              500 yr, 1.2 , ts, as = 6.49, ts, cs = 0.47
CMCC-CM2-SR5       500 yr, 1.2 , ts, as = 6.69, ts, cs = 0.89
CMCC-ESM2          500 yr, 1.2 , ts, as = 6.73, ts, cs = 0.87
CNRM-CM6-1         500 yr, 1.4 , ts, as = 3.63, ts, cs = 0.55
CNRM-ESM2-1        500 yr, 1.4 , ts, as = 3.61, ts, cs = 0.66
E3SM-1-0           500 yr, 1.0 , ts, as = 5.65, ts, cs = 0.73
EC-Earth3 (r1)     501 yr, 0.7 , ts, as = 6.28, ts, cs = 3.47
EC-Earth3 (r2)    1255 yr, 0.7 , ts, as = 6.07, ts, cs = 1.08
EC-Earth3-CC       505 yr, 0.7 , ts, as = 5.98, ts, cs = 3.33
EC-Earth3-Veg      500 yr, 0.7 , ts, as = 6.12, ts, cs = 5.53
EC-Earth3-Veg-LR   501 yr, 1.1 , ts, as = 5.85, ts, cs = 2.29
FGOALS-f3-L        561 yr, 1.2 , ts, as = 5.72, ts, cs = 0.56
FGOALS-g3          700 yr, 2.0 , ts, as = 4.93, ts, cs = 0.56
FIO-ESM-2-0        600 yr, 1.2 , ts, as = 5.76, ts, cs = 0.45
GFDL-CM4           500 yr, 1.2 , ts, as = 4.63, ts, cs = 0.78
GFDL-ESM4          500 yr, 1.2 , ts, as = 4.58, ts, cs = 0.81
GISS-E2-1-G        851 yr, 2.5 , ts, as = 4.92, ts, cs = 0.76
GISS-E2-1-H        801 yr, 2.5 , ts, as = 5.16, ts, cs = 0.77
HadGEM3-GC31-LL    500 yr, 1.9 , ts, as = 4.47, ts, cs = 0.88
HadGEM3-GC31-MM    500 yr, 0.8 , ts, as = 4.66, ts, cs = 0.75
INM-CM4-8          531 yr, 2.0 , ts, as = 4.73, ts, cs = 0.65
INM-CM5-0         1201 yr, 2.0 , ts, as = 4.61, ts, cs = 0.66
IPSL-CM6A-LR      2000 yr, 2.5 , ts, as = 5.37, ts, cs = 0.55
KACE-1-0-G         450 yr, 1.9 , ts, as = 5.37, ts, cs = 1.03
KIOST-ESM          650 yr, 1.9 , ts, as = 7.97, ts, cs = 0.76
MIROC6             800 yr, 1.4 , ts, as = 4.50, ts, cs = 0.66
MIROC-ES2L         500 yr, 2.8 , ts, as = 4.76, ts, cs = 0.76
MPI-ESM-1-2-HAM    780 yr, 1.9 , ts, as = 6.65, ts, cs = 0.85
MPI-ESM1-2-HR      500 yr, 0.9 , ts, as = 5.54, ts, cs = 0.49
MPI-ESM1-2-LR     1000 yr, 1.9 , ts, as = 6.74, ts, cs = 0.48
MRI-ESM2-0         701 yr, 1.1 , ts, as = 4.31, ts, cs = 0.73
NESM3              500 yr, 1.9 , ts, as = 7.30, ts, cs = 1.31
NorCPM1 (r1)       500 yr, 2.5 , ts, as = 4.66, ts, cs = 0.60
NorCPM1 (r2)       500 yr, 2.5 , ts, as = 4.70, ts, cs = 0.59
NorCPM1 (r3)       500 yr, 2.5 , ts, as = 4.73, ts, cs = 0.62
NorESM2-LM         501 yr, 2.5 , ts, as = 5.21, ts, cs = 0.69
NorESM2-MM         500 yr, 1.2 , ts, as = 5.52, ts, cs = 0.71
SAM0-UNICON        700 yr, 1.2 , ts, as = 4.65, ts, cs = 0.68
TaiESM1            500 yr, 1.2 , ts, as = 5.66, ts, cs = 0.82
UKESM1-0-LL       1880 yr, 1.9 , ts, as = 4.57, ts, cs = 0.84
Multimodel median
Calculated                        ts, as = 5.53, ts, cs = 0.75

Figure 1. PDFs of trend distributions derived per model for one grid box, corresponding to

Lindenberg, Germany (52.21◦N, 14.122◦E). The legend comprises the names of the models used

in the study (first column), the length of the control runs in years (second column), the approx-

imate horizontal increment in degrees (third column), the standard deviation of the underlying

annual time series for all-sky σts,as and for clear-sky σts,cs in Wm−2 (forth and fifth columns).

The continuous black line represents the multi-model PDF, obtained via taking the median value

per bin. The dashed black line is the Gaussian calculated using the median of σts taken over

all models as standard deviation to obtain σ30 (see text). Vertical red lines indicate the 75th

percentile of the distribution when taking both positive and negative values.
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3.1 Temporal and spatial scale of applicability167

The CMIP6 piControl data is tested per grid box for autocorrelation in time and168

whether the trend distributions for different trend lengths are normal with a significance169

level α = 0.05. The trend distribution is gathered through linear regressions of yearly170

averaged data. The control runs of the models are first checked for linear trends, as cli-171

mate models are known to drift in at least some variables (Gupta et al., 2013; Irving et172

al., 2020). Repeating the analysis using linearly de-trended data, where the linear trend173

is calculated and subtracted from the entire control simulation, is found to make no sig-174

nificant difference in the distribution of SSR trends (not shown); all subsequent results175

are obtained using the original data. Grid cells, where the statistical tests for Gaussian176

distribution fail, are marked as unsuitable for applying analytical relations that link the177

statistics of the SSR time series (σts) with the statistics of associated N-year long SSR178

trends (σN ).179

We use the K-S test to compare the grid-box trend distribution with a sample of180

a Gaussian distribution with a mean value of zero and standard deviation as the one of181

the model data in the specific grid cell. For all-sky SSR the K-S test is failed in 2% of182

the grid boxes for the 10-year trends distributions, failures occur in 5% of the grid boxes183

for 30-year trends, 10% of the grid boxes for 50-year trends, and 23% of the grid boxes184

for 100-year trends. This percentage value represents the median among models, while185

its relative standard deviation does not go beyond 3%. For clear-sky SSR the K-S test186

is failed slightly more often: in 2% of the grid boxes for 10-year trends, 6% of the grid187

boxes for 30-year trends, 11% the of grid boxes for 50-year trends, and 25% the of grid188

boxes for 100-year trends. This proves that in the majority of grid boxes for both all-189

sky and clear-sky SSR the distribution is Gaussian with a mean value of zero. The A-190

D statistical test, which is more sensitive to the tails of the distribution (Stephens, 1974),191

shows a larger percentage of rejections for both all-sky and clear-sky SSR.192

We adopt a similar approach of testing the underlying time series for autocorre-193

lation in time and check whether it is larger than a certain value. The lag-1 autocorre-194

lation for yearly average data of all-sky SSR is more than 0.1 in 25% of grid boxes, above195

0.2 in 7% of grid boxes, and above 0.3 in 3% of grid boxes. The corresponding percent-196

age values for clear-sky are slightly larger: 45%, 17% and 7% for 0.1, 0.2 and 0.3 respec-197

tively. Performing the same tests for the monthly anomalies results in significantly larger198

autocorrelation values and deems our statistical approach inapplicable for most regions,199

concerning the clear-sky variable.200

One can obtain an idea of the spatial regions where the theory is not applicable201

from the hatched areas in Figure 2 – left column for all-sky, right column for clear-sky202

SSR. They represent the regions, which fail the K-S test for the 30-year distribution and203

have an autocorrelation above 0.2. We note that these regions still maintain unforced204

trends, though we cannot link trends of different lengths N and with a given percentile205

p analytically. These regions shrink if we test for shorter trend periods and compare the206

autocorrelation coefficient against a larger value. Consequentially, the regions extend to207

a greater area when we are interested in longer periods and/or smaller autocorrelation208

values (small autocorrelation of the time series results in a smaller uncertainty of the re-209

sults (Thompson et al., 2015)). As the given percentages suggest, the majority of the210

inapplicability results from a high autocorrelation in time. The corresponding regions211

are the Tropical Pacific, where the conditions are dominated by the El NiñoSouthern Os-212

cillation (ENSO), and areas covered by sea ice. Rejections of the K-S test occur almost213

uniformly on the planet with a slightly higher concentration for some models in the North-214

ern polar regions. The clear-sky SSR generally shows higher autocorrelation values.215

In the following, when we refer to the applicable region, we mean the grid boxes216

in which we can analytically link σts to σN for a trend distribution of any length N , i.e.217

–6–
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the grid boxes that possess a Gaussian distribution and approximately zero autocorre-218

lation in time, obtained from the CMIP6 multi-model median.219

3.2 Regional differences220

To infer the regional differences of trend statistics, we obtain the distribution of221

all possible trends per grid box. The distribution of all possible trends of the same length,222

which is centered around 0, can be intuitively represented through its 75th percentile.223

This value represents a positive trend with a probability of occurrence of 25%, when con-224

sidering both positive and negative trends (i.e. there is a 50% chance that the absolute225

magnitude of the trend exceeds this value, see vertical red lines on Figure 1). Since the226

distribution is symmetrical around zero, the corresponding negative trend with a 25%227

probability of occurrence has the same magnitude with an opposite sign. The percentiles228

p of trends with different lengths N with a mean value of 0 can be expressed through229

t(p,N) = σNZ(p), where Z(p) is the appropriate entry from the Z-table, which links230

a percentile value to the standard deviation in a standard normal distribution, for ex-231

ample Z(75) = 0.674. Throughout the paper, we use the 75th percentile of the distri-232

bution of all possible 30-year trends t(p=75, N=30), which is consistent with the pre-233

ceding study of Folini et al. (2017) and comprises the time scales of global dimming and234

brightening (Wild et al., 2005). The CMIP6 multi-model median of this value is presented235

for all-sky and clear-sky on Figure 2 a) and b), respectively. In the applicable regions,236

discussed in Section 3.1, the all-sky trends with a global mean value of 0.69 Wm−2/decade237

are generally larger than those of clear-sky with 0.165 Wm−2/decade. On average, all-238

sky SSR shows larger magnitude trends over oceans (0.75 Wm−2/decade), compared to239

land (0.58 Wm−2/decade). On the contrary, clear-sky SSR trends are more significant240

over land (0.179 Wm−2/decade) compared to ocean (0.157 Wm−2/decade).241

The spatial distribution of trends is also illustrated in a probabilistic manner on242

Figure 2 c) and d). The transformation to probability per grid point for fixed values of243

t and N can be derived using either σts or σN for any trend period where the distribu-244

tion of all possible trends remains Gaussian. In this example, we use the distribution de-245

rived from all possible 30-year trends per model per grid box and take the CMIP6 multi-246

model median of σN=30 for both all-sky and clear-sky SSR trends per grid box. We then247

extract the percentile (probability) that corresponds to a certain t through Z(p) = t(N)
σN

.248

From this transformation, one can tell the probability of occurrence of a trend with mag-249

nitude t over a period N = 30 years at a certain location. For all-sky SSR, we choose250

t = 1.5 Wm−2/decade (the choice is purely arbitrary, but is of comparable magnitude251

to observed SSR trends (e.g. Wild (2009))) and the analysis tells us there is up to a 32%252

chance to observe an unforced trend of this magnitude or larger in the regions around253

the Intertropical Convergence Zone (ITCZ). The probabilities are notably larger over the254

open ocean areas, Central America, the east coasts of South America and Africa and Aus-255

tralia. The probability of observing it in Europe can be up to 15%, and in China – 19%256

(given are the maximum values over the CMIP6 multi-model median for the respective257

regions). Central Europe and Spain have higher probability values than the north and258

east parts of the continent. The probability of observing such a trend tends towards zero259

in the subtropical regions with no clouds.260

We choose t = 0.3 Wm−2/decade for clear-sky SSR, which has the highest prob-261

ability of occurrence in the subtropical desert regions (up to 22% in the Sahara desert).262

Observing a trend of such magnitude in Europe has a probability of up to 12%, and in263

China – 13%. In contrast to the all-sky distribution, the northernmost and easternmost264

parts of Europe show higher probabilities for clear-sky trends than the central part. The265

probability tends towards 0 in the Amazon, Antarctica, Greenland and large areas of the266

open ocean.267
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Figure 2. CMIP6 multi-model median maps of the 75th percentile of all 30-year trends for

all-sky (a) and clear-sky (b) SSR. Maps showing the probability of occurrence for an all-sky

SSR trend with magnitude 1.5 Wm−2/decade (c) and a clear-sky SSR trend with magnitude 0.3

Wm−2/decade (d) over a period of 30 years. Relative model spread (the difference between the

90th and 10th percentile, divided by the multi-model median) of the 75th percentile per grid box

for all-sky (e) and clear-sky SSR trends (f). The hatched areas represent the grid boxes, which

fail the K-S test for 30-year trends for more than 40% of considered models or have a median

absolute value of the autocorrelation above 0.2.
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Figure 3. Ratio between clear-sky and all-sky SSR trends (75th percentile of all trends):

CMIP6 multi-model median (a) and CMIP6 model spread (c).

In contrast to the open ocean tendencies of having stronger trends in all-sky SSR268

compared to land, semi-enclosed seas with less inter annual SST variability (in CMIP6269

models), like the Mediterranean sea and the Black sea, show the opposite: lower mag-270

nitude trends in all-sky SSR compared to the neighbouring lands.271

We note that the maps of t(75, 30) (Figure 2 a-b) and the probability maps (Fig-272

ure 2 c-d) are two ways of presenting the patterns of internal variability of SSR trends:273

regions where the probabilities are higher tend to experience trends of larger magnitudes.274

An initial measure of the uncertainty of the given results can be obtained from the275

range of estimates CMIP6 models produce for t(75, 30), which is an indicator of the level276

of disagreement among models. The relative spread, shown on Figure 2 e) and f), is de-277

fined as the difference between the 90th and 10th percentile of t(75, 30) per grid point,278

divided by the multi-model median (i.e. the 50th percentile) of t(75, 30) at that point.279

Generally, the patterns of disagreement among models resemble the patterns of trends:280

the spread is larger where the median magnitudes of t(75, 30) are larger. The median281

value (across all grid boxes, weighted by their cell area) of the relative spread of all-sky282

trends is 63% (0.38 Wm−2/decade in absolute units), yielding an uncertainty based on283

model differences of ±32%. For clear-sky, the spread is notably larger, with a median284

of 86% (0.09 Wm−2/decade in absolute units), yielding an uncertainty of ±43%. All-285

sky SSR trends have a more prominent spread above the oceans while clear-sky SSR -286

above land, which is mostly influenced by desert areas (mineral dust). Regions covered287

by sea ice, which are also prone to autocorrelation in time for clear-sky SSR, have a larger288

inter-model spread. For Europe, the patterns of the model spread closely resemble the289

trend magnitudes, whereas for China we observe opposite patterns in the western and290

eastern part: Northwest China has a lower potential for trends, but exhibits a larger spread291

among models in both all-sky and clear-sky SSR. Reasons for differences among mod-292

els are further discussed in Section 3.4.293

3.3 Relationship between all-sky and clear-sky SSR trends294

We further analyze the ratio between clear-sky and all-sky SSR trends, which gen-295

erally takes values between 0 and 1, where lower values mean the trends in surface ra-296
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diation are almost entirely due to clouds and larger values indicate that trends similar297

in magnitude are observed both in all-sky and clear-sky. Spatial patterns of this ratio,298

obtained by dividing the 75th percentile of clear-sky by the 75th percentile of all-sky SSR299

trends per model and then taking the multi-model median per grid box, are shown on300

Figure 3 a). From it, we see that the influence of clouds dominates above oceans, the ITCZ301

and Southwest China. On the other hand, the ratio is close to 1 in large desert areas in302

Africa and Asia. It is worth noting that in desert areas with more prominent clear-sky303

trends, the negative correlation between clear-sky SSR and integrated water vapour con-304

tent (not shown) is weaker than on other places on the globe. On average, the ratio be-305

tween clear-sky and all-sky SSR is 0.166, which translates to an increase of SSR variabil-306

ity by a factor of 6 due to cloud variability. The inter-model spread, shown on Figure307

3 b), is more prominent over deserts and areas, where models differ in their clear-sky SSR308

variability. On average the inter-model spread is 0.172 in absolute units or 100% in rel-309

ative units.310

3.4 Model differences within CMIP6, comparison with CMIP5 and CERES311

Turning back to the considerable model spread, we opt to investigate differences312

among models as one potentially relevant factor. Such differences range from horizon-313

tal resolution, physical parametrizations, differences in the emission inventories and treat-314

ment of aerosols to the models’ overall ability to represent processes internal to the cli-315

mate system, which are of relevance to SSR like the ENSO (e.g. (Li et al., 2015; Y. Yang316

et al., 2016; Pinker et al., 2017)), Pacific Deacadal Oscillation (PDO), North Atlantic317

Oscillation (NAO, e.g. (Chiacchio & Wild, 2010)), etc.318

Comparing the PDFs for models with different horizontal resolution does not show319

a clear distinction among models with a smaller or larger spatial increment. Each PDF320

on Figure 1 is derived from one grid cell, the size of which depends on the model’s spa-321

tial increment (no interpolation to a finer grid is performed). This dependency is also322

checked for other grid boxes, as well as spatially averaged data (not shown). The Pear-323

son correlation coefficient between the model’s spacial increment and spatially averaged324

σts per model is close to 0 (−0.03 for all-sky and −0.15 for clear-sky SSR). The fact that325

there is no clear distinction between them suggests that either (1) models have the abil-326

ity to account for the variability at smaller spatial scales with microphysical parametriza-327

tions, (2) factors other than grid resolution are the main determinants for internal vari-328

ability in climate models or (3) internal variability, relevant for trends longer than 10 years,329

occurs at spatial scales larger than 2.8◦ (the coarsest CMIP6 model resolution). A fur-330

ther investigation of the spatial scales of internal variability is beyond the scope of the331

current paper, but a potential topic for a future study.332

Another possible reason for differences in SSR among models is the aerosol treat-333

ment, which is known to be as important as aerosol emission inventories (Persad et al.,334

2014). We distinguish CMIP6 models, which use prescribed aerosols and those coupled335

to an aerosol model, thus allowing for interactive aerosol treatment. The results are pre-336

sented on Figure 4, where the top panel (a-b) shows multi-model median of t(75, 30), de-337

rived only from models with prescribed aerosols, while the bottom panel (c-d) is derived338

from ESM models that also include an aerosol model. The overall impression is that all-339

sky patterns of trend magnitudes are similar in both ESM model groups, but the mod-340

els with interactive aerosol yield larger trends above desert areas and sediment moun-341

tain ranges like the Himalayas. Numerically, the average clear-sky t(75, 30) value is 0.172 Wm−2/decade342

for models with interactive aerosols versus 0.156 Wm−2/decade for models using pre-343

scribed aerosols, i.e. the aerosol models in CMIP6 attribute to 10% stronger clear-sky344

trends on average. This relative difference is more pronounced above desert areas: 80%345

for the Sahara, 60% for the Sahel, 67% for the Syrian desert, 40% for the Arabian penin-346

sula, 11% for the Kalahari desert, 30% for the Gobi desert. Models with an interactive347

representation of aerosols have a larger all-sky yearly autocorrelation in time above the348
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Figure 4. Multi-model median maps of the 75th percentile of all 30-year trends for CMIP6

models using prescribed aerosols (a, b) and models coupled to an aerosol model (c, d). The

hatched areas represent the grid boxes, which fail the K-S test for 30-year trends for more than

40% of considered models or have a median absolute value of the autocorrelation above 0.2.
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Figure 5. Box plots, representing t(75, 30) per model for all-sky (a), clear-sky (b) SSR trends

and the ratio between the two (c), when covering all grid points of a model. Rightmost orange

box represents t(75, 30), calculated from σts of CERES EBAF Ed4.1. Data is weighted to the

grid box area. Short orange lines indicate the median value among all grid cells, blue boxes mark

the 25th and 75th percentiles and the whiskers – the 10th and 90th percentiles. Horizontal red

line indicates the mean value of all CMIP6 model medians, numerical value is given on the left.
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Figure 6. Difference between CMIP6 and CMIP5 multi-model median of the standard devia-

tion for annual mean all-sky SSR (a) and for annual mean clear-sky SSR (b); Difference between

CMIP6 and CMIP5 median values of the ratio between 30-years’ clear-sky to all-sky trends (c).
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Table 1. A comparison of the standard deviation of the SSR time series for all-sky – σts,as,

clear-sky - σts,cs and their ratio globally (top) and for Lindenberg, Germany (bottom). Global

means are calculated as the mean of the standard deviations of annual mean data per grid cell,

weighted by the grid cell area. For Lindenberg, the value from the corresponding box from the

0.5◦ model grid is used (nearest neighbour remapping). CMIP6 values are derived from the

multi-model median.

σts,as[Wm−2] σts,cs[Wm−2]
σts,cs

σts,as
[-]

Global
CERES EBAF Ed4.1 4.40 1.29 0.13
CMIP6 piControl 4.85 0.74 0.15

Lindenberg
BSRN station no. 12 5.15 1.61 0.31
CERES EBAF Ed4.1 5.64 1.37 0.24
CMIP6 piControl 5.53 0.75 0.14

Tropical Pacific Ocean and in sea ice areas, compared to models with prescribed aerosols.349

On the contrary, for clear-sky SSR, models with interactive aerosols show smaller in size350

areas with autocorrelation of the yearly averaged values. In general, there is no standard-351

ized way of prescribing aerosol loads (Meehl et al., 2020) and models with prescribed aerosol352

can resemble the behaviour of those using an interactive treatment, thus the similari-353

ties in the patterns of clear-sky SSR trends between Figures 4 b) and d).354

The representation of atmospheric and oceanic modes of variability in models is355

an essential part of the description of the overall variability of the climate system. How-356

ever, such modes are often subject to autocorrelation in time, which adds an additional357

uncertainty to the analytical link between the magnitudes of trends of different lengths358

(Thompson et al., 2015). Regions with a high autocorrelation in time generally show trends359

of larger magnitudes and possess a larger inter-model spread in both all-sky and clear-360

sky SSR trends, as it can be seen from Figure 2. The hatched areas in the Tropical Pa-361

cific for clear-sky SSR is due to a positive autocorrelation in time above 0.3 and suggests362

a relationship between ENSO events and clear-sky SSR. The Pearson correlation coef-363

ficient, calculated between the Nino 3.4 index (Trenberth & National Center for Atmo-364

spheric Research Staff (Eds), 2020) and clear-sky SSR (annual means), shows a strong365

negative correlation between the two variables in the Tropical Pacific regions with val-366

ues below −0.7. Further analyzing the shapes of the distributions in the Tropical Pa-367

cific area, we find that there are more grid cells which pass the statistical tests (i.e. have368

a Gaussian distribution) in clear-sky SSR than in all-sky SSR. A thorough analysis of369

the relationship between SSR variability and climate modes of variability may provide370

interesting further causes of decadal scale SSR variability but is no longer pursued in the371

present paper.372

A next step in the analysis of model differences is to look into individual models373

and place them into an observational context. While the models’ unforced control runs374

include only processes internal to the climate system, the observational data includes in375

addition anthropogenic forcing (e.g. aerosol emissions from industrial units) and natu-376

ral forcing (e.g. volcanic eruptions), therefore one would expect trends of greater mag-377

nitude (i.e. larger σts) from the latter. Another difference is the length of the time se-378

ries over which the standard deviation is calculated – the piControl simulations range379

from 500 to 2000 years, while the observational period captures only a few decades, which380

would result in a larger uncertainty of σts. A third difference is that clear-sky SSR in381
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models is calculated from a dedicated call of the radiation scheme, while in observations382

it is derived, based on the SSR in cloud-free days (Wild et al., 2018). As observational383

reference, we use the satellite-derived gridded data from CERES EBAF Ed4.1. for Earth’s384

surface: the value t(75, 30) is calculated, based on σts of the yearly average SSR per grid385

box for the period 2001-2020. To compare individual models and observations-derived386

gridded data, we introduce box plots, comprised of t(75, 30) within all grid boxes. Re-387

sults for all-sky, clear-sky SSR and their ratio are shown in Figure 5.388

For all-sky SSR, model median values (short orange lines) are close to their multi-389

model mean (horizontal red line) with a relative standard deviation of 11%, yielding t(75, 30) =390

0.64±0.07 Wm−2/decade. Contra intuitively, but in line with the findings of Folini et391

al. (2017) for CMIP5, the distribution of all-sky SSR trends in CERES-EBAF data (with392

a median value of t(75, 30) = 0.56 Wm−2/decade) lies lower than the multi-model me-393

dian of CMIP6 unforced simulations. On average, σts,as in CERES-EBAF is 9% less than394

the one for CMIP6 multi-model median (numerical values are shown in Table 1). This395

discrepancy can be attributed to the shortness of the observational period, which results396

in a large uncertainty in the calculation of σts. Focusing solely on individual models, they397

tend to have different upper and lower limits of trend magnitudes: the relative standard398

deviation from the 90th percentile mean is 0.16 (0.22 Wm−2/decade in absolute units),399

while from the 10th it is 0.21 (0.02 Wm−2/decade). Models with higher upper limits like400

CESM2, CMCC, CNRM-ESM2-1, NorCPM2 and NorESM2, treat aerosols interactively.401

A further step in analyzing these differences is to look at the spatial patterns of trends402

for each model individually – shown on Figure A1. The largest unforced all-sky trends403

for all models occur in the Tropical Pacific. It is interesting to note that models differ404

also in the extent of areas, where the trends distribution is not Gaussian. These are the405

CMCC and EC-Earth models in the North Atlantic region. Almost all models, with the406

exception of CESM2, show autocorrelation in time of yearly averaged all-sky SSR around407

Antarctica.408

In the clear-sky SSR trends, the absolute differences are small, but the relative dif-409

ferences (computed via dividing by the multi-model median per grid box) among mod-410

els are larger. The relative standard deviation from the multi-model mean is 0.18 (0.02 Wm−2/decade411

in absolute units), from the mean of all 90th percentiles – 0.32 (0.07 Wm−2/decade), and412

from the mean of all 10th percentiles – 0.52 (0.01 Wm−2/decade). The large spread in413

the lower limit is mostly due to the EC-Earth model family, which stands out with stronger414

clear-sky trends. Further examining the spatial patterns per model on Figure A2, one415

can see that unlike the all-sky trends, the places on the globe with the strongest clear-416

sky trends differ substantially from one model family to the next. Earth system mod-417

els, coupled to an aerosol model, tend to have stronger trends above desert regions, even418

though BCC-ESM1 and the GFDL models use prescribed aerosols and show a similar419

pattern. The CanESM5 models additionally exhibit stronger trends in Southeast Asia.420

The EC-Earth models stand out with very large trends in the entire Northern Hemisphere;421

they also show a lot of fine structure, possibly due to their relatively high spatial res-422

olution, compared to other models. The hatched areas on Figure A2, which show the re-423

gions of applicability for individual models, are mainly due to autocorrelation in time424

of clear-sky SSR above oceans, but the CMCC and EC-Earth models again get rejected425

by the statistical tests for Gaussian distribution in the North Atlantic. The KACE-1-426

0-G model shows high autocorrelation in time (up to 0.7) in most of the globe. In sum-427

mary, the spatial patterns of clear-sky trends differ substantially among models in com-428

parison to the all-sky trends, which explains the large spread on Figure 2 f). For the clear-429

sky case, CERES-EBAF data indicate trends of larger magnitudes compared to unforced430

trends in models as the CMIP6 multi-model median is close to the lower 25th percentile431

of CERES-EBAF trends (0.10 Wm−2/decade). On average, σts,cs in in CERES-EBAF432

is 74% more than the one for CMIP6 multi-model median (see Table 1) – this difference433

may be attributed to the presence of anthropogenic forcing in CERES-EBAF data.434
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Turning to the ratio between clear-sky and all-sky trends, shown on Figure 5 c),435

one can see that the absolute and relative differences among models are of the same mag-436

nitude as those of clear-sky (Figure 5 b). As in the clear-sky case, the ratio between clear-437

sky and all-sky trends in CERES-EBAF is larger than that of the CMIP6 models. The438

relative standard deviation from the multi-model mean is 0.21 (0.03 Wm−2/decade), from439

the 90th percentile mean – 0.40 (0.14 Wm−2/decade), and from the 10th – 0.39 (0.02 Wm−2/decade).440

The lower limit (with the exception of EC-Earth models) tends towards 0, indicating that441

the contribution of cloud variability to decadal all-sky trends is dominating in a larger442

fraction of the planet. If we look at absolute upper limits, instead of 90th percentile val-443

ues, all models contain areas, where the clear-sky trends are as large as the all-sky trends,444

but no more than 10% of the globe represent such areas (i.e. where the ratio is close to445

1). Within the EC-Earth models, the clear-sky trends are more dominant, attributing446

to a fraction of 0.8 to the all-sky trends in 10% of the globe. Figure A3 shows the spa-447

tial patterns of the ratio. It is evident that almost all CMIP6 models (with the excep-448

tion of BCC-CSM2. CNRM-CM6, FGOALS and GISS) show a prevalence of clear-sky449

trends in the Sahara region. The ratio reaches different maximum values within mod-450

els, but the patterns over land are similar. The EC-Earth model family stands out with451

a large clear-sky to all-sky ratio above land areas in the Northern Hemisphere, the Arc-452

tic and Antarctica.453

Continuing further the analysis of model differences, we turn to the previous gen-454

eration of climate models – CMIP5 (Taylor et al., 2012b). Differences between the 5th455

and 6th generations of climate models involve the parametrization of supercooled liq-456

uid water in clouds in some of the models. Thus, CMIP6 models are subject to larger457

cloud feedbacks (especially in the extratropical areas), which result in an increased equi-458

librium climate sensitivity (Zelinka et al., 2020; Dong et al., 2020). We check whether459

associated model changes result in different all-sky SSR trends in unforced CMIP6 sim-460

ulations. For CMIP5, Folini et al. (2017) estimate t(75, 30) between 0.15 and 1.07 Wm−2/decade.461

Using the same methodology, we obtain ranges of the multi-model median, taken over462

all grid boxes, between 0.15 and 2.1 Wm−2/decade, suggesting that CMIP6 models have463

regions with larger all-sky SSR variability than CMIP5 in their piControl runs. Simi-464

larly, we obtain the effective range of t(75, 30) for clear-sky SSR to be [0.04, 0.29] Wm−2/decade465

for CMIP5 and [0.04, 0.38] Wm−2/decade for CMIP6, suggesting again regions with larger466

variability in CMIP6. The spread among models has increased from CMIP5 to CMIP6467

for both all-sky and clear-sky SSR.468

We next explore the regional differences between the two model generations. The469

differences between the multi-model median of the standard deviations of annual mean470

SSR in CMIP6 and CMIP5 are shown in Figure 6 for all-sky (a) and clear-sky (b). It471

is evident that all-sky SSR experiences a stronger variability in CMIP6 in the equato-472

rial ocean areas with an area of decreased variability in the Central Pacific, which are473

possibly linked to adjustments of the representation of the ITCZ in CMIP6 (Tian & Dong,474

2020). Notably, the desert areas show less all-sky SSR variability in the latest genera-475

tion of models. The global average value of the difference between σts of the two model476

generations (subtraction is performed per grid box) is close to 0, but with a standard477

deviation of 0.60 Wm−2. The difference in clear-sky SSR generally has the same sign with478

CMIP6 models showing slightly larger clear-sky SSR variability than CMIP5. The mean479

value of the standard deviation σts,cs = 0.14 Wm−2 can be translated to t(75, 30) =480

0.0199 Wm−2/decade. The largest differences between CMIP5 and CMIP6 clear-sky vari-481

ability are observed in the desert areas with differences in σts,cs up to 0.95 Wm−2 in the482

Sahara region. This is possibly due to an increased number of models with an explicit483

aerosol representation in CMIP6. The relative contribution of clear-sky variability to all-484

sky variability has increased from CMIP5 to CMIP6. This effect is evident on Figure 6485

c), which shows the difference of the ratio of clear-sky to all-sky SSR trends (as in Sec-486

tion 3.3) between the two model generations. The increased prevalence of clear-sky trends487

has increased the most in subtropical deserts, where the contribution of aerosols is sig-488
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nificant and clouds are rare. A reduction in the clear-sky SSR variability around the Antarc-489

tic low pressure belt is also notable. On average, the standard deviation of all-sky SSR490

(thus the magnitude of unforced trends) remains almost unchanged (a decrease by 0.4%491

from CMIP5 to CMIP6), while the standard deviation of clear-sky trends is 24% larger492

in CMIP6, compared to CMIP5.493

4 Discussion494

The results of the present work give a quantitative estimate of the likelihood that495

a trend of a given length and magnitude at a specific location is entirely due to inter-496

nal variability, based on the information contained in the unforced piControl runs from497

a large number of state-of-the-art climate models. We further want to explore the pos-498

sibility of a given trend to be amplified or dampened by internal variability and demon-499

strate cases, in which the results from the present work can be applied. For this, we turn500

back to the statistical distribution of unforced trends for one grid box, corresponding to501

Lindenberg, Germany, on Figure 1. Knowing the statistics of the underlying distribu-502

tion for that specific grid box, we can calculate the probability of occurrence of an un-503

forced trend of a given magnitude and over a given time period. This is shown for all-504

sky and clear-sky SSR on Figure 7 a) and b) respectively. The contour lines are calcu-505

lated using the CMIP6 multi-model median σts for the grid box, corresponding to Lin-506

denberg. It is evident that the probability decreases on longer timescales, but is still of507

importance for trends of smaller magnitudes. The magnitudes of clear-sky trends caused508

by internal variability are considerably smaller than all-sky trends for this location.509

In order to put our theoretical analysis of unforced model simulations into a real-510

world context, we compare the standard deviations of the underlying time series of Lin-511

denberg ground-based observations, CERES-EBAF and the CMIP6 piControl multi-model512

median at the same grid point (bottom panel in Table 1). The ground-based data from513

the BSRN station Lindenberg for both all-sky and clear-sky SSR data is available for a514

period of 18 years from 1995 until 2012. (clear-sky time series are derived using Long515

and Ackerman (2000)). We again note that the first two comprise forcing factors, while516

the CMIP6 piControl does not. For all-sky SSR, both the BSRN observational site and517

CERES-EBAF data show less variability than CMIP6 piControl, but the three values518

differ by no more than 9%. This is again counter-intuitive, but can be explained by one519

of the following: (1) the 17 years of ground observations at Lindenberg are not enough520

to capture the internal variability that occurs on longer timescales, (2) we have a com-521

pensating effect of the forced trends. For clear-sky SSR, the observational site shows the522

largest value of σts – almost twice as much as the one estimated from CMIP6 piControl.523

Overall, at this location the BSRN and CERES-EBAF data agree well and the compar-524

ison to CMIP6 piControl is in line with what was previously discussed for the global av-525

erage values in Section 3.4.526

Bearing in mind that there are discrepancies in our expectations for model data527

and observations, but in absolute terms they are of comparable magnitude, we compare528

our 2-dimensional probability function with yearly-averaged observations from Linden-529

berg (shown as gray points on Figure 7 c-d). Since the observational time series fall en-530

tirely within the brightening period in Europe (Sanchez-Lorenzo et al., 2015), we cal-531

culate the linear regression for the whole period. The resulting trend is +0.28 Wm−2/year532

for all-sky and +0.052 Wm−2/year for clear-sky SSR. Both trends are represented by533

the solid red lines on Figure 7. To compare the resulting trend with internal variabil-534

ity, we transform the 2-dimensional probabilistic functions from Figure 7 a) and b) to535

absolute value coordinates (instead of trends) and center them at the beginning of the536

trend lines on Figure 7 c) and d). The resulting plot shows how steep the trend line should537

be to escape the influence of internal variability in both exacerbating and suppressing538

manner. The probability for the all-sky trend to be entirely due to internal variability,539

inferred using statistics from CMIP6 unforced control runs, is 13%; the probability of540
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Figure 7. Probability of occurrence of a trend entirely due to internal variability as a function

of trend length (x-axis) and trend magnitude (y-axis) for all-sky (a) and clear-sky (b) SSR for the

grid box corresponding to Lindenberg, Germany (52.21◦N, 14.122◦E). Middle and bottom panels

show the same probability coloring superimposed over observational all-sky (c) and clear-sky

(d) SSR time series from the corresponding BSRN station – gray points indicate yearly average

values, the solid red line is obtained from their linear regression; the probability color scheme is

centered at the intersect between the linear fit and the beginning of the observational period.
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the trend in clear-sky to be entirely due to internal variability is 6% (a script to calcu-541

late this for any trend magnitude and length, depending on the geographical location542

is linked in Acknowledgements). This difference in probabilities is because clear-sky shows543

7.4 times less variability than all-sky SSR at this location according to the CMIP6 multi-544

model median.545

We should also note that internal variability can act not only as a sole reason for546

SSR trends, but also exacerbate or suppress forced trends. If we assume linear additiv-547

ity of trends, for Lindenberg there is 29% probability that the total 17-year all-sky trend548

is composed of +0.14 Wm−2/year forced trend plus an enhancing internal variability trend549

of +0.14 Wm−2/year. For the clear-sky case, the probability of 1:1 contribution of an550

anthropogenic trend (+0.026 Wm−2/year) and unforced trend (+0.026 Wm−2/year) is551

22%. Likewise, it is probable that the observed trend at the BSRN station Lindenberg552

was enhanced by internal variability. However, internal variability can also have a sup-553

pressing effect and with the same probabilities are the observed trends could be 1.5 times554

larger (i.e. +0.42 Wm−2/year for all-sky and +0.078 Wm−2/year for clear-sky) if it were555

not for internal variability.556

Until now, we explored two ways of reducing the effect of internal variability: look-557

ing at longer time series and looking into clear-sky SSR. We briefly address another way,558

which is analyzing composite time series from several location, as spatial averaging is sup-559

posed to also limit the effect of internal variability. Taking all-sky observations from 56560

locations in Europe, Sanchez-Lorenzo et al. (2015) estimate European dimming and bright-561

ening trends to be: +0.96 Wm−2/year for 10 years (early brightening); −0.25 Wm−2/year562

for 35 years (dimming); and +0.32 Wm−2/year for 26 years (brightening) until 2012. We563

test the probability for each of these trends to be entirely due to internal variability, tak-564

ing spatially averaged all-sky SSR data from unforced CMIP6 simulations.565

The annual mean all-sky SSR piControl time series per model are interpolated to566

the 56 individual locations, used by Sanchez-Lorenzo et al. (2015). Afterwards, the time567

series are combined into one composite time series per model and for each model σts is568

calculated. The CMIP6 multi-model median of σts,as is 3.05 Wm−2 with a spread of ±22%569

between models. For comparison, averaging out σts,as, obtained from each station lo-570

cation in CMIP6 individually, yields 4.56 Wm−2 (ranging from 3.31 Wm−2 for Postdam,571

Germany to 6.06 Wm−2 for Lerwick, Great Britain), thus taking the composite time se-572

ries of these 56 locations reduces the model-calculated internal variability by 1
3 from the573

non-aggregated value. Using σts,as of the composite time series (3.05 Wm−2), we cal-574

culate that the probability the early brightening is entirely due to internal variability is575

around 0.2%, for the dimming period - 0.00005%, and for the recent brightening until576

2012 it is around 0.002%. For comparison, we calculate the same probabilities using the577

mean σts,as of all individual locations (4.56 Wm−2), which yields 2.7%, 0.05%, 0.36%578

for the three periods respectively. The resulting probabilities are low due to their strong579

dependence on trend length (N−3/2, see Figure 7-a) and the relatively long periods dis-580

cussed in Sanchez-Lorenzo et al. (2015). Therefore, based on climate models’ represen-581

tation of internal variability, it is very unlikely that the entire periods of dimming and582

brightening in Europe are exclusively due to internal variability. However, it cannot be583

ruled out that trends at specific locations have been partially influenced by internal vari-584

ability.585

5 Summary and Conclusion586

We quantify how much internal variability of all-sky and clear-sky SSR can con-587

tribute to decadal SSR trends at individual locations. Even though internal variability588

is regarded as a source of uncertainty in climate simulations, we analyze it as a stochas-589

tic process based on physical interactions within the climate system. For the statistical590

analysis, we use unforced multi-century CMIP6 simulations (piControl), which do not591
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include any natural (e.g. volcanoes) or anthropogenic (e.g. greenhouse gases, aerosols)592

forcing. We construct the distribution of all possible SSR trends from 54 CMIP6 con-593

trol simulations, each extending beyond 500 years of length. Trends are calculated as lin-594

ear regressions from yearly averaged data. The resulting distribution is Gaussian and595

centered around 0 in 89% of the grid cells for both all-sky and clear-sky trends when look-596

ing at trends periods of 50 years or less. Additionally, no significant autocorrelation in597

time of the underlying annual SSR time series is found apart from the Tropical Pacific598

and areas covered by sea ice. Having a Gaussian distribution of trends and no autocor-599

relation in time of the original time series implies that trends of arbitrary length (and600

percentile) and σts are analytically related.601

For the analysis of regional differences in trends, we present a 30-year positive trend602

with 25% chance of occurrence (the 75th percentile of the distribution of all possible 30-603

year trends, t(75, 30)) per grid cell. This variable is linked to trends of different lengths604

N and percentiles through: t(p,N) = σNZ(p) ≈
√

12N−3/2σtsZ(p). It is found that605

the magnitude of unforced trends is strongly dependent on the geographical region, tak-606

ing values for t(75, 30) between 0.15 and 2.1 Wm−2/decade for all-sky SSR and between607

0.04 and 0.38 Wm−2/decade for clear-sky SSR. The respective medians are 0.69 Wm−2/decade608

for all-sky trends and 0.17 Wm−2/decade for clear-sky trends. The variability of all-sky609

SSR is slightly more pronounced over the oceans in comparison to land areas, while clear-610

sky SSR shows larger variability above land, especially large dry desert areas with high611

natural aerosol content. Additionally, global climate models with an explicit aerosol rep-612

resentation show substantially larger decadal trends above deserts (up to 80%) compared613

to models with prescribed aerosols. Analyzing the ratio between clear-sky and all-sky614

trends provides an estimate of how relevant cloud variability is with respect to unforced615

all-sky trends. Regions, where cloud variability dominates (i.e. the ratio is close to 0),616

include large ocean areas, the ITCZ and Southwest China. On the other hand, clear-sky617

trends account for a larger fraction of the total trends (i.e. where the ratio is close to618

0) above the large deserts in Africa and Asia due to low cloud amounts and high nat-619

ural aerosol forcing. Averaged over all grid cells, the ratio between clear-sky and all-sky620

trends is 0.166, or unforced clear-sky trends are 6 times smaller than all-sky trends; this621

property is preserved at different trend lengths.622

The CMIP6 inter-model spread can be used as an indication of the uncertainty of623

the present analysis. For all-sky SSR trends, the relative spread is ±32% and for clear-624

sky trends, it is ±43%. inter-model differences additionally provide information on which625

processes relevant for SSR trends the models disagree on and where in the world they626

diverge the most. Our analysis suggests that the largest disagreement among models is627

found in the regions with the largest magnitudes of trends. The absolute differences among628

models are the largest when comparing all-sky SSR trends, while the relative differences629

are more substantial in clear-sky trends and the ratio of the two. A larger spread is ob-630

served in models with interactive aerosols, suggesting that SSR trends in climate mod-631

els are affected by the insufficient knowledge concerning aerosol processes.632

Finally, we discuss applications of the current work to the analysis of observational633

time series. The quantitative estimates allow us to assign probabilities to the anthropogenic634

and the unforced fraction that must exist in a given observed trend. The benefit of us-635

ing time series comprised of multiple locations to suppress the effect of internal variabil-636

ity is demonstrated by the 1
3 decrease of the standard deviation of the SSR trends dis-637

tribution when spatially averaging the SSR time series over 56 locations across Europe.638

Using σts from CMIP6 unforced control runs, we are able to show that internal variabil-639

ity is extremely unlikely to have been the sole cause of dimming and brightening in Eu-640

rope, but its influence at individual locations for shorter periods should not be neglected.641

A further analysis of the spatial scales of internal variability and its contribution in com-642

posite time series is a possibility for a future study. The results from the current work643
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can be used to attribute a probability to a trend of certain length, magnitude, and lo-644

cation to be due to internal variability.645

Appendix A Model specific maps646
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Figure A1. Maps of the 75th percentile of 30-year all-sky SSR trends for each model consid-

ered. The hatched areas represent the grid boxes, which fail the K-S test for the 30-year trends

or have an autocorrelation in time of the original time series above 0.2. Asterisk next to model

name indicates the use of prescribed aerosols. The individual plots are produced in the native

model grid (without interpolation).
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