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Abstract

Areas of lakes that support emergent aquatic vegetation emit disproportionately more methane than open water but are under-

represented in upscaled estimates of lake greenhouse gas emissions. These shallow areas are typically less than ˜1.5 m deep

and can be estimated through synthetic aperture radar (SAR) mapping. To assess the importance of lake emergent vegetation

(LEV) zones to landscape-scale methane emissions, we combine airborne SAR mapping with field measurements of vegetated

and open-water methane flux. First, we use Uninhabited Aerial Vehicle SAR (UAVSAR) data from the NASA Arctic-Boreal

Vulnerability Experiment (ABoVE) to map LEV in 4,572 lakes across four Arctic-boreal study areas and find it comprises ˜16%

of lake area, exceeding previous estimates, and exhibiting strong regional differences (averaging 59 [50–68]%, 22 [20-25]%, 1.0

[0.8-1.2]%, and 7.0 [5.0-12]% of lake areas in the Peace-Athabasca Delta, Yukon Flats, and northern and southern Canadian

Shield, respectively). Next, we account for these vegetated areas through a simple upscaling exercise using paired methane

fluxes from regions of open water and LEV. After excluding vegetated areas that could be accounted for as wetlands, we find

that inclusion of LEV increases overall lake emissions by 21 [18-25]% relative to estimates that do not differentiate lake zones.

While LEV zones are proportionately greater in small lakes, this relationship is weak and varies regionally, underscoring the

need for methane-relevant remote sensing measurements of lake zones and a consistent criterion for distinguishing wetlands.

Finally, Arctic-boreal lake methane upscaling estimates can be improved with more measurements from all lake zones.
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Key Points: 29 

● We provide a first quantification of emergent vegetation area across 4,572 lakes in four 30 
Arctic-boreal study areas using airborne mapping. 31 

● Lake emergent vegetation coverage varies regionally from 1 to 59 percent of lake area 32 
and seasonally to a lesser degree. 33 

● Accounting for this coverage could increase Arctic-boreal lake methane upscaling 34 
estimates by 21 percent.  35 
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Abstract 36 

Areas of lakes that support emergent aquatic vegetation emit disproportionately more methane 37 
than open water but are under-represented in upscaled estimates of lake greenhouse gas 38 
emissions.  These shallow areas are typically less than ~1.5 m deep and can be estimated through 39 
synthetic aperture radar (SAR) mapping. To assess the importance of lake emergent vegetation 40 
(LEV) zones to landscape-scale methane emissions, we combine airborne SAR mapping with 41 
field measurements of vegetated and open-water methane flux. First, we use Uninhabited Aerial 42 
Vehicle SAR (UAVSAR) data from the NASA Arctic-Boreal Vulnerability Experiment 43 
(ABoVE) to map LEV in 4,572 lakes across four Arctic-boreal study areas and find it comprises 44 
~16% of lake area, exceeding previous estimates, and exhibiting strong regional differences 45 
(averaging 59 [50–68]%, 22 [20-25]%, 1.0 [0.8-1.2]%, and 7.0 [5.0-12]% of lake areas in the 46 
Peace-Athabasca Delta, Yukon Flats, and northern and southern Canadian Shield, respectively). 47 
Next, we account for these vegetated areas through a simple upscaling exercise using paired 48 
methane fluxes from regions of open water and LEV. After excluding vegetated areas that could 49 
be accounted for as wetlands, we find that inclusion of LEV increases overall lake emissions by 50 
21 [18-25]% relative to estimates that do not differentiate lake zones. While LEV zones are 51 
proportionately greater in small lakes, this relationship is weak and varies regionally, 52 
underscoring the need for methane-relevant remote sensing measurements of lake zones and a 53 
consistent criterion for distinguishing wetlands. Finally, Arctic-boreal lake methane upscaling 54 
estimates can be improved with more measurements from all lake zones. 55 

 56 

Plain Language Summary 57 

Lakes are one of the largest natural sources of the greenhouse gas methane and are especially 58 
common in high latitudes. Shallow, near-shore areas of lakes having emergent aquatic vegetation 59 
emit disproportionately more methane than open water areas but are under-represented in broad-60 
scale estimates of lake greenhouse gas emissions. While lake depths are difficult to map from 61 
remote sensing, emergent vegetation, which typically grows in water less than ~ 1.5 m deep, can 62 
be detected via radar remote sensing. To assess the importance of these areas to landscape-scale 63 
methane emissions, we combine airborne radar mapping with field measurements of vegetated 64 
and open-water methane emissions.  Zones of emergent vegetation vary regionally and comprise 65 
~16% of lake area on average. A simple estimate that accounts for both open water and emergent 66 
vegetation methane emissions results in 21% increased overall lake methane emissions estimates. 67 
Emergent aquatic vegetation coverage has only a weak relationship with lake size, making it 68 
hard to predict. Therefore, to better estimate broad-scale methane emissions, we suggest using 69 
remote sensing to create lake vegetation distribution maps and measuring methane emissions 70 
from both vegetated and open water zones within lakes. 71 

 72 

1 Introduction 73 

Inland waters (lakes, reservoirs, rivers, and wetlands) are the single largest natural source 74 
of the greenhouse gas methane (CH4) (Saunois et al., 2020). Lakes are estimated to be 75 
responsible for ~24% of all inland water emissions, second only to wetlands (Bastviken et al., 76 
2011; Saunois et al., 2020). They emit methane via diverse pathways of diffusion, ebullition, 77 
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transport through aquatic plant tissue, and through a storage flux during turnover and/or ice melt 78 
in stratified lakes. Emissions are strongly dependent on temperature, sediment carbon content, 79 
redox environment, and gas transfer velocity (Bastviken, Cole, Pace, & Tranvik, 2004; Wik et 80 
al., 2016). Uncertainties in upscaling lake emissions therefore have vast spatial and temporal 81 
heterogeneities (Loken et al., 2019; Natchimuthu et al., 2016; Stephanie et al., 2020; Saunois et 82 
al., 2020).  83 

 Unlike for wetlands, there are few process-based models for lake fluxes, so estimates 84 
have relied on data-driven extrapolations (Saunois et al., 2020). Lake emission upscaling efforts 85 
have only recently begun to account for lake surface area (DelSontro et al., 2016; Hastie et al., 86 
2018; Holgerson & Raymond, 2016), but it is still rare to consider other aspects of morphometry, 87 
such as slope, vegetation, and littoral area (Casas-Ruiz et al., 2021). “Bottom-up,” or process-88 
based, methane estimates tend to over-predict aquatic methane fluxes compared to “top-down,” 89 
or inversion-based, models (Saunois et al., 2020), and double-counting of small lakes as 90 
wetlands caused by mismatch in scale and methods among datasets has been suggested as a 91 
possible cause (Thornton et al., 2016). Small (< 0.001 km2) lakes and wetlands are poorly 92 
mapped, especially in Arctic-boreal regions containing the world’s greatest abundance of lakes 93 
(Verpoorter et al., 2014). Indeed, uncertainty in wetland extent is frequently cited as the leading 94 
cause of uncertainty in bottom-up methane estimates (Zhang et al. 2017), and errors arising from 95 
large-scale extrapolations of heterogeneous wetlands have also been noted (Bridgham et al., 96 
2013).  97 

One key challenge to upscaling is the high within-lake spatial variability of methane 98 
emissions. Total fluxes measured from vegetated (Villa et al., 2021) and shallow (Natchimuthu 99 
et al., 2016) zones can be statistically greater than those from open water and have been 100 
attributed to the majority of whole-lake emissions (Saunois et al., 2020). Estimates derived from 101 
deep lake centers have been shown to underestimate total flux by 5-78% in select lakes 102 
(Natchimuthu et al., 2016). Plant-mediated fluxes can be significant at the landscape scale, for 103 
example exceeding peatland emissions in southern Finland by 30%, despite covering only 40% 104 
as much area (Bergström et al., 2007). Another study of three Finnish lakes found that the 105 
vegetated littoral zone produced 66-77% of whole-lake emissions (Juutinen et al., 2003). 106 
Combined globally, emergent macrophytes are estimated to emit 11% of the equivalent from all 107 
open water lakes, rivers, and reservoirs (Bastviken et al., 2011). As the most “wetland-like” zone 108 
within lakes, littoral zones are important sources of carbon and known methane emission hot 109 
spots (Bergström et al., 2007; Burger et al., 2016; Huttunen et al., 2003; Juutinen et al., 2003; 110 
Larmola et al., 2004), with exceptions (Jansen et al., 2020a). However, littoral zone area is 111 
difficult to quantify accurately because its extent is classified by light penetration into the water 112 
column (Wetzel, 2001) and not by characteristics that are easily delineated by remote sensing. In 113 
contrast, the extent of emergent macrophytes growing in water < ~1.5 m deep in the upper 114 
littoral zone are more easily detected. These plants can act as conduits to the atmosphere for 115 
methane produced in lake sediments (Dacey and Klug, 1979; Colmer, 2003). They also produce 116 
carbon compounds that are preferentially consumed by methanogens (methane-producing 117 
archea), and their decomposing biomass and root exudates are a large contributor to sediment 118 
organic carbon (Christensen et al., 2003; Joabsson, Christensen, & Wallén, 1999; Ström et al., 119 
2005). Previous studies have noted the tendency for small (Michmerhuizen, Striegl, & 120 
McDonald, 1996; Bastviken et al., 2004; Holgerson & Raymond, 2016; Engram et al. 2020) and 121 
shallow (West et al., 2015; Wik et al., 2016a; Li et al., 2020) lakes to emit more methane than 122 
larger and deeper ones. Delsontro et al. (2018b) successfully modeled lake methane 123 
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concentration as a function of distance from the littoral zone, horizontal transport and oxidation, 124 
and oxic epilimnetic production, which highlights the outsized importance of littoral methane 125 
production. Notably, not all properties of littoral zones come from their vegetation. Their relative 126 
shallowness is also a factor, as depth often prohibits methane ebullition due to water overburden 127 
pressure (Bastviken et al., 2004, Langenegger et al., 2019), although there are exceptions 128 
(Huttunen et al., 2003). Shallow waters may also contain distinct sediment organic matter 129 
composition and less opportunity for microbe-mediated oxidation of dissolved methane 130 
(DelSontro et al., 2016). Finally, diffusive fluxes measured in the littoral zone may be driven by 131 
terrestrial inflows (Paytan et al., 2015, Natchimuthu et al., 2016), and offshore fluxes are 132 
diminished by oxidation during transport (DelSontro et al., 2018b). Thus, methane emissions in 133 
lakes are spatially variable, with highest emissions coming from littoral zones, particularly with 134 
vegetation. 135 

This challenge of accounting for spatial heterogeneity is exacerbated by lack of data in 136 
the littoral or vegetated zones (DelSontro et al. 2018b; Desrosiers et al., 2022). The Boreal–137 
Arctic Wetland and Lake Methane Dataset (BAWLD-CH4; Kuhn et al., 2021a; Kuhn et al., 138 
2021b) is the first synthesis study we are aware of that notes which part of the lake ebullition 139 
fluxes were measured (center, edge, or whole lake). However, only 143 of the 553 records 140 
actually contain within-lake location, and of these, only one was measured from an edge, with 19 141 
from centers and 123 from whole-lakes. Among lake methane studies, plant-mediated emissions 142 
are measured least frequently of all lake pathways (Bastviken et al., 2011; Wik et al., 2016a), 143 
along with open-water emissions near plants, so methane upscaling estimates in lakes (DelSontro 144 
et al., 2018a; Tranvik et al., 2009) usually rely solely on pelagic diffusion and ebullition 145 
(DelSontro et al. 2018; Desrosiers et al., 2021), with biases introduced by insufficient within-146 
lake sampling sites (Wik et al., 2016b). For these reasons, lake methane measurements are under-147 
represented in vegetated and littoral zones, even among the few studies that report sampling 148 
location.  149 

Another key challenge to upscaling is that littoral and vegetation coverage in lakes are 150 
poorly constrained. Duarte et al. (1986) suggested that emergent macrophytes colonize on 151 
average 7% of a lake regardless of its area, while submerged macrophyte coverage generally 152 
declines with area. They list light availability, sediment characteristics, and trophic status as key 153 
characteristics for macrophyte growth, with slope as the greatest predictor of emergent 154 
macrophyte coverage. Others have theorized that the percent of a lake’s surface area covered 155 
with macrophytes scales with nitrogen concentration and the inverse of mean depth (Smith and 156 
Wallsten 1986), or scales inversely with lake area (Michmerhuizen et al., 1996) or perimeter 157 
(Bergström et al., 2007). Mäkelä et al. (2004) similarly found that an average of 6% (range: 1-158 
100%) of total lake area was covered by macrophytes in a sample of 50 lakes and that total 159 
fractional macrophyte coverage per lake steeply declined with lake area. Zhang et al. (2017) 160 
compiled a synthesis database of aquatic macrophytes in 155 global lakes and observed an 161 
average coverage of 26% (range: 0.000-100%) with an accelerating decline since 1900. 162 

Remote sensing studies have used both optical and synthetic aperture radar (SAR) 163 
sensors to map macrophytes in lakes. Optical satellites are better suited to detecting vegetation 164 
type, while SAR can detect water even through vegetation canopies (Hess et al., 1990). Ghirardi 165 
et al. (2019) used optical Sentinel-2 satellite data to map submerged aquatic macrophytes in an 166 
Italian lake and noted both inter- and intra-annual variations in aerial coverage. Nelson et al. 167 
(2006) used Landsat Thematic Mapper imagery to map various types of macrophytes in 13 lakes 168 
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in Michigan, USA and found total macrophyte coverage ranging from 5-42%. Ganju et al. (2017) 169 
used air imagery and elevation data to derive the unvegetated/vegetated marsh ratio (UVVR) for 170 
tidal marshes, which scales with sediment budget and has typical values < 0.4. Zhang et al. 171 
(2018) used TerraSAR-X SAR imagery to map macrophytes in nine Brazilian reservoirs and 172 
similarly found large spatial and temporal variation in coverage. Thus, many remote sensing 173 
studies have demonstrated spatial and/or temporal differences in aquatic macrophyte cover, yet 174 
few have measured total coverage across large geographical areas and numerous lakes.  Lake 175 
macrophyte area statistics, therefore, remain confined to a handful of studies of small numbers of 176 
lakes. 177 

Here, we aim to quantify the fractional coverage of emergent vegetation for 4,572 lakes 178 
across four Arctic-boreal regions in order to assess their potential importance in scaling methane 179 
emissions. To estimate coverage, we use the canopy-penetrating properties of L-band synthetic 180 
aperture radar (SAR) flown during the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) 181 
airborne campaign (2017-2019). Although floating-leafed macrophytes are relevant to the 182 
methane budget, they cannot be reliably detected with this technique due to similar surface 183 
roughness with water waves and thus are omitted here. Next, we compile paired measurements 184 
of methane flux (new data and literature) via all pathways from open water and emergent 185 
macrophyte regions of lakes. Finally, we use these flux measurements and our remote sensing-186 
derived ranges in emergent vegetation coverage to estimate its impact on lake methane 187 
emissions. We conclude with discussion of the causes of regional differences, some broader 188 
recommendations for landscape-scale methane upscaling, study limitations, and 189 
recommendations for future research.  190 

2 Study areas, data sources, and methods 191 

2.1 Study areas 192 

The NASA Arctic-Boreal Vulnerability Experiment (ABoVE) campaign is a decade-long 193 
effort to measure environmental change in the Arctic and boreal regions of western North 194 
America via coordinated ground measurements and airborne remote sensing (Miller et al., 2019). 195 
Here, we focus on four study areas within the ABoVE domain, each corresponding to one or 196 
more flight lines from its airborne campaigns: 197 

1) Peace-Athabasca Delta, Alberta, Canada (PAD); 198 

2) Southern Canadian Shield near Baker Creek (CSB), Northwest Territories, Canada;   199 

3) Interior Canadian Shield near Daring Lake (CSD), Northwest Territories, Canada; and 200 

4) Yukon Flats National Wildlife Refuge, Alaska, USA (YF). 201 

These four study areas were chosen because of their high lake density and contrasting geological, 202 
hydrological, and ecological conditions. The PAD is one of the world’s largest inland deltas and 203 
is located on the western edge of Lake Athabasca (Figure 1).  The overall relief of its lowland 204 
regions is 11 m, causing numerous marsh-type wetlands, mudflats, and lakes, many of which are 205 
recharged by the Athabasca River (Pavelsky & Smith, 2008), and more rarely, by ice-jam floods 206 
in the Peace River (Timoney, 2013). These floods can inundate up to 80% of the 5,600 km2 delta 207 
(Töyrä & Pietroniro, 2005; Wolfe et al., 2006), while in typical years, 26% is covered by 208 
intermittently-inundated wetlands (Ward & Gorelick 2018). It is a Ramsar Wetland, UNESCO 209 
World Heritage site, and home to numerous endemic species of birds, fish, and mammals 210 
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including the endangered whooping crane and the largest remaining herd of wood bison (Parks 211 
Canada, 2019).  The two Northwest Territories study areas (CSD, CSB) are located on the 212 
Canadian Shield, the world’s largest deposit of Precambrian-age bedrock and source of the oldest 213 
known terrestrial rocks (Slaymaker, 2016). Deglaciated only nine thousand years ago and with a 214 
rocky, sparse surface drainage pattern, the Shield is also the world’s most lake-rich region and 215 
contains many peatlands (Slaymaker, 2016; Spence & Woo, 2006). CSB is underlain by 216 
discontinuous permafrost, while CSD crosses the tree line and contains a transition to continuous 217 
permafrost and the tundra/taiga ecotone (Figure 1). The YF is underlain by discontinuous 218 
permafrost in alluvial soils and contains lakes of various hydrologic connectivity to the Yukon 219 
River and its tributaries (Anderson et al. 2013, Johnston et al., 2020). Like the PAD, the YF has 220 
flat topography, permitting seasonal flooding during the early summer to cover large areas, and it 221 
is a source of both lateral riverine and water-air carbon fluxes (Striegl, et al., 2012). All four 222 
study areas are home to multiple indigenous and First Nation communities, as well as the city of 223 
Yellowknife (CSB) and numerous smaller settlements. 224 

 225 

Figure 1. Location map of study areas (YF = Yukon Flats; CSD = Canadian Shield, Daring 226 
Lake; CSB = Canadian Shield, Baker Creek; PAD = Peace-Athabasca Delta). Study area 227 
boundaries (red polygons) are derived from intersecting UAVSAR airborne flight coverage with 228 
physiographic boundaries. Major water bodies are shown in blue; Canadian Shield with 229 
stippling, and the northern tree line limit (Brown et al., 2002) in green. 230 

 231 
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2.2 Data sources 232 

2.2.1 Airborne polarimetric SAR  233 

L-band synthetic aperture radar (SAR) data from the Uninhabited Aerial Vehicle 234 
Synthetic Aperture Radar (UAVSAR) were obtained in multi-look ground-projected format 235 
(GRD) and reprojected to ~5.5 m spatial resolution (NASA/JPL 2017-2019) on the ABoVE 236 
Science Cloud computing environment. With a wavelength of 23.8 cm, UAVSAR has been used 237 
extensively for vegetation mapping and inundation detection, including in lowlands or deltas 238 
with flooded vegetation (Ayoub et al., 2018; Jensen et al., 2021; Z. Zhang et al., 2017). All 239 
available ABoVE UAVSAR flight dates from non-contiguous days during summers 2017-2019 240 
were used. Both early (June) and late (August-September) summer images were acquired by 241 
UAVSAR in 2017, and only late summer/early autumn dates were imaged in 2018 and 2019. 242 

 243 

2.2.2 Water and land cover maps 244 

Several ABoVE land cover data sets were referenced to help build a land cover training dataset 245 
for UAVSAR (see Section 2.3.1). High-resolution imagery and derivative water masks were 246 
obtained from the AirSWOT color-infrared camera (Kyzivat et al. 2018; Kyzivat et al. 2019; 247 
Kyzivat, et al. 2020), supplemented by high-resolution satellite imagery from Maxar 248 
(https://evwhs.digitalglobe.com/myDigitalGlobe/). Two satellite-based land cover maps 249 
available for the ABoVE domain were also referenced (Bourgeau-Chavez et al., 2017, 2019; 250 
Wang et al., 2019; Wang et al., 2019). Although these maps use a different classification scheme 251 
than our derived UAVSAR classification, they are particularly useful for partitioning between 252 
trees, shrubs, and graminoid vegetation. 253 

 254 

2.3 Methods 255 

2.3.1 Land cover classification training dataset  256 

To estimate lake emergent macrophyte coverage (AEV), a land cover training dataset was 257 
created using inundation status from field measurements in 2015 and 2017-2019 and vegetation 258 
categories from ABoVE land cover maps (Bourgeau-Chavez et al., 2017, 2019; Wang et al., 259 
2019; Wang et al., 2019). As part of the field measurements, lake and wetland shorelines and 260 
vegetation zones were mapped by field teams carrying handheld GPS receivers, as described in 261 
Kyzivat et al. (2019). In YF, airborne GPS tracks from a low-hovering helicopter were used, as 262 
no suitable ground GPS tracks were available. Contextual photos were also taken by camera, 263 
both from the ground and from aircraft windows, and by uninhabited airborne vehicles (UAVs). 264 
UAV photos were processed into orthomosaics using DroneDeploy web software. All of these 265 
measurements were digitized into polygon shapefiles in ArcGIS 10.6 denoting 13 land cover 266 
classes falling into five broad categories of open water, dry land and three types of emergent 267 
vegetation (Table 1). The resulting vector data set  was used to train and validate a supervised 268 
classification from the radar data (Kyzivat et al., 2021a). 269 

 270 

Broad Grouping UAVSAR land cover class 
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Open surface water Open Water (OW), Rough Water (RW), Sedimentary Bar 
(SB), Wet Herbaceous (WH)  

Wet Graminoid Wet Graminoid (WG)  

Wet Shrub Wet Shrub (WS) 

Wet Forest Wet Forest (WF) 

Dry land Dry Graminoid (DG), Dry Shrub (DS), Dry Forest (DF), 
Bank Scarp Double-Bounce (BS), Dry Woodland (DW), 
Bare Ground (BG) 

Table 1. Classification Schema: RW refers to wind roughening at the time of acquisition. WG 271 
refers to cattails (Typha latifolia), bulrushes (Scirpus spp.), and sedges (Carex spp.), as well as 272 
aquatic horsetails (Equisetum fluviatile). WS typically refers to willows (Salix spp.). DW refers 273 
to a mix of trees and shrubs as defined by Wang (2019). WH refers to water lilies (Nuphar 274 
variegatum), and both WH and SB were not separable from the other open water classes. Further 275 
details are in the accompanying data publication (Kyzivat et al., 2021a). 276 

 277 

2.3.2 Synthetic aperture radar data pre-processing  278 

UAVSAR GRD data for the PAD, YF and CSB flight lines were transformed to the C3 279 
complex covariance matrix using PolSAR Pro 6.0 software. Images were corrected for incidence 280 
angle-dependent backscatter using a fitted exponential function multiplied by the cosine of 281 
incidence angle as per Ulander (1996) and Zhang et al. (2017). Due to its more rugged 282 
topography, CSD was corrected for both incidence angle and terrain slope as per the look-up 283 
table method of Simard et al. (2016). For all flight lines, a Freeman-Durden polarimetric 284 
decomposition was performed. The decomposition comprises a physical scattering model and is 285 
commonly used to identify scattering mechanism contributions to each pixel (single bounce, 286 
modeled as Bragg scattering; double bounce, modeled as from a pair of orthogonal surfaces; and 287 
volume scattering, modeled as from a cloud of randomly-oriented dipoles) (Freeman & Durden, 288 
1998). Although it is known to overestimate the double bounce component (Chen et al., 2014), it 289 
is sufficient as an input feature to an empirical, machine-learning based classification.  290 

2.3.3 Land cover classification  291 

Each of the three scattering mechanism output bands was used for feature extraction via 292 
three moving-window filters designed to introduce spatial contextual information for the 293 
classifier. The chosen filters were standard deviations, offsets oriented along the radar look 294 
direction, and an edge-preserving guided filter to reduce speckle (Table S.2). Additional input 295 
bands of incidence angle and elevation-derived indexes were tested, but ultimately omitted, due 296 
to their high spatial autocorrelation, which led to model over-fitting. The training class BS was 297 
developed specifically to identify bright double bounce scattering between water surfaces and 298 
steep bank scarps, which would otherwise have appeared as inundated vegetation. SB and WH 299 
(defined as protruding <20 cm from the water surface, as determined from field measurements) 300 
were found to be inseparable from OW, so they were treated as open surface water in the 301 
analysis. The radar dataset was further prepared for classifier training by randomly under-302 
sampling the majority training classes and cropping out pixels taken at low incidence angles. 303 
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Incidence angle limits as well as filter parameters (Table S.2) were chosen by trial and error. 304 
Finally, pixel values within training polygons in all input bands from the appropriate date were 305 
extracted, and the results split using stratified sampling into training (85%) and validation (15%) 306 
datasets with 15 bands each. A description of this workflow, parameter settings, and other 307 
technical details is provided in Table S.2. 308 

Finally, a random forests classifier was trained using the TreeBagger function in 309 
MATLAB R2017b and evaluated using the validation dataset via the confusion matrix and 310 
Cohen’s kappa coefficient. One model was used for the areas with incidence angle correction 311 
and another for the CSD area with the look-up table correction. The models were then applied 312 
over the extent of their corresponding study areas for all available dates. The original 13 classes 313 
were aggregated into the five generalized classes for analysis (Table 1). 314 

 315 

2.3.4 Quality control and conversion to emergent vegetation coverage 316 

The derived five-class land cover maps were used to identify emergent macrophyte and 317 
open water areas and quantify their total landscape coverage. First, maps were clipped to the 318 
intersection of all flight lines per study area excluding any roads or urban areas, if present. Raster 319 
mosaics were created for the PAD and YF, since they were acquired in multiple flight lines on 320 
most dates (Table S.1). Next, candidate lakes were identified as connected pixel groups of at 321 
least five pixels with at least one open water pixel and any number of inundated vegetation pixels 322 
(or none at all). This criterion permitted inclusion of open water wetlands, because there is no 323 
reliable way to differentiate them from lakes and ponds. Rivers were removed by applying a 324 
manually-created river mask, modified from Kyzivat et al. (2019). Lake emergent vegetation 325 
(ALEV) were operationally defined as emergent vegetation classes 8-connected to lakes, with the 326 
remaining emergent vegetation pixels considered wetlands (AWEV). Although dependent on pixel 327 
size, this definition permitted a consistent definition across all study areas. At this stage, the total 328 
landscape coverage of ALEV (wet graminoid, shrub, and forest classes) and open water were 329 
calculated so they could be compared between dates.  330 

Although there is scarce data for methane emission from trees and shrubs along lake 331 
shores, we included them in the sensitivity analysis because: 1) 69% of ALEV is comprised of 332 
graminoid vegetation and this value increases to >97% after correcting for double counting (see 333 
3.1.1); 2) There is no mixed coverage class, meaning there is likely still graminoid vegetation 334 
present, but hard to detect; 3) Data scarcity makes it hard to account for them separately; and 4) 335 
Many of the factors that make vegetated water surfaces high emitters are shared between 336 
vegetation types, such as shallowness, proximity to terrestrial inputs, variable inundation, and 337 
presence of root systems. In fact, these dynamically-inundated water surfaces with woody 338 
vegetation, which could also be called littoral swamps, have been shown to emit methane four 339 
orders of magnitude greater than temperate forest soil uptake (Hondula et al., 2021). This 340 
observation underscores the importance of accounting for regions of emergent lake vegetation 341 
separately from open water, while being sure to exclude any regions otherwise accounted for as 342 
wetlands (see 2.3.7). 343 

To calculate ALEV coverage on a per-lake basis, water bodies smaller than 250 m2 344 
(0.00025 km2 or 7-8 px) were discarded, since they were too small to consistently resolve and 345 
likely included false detections. Although hardly affecting total lake area, false detections of 346 
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lakes would be disproportionately small and thus impact the distribution of  ALEV. Partially 347 
observed lakes intersecting the flight line boundary were discarded as well, since ALEV could not 348 
be reliably measured. A third category of lakes were discarded if they did not overlap with any 349 
water pixels in the 2017 AirSWOT color-infrared camera open water masks, which had a slightly 350 
narrower ground footprint in all study areas. By comparing our UAVSAR retrievals to an 351 
independent, optical data set, this step removed many falsely-identified lakes caused by 352 
classification error. Finally, we calculated the areas of the remaining lakes and the fractional area 353 
of their emergent vegetation (ALEV) coverages, defined as the proportion of pixels in a lake 354 
classified as any of the three inundated vegetation classes. For visualization and analysis, these 355 
data were divided into 24 logarithmically-spaced lake area bins across the four study areas, and 356 
the mean, lake area-weighted mean, and median ALEV computed for each study area. For each 357 
study area, confidence intervals were calculated for each of the 24 bins and for the area-weighted 358 
means using the 95th percentile of 10,000 bootstrapped simulated datasets. 359 

 360 

2.3.5 Adjusting estimate to avoid double-counting wetlands   361 

Our method for detecting emergent vegetation excludes wetlands based on lack of pixel 362 
connectivity to open water. Although this method conserves total area and thus does not double-363 
count any pixel to more than one land cover class, this partitioning includes open-water and 364 
littoral wetlands as parts of lakes. As a result, our estimate of ALEV would be too high because it 365 
treats areas typically considered to be wetlands (e.g. in methane models) as parts of lakes, which 366 
is precisely the double-counting between datasets described by Thornton et al. (2016). To correct 367 
for this over-estimate of total lake area, we obtained two leading global lake datasets, 368 
GLOWABO (Verpoorter et al., 2014) and HydroLAKES (Messager et al., 2016) and compared 369 
total lake extent between the datasets and our own. First, since the global datasets were made at a 370 
coarser geographic scale, USAVSAR lakes below the appropriate minimum size threshold were 371 
excluded (0.002 km2 for GLOWABO and 0.1 km2 for HydroLAKES). Even so, there were still 372 
many more lakes detected by UAVSAR (and some only detected by one of the other datasets), so 373 
spatial selection in the python package geopandas 0.10.2 (Jordahl et al., 2021) was used to 374 
exclude any lakes in either dataset that did not overlap at least partly with a lake in the dataset to 375 
which it was being compared. This exclusion ensured that we were only comparing areas within 376 
commonly-detected lakes and not simply assessing lake mapping accuracy between the datasets, 377 
which have vastly different scales and time domains. Next, both datasets were rasterized to the 378 
UAVSAR pixel grid for the corresponding scene, typically 5.5 by 5.5 m pixels. Then, for each 379 
study area, a confusion matrix was computed between the UAVSAR dataset and each of the 380 
others for all pixels not denoted as land in both candidate datasets. These matrices were used to 381 
compute the scalar c, which is used in Equation [1] and denotes how much of UAVSAR ALEV 382 
falls within global dataset lakes, with the remainder assumed to already be mapped as wetlands 383 
with adequate accounting of methane emissions. 384 

The calculation ignores the effects of changing inundation during the 10-20 years 385 
between data acquisitions, as well as errors arising from the global datasets having less-precise 386 
georeferencing. It is also limited to only the large lakes that could be compared between datasets. 387 
Since these biases would also exist in any modeling study using GLOWABO or HydroLAKES, 388 
we have made no attempt to correct for them, which would also be beyond the scope of this 389 
work. 390 
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2.3.6 Methane flux chamber measurements  391 

24 methane fluxes were measured at 15 lakes in the PAD during July and August 2019 392 
(Kyzivat et al. 2021, Figure S.6). The sampling schedule permitted no more than one or two 393 
visiting days per lake, so the measurements represent a broad, geographic sampling within the 394 
PAD at the expense of frequent measurements in any one lake. This sampling approach allowed 395 
for better, but still limited extrapolation to the 470 UAVSAR-observed lakes in the PAD. In all 396 
15 lakes, single 15-minute fluxes were taken from an open water region near the lake center via 397 
inflatable raft, anchored canoe, or motorboat. In five lakes, one to three additional flux 398 
measurements were made amidst emergent macrophytes of different species (corresponding to 399 
the wet graminoid land cover class) short enough to fit into the flux chamber without excessive 400 
disturbance. The chamber comprised an inverted 25.4 cm tall, opaque white bucket with a 34.2 401 
cm diameter opening wrapped with a buoyant skirt made of foam tubing. An infrared greenhouse 402 
gas analyzer (EGM-4, PP Systems) was used to measure chamber air carbon dioxide (CO2) 403 
concentration and circulate chamber air via an inlet on the side of the chamber and an outlet in 404 
the center of its ceiling. A metal handle was used to steady the bucket for a 15-minute 405 
measurement period. At 0, 5, 10, and 15 minutes, gas samples were drawn from the chamber’s 406 
headspace through the gas analyzer inlet tubing and injected into evacuated exetainers using a 30 407 
mL polypropylene syringe fitted with a 3-way stopcock for subsequent analyses of methane 408 
concentration.  409 

The samples were analyzed on a Shimadzu GC-2014 gas chromatograph for methane 410 
partial pressure within two months of collection. Gas flux across the water-air interface was 411 
calculated from the rate of change in the chamber methane concentration over the deployment 412 
time and chamber area (mol∙min-1∙m-2). The rates of change of methane concentrations in the 413 
chamber were generally linear with r2 values greater than 0.90. Given this linear response, 414 
ebullition was deemed negligible during the measurement periods. Thus, the closed, static 415 
chamber measurements included both diffusive fluxes from the water surface as well as any 416 
plant-mediated fluxes. For the three lakes where multiple emergent macrophyte fluxes were 417 
taken at one location, measurements from each water zone were averaged by lake. Finally, for 418 
sites where paired open water vs. littoral zone measurements were collected, we calculated the 419 
vegetated: open water flux ratio (hereafter: flux ratio) as the ratio between the average emergent 420 
macrophyte and open water measurements for each lake, where open water could include 421 
submerged macrophytes not detectable with UAVSAR. 422 

During sampling, care was taken not to disturb the sediment, and if any bubbles were 423 
observed before or during the period, the measurement was aborted. Even so, three 424 
measurements were extremely high, implying sediment disturbance. To avoid potential bias, 425 
these measurements, which were greater than 2.2 standard deviations from the median, were 426 
discarded (the next-highest value was 0.17 standard deviations from the median). These three 427 
measurements all came from vegetated sites, so this data omission lessened the impact of 428 
emergent vegetation in our subsequent analyses. 429 

 430 

2.3.7 Published flux chamber measurements  431 

In addition to our own field measurements, we compiled a synthesis dataset of 58 paired  432 
flux measurements, with the aim of determining the flux ratio for each lake. Six of these 433 
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measurements corresponded to shallow (typically with a 2-4 m cutoff) versus deep regions of the 434 
lake, with no mention of adjacent macrophytes, and were only included for reference, while the 435 
remaining 52 were taken from vegetated versus open water fluxes, and were used for subsequent 436 
calculations. Each lake pair corresponded to one of 41 distinct lakes or lake regions during a 437 
single or multi-year-averaged sampling season, published in 21 papers (Kankaala et al. 2005; 438 
2013; Smith and Lewis 1992; Larmola et al. 2004; Huttunen et al. 2003; Juutinen et al. 2003; 439 
Villa et al. 2021; Burger et al. 2016; DelSontro et al. 2016; Bergström et al. 2007; Striegl and 440 
Michmerhuizen 1998; Ribaudo et al. 2012; Casper et al. 2000; Dove et al. 1999; Elder et al., 441 
2022; Rey-Sanchez et al., 2018; Desrosiers et al., 2021; Engram et al. 2020; Natchimuthu et al., 442 
2016; Wik et al., 2013, Jansen et al., 2020a; Table S.3). Lakes included boreal, tropical and 443 
temperate regions and were located in Finland, Quebec, Ontario, Alaska, Colorado, Ohio, 444 
Minnesota, Italy, the UK, and the Amazon and Orinoco river basins. For each paper, the 445 
average—whether seasonal or annual—vegetated and open water measurements were recorded 446 
and converted, if necessary, to units of mg CH4/m2/day. Four papers (Burger et al., 2016; Casper 447 
et al., 2000; Dove et al., 1999; Desrosiers et al., 2021) separately measured each of the three 448 
methane emission pathways, and most of the others focused on diffusion and/or plant-mediated 449 
fluxes. An additional six (Huttunen et al., 2003; Juutinen et al., 2003; Larmola et al., 2004; 450 
Striegl and Michmerhuizen, 1998; Jansen et al., 2020a; Villa et al., 2021) measured diffusion and 451 
ebullition in both lake zones, but did not place the flux chamber over plants, thus not accounting 452 
for that pathway. One study (Bergström et al., 2007) did not provide open water values, which 453 
we estimated based on lake area via the relationship of Holgerson and Raymond (2016). The 454 
dataset includes 55 diffusion, 40 plant-mediated, and 17 ebullition pairs, with some 455 
measurements counting towards multiple pathways. 456 

The vegetated: open water flux ratio R was calculated for each applicable lake (including 457 
our field lakes) and divided by a correction factor of 1.33 to account for most measurements 458 
being made either during ice-covered or ice-free seasons, but not during ice melt, when open-459 
water emissions can temporarily spike. The correction factor, averaged from Wik et al. (2016a) 460 
and Denfeld et al. (2018), comes from statements that 23% and 27% of emissions of ice-covered 461 
lakes, respectively, are attributed to ice-melt fluxes. Although the lake upscaling calculation by 462 
Rosentreter et al. (2021) also uses a spatiotemporal ice-cover correction with the opposite effect 463 
of the ice-melt pulse correction, we have omitted it here, assuming it affects both vegetated and 464 
unvegetated areas equally. The adjusted flux ratio R’ therefore comes from measurements of 465 
three methane flux pathways, collected from both littoral vegetation and shallow open water in 466 
all seasons, and reflects adjustments to account for unmeasured ice-melt pulses. 467 

Many papers stated the area covered by emergent macrophytes, but if not, Google Earth 468 
Pro and QGIS 3.10.11 were used to digitize, map project, and measure the approximate coverage 469 
area, with attention paid to the papers’ description of the vegetation for context. Coverage areas 470 
were assigned an uncertainty value (typically 2–5%) based on interpretation of the methods used 471 
or confidence in our digitizing result. Although challenging to compare across methodologies, 472 
geographic regions, and plant types, this dataset served as a best estimate of flux ratios from a 473 
diverse global sample of lakes. 474 

 475 
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2.3.8 Sensitivity analysis  476 

Likely ranges in whole-lake methane emissions were calculated using the following 477 
equation, mapped lake areas, and the compiled flux dataset: 478 

𝐹!"!#$ = 𝑐 ∗ 𝐴%&' ∗ 𝛺 ∗ 𝑅′ ∗ 𝑓() + (1 − 	𝑐 ∗ 𝐴%&' ∗ 𝛺) ∗ 𝑓()   [1] 479 

where Ftotal is the total lake flux (mg CH4/day), calculated as a weighted average of vegetated 480 
and open water zones; c is a scalar ≤ 1, described in section 2.3.7, that corrects for potential 481 
double-counting of UAVSAR-observed emergent vegetation as wetlands contained in modeling 482 
datasets (unitless); ALEV is the emergent vegetation area as a fraction of total lake area (unitless); 483 
Ω is the total lake area (m2), fOW is the flux per area of open water (mg CH4/m2/day); and R’ is 484 
the corrected ratio between emergent macrophyte and open water fluxes per area (unitless). All 485 
areas and fluxes are expressed relative to the total lake area Ω, and the flux per unit area of open 486 
water (fOW), both of which cancel out when applying equations [1] and [2].  487 

The impact of vegetation on whole-lake flux was calculated as a percent difference via: 488 

𝐼 = 		 *!"!#$	–	-%&	∗	/
-%&	∗	/

          [2] 489 

where I represents the percent increase from differentiating between open water and emergent 490 
vegetation within lakes. I is sensitive only to the measured parameters R’, ALEV, and c, and 491 
independent of the absolute magnitudes of the fluxes or areas attributed to each lake zone, which 492 
cancel out.  493 

Equations [1] – [3] were applied using the median values of R’ and fOW and the lake area-494 
weighted mean ALEV. Median values were used due to the skewed distributions of R’ and fOW. 495 
The equations were also applied to the bootstrapped confidence intervals of ALEV in order to 496 
estimate uncertainty. 497 

 498 

3 Results 499 

3.1 Inundation patterns at the landscape scale 500 

3.1.1 Regional and seasonal inundation characteristics  501 

Significant open water, emergent vegetation, and wetland fractional areas are found in all 502 
study areas, vary seasonally as well as regionally, and are particularly extensive in the PAD and 503 
YF. The total area of the landscape covered by lake emergent vegetation (LEV) varies from 0.5 – 504 
0.6 % (CSD), 2.2 – 3.4 % (CSB), 7.6 – 15.5 % (PAD), and 1.7 – 2.8 % (YF) over the 2017-2019 505 
observational period (Figure 2, Table 2).  In comparison, wetland emergent vegetation (AWEV) 506 
covers ≤ 2.7% of the area in all sites (mean of 1.4%, Table 2). Most of the emergent vegetation 507 
is classified as either wet graminoid (WG, weighted mean of 69%) or shrub vegetation (WS, 508 
29%), with wet forest comprising <1% of this area for all areas except YF, for which it covers a 509 
mean of 5.9%. When only considering LEV that falls within a global dataset lake (the double-510 
counting correction), the graminoid fraction increases to 99.1% (GLOWABO) or 98.7% 511 
(HydroLakes), which provides further confidence that the remaining LEV is indeed littoral 512 
vegetation and not an adjacent, forested wetland, at least for large lakes in the global datasets. 513 
Virtually all detected emergent vegetation lies adjacent to shorelines, with < 0.2% of their area 514 
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occurring completely within a lake with no connectivity to non-island land. These patterns show 515 
that the dominant littoral vegetation type in the study areas is graminoids, which almost always 516 
occur at the interface between land and water.  517 

In all applicable study areas, total inundation (open water plus emergent vegetation) is 518 
greater or equal in the early summer (June) than in late summer (August/September), likely due 519 
to snowmelt. In the PAD, this change is caused by decreased LEV, with emergent wetland 520 
vegetation remaining constant, implying that seasonal inundation changes occurred in flood-521 
tolerant eulittoral vegetation (Figure 2, Table 2). Thus, regional variations in emergent 522 
vegetation, as well as open water, are greater than seasonal/interannual variations within study 523 
areas. 524 

 525 

 526 

Figure 2. Significant lake emergent vegetation (LEV) is found in all study areas, varies 527 
seasonally as well as regionally, and is particularly extensive in the lowland PAD and YF. This 528 
chart shows landscape fractional areas of open water and LEV classes for the Yukon Flats (YF), 529 
Peace-Athabasca Delta (PAD), Canadian Shield – Daring Lake (CSD), and Canadian Shield – 530 
Baker Creek (CSB), derived from airborne UAVSAR.  LEV is defined as emergent vegetation 531 
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adjacent to open water, with remaining areas assigned to wetlands (WEV). Month and year of 532 
UAVSAR flight acquisitions appear in text above each column.   533 

 534 
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Table 2. Within-lake emergent vegetation coverages (ALEV) by vegetation type (AWF = area of 535 
wet forest, AWS = area of wet shrub, AWG = area of wet graminoid, AWEV = area of wetland 536 
emergent vegetation, as opposed to lake vegetation) and by study area, along with landscape 537 
coverage in km2 and as percent coverages. Numbers in brackets give the bootstrapped 95% 538 
confidence intervals. Weighted mean columns are weighted by individual lake area, and 539 
summary weighted mean rows are weighted by the total lake area of each study area for all dates 540 
and late summer only (August and September, abbreviated as lt. s. when necessary). 541 

 542 

3.1.2 Validation of UAVSAR classifier  543 

The land cover classifier successfully retrieves the three broad classes of emergent 544 
vegetation. Based on visual inspection of the land cover maps, the most significant 545 
misclassification is evidenced by false detections of water in areas actually covered by dry 546 
graminoid vegetation (Figure 3e, top middle) and false detections of inundated vegetation in 547 
areas of forest. The most frequent misclassification occurs between Wet Shrub and Rough 548 
Water, although errors of omission and commission are roughly equal, implying a near-zero net 549 
effect on the landscape totals (Figure S.1). Any misclassification among the dry land classes 550 
does not affect our lake analysis, and misclassification between the flooded and dry classes is 551 
rare, as expected, given the sensitivity of SAR to water presence (Figure S.1). Prior to the 552 
quality control measures (Section 2.3.4), Cohen’s kappa coefficients are 0.862 for the model 553 
used on the simpler CSD landscape and 0.824 for the model used for the remaining sites, 554 
implying good agreement with the validation data. Since the analysis only uses flooded classes 555 
connected to open water that could be validated by optical imagery, errors of commission 556 
(Figure S.1) represent an upper bound. 557 
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 558 

Figure 3. Example L-band SAR images of subsets within the four study areas (Column I. a-d, 559 
YF 6/2017, PAD 9/2019, CSD 9/2017, CSB 8/2018, respectively) and corresponding 560 
classification (Column II. e-h). SAR images are colorized by Freeman-Durden scattering 561 
mechanism (double bounce in red, primarily indicating emergent vegetation; volume scattering 562 
in green, primarily indicating leafy vegetation; and single bounce scattering in blue, primarily 563 
indicating bare ground, bedrock, and some types of trees) and are stretched identically, with 564 
visual adjustments for brightness and color saturation. In column II., only inundated classes are 565 
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shown and are superimposed over a grayscale version of the color-infrared camera base map 566 
from Kyzivat et al. (2018), in which forests appear darker than grasslands or bedrock. 567 

 568 

3.2 Emergent vegetation extent 569 

3.2.1 Regional and morphological trends 570 

Although useful for integrating all flux components, landscape-scale descriptors obscure 571 
the nuance of individual lake characteristics. Consequently, we also present results normalized 572 
by each lake’s area and aggregated via weighted averaging (Table 2, Figure 4). With this 573 
normalization, it is more apparent that emergent vegetation (ALEV) is quite prevalent in lakes, 574 
averaging 16.2 [13.9 – 19.1]% across the four study areas, weighted by lake area. Again, 575 
coverage is especially extensive in the lowland PAD and YF (Figure 2), averaging 59 [50 – 576 
68]% and 22 [20 – 25]%, respectively. ALEV in the more topographically constrained, colder, 577 
sparsely vegetated CSB and CSD areas averages 7.0 [4.7 – 11.5]% and 1.0 [0.8 – 1.2]%, 578 
respectively. The lowland sites, therefore, have the most ALEV, both as a percentage of total lake 579 
area as well as landscape area. 580 

While emergent vegetation is observed in every size bin in every area, we find only a 581 
weak relationship between ALEV and lake area that holds for all study areas. The area bins 582 
comprising small to medium-sized lakes between 0.002 to 0.02 km2 always contain the primary 583 
histogram peak, with the exception of the PAD, for which these bins contain the secondary peak 584 
(Figure 4b). In all regions except the PAD, the smallest observable lakes (≥ 250 m2) have 585 
similar coverage to the largest (> 10 km2), resulting in unimodal area-binned histograms, even 586 
within the confidence intervals (Figure 4). The drop in ALEV for small lakes is likely caused by 587 
mixed pixels in narrow littoral zones being detected as water. Even so, Pearson correlation is 588 
weak between log-transformed ALEV and lake area (r2 = 0.124, p < 0.001, Figure 5), implying 589 
that the inverse relationship between the two variables is not consistent across sites. On an 590 
individual basis, the two Canadian Shield study areas have significant regression relationships (p 591 
< 0.001, Figure 5), with r2 = 0.25 (CSB) and 0.48 (CSD), likely explained by their simpler, 592 
bedrock-dominated landscapes. 593 

 594 
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 595 

Figure 4. Emergent vegetation (ALEV) is most prevalent in small to medium-sized lakes. Here, 596 
mean ALEV, in green, is calculated for logarithmic lake area bins for each region (a) and for all 597 
regions combined (b). Error bars give the 95% confidence interval for ALEV for all bins with > 2 598 
observations. The lake count in each bin is plotted in grey and shows that most observed lakes 599 
are much smaller than 1 km2. Accordingly, bins with fewer lakes generally have greater 600 
uncertainty in ALEV, and the rightmost bins, which contain < 10 lakes, have considerable 601 
uncertainty. For a version of this figure showing bin sums, rather than means, see Figure S.2. 602 
 603 
  604 
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 605 
Figure 5. Scatter plot of lake area and emergent vegetation coverage (ALEV) for all 4,572 lakes by 606 
study area (a-d) and aggregated (e). There is only a weak relationship between the two log-607 
transformed variables. The diagonal bottom-left boundary in most plots is caused by area 608 
quantization by pixilation; since ALEV is a fraction, the minimum possible ALEV corresponding to a 609 
one-pixel vegetated zone decreases as the denominator increases. Lakes with ALEV = 0 are not 610 
shown nor included in the regression and regression lines are only included for p < 0.001. 611 

3.2.2 Seasonal trends  612 

Despite fluctuating water levels, the distribution of ALEV across lakes of varying areas 613 
remains largely similar across seasons and years (Figure S.3). In all study areas, there is a 614 
histogram peak at lakes with little or no emergent vegetation (Figure S.3 a-d, leftmost bin), as 615 
many areas lack the necessary conditions to support emergent macrophytes. The histogram drops 616 
sharply with increasing ALEV coverage: extremely quickly in the sparsely-vegetated CSD, 617 
somewhat quickly in the more southern CSB, and gradually in YF. The negative-skewed PAD 618 
distribution (tail on left) is an anomaly with high-coverage lakes common. Accordingly, the area-619 
weighted mean (58.9 %) is barely greater than the arithmetic mean coverage (58.6 %) in the 620 
PAD, unlike the rest of the study areas and the aggregated total, for which these values can differ 621 
by a factor of two (Table 2). There are also more lakes overall detected in the PAD during early 622 
summer (Figure S.3), likely because temporarily submerged macrophytes would be detected as 623 
open water and thus constitute lakes in our analysis. These effects are likely due to prevalence of 624 
shallow open water wetlands, which are ubiquitous in the delta and are included in our lake 625 
dataset as long as some area of open water (> one pixel, or ~30 m2) is detected. Although there is 626 
little seasonal variance to the ALEV distribution, the corresponding methane fluxes may depend 627 
greatly on plant activity, which varies between seasons. To avoid including seasonal wetlands as 628 
lakes, we used only the late summer (low water season) land cover maps to calculate mean ALEV 629 
and have broken down available flux data by season. The temporal invariance of the ALEV 630 
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histograms provides further validation of the consistency of the classifier, and it shows how 631 
changes in ALEV are not relegated to the same small subset of lakes.  632 

 633 

3.3 Methane fluxes from emergent macrophytes vs. open water 634 

Field measurements confirm that methane fluxes per unit area from emergent 635 
macrophytes are consistently higher than open water, even within the same lake (Figure 6).  636 
Although macrophyte fluxes were only collected at five of the 15 visited PAD lakes, four have 637 
higher mean macrophyte values than open water, leading to a mean macrophyte: open water flux 638 
ratio of 2.3 (Kyzivat et al., 2021b). Given the small sample size, differences are not significant (u 639 
= 2.0, p = 0.19, n = 5) based on the non-parametric Mann-Whitney test. Strong variability in the 640 
measurement may also contribute, since these short-term measurements exclude ebullition and 641 
the other key episodic open water fluxes (ice-out flux, water column turnover fluxes) are 642 
accounted for afterwards via a correction factor. Similarly, plants, as well as open water, can 643 
have pronounced diel and seasonal variability in their fluxes, and these measurements were all 644 
made during the day. 645 

The fluxes obtained by literature synthesis (Table S.3) have an even more extreme 646 
median ratio of 8.8 (Figure 6; Figure 7, top histogram), with a significant difference between 647 
open water and vegetation (u = 1,800, p < 0.001, n = 47). Of the 56 paired vegetation versus 648 
open water measurements, all but eight have flux ratios > 1, implying greater emissions from 649 
vegetated regions. The PAD and literature measurements combined have a median flux ratio of 650 
6.1, or 15.9 if only Arctic-boreal lakes are included. We use the former, smaller value, since it 651 
comes from a larger sample size, and multiply it by the ice-melt flux correction factor to obtain 652 
4.6, which is used for the subsequent sensitivity calculation (Table 3). Due to limited data, 653 
studies from all seasons and measurement periods were used, and some only measured one or 654 
two of the emission pathways (see 2.3.6). The four studies that defined lake zones based on 655 
depth rather than vegetation yielded a median flux ratio of 15.8. Despite a limited and 656 
spatiotemporally uneven global sampling, lakes in our study areas and worldwide unequivocally 657 
trend towards higher emissions from emergent macrophyte environments than from open water. 658 

 659 
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Figure 6. Lake emergent vegetation (LEV) and shallow regions produce greater methane fluxes 660 
than open water zones and deep regions, respectively, based on the literature (a) and from field 661 
measurements in the Peace-Athabasca Delta in July and August 2019 (b). Green lines show the 662 
median, hinges are drawn at the lower and upper quartiles, and flyer bars give the extent of data 663 
not considered outliers, which are plotted as points. Note the different scales demonstrating 664 
much greater flux values (mg of CH4 /day) from the literature (a) than in the PAD (b). 665 

 666 

3.4 Sensitivity of whole-lake methane emissions to inclusion of vegetated areas  667 

By applying the median corrected macrophyte: open water ratio of 4.6 (Section 3.3) to 668 
our remotely sensed UAVSAR LEV maps (Figure 3), we estimate the relative importance of 669 
accounting for emergent vegetation in whole-lake methane flux estimates (Table 3). Assuming a 670 
lake area weighted average ALEV of 16.2 [13.9 - 19.1]% increases the overall methane emissions 671 
from the four study areas by 21 [18 - 25]% (Figure 7). Although the flux ratio R’ has variability, 672 
we have not included it within the bounds of the estimate, relying instead on the more robust 673 
measurement of variance of ALEV. Spatiotemporally, the impact ratio I varies from 4% to 321%, 674 
with the lower bound coming from CSD in September 2017 (where only ~0.9% of lake areas 675 
contains emergent vegetation) and the upper bound from the PAD in June 2017 (~66% coverage, 676 
Table 2). Although these are the most extreme values observed, these scenarios show that 677 
accounting for small, but numerous LEV zone areas significantly raises whole-lake emissions 678 
estimates.  679 
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 680 

Figure 7. Plotting study lakes in a flux ratio-emergent vegetation fraction feature space shows 681 
that most emit more methane from lake emergent vegetation (LEV) than from open water on a 682 
per-area basis (shaded region), leading to an overall median flux ratio of 6.1. Studies that 683 
partitioned fluxes into shallow versus deep, rather than vegetated vs. open water zones 684 
(triangular markers)  are shown for reference but are not used for further analysis. The 685 
distributions of both variables are shown as histograms along the relevant axes. Vertical error 686 
bars show the temporal range in coverage for the field data (orange circles) and the estimated 687 
mapping uncertainty for the literature data (purple squares) and can extend to zero (beyond axis 688 
limits). For scale, the uppermost square data point in the figure (peat pond, Ontario, Canada, 689 
ALEV = 88%, R=5.7) corresponds to a 113% increase in emissions compared to the no LEV zone 690 
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case. Note the logarithmically-scaled x and y axes. For a version of this figure with contour lines 691 
for the impact I, see Figure S.4.4. 692 

 693 

ALEV c R  R’ I 

16.2 [13.9 – 19.1]% 0.36 6.1 4.6 21 [18-25]% 

Table 3. Parameters and results of sensitivity calculation (Equations 2 and 3). ALEV is area, with 694 
95% confidence intervals, of lake emergent vegetation and is corrected for double-counting with 695 
wetlands by the scalar c. R is the median global vegetated: open water flux ratio obtained from 696 
the literature and is adjusted to R’ correct for unmeasured ice-melt fluxes. The summary statistic 697 
I represent the impacts of accounting for LEV in whole-lake methane flux estimates. 698 

4 Discussion and Conclusion 699 

4.1 Emergent vegetation coverage in lakes 700 

Littoral zones are often theorized to cover greater portions of small lakes than of large 701 
lakes (Bergström et al., 2007; Wetzel, 1990, 2001). It is logical that smaller lakes with larger 702 
perimeter: area ratios would be dominated by near-shore areas, which are overwhelmingly 703 
shallow. However, while our results generally show greater fractional emergent vegetation area 704 
(ALEV) in small and medium-sized lakes (Figure 4), there is weak correlation at best (Pearson r2 = 705 
0.124, p < 0.001; Figure 5). This discrepancy can likely be explained by lake emergent 706 
vegetation (LEV) comprising only a portion of the littoral zone, as well as mixed pixels 707 
obscuring narrow littoral margins in small lakes. Bergstrӧm et al. (2007) similarly observed that 708 
medium-sized lakes (0.1 to 1 km2) had the greatest ALEV of ~11% on average for 50 709 
Fennoscandian Shield lakes in Finland, which, plotted as an area-binned histogram, also 710 
resembles an inverted V-shaped curve. Mäkelä et al (2004), using the same dataset, pointed out 711 
that large, lowland lakes had the largest total macrophyte coverage, also noting that area and pH 712 
only account for 15% variation in ALEV.  713 

In comparison, the Canadian Shield areas we sampled contained the greatest ALEV in 714 
small-to-medium lakes (0.0001 - 0.002 km2 in area), with values ranging from 7.3 [4.5 – 10.7] % 715 
(CSD) to 55 [35 – 81] % (CSB). We also observe a large contribution to total ALEV from the large 716 
lakes (Figure S.2), underscoring the need not to discount them. Incidentally, these lakes are 717 
under-represented in lake methane datasets (Deemer & Holgerson, 2021). The largest 100 lakes 718 
(area ≥ 0.9 km2) comprise 62.7% of total lake area and 39.2% of total LEV area across all four 719 
study areas, and this trend holds across all study areas (Fig S.2). The observed region-specific 720 
dependence on lake area further highlights the need for remote sensing to estimate littoral or 721 
vegetated zone coverage as well as to identify the interface between wetlands and open waters in 722 
the context of aggregated methane emission estimates. 723 

The ~16% mean ALEV coverage we observe is greater than the globally-inclusive estimate 724 
of 7% (Duarte et al.,1986) and Southern Finland estimate of 5.2% (Bergstrӧm et al., 2007). Since 725 
the number is an intermediate average derived from much lower values on the Canadian Shield 726 
(1.0%, and 7.0% for CSD and CSB, respectively, Table 2) and much higher values for the PAD 727 
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(59%) and YF (22%), it is highly sensitive to the choice of study areas and their relative sizes.  728 
Even though the relationship between coverage and lake area does not appear as simple as 729 
suggested by Duarte et al. (1986), their conclusion that lake area is not a strong predictor of 730 
emergent macrophyte coverage is still supported. Although the Boreal–Arctic Wetland and Lake 731 
Dataset (BAWLD; Olefeldt et al., 2021a; Olefeldt et al., 2021b) does not explicitly map littoral 732 
vegetation, the authors defined all open-water ecosystems as lakes, which includes shallow open-733 
water wetlands. As a result, their lake class is defined nearly identically to ours, and they cite 734 
similar reasons regarding the importance emergent macrophytes as controls on net emissions. 735 
Indeed, comparison between datasets shows similar (ranging from 3-46% difference) lake 736 
coverage in each study area and an identical area-weighted mean over all study areas (16.6%, 737 
Table S.6). The roughly equivalent emergent vegetation and/or wetland classes are 24% greater 738 
in BAWLD (3.8% areal coverage from UAVSAR, 4.7% from BAWLD), which indicates that 739 
some or all LEV is included within BAWLD wetlands. BAWLD therefore represents best 740 
practices not only in ensuring a consistent lake-wetland distinction, but also presumably in 741 
including lake emergent vegetation within a wetland class, where it can be assigned a more 742 
appropriate methane flux. 743 

4.2 Importance of emergent vegetation for methane upscaling 744 

4.2.1 Toward improved upscaling of lake methane emissions  745 

This broad-domain study supports previous studies demonstrating the importance of 746 
accounting for vegetated and/or littoral areas in upscaling lake methane flux estimates 747 
(Bergström et al., 2007; Casas-Ruiz et al., 2021; DelSontro et al., 2018a; Juutinen et al., 2003; 748 
Kankaala et al., 2013; Natchimuthu et al., 2016; Smith & Lewis, 1992; Striegl & 749 
Michmerhuizen, 1998). However, in addition to the challenges of measuring wetland extent 750 
more generally (Melton et al., 2013), a knowledge gap remains about the distribution and area of 751 
lake littoral zones (Huttunen et al., 2003). Our airborne UAVSAR approach for detecting LEV 752 
has limited spatial coverage and is unsuitable for broader-scale studies.  Satellite approaches, 753 
however, have good utility for pan-Arctic or global wetland mapping (Hess et al. 1990, Nelson et 754 
al. 2006, Ghirardi et al. 2019, Zhang et al. 2021) and are well suited for study of large lakes, 755 
which contribute most to total LEV area (Fig S.2). These lakes are otherwise considered low 756 
methane emitters on a per-area basis (Holgerson & Raymond, 2016) and have little risk of being 757 
double-counted in wetland datasets, so they would be a good starting point for future studies. 758 
Incidentally, DelSontro et al. [2018] define an underestimation ratio between pelagic and littoral 759 
methane concentrations (roughly the inverse of I) and show that it approaches unity for larger 760 
lakes, although they do not calculate the impact of these lakes to total lake emissions. The 761 
upcoming NISAR satellite mission is likely to provide high-resolution, freely available global 762 
coverage of L-band SAR, which may facilitate similar analysis for ALEV over larger scales. 763 

Unfortunately, our results do not reconcile the gap between modeled methane fluxes from 764 
bottom-up and top-down models (Thornton et al. 2016; Saunois et al., 2020). In fact, they 765 
suggest bottom-up fluxes are slightly greater than previously thought, which further widens the 766 
discrepancy. The most recent aquatic upscaling studies (Saunois et al., 2020; Rosentreter et al., 767 
2021) and a recent wetland synthesis dataset for modeling (Zhang et al., 2021) used a consistent 768 
lake mask when defining lake and wetland areas, and this careful lake masking has not 769 
significantly improved the discrepancy (Saunois et al., 2020). These masks either come from 770 
global lake datasets (HydroLakes, GLWD, GLOWABO), or the more recent global surface water 771 
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explorer (GSW). Both GLOWABO and GSW were derived from 30 m resolution, optical 772 
Landsat satellite data, which is quite effective at detecting open water. It is unclear whether these 773 
methodologies include vegetation as part of lakes, although GLOWABO and HydroLakes show 774 
good agreement with our open water class (Table S.4). Wetland detection is more challenging 775 
and hampered by scale disparities between the relevant satellite sensors and inconsistent wetland 776 
definitions between disciplines ([Poulter et al., 2017]; Zhang et al., 2021). Thus, the practice of 777 
using consistent open-water lake masks to differentiate between lakes and wetlands is a good 778 
one.  779 

Our results show that even after correcting for double-counted wetlands, UAVSAR 780 
detects emergent vegetation in 5.8% of lakes contained in global datasets. Whether through 781 
temporal change or dissimilar mapping methods, this discrepancy is large enough to have an 782 
impact on estimates of the lake contribution to the global methane budget. Equally important, but 783 
not demonstrated here, is accounting for the uniquely high emissions from non-vegetated lake 784 
littoral zones, which are less likely to be confused with wetlands, and are probably at least as 785 
extensive as LEV (Seekell et al., 2021). Non-vegetated littoral zones can also be high emitters, 786 
especially when within the reach of carbon-exuding roots and rhizomes (Bansal et al. 2020). 787 
Since mapped LEV falls within littoral zones by definition, it shares some of their properties, but 788 
our analysis does not attempt to separate these drivers. Even so, Jansen et al. (2020a) found no 789 
clear depth difference in the diffusive fluxes from two lakes in Stordalen Mire, Sweden, despite 790 
maximum depths of 5 and 7 m and a robust sampling strategy. However, ebullitive emissions 791 
from these same lakes showed a clear depth gradient (Wik et al. 2013). Our compiled synthesis 792 
data on depth, while limited, also shows no significant difference between deep and shallow 793 
emissions (Mann Whitney test, u = 10, p =0.24, n= 6), highlighting the need for more reporting 794 
of fluxes from different pathways and depth zones. 795 

Given that our LEV flux data includes all emission pathways in a variety of lake types, 796 
the derived flux ratios represent a combination of many correlated drivers, including 797 
shallowness, methane oxidation, variable inundation, proximity to terrestrial inputs, and 798 
microbial community.  In the context of deriving spatially explicit representations of methane 799 
emissions, it could be preferable to move away from using discrete land cover classes, and 800 
develop continuous representations of the processes that control methane production and rates of 801 
flux.  These representations could better describe gradually-varying conditions, such as water 802 
table depth, the resulting concentration of oxygen in the subsurface, and the inclusion of new 803 
estimates of soil moisture, and they could improve estimates of methane emissions along 804 
hydrologic gradients.  805 

 806 

4.2.2 Limitations and future directions  807 

Our 21% estimate for I (Equation 2), the percent increase due to including emergent 808 
vegetation in lake methane flux accounting, uses assumptions chosen to lead to the smallest 809 
possible value. Regardless, it is highly sensitive to the data-limited input parameters c and the 810 
flux ratio, which has a large variability that we have not accounted for. The double-counting 811 
correction factor c may suffer from lack of generality, since it was calculated only within the 812 
boundaries of our study regions using global datasets collected ~ 20 years prior. It also assumes 813 
that LEV zones have similar areal emission to wetlands, which may not be valid. Clearly, more 814 
methane flux measurements in shallow or vegetated zones and estimates of total macrophyte 815 
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coverage are needed (Bergström et al., 2007; Schmiedeskamp et al., 2021). While our approach 816 
for correcting for double counting is only based on lakes large enough to be included in global 817 
datasets, the small magnitude of c shows how easy it is to count wetlands as LEV. Without this 818 
correction factor, I would be more than doubled to 58%.  Future work should look more 819 
generally at the cause and magnitude of lake/wetland double counting (Thornton et al., 2016) and 820 
develop continuous metrics for methane emission habitats that don’t rely on discrete land cover 821 
classes. 822 

Our estimate for I may still be too high because our ALEV includes up to 2.6% emergent 823 
shrubs and trees, even after the double-counting correction (Table S.5). This woody vegetation 824 
lacks the aerenchyma tissue that allows most wetland plants to transport methane from the 825 
sediments. Recent work has shown the potential for microbes living inside trees to produce 826 
methane (Covey & Megonigal, 2019), although this effect is likely less than soil microbe 827 
production. Secondly, the relatively narrow swath width of UAVSAR causes large (and likely 828 
less-vegetated) lakes to be under-represented in the calculation of weighted mean ALEV. Adding 829 
to this effect is the use of the same vegetated: open water flux ratio for lakes of all sizes, when 830 
smaller lakes and ponds are known to be higher open-water methane emitters than large 831 
(Michmerhuizen, Striegl, & McDonald, 1996; Bastviken et al., 2004; Holgerson & Raymond, 832 
2016; Engram et al. 2020), probably because littoral zones (vegetated and unvegetated) cover 833 
most of their areas. Indeed, Kankaala et al. (2013) showed that the flux ratio increases with lake 834 
size. It follows that our concept of a vegetated: open water flux ratio is less useful for small lakes 835 
and would likely be even larger for the largest lakes, which were under-represented in our 836 
literature synthesis. Future studies could better quantify how this ratio varies based on lake area. 837 
Nevertheless, since the contribution to total ALEV from the small lakes is so slight (Fig S.2), they 838 
don’t have a large negative impact on our estimate. Finally, the estimate compares to a 839 
hypothetical upscaling using solely open water fluxes, while in reality, some studies include 840 
open-water measurements from entire littoral zones. While many of the studies cited here used 841 
area-weighted approaches with regard to lake depth zones (Natchimuthu et al., 2016; DelSontro 842 
et al, 2016; Jansen et al. 2020a), they appear to be a minority and are not available on the global 843 
scale (Kuhn et al. 2021b; Wik et al. 2016b).  844 

Comparison of our sensitivity study with previous Arctic-boreal and global lake studies 845 
suggests that our finding of a 21% increase in whole-lake methane flux is conservative. Using 846 
flux chamber measurements from two Swedish lakes, Natchimuthu et al. (2016) found that 847 
methane emissions from lake centers are 2.1 times less than whole-lake fluxes, although fluxes 848 
were not explicitly measured near lake macrophytes. Similarly, Kankaala et al. (2013) found that 849 
74-82% of diffusive and plant-mediated emissions in 12 Finnish lakes derived from littoral 850 
macrophyte stands comprising only 5% of their total area. These amounts correspond to a flux 851 
ratio of 54-86, leading to an impact, I, on whole-lake fluxes between 270 and 430% greater than 852 
a case where open water fluxes were assumed throughout. Most recently, Desrosiers et al. (2022) 853 
found that the 26% of a boreal lake covered in macrophytes was responsible for 81% of its 854 
carbon emissions. The impact of considering the Typha latifolia stands alone can be calculated at 855 
102%. Although focused only on extremely high-emitting lake and wetland thermokarst hot 856 
spots, Elder et al. (2021) conducted a study of remotely-sensed methane “hot spot” emissions 857 
across a 70,000 km2 Arctic-boreal domain and found an even greater disproportionality, where 858 
0.005% of the domain was estimated to emit 0.3-16.2 % of the total. The higher reported flux 859 
ratios from lake studies can be partly attributed to area-weighted analyses including much larger, 860 
and thus lower-emitting per unit area, lakes than our airborne-based study. Yet, they also 861 
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underscore the pitfalls of assigning higher areal fluxes to vegetated lake zones without ensuring 862 
these zones are not otherwise counted as wetlands. 863 

Even when using best practices to avoid double-counting lakes with wetlands, the coarse 864 
resolution of global lake maps can still cause uncertainty in the precise location of shorelines. At 865 
the medium resolution of Landsat (30 m), the entire littoral zone could be “hidden” inside of 866 
mixed pixels at lake boundaries, even for large lakes, if they have steep margins. If only unmixed 867 
pixels are classified as lakes, it is unclear how near-shore land pixels would be treated, especially 868 
given that global wetland maps are typically made from coarser-resolution sensors (Zhang et al., 869 
2021). Unfortunately, this hard-to-resolve small strip of land/water interface is precisely the area 870 
with the greatest impact on full-lake (DelSontro et al. 2018, Thornton et al. 2016) and landscape 871 
(Elder et al. 2021) fluxes, so it cannot be rounded off. Furthermore, due to changing inundation 872 
and vegetation coverage, lakes can contain LEV even if attempts are made to exclude it, such as 873 
from static lake maps. Littoral zones often have fluctuating inundation, and there are valid 874 
reasons to count them as either lakes or wetlands, even though current upscaling efforts require 875 
making this distinction. Just as with wetlands, lakes can be defined differently across disciplines. 876 
Although plant-mediated emissions are often reported in studies focused on lakes, upscaling 877 
studies frequently exclude vegetated areas from their lake estimates (Bastviken et al., 2011; Wik 878 
et al., 2013; Olefeldt et al., 2021a; Rosentreter et al., 2021), a best practice to avoid double-879 
counting. This exclusion requires careful treatment of the fluxes from which “lake” estimates 880 
should be derived. Future work should develop techniques that can more accurately measure 881 
littoral zone area (Seekell et al., 2021), produce consistent and methane-relevant lake versus 882 
wetland criteria from remote sensing (Olefeldt et al., 2021a), and make use of temporally-883 
dynamic inundation maps (Pekel et al., 2016; Zhang et al., 2021) for both wetlands and lakes. 884 

Finally, since ebullition is under-represented in the synthesis dataset and not present in 885 
the field dataset, there may be biases present due to its episodic temporal pattern. We would 886 
expect a positive bias to R, since there is evidence that both diffusion and porewater CH4 887 
concentrations are reduced when there is an available plant pathway (Bansal et al. 2020). If this 888 
trend holds for ebullition as well, then ebullition would be greater in non-vegetated zones. Even 889 
so, of the 10 flux ratios that include ebullition among the measured pathways and use zones 890 
based on vegetation presence/absence, the median ratio is 6.5 (Table S.3), which hardly differs 891 
from the full dataset median of 6.1 (unpaired Mann-Whitney u = 1,600; p = 0.052, n = 13 and 892 
39). Similarly, the use of a correction factor to compensate for missing ice-out flux 893 
measurements may too presumptive. Jammet et al. (2015) measured large spring fluxes in a very 894 
shallow peatland lake (<2 m), which suggests that methane accumulates in the sediments as well 895 
as in the water column over winter, and both shallow and deep areas would contribute to the 896 
spring efflux of CH4. Further research is necessary to investigate how the flux ratio might change 897 
based on seasonality and pathway. In the absence of robust flux ratio data collected separately 898 
for each pathway, we do not attempt to correct for under-reported ebullition measurements. 899 

Estimating Arctic-boreal lake methane emissions is constrained by limited data and 900 
reliance on assumptions such as discrete land cover classes. As noted by Saunois et al. (2020), 901 
methane upscaling can be improved by considering spatiotemporal variability and increasing 902 
sampling efforts in lakes with diverse morphologies and environmental conditions. Previous 903 
estimates have calculated a high bias caused by most measurements being made during waking 904 
hours (Sieczko et al., 2020) or summertime sampling (Wik et al., 2016a; Denfeld et al., 2018; 905 
Jansen et al., 2020b); or from static inundation maps (Hondula et al., 2021). Others have shown 906 
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low biases from insufficient seasonal (Wik et al., 2016b), or spatial (Wik et al., 2016b; 907 
Natchimuthu et al., 2016; Desrosiers et al., 2021) sampling. This study also suggests a low bias 908 
from not separately accounting for LEV, on par with the contribution of under-sampled ice melt 909 
flux, which ranges from 23 to 27%. Even so, inadequate and geographically-uneven sampling of 910 
the world’s > 117 million lakes (Verpoorter et al., 2014) is likely the greatest source of 911 
uncertainty in lake upscaling. In the absence of sufficient data, upscaling estimates should make 912 
use of available quantitative corrections and continue to find and remediate sampling biases. 913 

4.3 Conclusion 914 

Lake emergent vegetation (LEV) is ubiquitous in Northern lakes but limited data prohibit 915 
its inclusion in upscaling lake methane emissions. We provide a first assessment of its 916 
prevalence across 4,572 lakes in four Arctic-boreal regions using airborne UAVSAR mapping 917 
and find that they cover 16.2 [13.9 – 19.1]% of Arctic-boreal lakes on average, a higher amount 918 
than other estimates, but with strong differences between study areas. LEV is greatest in lowland 919 
riverine areas, where changing water levels cause seasonal variability. Consistent with previous 920 
studies, we find that it is more common in small than large lakes, but this relationship is weak 921 
and varies regionally. Accounting for LEV, using a synthesis of paired open water and LEV field 922 
measurements of methane flux, leads to an upscaling estimate 21 [18 - 25]% greater than an 923 
estimate that assigns the same open water flux to the entire lake. We conclude that multi-924 
temporal remote sensing of littoral zones, based on vegetation or otherwise, and collection of 925 
flux data from all parts of a lake are necessary for accurate upscaling of lake methane emissions. 926 
Future studies should continue using consistent definitions to separate lakes and wetlands, 927 
incorporate temporal wetland and lake change into analyses, remain vigilant against double 928 
counting with wetlands, and use multiple lake zones or continuous metrics for upscaling. 929 
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Figure S.1. Confusion matrix for the classifier used for the PAD, YF and CSB study 
areas. The classifier has an overall accuracy of 84.0% and kappa coefficient of 0.824. 
 
 
Study 
area 

Date Scene(s) used 

CSB 08/21/18 bakerc_16008_18047_005_180821_L090_CX_02 

CSB 09/04/19 bakerc_16008_19059_012_190904_L090_CX_01 

CSD 06/14/17 daring_21405_17063_010_170614_L090_CX_01 
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CSD 09/09/17 daring_21405_17094_010_170909_L090_CX_01 

PAD 09/04/19 padelE_36000_19059_003_190904_L090_CX_01 

PAD 06/13/17 PADELT_18035_17062_004_170613_L090_CX_01 
PADELT_36000_17062_003_170613_L090_CX_01 

PAD 09/08/17 padelE_36000_17093_007_170908_L090_CX_01 
padelW_18035_17093_008_170908_L090_CX_01 

PAD 08/21/18 padelE_36000_18047_000_180821_L090_CX_01 
padelW_18035_18047_001_180821_L090_CX_01 

YF 06/21/17 yflats_04707_17069_010_170621_L090_CX_01 
yflats_21508_17069_009_170621_L090_CX_01 

YF 09/16/17 ftyuko_04707_17098_007_170916_L090_CX_01 
yflatE_21609_17098_008_170916_L090_CX_01 
yflatW_21508_17098_006_170916_L090_CX_01 

YF 08/27/18 ftyuko_04707_18051_008_180827_L090_CX_01 
yflatE_21609_18051_009_180827_L090_CX_01 

YF 09/14/19 ftyuko_04707_19064_006_190914_L090_CX_01 
yflatE_21609_19064_007_190914_L090_CX_01 

Table S.1. UAVSAR scenes used. 
 
 
 

Feature creation  parameters 
Parameter Value Description 
Minimum incidence angle 0.5 radians Minimum incidence angle 

to mask in radians 
Maximum incidence angle Infinity Maximum incidence angle 

to mask in radians 
Offset filter dimensions 3x3 px Offset filter is simply a 

Gaussian smoothing filter 
applied to a center pixel a 
given offset away, used as 
input to classifier 

Offset filter orientation Parallel and anti-parallel 
to look angle 

Direction relative to look 
angle 

Offset filter gaussian width 2 px Determines effective radius 
of filter, used as classifier 
input 

Guided filter 5x5 px Edge-preserving smoothing 
for classifier input 
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Standard deviation filter 
dimensions 

5x5 px Texture metric for classifier 
input 

Use raw image True Use the raw, unfiltered 
image as a feature for 
classifier input. 

Classifier parameters 
Parameter Value Description 
Out-of-bag prediction error 0.167 Not a parameter, but a 

result 
Number of trees 40 Number of decision trees 
Minimum leaves per tree 30 Nodes per tree 

 
Table S.2 Land cover classification filter parameters and random forests classifier 
parameters. 
 

 
Figure S.2. Lake emergent vegetation (LEV) area summed by logarithmically-spaced 
lake area bins, in contrast with Figure 4, which uses bin means. Most LEV area comes 
from the largest size bins for each region. When combined (right plot), the trend still 
holds, although of the 10 lakes comprising the final four bins, all but one come from 
Canadian Shield lakes, so they are not showing a domain-wide trend. This situation, 
combined with the lesser macrophyte coverage in the Shield and correspondingly 
different y-axis scaling causes the outlier behaviour in the final four bins of the combined 
plot. 
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Figure S.3 Although the overall lake count changes across seasons and years as water 
bodies merge during high water seasons, the distributions of lake emergent vegetation 
(LEV) coverage remain similar. Histograms are made with 25 equally-spaced bins for 
each UAVSAR acquisition date for each region. Early summer dates (high water season) 
are plotted in gold and late summer in shades of purple, with intersections in shades of 
purple-grey. CSD was only acquired in June and September 2017 and CSB in August 
2018 and September 2019.  
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Figure S.4. Scatter plot of data from PAD and published literature showing the 
vegetated: open water methane flux ratio plotted against lake emergent vegetation (LEV) 
coverage as a percentage of each lake. The distributions of both variables are shown as 
histograms along the relevant axes. Vertical error bars show the temporal range in 
coverage for the field data (orange) and the estimated mapping uncertainty for the 
literature data (purple). Points falling in the shaded region come from lakes that would 
have higher calculated fluxes if their LEV zones are accounted for separately from open 
water. Contour lines show how much higher this calculated flux would be (I) and are 
logarithmically spaced to achieve uniform separation in a log-log space. Using the 
corrected median flux ratio (4.6) and area-weighted mean macrophyte coverage (16%) 
leads to fluxes 21% times greater (located at the red star). Note the logarithmically-scaled 
x-axis and linearly-scaled y-axis. 
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Figure S.6: Photos of emergent macrophyte (left) and open water (right) chamber flux 
collection. 
 
 
Table S.3. See supplementary file “Literature_flux_data.csv” for a table showing 
collection dates and locations for field flux measurements at 15 lakes in the Peace-
Athabasca Delta, July-August 2019. Methane fluxes are given in units of mgCH4/m2/day 
for the type of lake zone considered (LEV = lake emergent vegetation, OW = open water, 
S = shallow, D = deep) and include attributes for confidence intervals or ranges, if given; 
flux pathway(s); emergent macrophyte delineation method uncertainty, and percentage; 
total macrophyte percentage, if applicable; and citation. The flux ratio is calculated based 
on the lake zone division of the paper (LEV versus OW or S versus D). 
 
Additional data published on the Environmental Data Initiative (EDI, 
https://doi.org/10.6073/pasta/1e0cadadd8024c8fabc692ee21dc1f57) contains a table 
showing collection dates and locations for field flux measurements at 15 lakes in the 
Peace-Athabasca Delta, July-August 2019. Fluxes are given in units of mol/m2/day for 
both methane and carbon dioxide and include attributes for location and vegetation type, 
if applicable, as well as a quality flag that indicates if the data were used. 
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  UAVSAR 
  Land Lake LEV 

GLO- 
WABO 

Not lake 32.9% 19.6% 83.0% 
Lake 67.1% 80.4% 17.0% 

 
 

  UAVSAR 
  Land Lake LEV 

Hydro-
Lakes 

Not 
lake 15.0% 3.5% 45.0% 

Lake 85.0% 96.5% 55.0% 
 
 
Table S.4. Confusion matrices between two global lake datasets and our lake 
classification from UAVSAR, normalized by column totals. From the total area of lake 
emergent vegetation (LEV) considered in the analysis, these matrices show that only 
17.0% (GLOWABO; Verpoorter et al. 2014) to 55.0% (HydroLakes; Messager et al., 
2016) coincides with global dataset lakes, which are commonly used to distinguish 
between lakes and wetlands for methane modelling. Therefore, we use the mean value of 
0.36 as the scalar c that corrects for double-counting between our mapped lake emergent 
macrophytes and areas that are already considered (high-emitting) wetlands in global 
datasets.  
 
 
 
 

 HydroLakes  GLOWABO  
Not Lake Lake Total Not Lake Lake Total 

Lake 
 700206 19550038 20250244 4113557 16837558 20951115 

WG 129790 163736 293526 301827 63198 365025 
WS 5575 2148 7723 8778 577 9355 
WF 93 4 97 104 1 105 

Wetland 
WG 874 8195 9069 755 4285 5040 

Wetland 
WS 7 107 114 5 8 13 

Wetland 
WF 0 0 0 0 0 0 

Other 483521 2737609 3221130 771296 1570154 2341450 
Total 1320066 22461837 23781903 5196322 18475781 23672103 

WG/LEV 95.8% 98.7% 97.4% 97.1% 99.1% 97.5% 
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Table S.5. More detailed confusion matrices between two global lake datasets and our 
lake classification from UAVSAR. Unlike Table S.4, lake emergent vegetation (LEV) is 
broken out into wet graminoid (WG), wet shrub (WS), and wet forest (WF) classes to 
facilitate comparing their relative proportions after comparing to the global datasets. As 
mentioned in Section 2.3.8, prior to the comparison to the global datasets, lakes from 
HydroLakes/GLOWABO or our classification were excluded if they didn’t overlap at 
least partly with a lake in the comparison dataset. This step generally removed the 
smallest lakes and most of the WS and WF classes. The confusion matrix shows that 
regardless of global dataset or agreement with its lake classes, most of the remaining 
LEV is WG. 
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 Region Baker Daring PAD YF  Late 
summer 
mean 

Late 
summer 
area-
weighted 
mean 

Area 
(km2) 

1164.9 3035.0 1556.2 5365.3 2780.3 11121.3 

BAWLD land 
cover (%) 

GLA 0.0 0.0 0.0 0.0 0.0 0.0 
ROC 14.0 15.6 12.3 0.3 10.6 7.6 
TUN 2.2 35.9 0.4 25.1 15.9 22.2 
BOR 36.2 13.7 39.5 46.2 33.9 35.3 
PEB 3.2 5.4 4.3 7.7 5.1 6.1 
WTU 1.0 2.3 1.0 4.6 2.2 3.1 
MAR 1.0 0.1 3.1 2.2 1.6 1.6 
BOG 1.5 0.0 8.3 1.1 2.7 1.9 
FEN 1.9 0.3 9.3 3.1 3.6 3.1 
LAL 24.4 10.7 13.4 0.0 12.1 7.4 
MPL 2.4 0.9 2.3 1.5 1.8 1.5 
MYL 0.0 0.0 0.0 1.3 0.3 0.6 
MGL 10.0 11.5 2.4 1.3 6.3 5.2 
SPL 0.6 0.2 1.0 0.6 0.6 0.6 
SYL 0.0 0.0 0.0 0.5 0.1 0.2 
SGL 1.6 3.2 0.6 0.1 1.4 1.2 
RIV 0.1 0.1 2.2 4.4 1.7 2.5 
Total 100.0 100.0 100.0 100.0 100.0 100.0 

BAWLD land 
cover 
summary (%) 
 

LAK 39.0 26.6 19.6 5.3 22.6 16.6 
WET 8.5 8.1 26.0 18.8 15.3 15.8 
MAR + 
FEN 

2.9 0.4 12.5 5.3 5.3 4.7 

UAVSAR 
land cover 
(%) 

Open 
lake 

24.5 25.9 12.3 6.1 16.9 16.6 

LEV 2.8 0.5 10.7 2.1 3.6 2.7 
WF 0.0 0.0 0.1 0.1 0.0 0.0 
WS 0.6 0.0 3.7 0.4 1.0 0.7 
WG 2.1 0.5 7.0 1.5 2.5 1.9 
WEV 1.5 0.1 2.1 1.7 1.3 1.1 
LEV + 
WEV 

4.3 0.6 12.9 3.8 4.9 3.8 

 
Table S.6. Comparison between UAVSAR land cover classification and the Boreal and 
Arctic Wetland and Lake Dataset (BAWLD, Olefeldt et al., 2021a, Olefeldt et al., 
2021b). Relevant BAWLD classes are permafrost bogs (PEB), tundra wetlands (WTU), 
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marshes (MAR), bogs (BOG), fen (FEN), mid-sized peatland lakes (MPL), mid-sized 
yedoma lakes (MYL), mid-sized glacial lakes (MGL), small peatland lakes (SPL), small 
yedoma lakes (SYL), small glacial lakes (SGL), rivers (RIV), total lakes (LAK, defined 
as lentic open-water ecosystems), and total wetlands (WET). Since individual wetland 
classes are not equivalent between datasets, we suggest comparing total BAWLD MAR 
and FEN with total UAVSAR lake emergent vegetation (LEV) and wetland emergent 
vegetation (WEV) as roughly equivalent open water wetland classes. Study area-
weighted mean open lake coverage shows remarkable agreement between the datasets 
(16.6% in both with variability based on study area), and the equivalent emergent 
vegetation and/or wetland classes are 24% greater in BAWLD (3.8% from UAVSAR, 
4.7% from BAWLD). In summary, current methods show good agreement in detecting 
open water (including submerged vegetation) lakes, and poor agreement in detecting 
wetlands or total inundation, even when lake and wetland classes are mutually exclusive 
within each dataset. 
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