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Abstract

The need to mitigate climate change will boost the demand for renewable energy and lead to more wind turbines both on-

and onshore. In the near future, the effect these wind farms have on the atmosphere can no longer be neglected. In numerical

weather prediction models wind-farm parameterisations (WFP) can be used to model the effect of wind farms on the atmosphere.

There are different modelling approaches, but the parameterisation developed by Fitch et al. (2012) is most used in previous

studies. It models the wind farm as a momentum sink and a source of power production and turbulent kinetic energy. In

this paper, we have implemented the Fitch et al. (2012) WFP into HARMONIE-AROME, the numerical weather prediction

model that is currently used by at least 11 national weather services in Europe. We used HARMONIE-AROME to make

year-long simulations for 2016 with and without the WFP. The results were extensively evaluated using lidar, tower and flight

measurements at several locations near wind farms. Including the WFP greatly reduces the model bias for wind speed near

offshore wind farms. Wind farms not only affect wind, but also temperature and humidity, especially during stable atmospheric

conditions: the enhanced mixing caused by the wind turbines reduces the stratification of temperature and humidity. Including

the WFP in HARMONIE-AROME results in a more realistic representation of the atmosphere near wind farms and makes it

a more future-proof model for weather forecasting.
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Key Points:7

• In this study a wind-farm parameterisation is implemented in the numerical weather8

prediction model HARMONIE-AROME.9

• A model evaluation of a full year reveals the wind-farm parameterisation greatly10

improves wind-speed forecasts close to offshore wind farms.11

• The presence of wind farms in the model also alters temperature and humidity12

profiles due to the enhanced turbulent mixing by the turbines.13
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Abstract14

The need to mitigate climate change will boost the demand for renewable energy and15

lead to more wind turbines both on- and onshore. In the near future, the effect these wind16

farms have on the atmosphere can no longer be neglected. In numerical weather predic-17

tion models wind-farm parameterisations (WFP) can be used to model the effect of wind18

farms on the atmosphere. There are different modelling approaches, but the parameter-19

isation developed by Fitch et al. (2012) is most used in previous studies. It models the20

wind farm as a momentum sink and a source of power production and turbulent kinetic21

energy. In this paper, we have implemented the Fitch et al. (2012) WFP into HARMONIE-22

AROME, the numerical weather prediction model that is currently used by at least 1123

national weather services in Europe. We used HARMONIE-AROME to make year-long24

simulations for 2016 with and without the WFP. The results were extensively evaluated25

using lidar, tower and flight measurements at several locations near wind farms. Includ-26

ing the WFP greatly reduces the model bias for wind speed near offshore wind farms.27

Wind farms not only affect wind, but also temperature and humidity, especially during28

stable atmospheric conditions: the enhanced mixing caused by the wind turbines reduces29

the stratification of temperature and humidity. Including the WFP in HARMONIE-AROME30

results in a more realistic representation of the atmosphere near wind farms and makes31

it a more future-proof model for weather forecasting.32

Plain Language Summary33

Wind power production is steadily increasing. Wind farms are growing both in num-34

ber and size, while weather models evolve to higher resolutions. This means that the ef-35

fect of wind farms can no longer be ignored by weather prediction models. Wind farms36

essentially decelerate the wind (blockage and wake effects) and increase turbulence, in-37

directly influencing temperature and humidity. In this study, we have included a widely38

used wind-farm parameterisation in the operational weather prediction model. The model39

is evaluated using various datasets, e.g. power production data, floating lidar measure-40

ments, and anemometer measurements from a tower. The inclusion of the wind-farm pa-41

rameterisation improves the wind forecasts near wind farms, also improving the estimate42

in power production. In addition, we are able to model the effects of wind farms on the43

near-surface temperature and humidity.44
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1 Introduction45

Offshore wind power production in the European Union (EU) and specifically the46

North-Sea region is steadily increasing: the Dutch offshore capacity is expected to grow47

from ±1 GW in 2019 to ±11.5 GW in 2030, as part of a total expected increase to ±7048

GW in the entire EU (WindEurope, 2017). Wind turbines produce electric energy by49

extracting kinetic energy from the atmosphere, thereby decelerating (and agitating) the50

air. This typically results in a downstream decrease in wind speed and increase in tur-51

bulence (e.g. Baidya Roy & Traiteur, 2010; Fitch et al., 2012). As wind farms grow –52

both in size and number – the impact on weather and climate is expected to become more53

significant, requiring an adaptation of mesoscale models like HARMONIE-AROME (here-54

after: HARMONIE) to account for the influence of wind farms on the local and regional55

meteorological conditions.56

There are several ways in which the effects of wind turbines on the atmosphere can57

be parameterised in mesoscale models (Fischereit et al., 2021). The implicit – imposing58

an additional roughness to implicitly model the effect of wind turbines on the atmospheric59

flow – or explicit, explicitly solving the momentum sink and enhanced turbulence pro-60

duction due to the presence of wind turbines. In the last two decades several explicit pa-61

rameterisations have been developed (e.g. Fitch et al., 2012; Abkar & Porté-Agel, 2015;62

Volker et al., 2015). The most commonly used and evaluated parameterisation is the Fitch63

et al. (2012) model implemented in the Weather Research and Forecasting (WRF) model64

(Skamarock et al., 2019).65

In this study, we implemented the wind turbine parameterisation from Fitch et al.66

(2012) in HARMONIE. In the presence of wind turbines, this parameterisation adds an67

elevated drag term to the atmosphere, which locally decelerates the flow. The kinetic68

energy that is extracted from the atmosphere, but not converted into electric power, is69

used as a source term for turbulence kinetic energy (TKE).70

HARMONIE with and without the newly-implemented wind-farm parameterisa-71

tion is evaluated using doppler lidar and tower measurements over the North Sea over72

a period of one full year (January up to and including December 2016), instead of eval-73

uating case studies as done in most evaluations of wind-farm parameterisations (e.g. Lee74

& Lundquist, 2017; Wu et al., 2022). During the full year, the parameterisation is eval-75

uated for all seasons with varying wind directions and atmospheric stabilities. In 2016,76
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measurements were available from two floating lidars in the Borssele wind farm zone (off77

the Belgian coast), one ground-based lidar in the Westermost Rough wind farm (off the78

east-coast of the UK), cup-anemometer measurements on the FINO1 tower near the Al-79

pha Ventus wind farm (north of the Netherlands) and aircraft measurements (off the north-80

west German coast). Since all these measurements are in or near existing wind farms,81

they are ideal for evaluating the newly implemented wind-farm parameterisation. The82

spatial impact of the wind farms on the wind fields is evaluated using dedicated flight83

campaigns (Lampert, Bärfuss, et al., 2020). The consequence of the WFP on power pro-84

duction is evaluated using Belgian transmission system operator (TSO) data. Moreover,85

the year-long experiment allowed us to quantify the impact of the offshore wind farms86

on the offshore and coastal meteorological conditions.87

2 HARMONIE-AROME88

The wind-farm parameterisation is implemented in HARMONIE-AROME (cycle89

40h1), a non-hydrostatic model developed by the HIRLAM-C consortium, which is op-90

erationally used in at least 11 countries (Bengtsson et al., 2017). The model uses a semi-91

lagrangian scheme on an Eulerian grid. The turbulence scheme used was HARATU (de92

Rooy et al., 2021; Lenderink & Holtslag, 2004), which uses a prognostic equation for the93

turbulent kinetic energy (TKE), and shallow convection following de Rooy et al. (2021).94

Surface Externalisée (SURFEX) version 7.3 was used as a land surface model (Masson95

et al., 2013) with the land use classification from ECOCLIMAP II (Faroux et al., 2013).96

More details about the model physics can be found in Bengtsson et al. (2017) or www.hirlam.org.97

3 Wind farm parameterisation98

The wind-farm parameterisation of (Fitch et al., 2012) imposes an elevated momen-99

tum sink on the mean flow, where the drag (or thrust) of the individual turbine blades100

is modelled as a constant (but wind speed dependent) drag force across the area swept101

by the rotor blades. As the diameter of a wind turbine is about an order of magnitude102

smaller than the horizontal grid spacing in HARMONIE (currently: 2.5 km), the model103

accounts for the bulk influence of one or several wind turbines per grid point.104

The wind turbine characteristics are defined by the geometry (hub-height zhub and105

turbine radius r), the cut-in (Vin) and cut-out (Vout) wind speeds, and by the dimension-106

–4–
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less power (CP) and thrust (CT) coefficients. The latter two describe – as a function of107

wind speed Vhub at hub height – the fraction of kinetic energy that is extracted from the108

air (CT), and the fraction that is converted into electrical energy (CP). An example of109

typical CP and CT curves is provided in Fig. 1.110

Given the thrust coefficient CT, the thrust force of a turbine (the force opposite111

to the flow direction and drag force) is defined as:112

F⃗thrust = −1

2
ρCT|V⃗ |V⃗ AT , [N] (1)113

where ρ is the air density (kg m−3), V⃗ = (u, v) the horizontal wind vector (m s−1), |V⃗ | =114

√
u2 + v2, and AT is the rotor area (m2). The rate of loss of kinetic energy (KE) then115

equals:116

∂KE

∂t

∣∣∣∣
drag

= −1

2
ρCT|V⃗ |3AT .[J s

−1] (2)117

In practise the rotor of a turbine intersects multiple model levels, and Eq 2 (and all equa-118

tions in the remainder of this chapter) are solved for each model level k individually, re-119

placing the rotor area AT with the area intersected by the k-th model level, and the wind120

speed |V⃗ |, and density ρ with values from the k-th model level, indicated where appro-121

priate by a subscript k. As a result, the momentum sink (and TKE source) is elevated122

and height dependent.123

In general, the total change in KE of a single grid cell with a volume ∆k = (∆x∆y∆zk)124

m3 equals:125

∂KEk

∂t

∣∣∣∣
cell

=
∂

∂t

(
1

2
ρk|V⃗k|2

)
∆k = ρk|V⃗k|

∂|V⃗k|
∂t

∆k.[J s
−1] (3)126

Combining Eqs 2 and 3, i.e. setting:127

∂KEk

∂t

∣∣∣∣
cell

=
∂KEk

∂t

∣∣∣∣
drag

, [J s−1] (4)128

results, after re-arranging, in an expression for the change in velocity with time:129

∂|V⃗k|
∂t

= −1

2
CT |V⃗k|2 Ak ∆−1

k , [m s−2] (5)130
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or, in component form:131

∂uk

∂t
= −1

2
CT uk |V⃗k| Ak ∆−1

k , [m s−2] (6)132

∂vk
∂t

= −1

2
CT vk |V⃗k| Ak ∆−1

k .[m s−2] (7)133

The vertical velocity component is assumed to be unaffected by the wind turbines, and134

furthermore, drag by the wind turbine tower and nacelle is not included in the param-135

eterisation. The energy that is extracted from the atmosphere, but not converted into136

electrical energy, is assumed to be converted into turbulence kinetic energy (TKE, per137

unit mass), i.e. CTKE = CT - CP, resulting in:138

∂TKEk

∂t
=

1

2
CTKE |V⃗k|3 Ak ∆−1

k .[m2 s−2 s−1] (8)139

Finally, as a diagnostic quantity, the model outputs the electrical power produced by the140

wind turbines:141

P =
1

2
ρCP AT |V⃗hub|3[W] (9)142

For a typical offshore wind farm, multiple wind turbines can occupy a single horizontal143

grid point. Instead of introducing a horizontal wind turbine density – like in (Fitch et144

al., 2012) – Eqs 6 to 9 are repeated for each individual turbine, allowing different tur-145

bine types in a single horizontal grid point. The total tendencies for the horizontal wind146

components and TKE are adjusted after the turbulence scheme is called and fed back147

to the model.148

4 Experimental setup149

HARMONIE used a 2000×2000 km2 domain with 65 vertical levels, 2.5 km hor-150

izontal grid spacing, centred around 51.96◦N, 4.9◦E. The ERA5 reanalysis (Hersbach et151

al., 2020) is used for the lateral boundary conditions.152

Two simulations were performed: (1) reference simulation without wind turbines,153

REF, and (2) with the wind-farm parameterisation modelling all offshore wind turbines154

–6–
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Figure 1. Power (CP ) and thrust (CT ) coefficients of the Belgian offshore wind turbines

present in the model domain in January 2016, WFP. The experiments are run from 01-155

01-2016 00 UTC to 01-01-2017 00 UTC. This period was chosen because of the availabil-156

ity of two floating lidars in the Borssele wind farm zone, directly north-east of the (Bel-157

gian) Northwind wind farm (Fig. 2). In addition, for this period there are tower mea-158

surements from the FINO1 platform, and lidar measurements from the Westermost Rough159

wind farm and flights through wind farm wakes in the German Bight (WIPAFF; Lam-160

pert, Bärfuss, et al., 2020).161

The reference simulation was run for several years before the study period for the162

Dutch Offshore Wind Atlas (DOWA) project (Wijnant et al., 2019) and therefore had163

more than six years of spin-up. The WFP run was started ‘warm’ from the control ex-164

periment and had ten days of additional spin-up time. Both reanalysis simulations used165

3D-VAR data assimilation (Fischer et al., 2005; Gustafsson et al., 2018) with a three-166

hour cycling time. In addition to conventional observations, Mode-S EHS aircraft mea-167

surements (e.g. de Haan, 2011, 2016) and Scatterometer (ASCAT) (Marseille & Stof-168

felen, 2017) were assimilated. In this study the 3-hour forecast is used as a proxy for the169

analysis.170

For the Belgian and Dutch wind farms, the exact (individual) turbine coordinates171

are available, which could directly be used in the experiments. For the other offshore wind172

farms in the computational domain (Fig. 2), the available information was limited to the173

wind farm boundaries and the total number of turbines per wind farm. For these sites,174

the turbine coordinates were first chosen randomly within the wind farm boundary, and175

next distributed uniformly using an iterative repulsion method (Witkin & Heckbert, 2005).176

–7–
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Westermost Rough LiDAR

Borssele LiDARs

FINO1 tower

WIPAFF flights

Figure 2. Overview of all (2.5×2.5 km) grid points with one or more wind turbines (red).

Black arrows indicate the locations of measurements used for evaluation. In the left figure the

black square indicates the model domain and the grey square the location of the right panel.

This random approach to determine the turbine coordinates can be justified by the fact177

that within the turbine parameterisation, all turbines are mapped to the nearest 2.5 km178

× 2.5 km grid point, making the exact turbine coordinates less important. The wind farm179

boundaries were obtained from the The European Marine Observation and Data Net-180

work (EMODnet; Mart́ın Mı́guez et al., 2019).181

The CP and CT curves were obtained from various sources, predominantly from182

windPRO input database (Acker & Chime, 2011). For a small number of turbines, no183

CP and CT curves were publicly available, those turbines have been replaced with either184

reference data from literature, or CP and CT curves from similar turbines. An overview185

is provided in Appendix A.186

5 Measurements187

5.1 Borssele Wind Lidars188

For the wind resource assessment of the four wind farms in the Borssele wind farm189

zone (BWFZ), two short-range doppler lidars were deployed near the Belgian offshore190

wind farms. Fugro executed a Metocean campaign and did measurements for a number191

–8–
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of periods between June 2015 and February 2017. ZephIR 300S lidars were mounted on192

buoys with a bottom mooring weight at 51.707◦ N, 3.035◦ E (Fig. 3, lidar 1) and at 51.646◦193

N, 2.951◦ E (Fig. 3, lidar 2). Lidar 1 (henceforth BWFZ1) measured for the longest pe-194

riod and there were sixteen measurement periods between June 2015 and February 2017195

(Fig. 4a). This lidar is located 10 km northeast of the nearest wind turbine. Lidar 2 (hence-196

forth BWFZ2) only measured during five periods and only between February and July197

2016 (Fig. 4b). This lidar is closer to the Belgian wind farm zones, at 2 km from the near-198

est turbine (Fig. 3). At typical hub heights of about 90 m the uncertainty in floating li-199

dar measurements for wind speeds between 4 and 15 m/s is between 3 and 4.5% (Duncan200

et al., 2019)201

3.0E 3.5E

51.5N

Borssele WFZ

Belgium turbines

LiDAR 1

LiDAR 2

Figure 3. Setup of the Borssele wind lidars off the coast of Belgian and the Netherlands. The

blue area are the planned wind farm zones, that started to be operational in 2020/2021.

5.2 FINO 1 Tower202

The FINO 1 tower has been providing measurements since 2003 and is located in203

the North Sea at 54.015 ◦ N, 6.588 ◦ E, 50 km north of the Wadden island Borkum (Fig.204

2). The water depth at this location is 30 m and the tower reaches a height of 103.7 m205

above Lowest Astronomical Tide (LAT). The first wind turbines were installed near FINO1206

in November 2009 and the Alpha Ventus wind farm became fully operational in 2010.207

This means that wind measurements for wind directions between 15◦ to 165◦ (easterly208

winds) became disturbed by Alpha Ventus since November 2009. Borkum Riffgrund 1209

–9–
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Available

a) BWFZ1: 73.95% available

Available

b) BWFZ2: 20.75% available

Available

c) WMR: 14.12% available

2016−01 2016−03 2016−05 2016−07 2016−09 2016−11 2017−01

Available

d) FINO1: 98.18% available

Figure 4. Availability of the measurements for the two lidars at the Borssele wind farm zone

(a) BWFZ1 and (b) BWFZ2, (c) the Westermost Rough lidar (WMR) and (d) FINO 1.

to the south west has been fully operational since 2015, also disturbing the flow in 170◦210

to 300◦ directions.211

Here, we use the cup anomemeters to evaluate the model, since these measure at212

frequent height intervals (i.e. 34.1, 41.6, 51.6, 61.6, 71.6, 81.6, 91.6, 101.6). The cup anemome-213

ters are manufactured Vector Instruments Windspeed Ltd. type A100LK/PC3/WR with214

an accuracy of 1 %. The cup anemometers (for measuring wind speed) are on booms on215

the southeast side of the mast (towards 135–143°) and the wind vanes (for measuring216

wind direction) on booms on the opposite side of the mast. The wind speed measure-217

ments are corrected for wind mast effects using a measurement correction scheme called218

the UAM-correction methodWind direction measurements are not corrected. (i.e. West-219

erhellweg et al., 2010, 2012). Wind direction measurements are not corrected.220

The FINO1 measurements are available for the whole of 2016 and only about 2.5221

% of the data are missing (Fig. 4). Due to it’s long-term measurements the tower has222

–10–
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been previously used to evaluate atmospheric models over the North Sea (e.g. Muñoz-223

Esparza et al., 2012; Wagner et al., 2019).224

5.3 Westermost Rough Wind Lidar225

On top of the Westermost Rough wind farm substation (Fig. 2), Ørsted operates226

a Leosphere WindCube scanning doppler lidar, providing wind speed measurements be-227

tween 74 m to 324 m height. Westermost Rough wind farm is located off the coast of228

Yorkshire, UK. Unlike the Borssele lidars and FINO1 tower, this lidar is located in the229

centre of the wind farm (53.804◦ N, 0.132◦ N), and is therefore always disturbed by the230

wind turbines. The Westermost Rough (WMR) lidar became operational in mid-January231

2016, but only has an overall availability of ∼14% (1.5 out of 12 months), which limits232

its usability.233

5.4 WIPAFF234

As part of the WInd PArk Far Field (WIPAFF) project (Platis et al., 2020), sev-235

eral measurements were taken around wind farms in the German Bight area (Fig. 2).236

In total 41 flights were carried out, of which 8 were in our current study period (6–10237

September 2016). The aircraft measurements were carried out using the research aircraft238

Dornier 128. The aircraft is equiped with sensors measuring temperature, humidity, all239

wind components, and pressure at 100 Hz. This large dataset of spatial data is very valu-240

able to evaluate mesoscale models with wind-farm parameterisations, and has been used241

previously to evaluate the Weather Research Forecasting model (WRF) (Platis et al.,242

2021). The measurements are described in detail by Lampert, Bärfuss, et al. (2020) and243

data are publicly available (Bärfuss et al., 2019).244

For the purpose of this study we have only used one of the flights to evaluate the245

spatial representation of the wind farm wakes generated by HARMONIE. This flight took246

place on September 6 2016, between 12:13 and 15:20 downwind of Amrumbank West wind247

farm. During this day the average background wind speed was about 7 m s−1 from the248

south. Therefore the aircraft measurements were taken in a meandering pattern north249

of the wind farm at hub height (i.e. 90 m). Given the average speed of the plane was250

54 m s−1 and to compare with the model data at a grid spacing of 2.5 km, a 60-second251

rolling average over the sonic anemometer data is performed.252

–11–
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5.5 Power production data253

Belgium’s high-voltage TSO, Elia, publishes the generated power by their various254

energy sources, including offshore wind farm power production in 15-minute intervals.255

Since in 2016 Belgium only had three offshore wind farms (Fig. 2 & 3), we are able to256

use their power generation data to evaluate the HARMONIE-modelled generated power.257

The total capacity of these offshore wind farms was 712.2 MW.258

6 Evaluation259

6.1 Offshore lidar and tower measurements260

During the chosen period, all lidars had periods with missing data, as summarised261

in Fig. 4. For all statistical analyses in this section we use collocated data, i.e. missing262

data is removed (or masked) in the model dataset as well. In addition, there is no con-263

ditional sampling based on (e.g.) wind direction; all available measurements are always264

included in the statistics.265

6.1.1 Borssele Wind Farm Zone (BWFZ) lidars266

As shown in Fig. 3, both lidars were positioned north-east of the Belgian North-267

wind wind farm. With prevailing winds from the south-west, these lidar measurements268

are typically disturbed by the Belgian wind farms, making them ideal for assessing the269

impact of the wind turbines on the wind field, and the ability of the wind farm parametri-270

sation to reproduce the disturbed wind field due to the wake effect of the wind farm.271

Figure 5 shows the time averaged vertical wind speed profiles from the reference272

run (REF), the experiment with the wind-farm parameterisation (WFP), and the Bors-273

sele lidars. These are averaged profiles over the entire measurement period for both li-274

dars and represent all different wind directions. However, over the duration of the mea-275

surement period of BWFZ1, the wind direction was southwesterly (180–270◦) 42% of the276

time.277

For both sites the reference simulation (without wind park parameterisation) over-278

estimates the wind speed, which is most pronounced for lidar location number two, which279

is closest to the Belgian wind farms at 2 km distance from the nearest turbine. Enabling280

–12–
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Figure 5. Vertical profiles of wind speed, from the reference run (REF) and experiment with

wind-farm parameterisation (WFP), compared to the Borssele (a) BWFZ lidar 1, 10 km from the

nearest wind farm and (b) BWFZ lidar 2, 2 km from the nearest wind farm. The grey dotted line

indicates the mean hub height of the nearest wind farm and the grey shaded areas the area the

diameter of the rotor.

the wind-farm parameterisation clearly improves the experiments; for BWFZ2, the mean281

profile from HARMONIE matches very well with the measurements.282

6.1.2 FINO1 tower283

The FINO1 tower is situated directly west of the Alpha Ventus wind farm, and north-284

east of the Borkum Riffgrund wind farm (Fig. 2). Fig. 6a shows the time averaged ver-285

tical wind speed profiles, compared to the corrected FINO1 measurements. In line with286

the results from the Borssele area, the reference simulation overestimates the wind speed287

with ∼0.7-0.9 m s−1. With the wind-farm parameterisation included, the absolute bias288

is decreased, but with a slight negative bias at the highest few measurement points, ∼0.1-289

0.2 m s−1. This underestimation seems to be partially caused by the mapping of wind290

turbines to the nearest HARMONIE grid point. In reality the FINO1 tower is west (and291

with the dominating wind direction: upstream) of the Alpha Ventus wind farm, but in292

HARMONIE the grid point nearest to FINO1 also houses some of the Alpha Ventus wind293

turbines, as shown in Fig. 6b. This means that the grid point used for the analysis, di-294

rectly experiences drag from some of the Alpha Ventus turbines, resulting in a reduced295

wind speed. However, including the wind-farm parameterisation clearly improves the wind296
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profile at the tower location due to the many wind farms in the surroundings. This is297

also the location where the largest impact is expected.298

6.1.3 Westermost Rough lidar299

As shown in Fig. 4, the data availability is limited to ∼ 14% of the January to May300

period, and even less at the three highest measurement heights. Therefore, the analy-301

sis here is limited to the lowest 214 m.302

Fig. 7 shows the time averaged vertical profiles of the lidar measurements and HAR-303

MONIE experiments. As with the FINO1 and Borssele locations, the reference run over-304

estimates the wind speed. The experiment with wind turbines (WFP) is very close to305

the averaged lidar observations, especially near hub height. Above the rotor tips the gra-306

dient at which the wind speed increases is underestimated in the model. This results in307

a bias at 214 m of 0.2 m s−1 for the REF experiment and 0.3 m s−1 for the WFP ex-308

periment. Since the REF experiment also underestimates the wind speed above the ro-309

tor tip, this bias could be caused by an underestimation of the background wind speed310

or a measured acceleration of the wind above the rotor tip not captured by HARMONIE311

with the WFP.312
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Figure 6. (a) Vertical profiles of wind speed, from the reference run without wind-farm pa-

rameterisation (REF) and experiment with wind-farm parameterisation (WFP), compared to the

FINO1 tower. (b) The number of turbines in the HARMONIE grid cells surrounding FINO1
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Figure 7. Vertical profiles of wind speed, from the reference run without wind-farm param-

eterisation (REF) and experiment with wind-farm parameterisation (WFP), compared to the

Westermost rough lidar.

6.2 Airbourne measurements313

For the evaluation of HARMONIE with the wind-farm parameterisation the lidar314

and tower measurements show significant improvements at single locations. However,315

in order to evaluate the spatial scale of the modelled wakes airbourne measurements are316

used. The WIPAFF measurement flights are intended to observe the spatial extent of317

the wind-farm wakes. As mentioned in sect. 5.4, we only use the airbourne measurements318

carried out during 6 September 2016, with a near-neutral – slightly stable surface layer319

and an average wind speed of 7 m s−1. In those cases we expect to see a large wake from320

the wind farm, but not as strong as in very stable conditions (e.g. Zhan et al., 2020).321

Fig. 8 compares the flight measurements with the HARMONIE simulations following322

the same model track. For each measurement point the nearest model point in time and323

space was extracted for both REF and WFP simulations. The model output was inter-324

polated between the nearest two model levels to 90 m, the flying altitude.325

Close to the wind farm the wind farm wake is captured very well by the WFP (Fig.326

8a). Here, at ∼4 km distance the velocity deficit is about 2 m s−1 and the width of the327

wind farm is about 15 km. During this time the background wind speed decreases left328

to right of the wind farm (negative to positive x − xturbines), however this is underes-329

timated by the model leading to a bias of 1.0 m s−1 in the WFP run. An 1.5 hours later330
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Figure 8. Cross sections through the wind farm wake of Amrumbank West in the German

Bight on 6 September 2016, 12:13 – 15:20 UTC. Cross sections are perpendicular to the wind

direction at (a) 3.9 km (b) 7.3 km, and (c) 16.8 km distance from the turbines, and (d) a cross

section along the wind from the centre of the turbines directly downstream. Crosses indicate 60

s rolling average wind speeds at 30 s intervals from the aircraft measurements and lines indicate

the interpolated modelled wind speed along the same flight path (red) reference run and (black)

simulation with WFP. The grey are indicate the location of the wind farm.
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(∼14:30) a cross section was taken at about 7.3 km downwind of the wind farm (Fig. 8b).331

Here, the HARMONIE WFP run is able to capture the wind speed in the wake of the332

turbines very well, but now underestimates the wind speed east of the turbines (posi-333

tive x− xturbines)) by about 0.7 m s−1. About 10 km downwind of the previous cross334

section (Fig. 8c), the velocity deficit in the wind-farm wake has been reduced to ∼1 m335

s−1, captured well by in the WFP run. As expected, the REF run is unable to model336

the velocity deficit caused by the wind farm.337

The part of the flight along the wind direction captures the recovery of the wake338

(Fig. 8d). About 4 km away from the wind farm the wind speed is 5.4 m s−1, at 30 km339

away the wind speed has only increased by 0.7 m s−1 to 6.1 m s−1. Over the same dis-340

tance the model shows a similar reduction in the velocity deficit, 0.8 m s−1. After 30 km341

the observations show the wake to dissipate quickly, while in HARMONIE there remains342

a difference between the REF and WFP runs of about <0.5 m s−1 for at least 70 km down-343

wind of the wind farm. The Fitch et al. (2012) parameterisation is known to produce344

long wakes (e.g. Shepherd et al., 2020). However, a more systematic evaluation of the345

size and shape of wakes using Fitch et al. (2012) is needed, with more research aircraft346

data, scanning doppler lidars (e.g. Rhodes & Lundquist, 2013; Banta et al., 2015), or347

satellite measurements such as SAR (e.g. Christiansen & Hasager, 2005).348

6.3 Power production349

When evaluating HARMONIE with the wind-farm parameterisation, power pro-350

duction is a crucial quantity. Power production scales with the velocity cubed (eq. 9),351

making it sensitive to biases in wind speed. For all of 2016, Elia provides power produc-352

tion data for the Belgian offshore wind farms. This is the total power production of all353

the offshore wind farms. In 2016 these farms had a total capacity of 712.2 MW (Fig. 3).354

Figure 9 shows the comparison between the observed power production and power355

production obtained from the HARMONIE experiments, both from the reference exper-356

iment and experiment with the wind turbine parameterisation (WFP). The bottom pan-357

els indicate the absolute and relative differences, averaged over 50 MW bins. The rel-358

ative bias from the first (0-50 MW) bin should be treated with caution, as conditions359

where the observed power production equals zero result in an infinitely large relative bias.360
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Figure 9. Power production calculated from the (a) reference reanalysis (REF) and (b) exper-

iment with wind-farm parameterisation (WFP), compared to the Elia measurements. The solid

black line with markers (top row) indicates the mean of the model data calculated over 50 MW

bins. The bottom row shows the absolute (c) and relative (d) error of both model experiments.
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The power production calculated offline (eq. 9) from the reference experiment clearly361

overestimates the production, with absolute biases as large as 150 MW, and for low wind362

speeds (low power production) relative biases as large as 100%. The reference simula-363

tion clearly does not include the power production losses attributed to the velocity deficit364

created by the wind turbines. Including the wind turbine parameterisation clearly im-365

proves the power production calculated, reducing the absolute bias to a maximum of 50366

MW at high wind speeds, and the relative bias to ∼6%. There are a few possible causes367

for this constant relative bias – e.g. efficiency losses in the turbines or power cables, the368

use of (manufacturers) turbine specifications which are too optimistic, inaccuracies in369

the turbine parameterisation, or single turbines that are not operational, or not func-370

tioning optimally. If the aim is to deliver power production forecasts to users, some post371

processing will be necessary to eliminate these inaccuracies.372

6.4 Impact wind farms on local meteorological conditions373

As seen in the previous sections, wind turbines have an impact on the (local) wind374

conditions. In addition, wind turbines generate TKE, which enhances vertical mixing,375

potentially influencing other quantities like temperature, humidity, or clouds. Here, we376

briefly examine the impact of two Dutch offshore wind farms on the local meteorolog-377

ical conditions. In the absence of suitable measurements, the results are limited to com-378

paring the reference simulations with the experiment including wind turbines.379

Fig. 10 shows the differences in wind speed (V ), potential temperature (θ), and spe-380

cific humidity (q) between the experiments with and without wind turbines for two time381

periods. During the period March – June the sea surface temperature is colder on av-382

erage compared to the atmospheric temperature and more stable cases are expected. Dur-383

ing September – December the sea surface temperature is generally warmer than the at-384

mosphere above, leading to more unstable cases. For each wind farm, the statistics were385

averaged over the HARMONIE grid points which have one or more turbines, and aver-386

aged in time.387

For wind speed, the elevated drag is clearly visible, with a maximum decrease of388

1.6 m s−1 near hub height, but a near-surface decrease of 0.3 – 0.0 m s−1. The relatively389

small wind farm Princes Amalia (120 MW, -0.6 m s−1 during spring and -0.5 m s−1 in390

autumn) has a smaller impact on the wind speed compared to the larger Gemini (600391
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Figure 10. Impact of wind turbines on meteorological variables wind velocity (a,d), potential

temperature (b,e), and specific humidity (c,f) over two Dutch offshore wind farms, Gemini to the

north of the Dutch coast (black dashed) and Princes Amalia to the west of the Dutch coast (blue

solid), where ∆= WFP-REF. The top panels (a – c) are averaged profiles over 1 March – 30 June

2016, the bottom panels (d – f) are averaged profiles over 1 September – 31 December 2016. The

horizontal lines indicate the hub height of each wind farm.

MW, -1.6 m s−1 during spring and -1.2 m s−1 in Autumn). The modelled velocity deficit392

is shown to be stronger in the spring season with relatively more stable cases. Previous393

research has also shown higher velocity deficits during stable cases compared to unsta-394

ble atmospheric boundary layers (e.g. Dörenkämper et al., 2015).395

The enhanced vertical mixing has a weak impact on temperature and specific hu-396

midity. During the period where the atmosphere is on average stably stratified, the en-397

hanced TKE and vertical mixing decreases the stratification, resulting in an increase in398

temperature and decrease in specific humidity near the surface, and decrease in temper-399

ature and increase in specific humidity at 100-150 m height. At the large wind farm, Gem-400

ini, this average vertical potential temperature variation is between -0.2 and 0.2 K, for401

the smaller wind farm (Princes Amalia) -0.08 to 0.12 K. The specific humidity during402

spring, decreases -0.1 for Gemini and -0.07 g kg−1 for Princes Amalia near the surface403
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and increases by 0.04 and 0.02 g kg−1, respectively, above hub height. As a result of the404

near surface heating and drying, and the cooling and moistening aloft, the relative hu-405

midity decreases near the surface, and increases higher up. This could impact the for-406

mation of fog or low clouds.407

During autumn and early winter the influence of the enhanced vertical mixing by408

wind turbines is smaller, for potential temperature less than 0.1 K for both wind farms.409

The well-mixed profiles during unstable conditions are barely influenced by enhanced TKE.410

However, the near-surface moisture is reduced by the same order of magnitude in the au-411

tumn compared to the spring season.412

7 Conclusion413

The Fitch et al. (2012) wind-farm parameterisation was implemented in mesoscale414

model HARMONIE-AROME, and validated with a variety of observations in the north-415

sea region over a one-year period. The parameterisation reduces momentum and con-416

verts this into turbulent kinetic energy and power production, depending on wind tur-417

bine properties. Two year-long simulations were performed, one including all wind tur-418

bines on the North Sea known up to 2016 and one without any wind turbines. The eval-419

uation with various wind measurements on the North Sea indicates that inclusion of the420

turbine parameterisation has a positive impact on the modelled wind speeds near (off-421

shore) wind farms. For all locations considered, the absolute bias in wind speed is de-422

creased compared to the simulation without wind farms. Furthermore, the predicted power423

production – compared to observations from the Belgian TSO – shows a substantial im-424

provement with the turbine parameterisation included.425

A brief survey of the impact of wind farms on the local meteorological conditions,426

indicates that in addition to changes in wind speed, other quantities like temperature427

or humidity are influenced by wind farms as well. These variations in temperature and428

humidity are more pronounced in periods with more stable conditions, where the enhanced429

turbulent kinetic energy from the wind turbines increases the mixing of the marine bound-430

ary layer. With the expected increase in number and size of wind turbines in the com-431

ing decades the influence of wind turbines on local to regional meteorology can no longer432

be neglected. The relatively simple wind-farm parameterisation by Fitch et al. (2012)433

–21–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

improves modelled wind speed near wind farms and can be used operationally to improve434

weather forecasts and predicted power production.435
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Appendix A Wind farm and turbine information446

Tables A1 and A2 provide an overview of all the wind farms implemented in the447

experimental domain, and Table A3 summarises the turbine types and their properties.448
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Name Latitude (◦N) Longitude (◦E) Turbine type N Z (m)

London Array 1 51.626 1.496 SWT-3.6-120 175 87
Gemini 54.036 5.963 SWT-4.0-130 150 89
Gode Wind I 54.016 6.983 SWT-6.0-154 55 110
Gode Wind II 54.075 7.007 SWT-6.0-154 42 110
Gwynt y Mor 53.460 -3.599 SWT-3.6-107 160 98
Race Bank 53.276 0.841 SWT-6.0-154 91 110
Greater Gabbard 51.773 1.982 SWT-3.6-107 140 78
Dudgeon 53.265 1.380 SWT-6.0-154 67 110
Veja Mate 54.321 5.860 SWT-6.0-154 67 103
Anholt 56.600 11.210 SWT-3.6-120 111 82
Bard Offshore 1 54.355 5.980 BARD-5.0 80 90
GlobalTech I 54.500 6.358 Areva-5.0 80 90
Rampion Wind Farm 50.660 -0.200 V112-3.45 116 84
West of Duddon Sands 53.984 -3.464 SWT-3.6-120 108 80
Walney 1 53.810 -4.907 SWT-3.6-107 51 84
Walney 2 54.081 -3.605 SWT-3.6-107 51 90
Galloper 51.880 2.040 SWT-6.0-154 56 103
Wikinger Offshore 54.834 14.068 Adwen-5.0 70 75
Nordsee One Offshore 54.444 7.682 Senvion-6.2 54 100
Sheringham Shoal 53.135 1.147 SWT-3.6-107 88 82
Borkum Riffgrund I 53.967 6.562 SWT-4.0-12 78 87
Borkum Riffgrund II 53.967 6.496 V164-8.0 56 105
Amrumbank West 54.520 7.708 SWT-3.6-120 80 90
Thanet 51.430 1.633 V90-3.0 100 70
Nordsee Ost 54.444 7.682 Senvion-6.2 48 97
Butendiek 55.019 7.774 SWT-3.6-120 80 91
Dan Tysk 55.140 7.200 SWT-3.6-120 80 88
Baltica 2 55.070 17.100 SWT-3.6-120 80 78
Meerwind Sued/Ost 54.402 7.707 SWT-3.6-120 80 89
Sandbank 55.190 6.860 SWT-4.0-130 72 95
Lincs 53.191 0.491 SWT-3.6-120 75 100
Burbo Bank Extension 53.483 -3.273 V164-8.0 32 123
Humber Gateway 53.619 0.293 V112-3.0 73 80

Table A1. Overview of wind farms included in the experiments. Latitude and longitude indi-

cate the location in the centre of the wind farm. N are the number of turbines in the wind farm

and Z is the hub height.
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Name Latitude (◦N) Longitude (◦E) Turbine type N Z (m)

Westermost Rough 53.805 0.149 SWT-6.0-154 35 100
Horns Rev 2 55.600 7.582 SWT-2.3-93 91 68
Rodsand II 54.558 11.531 SWT-2.3-93 90 69
Trianel Borkum II 54.042 6.467 Areva-5.0 40 90
Kentish Flats 1 51.460 1.093 V90-3.0 30 70
Kentish Flats 2 51.450 1.079 V112-3.3 15 84
Gunfleet Sands 51.737 1.170 SWT-3.6-107 48 75
Ormonde 54.088 -3.437 Senvion-5 30 97
Barrow 53.982 -3.283 V90-3.0 30 75
Rhyl Flats 53.380 -3.646 SWT-3.6-107 25 75
North Hoyle 53.417 -3.448 V80-2.0 30 67
Riffgat 53.692 6.470 SWT-3.6-120 30 90
Horns Rev 1 55.486 7.840 V80-2.0 80 70
Nysted 54.549 11.714 SWT-2.3-82 72 69
EnBW Baltic 1 54.596 12.638 SWT-2.3-93 21 67
EOWDC 57.230 -1.990 V164-8.0 11 120
Hywind 2 Demonstration 57.500 -1.300 SWT-6.0-154 5 98
Arkonabecken Südost 54.780 14.120 SWT-6.0-154 60 102
Alpha Ventus 54.017 6.600 Avera-5.0 12 90
Walney Extension 3 54.087 -3.737 V164-8.0 40 113
Walney Extension 4 54.087 -3.737 SWT-7.0-154 47 111
Luchterduinen 52.403 4.165 V112-3.0 43 81
Prinses Amalia 52.594 4.213 V80-2.0 60 59
Egmond aan Zee 52.594 4.437 V90-3.0 36 70
Belwind I 51.670 2.800 V90-3.0 55 72
Northwind 51.619 2.901 V112-3.0 72 71
Thorntonbank 51.540 2.940 Multiple 54 95

Table A2. Table A1 continued
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Name N P (MW) D (m)

Siemens SWT-2.3-82 72 2.3 72
Siemens SWT-2.3-93 202 2.3 93
Siemens SWT-3.6-107 563 3.6 107
Siemens SWT-3.6-120 899 3.6 120
Siemens SWT-4.0-120 78 4.0 120
Siemens SWT-4.0-130 222 4.0 130
Siemens SWT-6.0-154 478 6.0 154 (1)
Siemens SWT-7.0-154 47 7.0 154 (1)
Vestas V80-2.0 170 2.0 80
Vestas V90-3.0 251 3.0 90
Vestas V112-3.0 188 3.0 112
Vestas V112-3.3 15 3.3 112
Vestas V112-3.45 116 3.45 112
Vestas V164-8.0 139 8.0 164 (2)
Senvion 5 30 5.0 126
Senvion 6.2 156 6.2 126
BARD-5.0 80 5.0 126 (3)
Adwen-5.0 202 5.0 116 (3)
Haliade-6 1 6.0 100

3908 460×103

Table A3. Overview of the wind turbine types included in the experiments. The total installed

power equals
∑

N × P . Notes: (1) replaced with 6 MW reference turbine from (Bulder et al.,

2016), (2) replaced with 8 MW reference turbine from (Bulder et al., 2016), (3) replaced with

Senvion 5 turbine.
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