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Abstract

Decadal (˜10-years) scale flow projections in the Colorado River Basin (CRB) are increasingly important for water resources

management and planning of its reservoir system. Physical models – Ensemble Streamflow Prediction (ESP) – do not have

skill beyond interannual time scales. However, Global Climate Models have good skill in projecting decadal temperatures.

This, combined with the sensitivity of CRB flows to temperature from recent studies, motivate the research question - can skill

in decadal temperature projections be translated to operationally skillful flow projections and consequently, water resources

management? To explore this, we used temperature projections from the Community Earth System Model – Decadal Prediction

Large Ensemble (CESM-DPLE) along with past basin runoff efficiency as covariates in a Random Forest (RF) method to project

ensembles of multi-year mean flow at the key aggregate gauge of Lees Ferry, Arizona. RF streamflow projections outperformed

both ESP and climatology in a 1982-2017 hindcast, as measured by ranked probability skill score. The projections were

disaggregated to monthly and sub-basin scales to drive the Colorado River Mid-term Modeling System (CRMMS) to generate

ensembles of water management variables. The projections of pool elevations in Lakes Powell and Mead – the two largest U.S.

reservoirs that are critical for water resources management in the basin – were found to reduce the hindcast median root mean

square error by up to -20 and -30% at lead times of 48- and 60-months, respectively, relative to projections generated from ESP.

This suggests opportunities for enhancing water resources management in the CRB and potentially elsewhere.
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Key Points: 

• A random forest method for decadal (2 ~ 10 years) ensemble flow projections 
conditioned on temperature projections from climate models 

• Midterm (1 ~ 5 years) ensemble flow projection of water resources management 
variables including reservoir pool elevations 

• Encouraging prospects for translating skillful temperature projections to multi-year flow 
and water management at CRB and other basins 

Abstract 
Decadal (~10-years) scale flow projections in the Colorado River Basin (CRB) are increasingly 
important for water resources management and planning of its reservoir system. Physical models 
– Ensemble Streamflow Prediction (ESP) – do not have skill beyond interannual time scales. 
However, Global Climate Models have good skill in projecting decadal temperatures. This, 
combined with the sensitivity of CRB flows to temperature from recent studies, motivate the 
research question - can skill in decadal temperature projections be translated to operationally 
skillful flow projections and consequently, water resources management? To explore this, we used 
temperature projections from the Community Earth System Model – Decadal Prediction Large 
Ensemble (CESM-DPLE) along with past basin runoff efficiency as covariates in a Random Forest 
(RF) method to project ensembles of multi-year mean flow at the key aggregate gauge of Lees 
Ferry, Arizona. RF streamflow projections outperformed both ESP and climatology in a 1982-
2017 hindcast, as measured by ranked probability skill score.  The projections were disaggregated 
to monthly and sub-basin scales to drive the Colorado River Mid-term Modeling System 
(CRMMS) to generate ensembles of water management variables. The projections of pool 
elevations in Lakes Powell and Mead – the two largest U.S. reservoirs that are critical for water 
resources management in the basin – were found to reduce the hindcast median root mean square 
error by up to -20 and -30% at lead times of 48- and 60-months, respectively, relative to projections 
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generated from ESP. This suggests opportunities for enhancing water resources management in 
the CRB and potentially elsewhere.  
 
Plain Language Summary 
The Colorado River Basin (CRB) is a critical resource for tens of millions in the North American 
southwest but does not provide consistent streamflow year to year and is susceptible to multi-year 
droughts. While many good forecasts for Colorado River flow exist at seasonal time scales, 
projections beyond one year into the future perform little better than simply using a long-term 
average, despite the importance of these so-called “decadal” projections for water resource 
planning. As past studies have found that CRB streamflow is moderately influenced by air 
temperature, we seek to leverage relatively accurate climate model projections of temperature to 
improve CRB flow forecasts at decadal time scales using a statistical model. We find modest 
improvements in decadal projections of pool elevation at Lakes Powell and Mead compared to a 
standard method, supporting the potential for use of climate model projections in flow forecasting. 

1 Introduction 
The Colorado River Basin (CRB) is a heterogeneous, dynamic river basin that is a key 

source of water for tens of millions of people in the southwestern United States and Northwest 
Mexico. The CRB supports agriculture, hydropower, recreation, ecosystems, drinking water, etc. 
and boasts a storage capacity of ~60 million acre-feet (MAF), or approximately four years’ worth 
of average annual flow (USBR, 2012). This storage is critical in light of  the high variability in 
Colorado River annual flow (Figure 1) and its susceptibility to multi-year droughts (Nowak et al., 
2012). Intricate legal frameworks, trans-basin diversions, growing populations, as well as over-
allocation pose additional challenges for the CRB’s water resource systems. There are many 
studies that try to provide clarity on future CRB flows using a variety of models and methods, but 
these approaches can exhibit significant variability and sometimes produce conflicting 
conclusions. Here we discuss the key issues complicating CRB flow analysis and prognostications, 
research gaps, and possible paths forwards to improved decadal flow projections. 

Water resources management in this basin has become more challenging due to past and 
projected warming. Decreased precipitation is generally agreed upon as the primary driver of the 
ongoing drought since 2001, referred to as the “Millennium drought”, mostly resulting from a shift 
to cooler Pacific sea surface temperatures (SSTs) related to the Pacific Decadal Oscillation (PDO) 
and Atlantic Multidecadal Oscillation (AMO) (Delworth et al., 2015; Martin Hoerling et al., 2010; 
Lehner et al., 2018; K. Nowak et al., 2012; Schubert et al., 2009; Seager et al., 2005; Seager & 
Ting, 2017; Zhao et al., 2017). Several recent studies suggest that this “hot drought”, the worst on 
record with mean annual flow ~20% less than the long-term average, was due to both decreased 
precipitation and, in contrast to previous droughts, a mean temperature ~1°C above 20th century 
climatology (Udall & Overpeck, 2017; Woodhouse et al., 2016). Conversely, temperature 
increases in the CRB and elsewhere have been attributed to anthropogenic GHG forcings (Hoerling 
et al., 2019; Lukas et al., 2014), but estimates of temperature’s relative influence on the recent 
drought vary widely. Hoerling et al. (2019) suggest that increased temperature was responsible for 
one-fifth of the recent flow decline, while Udall & Overpeck (2017) and Xiao et al. (2018) estimate 
that temperatures were responsible for approximately one-third and one-half of the flow decline, 
respectively. The difference in estimates of temperature influence is partially due to different 
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temperature sensitivities used in each study. Consider Hoerling et al.'s (2019) fully-coupled, land 
surface model (LSM)-derived sensitivity of -2.5% °C-1 compared to Udall & Overpeck's (2017) 
sensitivity of -6.5% °C-1, which itself was chosen because it was the mean of a range of -3% °C-1 
to -10% °C-1 developed by Vano et al. (2012, 2014) from multi-model LSM simulations. Recently, 
Milly & Dunne (2020) reported a LSM model-derived sensitivity range of -7.8% °C-1 to -12.2% 
°C-1. Empirically derived sensitivities tend towards higher values, with estimates of -9% °C-1 and 
-14% °C-1 from McCabe & Wolock (2007) and Nowak et al. (2012), respectively. The true CRB 
temperature sensitivity, and possible changes in it, will play an important role in the degree of 
potential future flow declines induced by the warming trend. 

Projections of mid- and end-of-century CRB flows, primarily predicated on climate model 
outputs, vary widely and are dependent on a variety of factors including both climate and land 
surface model selection, downscaling techniques, emissions scenarios, parameter estimation, 
resolution, etc. (Haddeland et al., 2002; Mendoza et al., 2016; Vano et al., 2014). While 
simulations from the Coupled Model Intercomparison Project (CMIP) all predict a warmer future 
in the CRB, approximately half of CMIP3 models project increases in CRB precipitation and 
streamflow by mid-century, while the other half project decreases, resulting in an ensemble median 
of approximately 0% change. Interestingly, approximately two-thirds of CMIP5 models project 
mid-century precipitation increases, but like CMIP3, have an ensemble median of zero for mid-
century streamflow change (USBR, 2016). Many of the CMIP models exhibit a wet-bias, with 
approximately one-half and one-quarter of CMIP5 and CMIP3 models, respectively, unable to 
replicate the Millennium drought at any point (Udall & Overpeck, 2017). This supports earlier 
conclusions that many climate models cannot simulate decadal and multi-decadal drought cycles 
(Ault et al., 2012, 2013). However, some studies have projected an increase in the risk and severity 
of decadal and multi-decadal drought due to warming, despite any possible increases in 
precipitation (Ault et al., 2014, 2016; Cook et al., 2015). Further, among the CMIP3 and CMIP5 
members that did replicate the Millennium drought in simulations, mean projected end-of-century 
flows were 85% and 91% of the 20th century average observed flow at Lees Ferry, respectively. 
The CMIP3 and CMIP5 members that could not replicate the Millennium drought suggest mean 
end of century flows 109% and 113% higher, respectively, than 20th century average observed 
flow (Udall & Overpeck, 2017). A separate analysis by Milly & Dunne (2020) forced CMIP 
members that had a high fidelity to observed Upper Colorado River Basin (UCRB) flows with 
projected mid-century changes in mean temperature and precipitation. This evaluation generated 
ensemble mean flow changes between -5 and -24% under Representative Concentration Pathway 
(RCP) 4.5 and a +3% to -40% range under RCP 8.5. This suggests that flows will either decrease 
or, if buffering is provided by increased precipitation, remain approximately unchanged. Flow 
decreases were largely attributed to decreased snow albedo resulting in higher potential 
evapotranspiration (PET).   
 The high variability of CRB flow, potential for multi-year droughts, and unknown, possibly 
deleterious future shifts in hydroclimate have prompted a large amount of research attention 
towards better understanding and predicting CRB flow behavior, with prognostic research efforts 
tending towards either seasonal forecasts or multidecadal projections (e.g. Baker et al., 2019, 2020, 
2021; Baker, 2019; Bracken et al., 2010, 2014; Erkyihun et al., 2016, 2017; Prairie et al., 2006; 
Rajagopalan et al., 2019). Decadal flow projections, or forecasts with lead times greater than 1 
year and less than 10 years, have received relatively less attention, despite their importance for 
multiyear planning, which is particularly relevant in the CRB due to a high storage capacity and 
susceptibility to multi-year droughts. Ensemble streamflow prediction (ESP) is a current, 
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commonly used method for generating seasonal and annual forecasts in the CRB and elsewhere. 
ESP involves initializing a hydrologic model with current conditions and forcing the model with 
sequences of observed past precipitation and temperature (Wood & Werner, 2011). While ESP has 
been shown to be significantly more skillful than climatology at seasonal time scales (Baker, 
2021a; Franz et al., 2003; Harrigan et al., 2018), there is limited skill at a 12-month lead time and 
no skill relative to climatology in the CRB for annual forecasts with a lead time of 15-months or 
longer (Baker, 2017).  

Unlike the uncertainty associated with climate model based projections of future 
precipitation and streamflow at decadal and multi-decadal scales, confidence in long-term 
temperature projections is higher due to hindcast skill in predicting the warming trend of the last 
several decades, primarily due to the strong signal imparted by GHG forcings (Hargreaves, 2010; 
Hausfather et al., 2020; Jiang et al., 2012; Kumar et al., 2016). Climate model-based projections 
have shown skill at high resolutions for seasonal time scales (Infanti & Kirtman, 2014; Ma et al., 
2015; Mishra et al., 2019; Mo & Lyon, 2015; Slater et al., 2019), but generally only multi-year 
averages have been shown to be skillful past a 1-year lead time (Kim et al., 2012; Meehl et al., 
2014; van Oldenborgh et al., 2012; Towler et al., 2018; Yeager et al., 2018). While earlier efforts 
at decadal prediction of streamflow have yielded modest skill (KC Nowak, 2011), decadal 
temperature predictions are becoming more common and are increasingly being used with non-
parametric and other approaches to improve hydrologic projections at multi-year time scales (Esit 
et al., 2021; Kiem et al., 2021; Towler & Yates, 2021, Towler et. al, 2021 (in review)). 

In watersheds with multi-year storage capacities, like the CRB, flow projections past a 12-
month lead time are important for operational planning. However, climatological forecasts are 
often used past year-1 due to the lack of decadal skill from current forecast methods, potentially 
leading to sub-optimal decision making under multi-year drought scenarios. We investigate 
whether the skill found in climate model-based temperature projections can be transferred to 
decadal streamflow forecasts in the CRB. This critical need combined with the knowledge that (i) 
Global Climate Models have good skill in projecting decadal temperatures, and (ii) the 
documented sensitivity of CRB flows to temperature, motivates the present study with this 
research question - can skill in decadal temperature projections be translated to operationally 
skillful flow projections and consequently, water resources management? To this end, the paper is 
organized as follows. First, the data sets and the water resources management model are described 
briefly. Then, the proposed streamflow projection methodology, a Random Forest (RF) algorithm 
conditioned on temperature covariates is presented along with projections of basin water resources 
management variables. Results assessing the skill of these projections follows. The paper 
concludes with a summary and discussion. 

2 Data and Water Resources Management Model 
Naturalized flow at Lees Ferry, Arizona for 1906-2017 was obtained from the United States 

Bureau of Reclamation for this study (USBR, 2020).  Naturalized flow is ideal when investigating 
hydroclimate teleconnections, as it has anthropogenic impacts like diversions and storage removed 
(Prairie et al., 2005). Streamflow at Lees Ferry, just downstream of Lake Powell, represents flow 
from the entire UCRB that on average produces ~90% of total CRB flow (Christensen et al., 2004). 
The UCRB yields a majority of Colorado River streamflow since its headwaters are situated in the 
Rocky Mountains and lies within the states of Colorado, New Mexico, Utah, and Wyoming. 
Conversely, the Lower Basin is in the much more arid states of Arizona, California, and Nevada 
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as well as portions of Mexico. The Lees Ferry streamflow gauge is used as the demarcation point 
between the Upper and Lower Colorado River Basins. 

Observed hydroclimate data used in this study include precipitation and minimum and 
maximum temperatures from the Parameter-elevation Regressions on Independent Slopes 
(PRISM) model (Daly et al., 1994). Monthly 4-km data for the entire continental US was clipped 
to the UCRB boundary and spatially averaged, then either summed or averaged in time for 
precipitation and temperature, respectively, to generate water year values for the UCRB.    

  Climate model simulated data for 1981-2017 was obtained from the Community Earth 
System Model Decadal Prediction Large Ensemble (CESM-DPLE; Yeager et al., 2018). The 
CESM-DPLE is a 40-member ensemble at a monthly, 1-degree (nominally 111-km) resolution. 
The CESM-DPLE is a fully coupled model with atmosphere, ocean, land, and sea-ice components. 
The CESM-DPLE is initialized with “current” atmospheric conditions at the beginning of every 
10-year projection in the 1981-2017 running hindcast. Since ensemble members are generated via 
perturbing initial conditions by round off errors, the ensemble spread is representative of natural 
variability and climate forcings only and does not include model biases (unlike other large 
ensembles). Calculating the anomaly correlation coefficient (ACC) indicates that the CESM-
DPLE has good skill in projecting both maximum and minimum CRB temperature at multi-year 
time scales but has little to no skill in projecting precipitation (Figure 2). The ACC represents the 
correlation between forecast anomalies and observed anomalies on a spatial scale (Jolliffe & 
Stephenson, 2011; Miyakoda et al., 1972). An ACC of one means that the forecast and observed 
anomalies are perfectly correlated while a value of zero signals that there is no correlation. A 
negative ACC indicates that the forecast is predicting the opposite of what occurred, and an ACC 
of 0.6 or greater is recognized as having better skill than using a climatological forecast (“Anomaly 
Correlation Coefficient - Forecast User Guide - ECMWF Confluence Wiki,” n.d.). The ACC for 
the DPLE minimum temperature is over 0.7 for all lead times. The DPLE maximum temperature 
projections have ACC values of 0.55, 0.46, and 0.35 for lead times of 1-5, 3-7, and 5-9 years, 
respectively, suggesting decreasing skill with increased lead time. Conversely, DPLE precipitation 
has an ACC of 0.10 for a lead time of 5-9 years and a value of zero for both other lead times, 
generally indicating no skill in projecting precipitation. Lead time indicates the time into the future 
for which projections are made, as well as the years being temporally averaged into the projection. 
For example, a lead time of 3-7 years represents a projection of the mean annual value between 3 
and 7 years into the future.  

The translation of hydrologic skill into operational skill of climate-conditioned RF flows 
was tested by comparing their performance to ESP when used to force the Colorado River Mid-
term Modeling System (CRMMS), previously known as the Mid-term Operations Model (MTOM; 
USBR, 2015). CRMMS is a key modeling tool used by the United States Bureau of Reclamation 
(“Reclamation”) for midterm planning in the CRB. It is driven by monthly streamflow at the twelve 
forecast locations in the UCRB (Figure 3), initial conditions of basin reservoirs, and a 
climatological approach for six sub-basins below Lees Ferry. CRMMS is a RiverWare model 
(Zagona et al., 2001) that simulates operational decisions such as releases and diversions according 
to the Law of the River and policies from the 2007 Interim Guidelines for shortages (USBR, 2015, 
2020). Ensemble simulations are run via the Colorado River Basin Operational Prediction Testbed 
(Baker et al., 2021b)implemented within RiverSMART software (“RiverSMART,” 2020), 
providing a platform for testing of many different hydrologic input scenarios and comparing their 
resulting operational variables (e.g. pool elevation). Reclamation provided CRMMS files and 
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forcing data (ESP, observed flows, and initial conditions). Several management actions related to 
delivery reductions (e.g., DCP and Interim Guidelines) are intimately tied to pool elevations at 
Lakes Mead and Powell, hence flow projections and subsequent simulations of reservoir levels are 
critically important for decision making.  

3 Proposed Methodology 
The proposed methodical framework consists of three modules: (1) Random Forest 

machine learning model, (2) disaggregation model, and (3) water resources decision model. In the 
CRB, future drought risk might be better mitigated if well-informed water resources management 
decisions could be reliably made on multi-year time horizons. However, operational flow forecast 
methods like ESP are generally only skillful for lead times up to one year, which is the same time 
frame that operational decisions in the CRB are limited to. Conversely, temperature projections, 
often from global climate model projections, have proved skillful at multi-year time scales. Figure 
4 shows the scatterplots of PRISM-derived precipitation and temperatures with CRB flows for 5-
year running means. Strong positive correlation with precipitation (0.8) and moderate to strong 
negative correlations with annual maximum (-0.74) and minimum (-0.39) temperatures can be 
seen, consistent with prior studies documenting temperature sensitivity to streamflow in the basin. 
Similar relationships and correlation strengths are seen between these hydroclimate variables with 
running mean lengths of 2- and 10-years. Motivated by these relationships in both the observed 
and model spaces, we propose our methodology to exploit these relationships and the skill in 
temperature projections to improve projections of streamflow and reservoir elevations.  
3.1 Streamflow projection  

We propose a RF machine learning approach to generate streamflow ensembles 
conditioned on a set of covariates.  
3.1.1 Covariate Selection 

Strong correlations between temperature and CRB flow were seen in the historical record 
in Figure 4 and Supplement Figures B1 through B4. To select the covariates, we assessed the 
relationship between the multi-year mean of UCRB flow and potential covariates: corresponding 
ensemble-mean minimum and maximum temperatures from CESM-DPLE and past multi-year 
basin runoff efficiencies. The temperatures are a result of large-scale ocean and atmospheric 
conditions, while the runoff efficiency (RE) captures the basin characteristics and antecedent 
conditions. We examined the relationships for “multi-year means” of 2- to 10-years. The past 
runoff efficiency for each multi-year period was selected based on maximum correlation within a 
15-year window. For example, for 3-year mean future flow, the optimal past runoff efficiency was 
found to be an 8-year mean, while the optimal past runoff efficiency for 5- and 7-year mean future 
flow was 7- and 6-years, respectively. The scatterplots of flow and potential covariates for multi-
year mean lengths of 3-, 5-, and 7-years are shown in Figure 5 as representative samples. The 
covariates for all other multi-year mean flow lengths are shown in Supplement Figures C1 through 
C6. At shorter mean lengths (e.g., 3-year means), the relationship between CESM-DPLE-
simulated temperature and observed flow is inverse and relatively linear, consistent with the 
observed hydroclimate relationships (Figure 5). For 5-year means, simulated minimum 
temperature also exhibits a linear relationship with flow. While the simulated maximum 
temperature generally exhibits a negative correlation with flow for positive temperature anomalies, 
mimicking the observed relationship, flow unexpectedly decreases as negative temperature 
anomalies decrease. The relatively lower skill of DPLE maximum temperature projections 
compared to minimum temperature suggest that lower quality temperature projections might not 
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be able to capture well the observed trend between flow and temperature. From a physical 
perspective, we would expect that as temperature increases, evapotranspiration demand rises and 
consequently reduces flow as noted in several studies described earlier (M. Hoerling et al., 2019; 
Vano et al., 2012; Woodhouse et al., 2016; Xiao et al., 2018). In terms of impact, the cool 
temperature-low flow pairings occur in the late 1980s through early 1990s, a time when the 
warming signal was not as strong as in the last two decades, suggesting that this erroneous 
relationship should play a relatively minimal role when making forecasts forced with more recent 
temperature projection inputs. The relationship of the 7-year means is very similar to that of the 5-
year means. We selected runoff efficiency as an effective indicator of the current basin hydrologic 
signature because streamflow is an interaction between temperature, precipitation, and land surface 
conditions that is well captured by runoff efficiency (Nowak et al., 2012).  

Based on these diagnostic analyses, the covariates selected for various multi-year mean 
flow projections consists of three covariates – future multi-year annual mean of maximum and 
minimum temperatures from CESM-DPLE and past multi-year average RE. For example, for the 
2-year mean flow projections from the year 1982, the feature vector consists of CESM-DPLE-
projected mean maximum and minimum temperatures for 1982-1983 and 1973-1981 average 
runoff efficiency (past 9-year mean efficiency yielded the highest correlation with future 2-year 
mean flow). Conversely, for the 5-year mean flow projections in the same year, the feature vector 
consists of CESM-DPLE projected mean maximum and minimum temperatures for 1982-1986 
and 1975-1981 average runoff efficiency (past 7-year mean efficiency yielded the highest 
correlation with future 5-year mean flow). Thus, for each historical year we compute this vector 
of covariates. 

 
3.1.2 Random Forest 

An RF machine learning approach was used to generate multi-year mean flow forecasts 
based on the covariates described above. Random forests, originally developed by Ho (1995) and 
later improved by Breiman (2001), are a Classification and Regression Tree (CART)-based 
supervised machine learning algorithm that can perform either classification or regression. 
Random forests are essentially generated through repeated bootstrapping of the training dataset, 
with a decision tree generated for each sample. Thus, unlike CART where a single tree is fitted to 
the data, here many trees (hence, forest) are fitted to bootstrapped samples of the historical data. 
For a covariate vector, estimates of the predictand (i.e., the dependent variable, here it is the multi-
year CRB flow) are obtained from each tree in the forest and averaged. We use the estimates from 
all trees to make up an ensemble, which provides a distribution. The RF algorithm also provides 
variable importance details, or how much utility a given predictor in the training dataset imparts 
on prediction performance. A single value of mean square error (MSE) or node purity is produced 
with every forest. The MSE metric indicates how much the fitted MSE would increase if the given 
predictor is randomly permuted. For details of the RF algorithm, we refer the reader to (Hastie et 
al., 2009). 

RFs are appealing for a multitude of reasons, including their predictive performance, 
robustness, speed, non-parametric nature, stability, diagnosis of variable importance, as well as 
their ability to handle non-linearity, interactions, noise, and small sample sizes in forcing data 
(Tyralis et al., 2019). RFs are being used in a variety of applications including water resources and 
water quality modeling (Suchetana et al., 2017), construction safety risk (Tixier et al., 2016), and  
used with success in recent years for flow forecasting, primarily at daily and monthly time scales 
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(Abbasi et al., 2020; Al-Juboori, 2019; Ghorbani et al., 2020; Hussain & Khan, 2020; Li et al., 
2019; Liang et al., 2018; Muñoz et al., 2018; Papacharalampous & Tyralis, 2018; Pham et al., 
2020). 

3.1.3 RF Implementation 
RF models are trained on historical, naturalized, water year flow at Lees Ferry for each 

multi-year block flow ranging from 2- to 10-year means (“multi-year means”) along with the 
scaled anomalies of the covariates spanning the same time ranges. The water year flows begin in 
October while the climate projections begin in November; the one-month difference in start dates 
is likely negligible since multi-year averages are calculated and used for both datasets. All RF 
forecasts start on October 1, regardless of the mean length. Multi-year mean flows are generated 
from each of the trees in the RF, thus producing an ensemble. We implemented the RF model in a 
K-fold cross-validation mode, which is described below.  

 
(i) To make a given forecast starting in year i with mean length N, a corresponding 

covariate vector xi,N is fed into a RF model ensemble generated using the 
randomForest R package (Liaw & Wiener, 2002; R Core Team, 2019). Each RF 
projection is trained on a blind training dataset subset from the 1982-2017 historical 
period, di-N, generated through a K-fold cross validation approach, where K is the 
number of years dropped prior to model training. K is a function of both the selected 
mean length N and its past-runoff efficiency window length (rep). So that no 
information from the N-year long period to be forecast is included in the training 
set (i.e., a “blind forecast”), only years less than the forecast year i minus N or 
greater than the forecast year i plus the maximum of N and rep are included in the 
training set (Equation 1). This approach prevents any overlap of the training and 
forecast years given the nature of multi-year means. Using the maximum of N and 
rep also removes any knowledge of the past annual runoff efficiency from the year 
to be forecast. 
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                                                                         (1) 

  
 
 
Where, 
  𝑁𝑁 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) 
𝑑𝑑𝑖𝑖−𝑁𝑁 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑛𝑛𝑔𝑔𝑔𝑔ℎ 𝑁𝑁  
𝑥𝑥𝑗𝑗,𝑁𝑁 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑗𝑗 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑁𝑁 
𝑦𝑦𝑗𝑗,𝑁𝑁 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑗𝑗 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑁𝑁 
𝑟𝑟𝑟𝑟𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) 
𝑙𝑙 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
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 For example, given a desired forecast of 2000-2004 mean flow (i = 2000 and N = 
5, rep = 7) the RF model is trained on running 5-year means spanning 1982-1995 and 2007-
2013, where years indicate the beginning of the 5-year mean period (e.g., 2013 is the 2013-
2017 5-year mean). For a desired forecast of 2010-2011 mean flow (i = 2010, N = 2, rep = 
9), the RF model is trained on running 2-year means spanning 1982-2008 only (e.g., 2008 
is the 2008-2009 2-year mean) since i + rep = 2010 + 9 = 2019 which is beyond the 
maximum year (2017) in the period of record used. The predictands include multi-year 
mean flows of a selected mean length (e.g., 5-year mean flow) and the predictors include 
CESM-DPLE projected mean minimum and maximum temperature of the same mean 
length, and past runoff efficiency of mean length determined through a correlation analysis 
that varies for each mean length. 

  
(ii) The RF algorithm was set to generate 300 trees for each combination of forecast year 

and mean length. This number of trees was selected because while there were only 
marginal performance improvements past 100-200 trees, use of 300 trees allows for a 
robust and well-dispersed forecast with very reasonable computational expense. To 
generate a projection for a given forecast year and mean length, the relevant feature 
vector was fed into each tree in the forest resulting in an ensemble of 300 multi-year 
mean flow projections (Equation 2). Traditionally, the average of all trees’ predictions 
is used as the random forest output in regression contexts, however our approach was 
to use individual trees’ predictions to create an ensemble. Default values from the 
randomForest R package (Liaw & Wiener, 2002) for the remaining model parameters 
were used as tuning lead to only marginal differences in projection performance. The 
two most important model parameters include the number of trees, nTree, and the 
number of covariates randomly sampled for each split in a tree, mTry. mTry defaults to 
the number of covariates divided by three. In this study three covariates are used, 
resulting in a value of one for mTry. 
  

𝑦𝑦𝑖𝑖−𝑁𝑁 =  

⎩
⎪
⎨

⎪
⎧
𝑥𝑥𝑖𝑖,𝑁𝑁
𝑥𝑥𝑖𝑖,𝑁𝑁
𝑥𝑥𝑖𝑖,𝑁𝑁
⋮
𝑥𝑥𝑖𝑖,𝑁𝑁
𝑥𝑥𝑖𝑖,𝑁𝑁

�

�

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1,𝑁𝑁
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2,𝑁𝑁
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3,𝑁𝑁

⋮
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑁𝑁
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑁𝑁 ⎭

⎪
⎬

⎪
⎫

    (2) 

Where, 
 𝑥𝑥𝑖𝑖−𝑁𝑁 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑜𝑜𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑁𝑁  
𝑦𝑦𝑖𝑖−𝑁𝑁 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑁𝑁  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,𝑁𝑁 = 𝑖𝑖 − 𝑡𝑡ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 

 
(iii) The RF algorithm generates some tree outcomes that match exactly the input 

predictands (i.e., streamflow) and other tree outcomes that deviate slightly from the 
predictands due to introduced randomization. Consequently, to generate annual flow 
sequences from the RF-generated multi-year means, if a projected multi-year mean was 
not an exact match with an observed multi-year mean flow from the blind training 
dataset, then the closest observed value within the blind training dataset was used for 
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disaggregation. Disaggregation of multi-year means to annual flow sequences simply 
involved finding the sequence of annual flows that constituted a selected multi-year 
mean (Equations 3 and 4). One potential shortcoming of this approach is that it can 
only produce annual flow volumes sampled from the observed record, although use of 
paleo-reconstructed flows could lengthen the period of record.  

𝑞𝑞�𝑁𝑁 = 𝑞𝑞1+𝑞𝑞2+⋯+𝑞𝑞𝑁𝑁−1+𝑞𝑞𝑁𝑁
𝑁𝑁

     (3) 
 

𝑞⃑𝑞𝑁𝑁−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = {𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑁𝑁−1, 𝑞𝑞𝑁𝑁}     (4) 
 

Where, 
 𝑞𝑞�𝑁𝑁 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ,𝑁𝑁 
𝑞𝑞𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖  
𝑞⃑𝑞𝑁𝑁−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 

3.2 Space-time streamflow projection on the network via disaggregation 
While there is value in skillful projections of annual and multi-year mean flow at midterm 

time scales, for it to be of impact to stakeholders, the skill in flow projections needs to be translated 
into reservoir pool elevations. As mentioned, to evaluate the utility of our novel climate 
conditioned decadal streamflow projections within an operational context, we use Reclamation’s 
CRMMS, which runs on a monthly time scale. As such, we needed to disaggregate the RF-
simulated annual flows, 𝑞⃑𝑞𝑁𝑁−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, at Lees Ferry, the aggregate gauge, to a monthly time step at all 
12 upstream sub-basins.  
 

The annual flows from the RF were disaggregated to monthly flows at all the locations 
(i.e., sub-basins) of CRB that are input to CRMMS.  For this space-time disaggregation we used 
the  non-parametric disaggregation method developed by Nowak et al. (2010). In this, a K-nearest 
neighbor (KNN) method is applied to each annual flow in the multi-year block to select a historical 
year and its space-time proportion of the annual flows at Lees Ferry aggregate gauge. The selected 
proportion vector is multiplied with the annual flow to obtain flows for the 12 months and 12 sub-
basins. For details of this simple and robust method and its application, we refer the readers to 
Nowak et al. (2010). This is repeated for all the annual flow values.  

3.3 Projections of operationally critical reservoir elevations 
Of the many variables CRMMS projects, we focus on simulated pool elevation at Lakes 

Mead and Powell, since various pool elevation thresholds in the two largest CRB reservoirs play 
a crucial role in determining water resources management throughout the basin. For example, 
when the August-projected end of year water level of Lake Mead drops below 1075 ft a Level 1 
Shortage Condition is declared for the Lower Basin and deliveries are reduced. A Lake Powell 
related threshold exists at elevation 3700 ft, when the reservoir releases extra water to distribute 
high flows (i.e. the Equalization tier) (Baker, 2019; USBR, 2020). These policies then percolate to 
regional and local water management strategies across the basin. 

CRMMS simulations were run for 32 hindcasts spanning 1982 to 2017 using the 
disaggregated RF projections from the 3-, 5-, and 7-year means as hydrologic flow forcings. The 
3-, 5-, and 7-year means were used as CRMMS inputs to test the shortest, mid-length, and longest 
multi-year mean projections. The 10-year means only produced 27-hindcasts due to the longer 
mean length making 2008-2017 the last available full block of historical data. Each hindcast is a 
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3-, 5-, or 7-year-long block run at a monthly resolution. An ESP hindcast dataset trained on 
observed 1981-2010 precipitation and temperature sequences and originally produced by the 
National Weather Service Colorado River Basin Forecasting Center (CBRFC) was used as a 
“baseline” hydrologic forcing in CRMMS simulations covering the 1982-2017 hindcast period. 
For each CRMMS run of a retrospective forecast, the ESP trace that covered the same time period 
was dropped prior to CRMMS input (i.e., the ESP trace that started in the same month and year as 
the CRMMS simulation to be run was dropped). This made the number of ESP traces either 29 or 
30 for forecasts made before or after 2010, respectively. ESP was used as a baseline model since 
it is used by Reclamation and other stakeholders in the CRB for seasonal- to annual- scale planning 
and risk assessment as well as for multi-year exploratory studies. Finally, a CRMMS simulation 
forced with historical flows in each sub-basin was run for each projection block to be used as a 
“truth” for calculating the projection skill of reservoir elevations. The historical simulation is not 
the true observed pool elevation since operational rules have changed over the course of the 
hindcast period but represents what would have been the observed pool elevation if the current 
Law of the River policies, including the Interim Guidelines, had been in place for the given 
historical unregulated flows. Since ESP and the historical simulation are at most 60 months long, 
the 7-year flow projection simulations were subset to a 5-year length for plotting and skill analysis. 
Similarly, the ESP and historical simulation were subset to a 36-month length when analyzed with 
the 3-year mean flow projections. 

 
3.4 Validation of Models 

We validated both the ensemble projections of flows and the monthly reservoir pool 
elevations, for the hindcast period of 1982 – 2017. Each framework was examined with separate 
performance metrics. For each forecast year, i, and mean length, N, the flow projections were made 
in a ‘blind’ K-fold cross validation model, where K = N + maximum(N,rep) -1, such that the feature 
vector of that year and any preceding or following running means with overlapping knowledge of 
the year to be forecast were not included in the RF training dataset. In other words, this avoids the 
prospect of selecting the flow of the N-years immediately prior to or following year i in training 
the projection model. The years selected in these blind training datasets were also used to 
disaggregate from multi-year mean projections to annual flows. A variety of performance metrics 
were calculated on both the multi-year mean flow projections and on the subsequent CRMMS 
simulation results. Applications of metrics such as the ranked probability skill score (RPSS), root 
mean square error (RMSE), continuous ranked probability skill score (CRPSS), Nash-Sutcliffe 
Efficiency (NSE), and reliability are further derived in the Supplement (Section A).  

4 Results 
Results from the flow and water resources decision variables are described below. For the 

multi-year mean projections of Lees Ferry naturalized streamflow, the 3-, 5-, and 7-year means are 
examined in Section 4.1 due to their skill, which generally outperforms both climatology and ESP, 
as well as their reliability, which is comparable with ESP’s reliability. For the simulated reservoir 
pool elevations, disaggregated results from the 3-, 5-, and 7-year mean flows are presented in 
Section 4.2.  

4.1 Streamflow projections 
The blind K-fold cross validation ensemble projections of 3-, 5-, and 7-year mean flows 

for each year for the 1982-2017 period from RF are shown as boxplots along with the historically 
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observed multi-year mean flows (Figure 6). The flow projections can capture multi-year variability 
quite well for some mean lengths given the limited duration of training data. Hindcast projection 
results for the remaining multi-year means are shown in the Supplement (Figure D1). 

Aggregating individual MSE values for each predictor variable from every year in the 
1982-2017 hindcast shows that past runoff efficiency is the most important variable, followed by 
CESM-DPLE-simulated maximum and minimum temperature as can be seen for the 5-year 
projection in Figure 7.  The runoff efficiency captures the combined impact of temperature with 
the basin hydrology and physical characteristics. This pattern is consistent for mean lengths of 2- 
through 9-years (Supplement Figures E1 through E7). The variable importance diagnosis was not 
performed on 10-year means due to a training dataset with too few years for adequate analysis 
after making the data ‘blind’ for 10-year means (i.e., dropping 19 out of 36 years in the 1982-2017 
training record).  

The RPSS was calculated by tercile thresholds for each year in the hindcast period. These 
tercile thresholds represent the 33rd and 66th percentiles but vary depending on the mean length 
selected. RPSS values greater or less than zero indicate better or worse performance, respectively, 
than a climatological ensemble forecast, with a score of one indicating a perfect forecast. For long-
lead forecasts, any positive RPSS is considered satisfactory, while RPSS values of 0.5 are 
considered good and higher values considered excellent. The RF projections show a positive 
median skill score for all mean lengths except for the 8- and 10-year mean flows, the former of 
which is just below zero (Figure 8).  The temporal pattern of the 10-year mean flow projections 
are fairly well captured, however the magnitudes were not. This we believe is due to the relatively 
long mean length necessitated dropping 19-years of data when training the RF in order to generate 
a blind forecast and thus yielded a constrained and under-dispersed sample space, hence the lower 
skill. Furthermore, the RF median RPSS mostly outperformed ESP median RPSS where 
applicable, with improvements in median RPSS ranging from 0.39 to 0.58 (Figure 8 and Table 1). 
ESP had a median RPSS of 0 for 2-year mean flow projections and a negative median RPSS for 
all other mean lengths, echoing prior studies that show little- to no- skill in ESP past a 1-year lead 
time.  

Table 1. Median RPSS from 1982-2017 hindcast for RF and ESP multi-year mean flow projections 

Mean Length 
 (year) 

Median RPSS 
∆ Improvement 
(RF minus ESP) RF ESP 

2 -0.05 0.00 -0.05 
3 0.41 -0.15 0.56 
4 0.24 -0.15 0.39 
5 0.30 -0.28 0.58 
6 0.33 - - 
7 0.21 - - 
8 -0.03 - - 
9 0.15 - - 
10 -0.70 - - 
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Time series of RPSS for the 3-, 5-, and 7-year means show that RF outperforms ESP in 
most years of the hindcast, particularly when projecting 3-year mean flows during the beginning 
years of the Millennium drought where ESP has little to no skill (Figure 9). RPSS time series of 
the remaining multi-year means are shown in the Supplement (Figure D2). Reliability diagrams 
(Figure 10) show the relationship between the forecasted probability of an event and its observed 
frequency. A perfectly reliable forecast falls along the 1:1 line and in some cases (e.g., 5-year 
means) the RF is not only closer to the 1:1 line than ESP but also has a flatter rank histogram. A 
flat rank histogram indicates that, over the course of the hindcast, the observed flows being forecast 
have an equal probability of occurring in any rank of the ensemble projection. In other words, the 
forecasts and observations are random samples from the same probability distribution. Rank 
histograms that are skewed to high or low ranks suggest forecast quality issues such as bias or 
under-dispersion (Hamill, 2001). Reliability scores (Figure D3; Candille et al., 2007; Frenette, 
2019; Hersbach, 2000) are calculated through a CRPS decomposition; a perfectly reliable forecast 
is represented by a reliability score of zero and higher values indicate lower reliability. Where 
comparable, ESP has consistently better reliability scores than RF; although RF reliability begins 
to improve for mean lengths of 6-, 7-, and 8-years potentially due to reduced variability induced 
by multi-year averaging. RF reliability worsens for the 9- and 10-year means, likely due to the 
smaller sample size available for training these forecasts. 

4.2 Reservoir pool elevations 
As mentioned, ensemble projections of future 3-, 5-, and 7-year annual, naturalized Lees 

Ferry flow from the RF method were disaggregated in space and time via the KNN approach 
described in the previous section. These space-time flows were then used to drive the CRMMS 
and compared with CRMMS simulations forced with ESP over the 1982-2017 hindcast period of 
running 3- or 5-year blocks. Since ESP’s duration is 5-years, analysis of CRMMS results was 
stopped at the 60-month mark for the 7-year flow projections. Figures 12 and 13 show the hindcasts 
for Lakes Powell and Mead pool elevations, respectively, generated from the 5-year mean flow 
projections for the 1999 – 2003 period, which covers the worst years of the Millennium drought. 
At a 60-month lead time, the historical reservoir level at Lake Powell is not captured by either 
forecast method ensemble, although the RF median and quartiles skew more towards the historical 
pool elevation compared to ESP (Figure 11a). At Lake Mead, both forecast methods capture the 
historical reservoir levels at all lead times, but the RF distribution again tends towards lower 
elevations relative to ESP (Figure 11b). Both forecast methods have similar sharpness and spread. 
Similar results are seen in other hindcast blocks in the 1982-2017 period as well as from the other 
multi-year mean lengths (Sections G.1 through G.3 in Supplement).  

For each of the 32-different hindcasts, an ‘ensemble RMSE’ was calculated on the end of 
water year (EOWY) simulated pool elevations at Lakes Powell and Mead and are shown as 
boxplots in Figure 12. For a detailed description of the ensemble RMSE calculation, see 
Supplement Section A. It can be seen from the boxplots that, while ESP performs similarly to, or 
better than, RF at shorter lead times (≤ 24 months), RF generally outperforms ESP at lead times 
of 36 months or longer. This is also corroborated in the median RMSE at all lead times (Table 2a 
and 2b). RF forecasts at longer lead times generated reductions in hindcast median RMSE relative 
to ESP ranging from -7% to -30% at Mead and -3% to -20% at Powell. Generally, these results 
indicate translation of skill in flow projections informed by temperature to improvements in water 
resources management variables.  
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Table 2a. Median RMSE from CRMMS-simulated 1982-2017 hindcast at Lake Powell for both ESP and 
RF 

Powell Median EOWY RMSE (ft) 

Lead Time 
 (number of months) 

3-year mean 
(n = 32) 

5-year mean 
(n = 32) 

7-year mean 
(n = 30) 

ESP RF % Change ESP RF % Change ESP RF % Change 
12 24.27 23.99 -1% 24.27 25.74 6% 23.75 25.45 7% 
24 34.79 33.15 -4.7% 34.79 39.20 13% 34.40 36.52 6% 
36 45.76 40.40 -11.7% 45.76 44.51 -3% 44.29 48.03 8% 
48 - - - 50.38 40.54 -20% 47.85 46.76 -2% 
60 - - - 49.62 43.71 -12% 49.33 44.09 -11% 

 
Table 2b. As in Table 2a. but for Lake Mead 
Mead Median EOWY RMSE (ft) 

Lead Time 
 (number of months) 

3-year mean 
(n = 32) 

5-year mean 
(n = 32) 

7-year mean 
(n = 30) 

ESP RF % Change ESP RF % Change ESP RF % Change 
12 7.88 9.53 21% 7.88 12.98 65% 7.72 13.96 81% 
24 17.41 20.49 17.7% 17.41 23.93 37% 17.16 25.41 48% 
36 33.06 26.51 -19.8% 33.06 30.76 -7% 30.11 36.69 22% 
48 - - - 44.13 33.52 -24% 42.30 35.22 -17% 
60 - - - 52.79 36.72 -30% 50.86 43.35 -15% 

 

 CRPSS and NSE were also applied to the CRMMS simulations and showed similar results 
as the ensemble RMSE. For more information, see Supplement Section H. Overall, these results 
suggest that ESP could remain the preferred forecast method during the first 12-months of a 
midterm forecast but improvements in skill during years 3-5 could be gained through RF or similar 
methods. 

5 Summary and Discussion 
A simple decadal flow projection method was developed based on RF machine learning 

trained on CESM-DPLE simulations of UCRB temperature, past RE, and observed UCRB flow. 
Motivation for the model came from moderate correlation and non-linearities between future 
multi-year mean flow and future multi-year mean CESM-DPLE simulated temperature, as well as 
between past runoff efficiency and future flow. RF projections of 3- through 7-year mean flow 
were able to broadly capture multi-year variability and outperformed climatology over half of the 
time. Based on hindcast median RPSS, RF outperformed ESP for multi-year mean projections of 
3-years through 5-years. The greatest improvement over ESP occurred for 3-year means, where 
the RF and ESP hindcast median RPSS was 0.41 and -0.15, respectively, a 0.56 difference. In 
projecting 3-year means during the lowest flow years of the Millennium Drought (1999-2005 and 
2012-2015), RF had RPSS values at or above ~0.5, whereas ESP RPSS values were at or below 0. 
Interestingly, in the only other low flow period in the hindcast (1987-1992) during which model 
temperatures projections were anomalously cool, RF performed worse than ESP in projecting 3-
year means. This potentially indicates the importance of both the warming trend and quality of 
projected temperature covariates to model performance in predicting low flow years. Otherwise, 



manuscript submitted to Water Resources Research 

15 
 

RF tends to outperform both ESP and climatology in low flow years for mean lengths of up to 5-
years. Both methods perform similarly for high flow years and generally show improvements over 
climatology.   

When used as a hydrologic flow forcing in an operational simulation model of the CRB, 
RF projections generally outperformed ESP in predicting pool elevations at Lakes Powell and 
Mead for lead times of 36 months or greater. The improvements of RF over ESP are noteworthy 
when using projections disaggregated from either 3- or 5-year means. The hindcast median 
ensemble RMSE of RF was, at best, between 12% and 30% lower than that of ESP for lead times 
between 36- and 60-months: equating improvements of approximately 5- to 16-feet.   One caveat 
is that the RF algorithm cannot predict flows that occur outside of the historical envelope used to 
train the model. Although, any future projections trained with the RF method would include the 
extremes observed in the 1980s and early 2000s and, at least in theory, going forward there are not 
likely to be volumes far outside of the period of record. The training dataset is limited by the 
CESM-DPLE temporal domain, which only begins in 1982. Utilization of paleo-reconstructed 
flow data and overlapping climate model simulations like the CESM - Last Millennium Ensemble 
(Otto-Bliesner et al., 2015) would allow for a wider range of flow extrema but would also likely 
introduce greater projection uncertainty compared to usage of naturalized 20th and 21st century 
flows only.  

We suggest that modest improvements upon current forecast methods can be gained in 
projecting reservoir elevations at midterm time scales using CESM-DPLE simulated temperature 
data along with RF machine learning models. Advancements in midterm flow projection 
techniques are critically important for multiyear planning of reservoir management. As shown 
during the Millennium drought, rapid drawdowns can occur with sustained low flows and a lack 
of midterm shortage planning. The warming trend, associated uncertainty with possible reductions 
in streamflow and increases in drought risk, as well as continued population growth all support the 
necessity of smart, efficient, and informed midterm planning that emphasizes conversation when 
facing multi-year droughts; temperature conditioned flow forecasts can help meet this need.  

Future work might investigate methods to improve skill of the RF approach and the 
covariates used. Of particular importance is improving the skill for precipitation and pre-1980 
temperature simulations, upon which the performance of any derivative flow projection is heavily 
dependent. Future studies should investigate any new iterations of CESM or other climate model-
based projections to leverage potential advances in hydroclimate projection skill. While we used 
a correlation-informed heuristic analysis to determine model covariates, more objective techniques 
like Generalized Cross Validation (GCV) might be used during covariate selection, particularly if 
the parameter space is significantly enlarged with additional climate models. Additionally, the 
model training dataset might be further expanded through inclusion of paleo-reconstructed flow 
and overlapping simulated hydroclimate data. Though we used future 2- through 10-year block 
lengths, similar approaches could be applied to multi-decadal time scales for longer term planning. 
Finally, incorporation of other machine learning methods (e.g., neural networks) as well as wavelet 
decomposition of temperature, precipitation, and flow data may improve simulated flow 
projections by exploiting hydroclimate linkage patterns and regime-like flow behavior.  
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Figures 

 
Figure 1. Annual naturalized Colorado River flow (million acre-feet) at Lees Ferry, Arizona. Red line shows a loess 
fit. 

 

 
Figure 2. Anomaly correlation skill score (ACC) of CESM-DPLE projections of CRB multiyear mean temperature 
(maximum, minimum) and precipitation during a 30-year hindcast from 1981-2011. “Lead Time” indicates both the 
lead time and the specific years used in multi-year averaging.  
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Figure 3. CRB subbasins, forecast locations, and reservoirs simulated by CRMMS. A prediction of monthly flow 
over the next 5-years is made for 12 UCRB forecast locations and used as CRMMS hydrologic input. Climatological 
approaches are used in the Lower Basin due to relatively lower flow contributions. 
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6. Morrow Point Unreg. Inflow 
7. Blue Mesa Unreg. Inflow 
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12. Lake Powell Unreg. Inflow 
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Figure 4.  Relationship between naturalized Lees Ferry flow and PRISM derived precipitation, temperature in the 
UCRB for 5-year running means. Color indicates year in which observation occurred. Correlation was calculated for 
flow and each meteorological variable. Trend and 95% confidence from simple linear regression. 
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Figure 5.  Relationship between future N-year mean flow and covariates. Upper (a), middle (b), and lower (c) plots 
show 3-, 5-, and 7-year means, respectively. Past runoff efficiency mean length was determined separately for each 
mean length based on a correlation analysis. Trend and 95% confidence from loess fit. 
 

(a) 

(b) 

(c) 



manuscript submitted to Water Resources Research 

21 
 

 
 
Figure 6. Running multi-year mean projections of naturalized Lees Ferry flow from the random forest method trained 
on blind, K-fold cross validation. Multi-year means include 3-, 5-, 7-years and are indicated above each graphic. 
Forecast ensembles are represented via blue boxplots, with the box representing the 25th-, 50th-, and 75th- percentiles, 
and the upper and lower whiskers representing 1.5 times the interquartile range (IQR) plus or minus the upper and 
lower quartiles, respectively. Black points above or below the boxplot whiskers are considered outliers based on the 
1.5 times IQR threshold. Observed multi-year mean flows are indicated by red crosses. The years on the x-axis 
represent the starting year of each multi-year mean (e.g., 1982 for a mean length of 3-years represents 1982-1984 
mean). Horizontal dashed line is the 1981-2017 average multi-year mean flow. 
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Figure 7. Variable importance plot for random forests generating 5-year mean flow projections for running 1982-
2017 hindcasts. “re.p”, “DPLE.Tmax”, and “DPLE.Tmin”, indicate past runoff efficiency, DPLE maximum 
temperature, and DPLE minimum temperature, respectively. Percent increase in MSE indicates how much the mean 
square error would increase if the select variable is randomly changed during the training period. 

 
 

 
Figure 8. RPSS of RF- and ESP- projected multi-year mean flows for 1982-2017 from blind, K-fold cross validation. 
Skill shown for all years in hindcast with the number of RPSS values in hindcast varying from 35 to 27 depending on 
mean length. RPSS calculated against a 1981-2017 climatological ensemble of blind observed multi-year mean flows 
dependent on mean length selected. ESP’s maximum length is 5-years.  
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Figure 9. RPSS time series of RF- and ESP- projected multi-year mean flows for 1982-2017 from blind, K-fold cross 
validation. Points indicate RPSS for individual years in hindcast for the 3-, 5-, and 7-year mean flow projections. Point 
colors represent the observed flow tercile of each year (e.g., high-, low-, and average- flow years). The solid and dotted 
lines show skill time series for RF and ESP, respectively. RPSS is calculated against a 1981-2017 climatological 
ensemble of blind observed multi-year mean flows dependent on mean length selected. ESP’s maximum length is 5-
years.  
 
 

 
Figure 10. Reliability diagram with rank histogram for 3-, 5-, and 7-year mean flow projections during 1982-2017 
hindcast for RF and ESP methods. Points that fall along the 1:1 line are considered perfectly reliable.  
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Figure 11. CRMMS-simulated EOWY pool elevation at Lake Powell (a) and Lake Mead (b) from ESP and 5-year 
mean RF flow forecasts as well as a historical simulation. Hindcast covers water years 2000-2004 (October 1999 – 
September 2004). X-axis values delineate lead times for each EOWY.  Historical EOWY pool elevations indicated 
by horizontal black dashed lines. Violin plots show measures of central tendency as well as probability density.  
 
 

Obs
 

Obs
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(b) 
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Figure 12. EOWY ensemble RMSE calculated on CRMMS-simulated pool elevation at Lakes Powell and Mead for 
running hindcasts (1982-2017) disaggregated from 3-, 5-, and 7-year mean flow projections as well as ESP. Historic 
simulations forced by historical unregulated flows were considered the observed value in error calculations.  
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