Impacts of cold ionospheric ions in magnetic reconnection at the Earth's magnetopause and magnetotail

Sergio Toledo Redondo¹, Mats Andre², Nicolas Aunai³, Charles Chappell⁴, Jérémy Dargent⁵, Stephen Fuselier⁶, Alex Glocer⁷, Daniel Graham⁸, Stein Haaland⁹, Michael Hesse¹⁰, Lynn Kistler¹¹, Benoit Lavraud¹², Wenya Li⁸, Thomas Moore¹³, Sarah Vines¹⁴, and Paul Tenfjord¹⁰

¹University of Murcia
²Swedish Inst Space Physics
³Laboratoire de Physique des Plasmas, CNRS
⁴Utah State Univ
⁵University of Pisa
⁶Southwest Research Institute
⁷NASA/GSFC
⁸IRF Swedish Institute of Space Physics Uppsala
⁹Birkeland Centre for Space Science, University of Bergen, Bergen, Norway
¹⁰University of Bergen
¹¹Univ New Hampshire
¹²IRAP
¹³NASA Goddard Space Flight Ctr
¹⁴University of Texas at San Antonio

November 22, 2022

Abstract

The Earth's magnetosphere is filled by particles from two sources: the solar wind and the ionosphere. Ionospheric ions are initially cold and contain He^+ and O^+ , in addition to to H^+ . Depending on their initial magnetic latitude and local time, and the state of the magnetosphere, they may contribute to the plasmasphere, the plasma sheet, the ring current, the warm plasma cloak etc. Depending on which path they follow in the magnetosphere, some of these ionospheric ions remain cold when they reach the two key reconnection regions: the Earth's magnetopause and the plasma sheet in the tail. In this presentation, we will first review previous statistical works that quantify the number of cold/ionospheric ions near these two regions. Several works have attempted to quantify these populations, but they are inherently difficult to characterize due to their low energy, often below the spacecraft potential. We will also discuss the impacts they have on the magnetic reconnection process. Ionospheric ions mass-load the regions where reconnection takes place and change the characteristic Alfven speed, resulting in a smaller reconnection. Finally, they introduce new length and time scales, associated to their gyroradius and gyroperiod. We will discuss what are the implications of these impacts for the evolution of the magnetosphere – solar wind interactions.

Impacts of cold Ionospheric Ions on Magnetic Reconnection at the Earth's Magnetopause and Magnetotail

<u>S. Toledo-Redondo^{1,2}</u>, M. André³, N. Aunai⁴, C. R. Chappell⁵, J. Dargent⁶, S. A. Fuselier^{7,8}, A. Glocer⁹, D. B. Graham³, S. Haaland^{10,11,12}, M. Hesse¹³, L. M. Kistler¹⁴, B. Lavraud^{2,15}, W.Y. Li¹⁶, T. E. Moore⁸, P. Tenfjord¹¹, and S. K. Vines¹⁷

¹University of Murcia, ²IRAP, ³IRFU,⁴LPP, ⁵Vanderbilt University, ⁶University of Pisa ⁷SwRI, ⁸University of Texas ⁹NASA-GSFC, ¹⁰Max-Planck Institute,¹¹University of Bergen,¹²The University Centre in Svalbard, ¹³NASA Ames Research Center, ¹⁴University of New Hampshire, ¹⁵Université de Bordeaux, ¹⁶NSSC-China, ¹⁷JHU-APL

UNIVERSIDAD DE

MURCIA

AGGIN FALL New Orleans, LA & Online Everywhere 13–17 December 2021

Reviews of Geophysics

REVIEW ARTICLE 10.1029/2020RG000707

Key Points:

- Ionospheric plasma contributes a significant part of the magnetospheric density in the regions where magnetic reconnection is most frequent
- Cold and heavy ions of ionospheric origin reduce magnetic reconnection efficiency and modify energy conversion mechanisms
- The presence of ionospheric ions and their effects on reconnection and magnetospheric dynamics are enhanced during geomagnetic storms

Correspondence to:

S. Toledo-Redondo, Sergio.Toledo@um.es

Impacts of Ionospheric Ions on Magnetic Reconnection and Earth's Magnetosphere Dynamics

S. Toledo-Redondo^{1,2}, M. André³, N. Aunai⁴, C. R. Chappell⁵, J. Dargent⁶, S. A. Fuselier^{7,8}, A. Glocer⁹, D. B. Graham³, S. Haaland^{10,11,12}, M. Hesse¹³, M. Hesse¹³, L. M. Kistler¹⁴, B. Lavraud^{2,15}, W. Li¹⁶, T. E. Moore⁸, P. Tenfjord¹¹, and S. K. Vines¹⁷, D.

¹Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain, ²Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France, ³Swedish Institute of Space Physics, Uppsala, Sweden, ⁴Laboratoire de Physique des Plasmas, Paris, France, ⁵Physics and Astronomy Department, Vanderbilt University, Nashville, TN, USA, ⁶Physics Department E. Fermi, University of Pisa, Pisa, Italy, ⁷Southwest Research Institute, San Antonio, TX, USA, ⁸Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA, ⁹NASA Goddard Space Flight Center, Greenbelt, MD, USA, ¹⁰Max-Planck Institute for Solar Systems Research, Göttingen, Germany, ¹¹Space Plasma Physics Group, University of Bergen, Bergen, Norway, ¹²The University Centre in Svalbard, Longyearbyen, Norway, ¹³Science Directorate, NASA Ames Research Center, Moffett Field, CA, USA, ¹⁴Institute for the Study of Earth Oceans and Space, University of New Hampshire, Durham, NH, USA, ¹⁵Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France, ¹⁶State Key Laboratory of Space Weather, National Space Science Center, Beijing, China, ¹⁷Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

Introduction Ionospheric-originating ions

UNIVERSIDAD DE MURCIA

Ionospheric-originating (cold) populations in the outer magnetosphere:

- Detached plasmasphere material (eV)
- 2. Ionospheric outflows (eV)
- 3. Warm Plasma Cloak (WPC) (10 1keV)

Cold ion and electron VDFs measurement

UNIVERSIDAD DE MURCIA

Spacecraft charging prevents or hinders measurement of cold VDFs

Cold ion and electron VDFs measurement

UNIVERSIDAD DE MURCIA

Toledo-Redondo et al. (2019)

Ionospheric ions at the dayside magnetopause Review of statistical studies

UNIVERSIDAD DE MURCIA

- Cold ionospheric protons increase magnetospheric density near the magnetopause by a factor 2 or more most of the time.
- However, the magnetospheric density is usually 1 order of magnitude than magnetosheath density.

Based on 12 independent statistical studies, see Toledo-Redondo et al. (2021)

Ionospheric ions at the magnetotail Review of statistical studies

UNIVERSIDAD DE MURCIA

Mass-loading of reconnection

UNIVERSIDAD DE MURCIA

$$E_{R} \sim B_{in} v_{out} (I/L)$$
$$V_{out} = v_{A} = B_{out}^{2}/(\mu_{0}\rho_{out})$$

Mass-loading of reconnection

UNIVERSIDAD DE MURCIA

See also Borovsky and Denton (2006), Borovsky (2008), Borovsky et al. (2013)

Ionospheric ions and magnetic reconnection Mass-loading the magnetopause locally

- Reduction in reconnection efficiency by >20% only during <5% of the time (Fuselier et al. 2017, 2019).
- During disturbed magnetospheric times (ie increased O⁺), reduction in reconnection efficiency >20% during ~25% of the time.
- Observational evidence (not statistics) of 40% reduction due to plumes (H⁺ and He⁺)

Fuselier et al. (2017, 2019, 2020)

UNIVERSIDAD DE

MURCIA

Additional length-scales in kinetic processes

"Cold ions introduce a new length-scale owing to their smaller gyroradius. They can reduce the perpendicular currents at these scales."

André et al. (2016), Toledo-Redondo et al. (2018)

Ionospheric ions and magnetic reconnection Cold ion diffusion region

UNIVERSIDAD DE MURCIA

electrons cold ions hot ions

Ionospheric ions and magnetic reconnection Cold ion heating mechanisms

The relative motion between the magnetized cold ions and the magnetosheath ions favours **an ion** – **ion drift instability** at the separatrix that generates **lower hybrid drift waves**. These waves can **heat the cold ions** and demagnetize them.

Ion acoustic waves are formed in the separatrix and outflow region of dayside reconnection

88% of the IAW observed at the magnetopause during 5 months of MMS data are in association to cold ions ($n_c/n > 0.6$)

Ionospheric ions and magnetic reconnection Cold ion heating and energy budget

UNIVERSIDAD DE MURCIA

Table 4

Summary of Open Questions in the Role of Ionospheric Ions and Magnetic Reconnection in the Magnetosphere

Global magnetospheric dynamics	What is the relative contribution of solar wind versus ionospheric-originating H^+ to the magnetosphere?
	How is the plasma sheet formed?
	Does the variable magnetospheric density affect the global coupling with the solar wind efficiency?
Kinetic physics of magnetic reconnection	How do the microphysics introduced by multiple ion populations change reconnection at MHD scales?
	Does the WPC alter the suppression of magnetic reconnection?
	Which portion of the reconnection energy is taken by cold and heavy ions?
	What are the effects of cold electrons in magnetic reconnection?
	How ionospheric ions in the plasma sheet condition the onset of magnetic reconnection?

Abbreviation: WPC, warm plasma cloak.

- The ionosphere is a primary supplier of plasma to the Earth's magnetosphere, together with the solar wind (roughly same order of magnitude)
- Changes in global coupling to SW due to mass-loading of the magnetosphere are significant only during disturbed conditions of the magnetosphere.
- Ionospheric populations introduce new time and length-scales into magnetic reconnection and modify kinetic processes (reconnection, micro-instabilities)
- How these microphysics changes affect the magnetosphere dynamics on global scales remains unknown

THANK YOU

Introduction Ionospheric outflows

UNIVERSIDAD DE MURCIA

Cold ion and electron VDFs measurement

Spacecraft charging prevents or hinders measurement of cold VDFs

- Dusk side magnetopause (dominated by detached plasmaspheric material)
 - Cold ionospheric protons are present >80% of the time, with densities of few tenths of cm^{-3}
 - During 20 25 % of the time, cold proton density is > 3 cm⁻³ (mainly plumes)
- Dawn side magnetopause (dominated by WPC)
 - Cold ionospheric protons are present 50 70 % of the time, with densities of few tenths to few cm⁻³
 - During ~10 % of the time, cold proton density is > 3 cm⁻³
- Plasma sheet ions are both of ionospheric and solar wind origin, and have densities of up to ~0.5 cm⁻³ near the magnetopause

- The presence of O+ should make the tail more unstable to tearing instability (eg Baker et al. 1982)
- Various statistical studies seem to find the opposite (eg Liu et al 2013, Liao et al 2014, Lennartsson et al. 1993, Nosé et al. 2009)

Nosé et al. (2009)

Impacts of cold Ionospheric Ions on Magnetic Reconnection at the Earth's Magnetopause and Magnetotail

<u>S. Toledo-Redondo^{1,2}</u>, M. André³, N. Aunai⁴, C. R. Chappell⁵, J. Dargent⁶, S. A. Fuselier^{7,8}, A. Glocer⁹, D. B. Graham³, S. Haaland^{10,11,12}, M. Hesse¹³, L. M. Kistler¹⁴, B. Lavraud^{2,15}, W.Y. Li¹⁶, T. E. Moore⁸, P. Tenfjord¹¹, and S. K. Vines¹⁷

¹University of Murcia, ²IRAP, ³IRFU,⁴LPP, ⁵Vanderbilt University, ⁶University of Pisa ⁷SwRI, ⁸University of Texas ⁹NASA-GSFC, ¹⁰Max-Planck Institute,¹¹University of Bergen,¹²The University Centre in Svalbard, ¹³NASA Ames Research Center, ¹⁴University of New Hampshire, ¹⁵Université de Bordeaux, ¹⁶NSSC-China, ¹⁷JHU-APL

UNIVERSIDAD DE

MURCIA

AGGIN FALL New Orleans, LA & Online Everywhere 13–17 December 2021

Reviews of Geophysics

REVIEW ARTICLE 10.1029/2020RG000707

Key Points:

- Ionospheric plasma contributes a significant part of the magnetospheric density in the regions where magnetic reconnection is most frequent
- Cold and heavy ions of ionospheric origin reduce magnetic reconnection efficiency and modify energy conversion mechanisms
- The presence of ionospheric ions and their effects on reconnection and magnetospheric dynamics are enhanced during geomagnetic storms

Correspondence to:

S. Toledo-Redondo, Sergio.Toledo@um.es

Impacts of Ionospheric Ions on Magnetic Reconnection and Earth's Magnetosphere Dynamics

S. Toledo-Redondo^{1,2}, M. André³, N. Aunai⁴, C. R. Chappell⁵, J. Dargent⁶, S. A. Fuselier^{7,8}, A. Glocer⁹, D. B. Graham³, S. Haaland^{10,11,12}, M. Hesse¹³, M. Hesse¹³, L. M. Kistler¹⁴, B. Lavraud^{2,15}, W. Li¹⁶, T. E. Moore⁸, P. Tenfjord¹¹, and S. K. Vines¹⁷, D.

¹Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain, ²Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France, ³Swedish Institute of Space Physics, Uppsala, Sweden, ⁴Laboratoire de Physique des Plasmas, Paris, France, ⁵Physics and Astronomy Department, Vanderbilt University, Nashville, TN, USA, ⁶Physics Department E. Fermi, University of Pisa, Pisa, Italy, ⁷Southwest Research Institute, San Antonio, TX, USA, ⁸Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA, ⁹NASA Goddard Space Flight Center, Greenbelt, MD, USA, ¹⁰Max-Planck Institute for Solar Systems Research, Göttingen, Germany, ¹¹Space Plasma Physics Group, University of Bergen, Bergen, Norway, ¹²The University Centre in Svalbard, Longyearbyen, Norway, ¹³Science Directorate, NASA Ames Research Center, Moffett Field, CA, USA, ¹⁴Institute for the Study of Earth Oceans and Space, University of New Hampshire, Durham, NH, USA, ¹⁵Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France, ¹⁶State Key Laboratory of Space Weather, National Space Science Center, Beijing, China, ¹⁷Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

Introduction Ionospheric-originating ions

UNIVERSIDAD DE MURCIA

Ionospheric-originating (cold) populations in the outer magnetosphere:

- Detached plasmasphere material (eV)
- 2. Ionospheric outflows (eV)
- 3. Warm Plasma Cloak (WPC) (10 1keV)

Cold ion and electron VDFs measurement

UNIVERSIDAD DE MURCIA

Spacecraft charging prevents or hinders measurement of cold VDFs

Cold ion and electron VDFs measurement

UNIVERSIDAD DE MURCIA

Toledo-Redondo et al. (2019)

Ionospheric ions at the dayside magnetopause Review of statistical studies

UNIVERSIDAD DE MURCIA

- Cold ionospheric protons increase magnetospheric density near the magnetopause by a factor 2 or more most of the time.
- However, the magnetospheric density is usually 1 order of magnitude than magnetosheath density.

Based on 12 independent statistical studies, see Toledo-Redondo et al. (2021)

Ionospheric ions at the magnetotail Review of statistical studies

UNIVERSIDAD DE MURCIA

Mass-loading of reconnection

UNIVERSIDAD DE MURCIA

$$E_{R} \sim B_{in} v_{out} (I/L)$$
$$V_{out} = v_{A} = B_{out}^{2}/(\mu_{0}\rho_{out})$$

Mass-loading of reconnection

UNIVERSIDAD DE MURCIA

See also Borovsky and Denton (2006), Borovsky (2008), Borovsky et al. (2013)

Ionospheric ions and magnetic reconnection Mass-loading the magnetopause locally

- Reduction in reconnection efficiency by >20% only during <5% of the time (Fuselier et al. 2017, 2019).
- During disturbed magnetospheric times (ie increased O⁺), reduction in reconnection efficiency >20% during ~25% of the time.
- Observational evidence (not statistics) of 40% reduction due to plumes (H⁺ and He⁺)

Fuselier et al. (2017, 2019, 2020)

UNIVERSIDAD DE

MURCIA

Additional length-scales in kinetic processes

"Cold ions introduce a new length-scale owing to their smaller gyroradius. They can reduce the perpendicular currents at these scales."

André et al. (2016), Toledo-Redondo et al. (2018)

Ionospheric ions and magnetic reconnection Cold ion diffusion region

UNIVERSIDAD DE MURCIA

electrons cold ions hot ions

Ionospheric ions and magnetic reconnection Cold ion heating mechanisms

The relative motion between the magnetized cold ions and the magnetosheath ions favours **an ion** – **ion drift instability** at the separatrix that generates **lower hybrid drift waves**. These waves can **heat the cold ions** and demagnetize them.

Ion acoustic waves are formed in the separatrix and outflow region of dayside reconnection

88% of the IAW observed at the magnetopause during 5 months of MMS data are in association to cold ions ($n_c/n > 0.6$)

Ionospheric ions and magnetic reconnection Cold ion heating and energy budget

UNIVERSIDAD DE MURCIA

Table 4

Summary of Open Questions in the Role of Ionospheric Ions and Magnetic Reconnection in the Magnetosphere

Global magnetospheric dynamics	What is the relative contribution of solar wind versus ionospheric-originating H^+ to the magnetosphere?
	How is the plasma sheet formed?
	Does the variable magnetospheric density affect the global coupling with the solar wind efficiency?
Kinetic physics of magnetic reconnection	How do the microphysics introduced by multiple ion populations change reconnection at MHD scales?
	Does the WPC alter the suppression of magnetic reconnection?
	Which portion of the reconnection energy is taken by cold and heavy ions?
	What are the effects of cold electrons in magnetic reconnection?
	How ionospheric ions in the plasma sheet condition the onset of magnetic reconnection?

Abbreviation: WPC, warm plasma cloak.

- The ionosphere is a primary supplier of plasma to the Earth's magnetosphere, together with the solar wind (roughly same order of magnitude)
- Changes in global coupling to SW due to mass-loading of the magnetosphere are significant only during disturbed conditions of the magnetosphere.
- Ionospheric populations introduce new time and length-scales into magnetic reconnection and modify kinetic processes (reconnection, micro-instabilities)
- How these microphysics changes affect the magnetosphere dynamics on global scales remains unknown

THANK YOU

Introduction Ionospheric outflows

UNIVERSIDAD DE MURCIA

Cold ion and electron VDFs measurement

Spacecraft charging prevents or hinders measurement of cold VDFs

- Dusk side magnetopause (dominated by detached plasmaspheric material)
 - Cold ionospheric protons are present >80% of the time, with densities of few tenths of cm^{-3}
 - During 20 25 % of the time, cold proton density is > 3 cm⁻³ (mainly plumes)
- Dawn side magnetopause (dominated by WPC)
 - Cold ionospheric protons are present 50 70 % of the time, with densities of few tenths to few cm⁻³
 - During ~10 % of the time, cold proton density is > 3 cm⁻³
- Plasma sheet ions are both of ionospheric and solar wind origin, and have densities of up to ~0.5 cm⁻³ near the magnetopause

- The presence of O+ should make the tail more unstable to tearing instability (eg Baker et al. 1982)
- Various statistical studies seem to find the opposite (eg Liu et al 2013, Liao et al 2014, Lennartsson et al. 1993, Nosé et al. 2009)

Nosé et al. (2009)