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Abstract

Structurally complex forests optimize light and water resources to assimilate carbon more effectively, leading to higher pro-

ductivity. Information obtained from Light Detection and Ranging (LiDAR)-derived structural complexity (SC) metrics across

spatial scales serves as a powerful indicator of ecosystem-scale functions such as gross primary productivity (GPP). However,

our understanding of mechanistic links between forest structure and function, and the impact of disturbance on the relation-

ship, is limited. Here, we paired eddy covariance measurements of carbon and water fluxes in temperate forests collected in the

CHEESEHEAD19 field campaign with drone LiDAR measurements of SC to establish which SC metrics were strong drivers

of GPP, and tested potential mediators of the relationship. Mechanistic relationships were inspected at four metric calculation

resolutions to determine whether relationships persisted with scale. Vertical heterogeneity metrics were the most influential in

predicting productivity for forests with a significant degree of heterogeneity in management, forest type, and species compo-

sition. SC metrics included in the structure-function relationship as well as the strength of drivers was dependent on metric

calculation resolution. The relationship was mediated by light use efficiency (LUE) and water use efficiency (WUE), with WUE

being a stronger mediator and driver of GPP. These findings allow us to improve representation in ecosystem models of how

SC impacts light and water-sensitive processes, and ultimately GPP. Improved models enhance our ability to simulate true

ecosystem responses to management, resulting in a more accurate assessment of forest responses to management regimes and

furthering our ability to assess climate mitigation and strategies.
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Key points: 14 

 Vertical heterogeneity metrics are the most influential productivity drivers for 15 

heterogenous temperate forests  16 

 The structure-function relationship is mediated by resource use efficiency, and water use 17 

efficiency is a strong driver of productivity 18 

 The mechanistic relationship between forest structure and function is dependent upon 19 

structural metric calculation resolution 20 

 21 

 22 
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Abstract 26 

Structurally complex forests optimize light and water resources to assimilate carbon more 27 

effectively, leading to higher productivity. Information obtained from Light Detection and 28 

Ranging (LiDAR)-derived structural complexity (SC) metrics across spatial scales serves as a 29 

powerful indicator of ecosystem-scale functions such as gross primary productivity (GPP). 30 

However, our understanding of mechanistic links between forest structure and function, and the 31 

impact of disturbance on the relationship, is limited. Here, we paired eddy covariance 32 

measurements of carbon and water fluxes in temperate forests collected in the CHEESEHEAD19 33 

field campaign with drone LiDAR measurements of SC to establish which SC metrics were strong 34 

drivers of GPP, and tested potential mediators of the relationship. Mechanistic relationships were 35 

inspected at four metric calculation resolutions to determine whether relationships persisted with 36 

scale. Vertical heterogeneity metrics were the most influential in predicting productivity for forests 37 

with a significant degree of heterogeneity in management, forest type, and species composition. 38 

SC metrics included in the structure-function relationship as well as the strength of drivers was 39 

dependent on metric calculation resolution. The relationship was mediated by light use efficiency 40 

(LUE) and water use efficiency (WUE), with WUE being a stronger mediator and driver of GPP. 41 

These findings allow us to improve representation in ecosystem models of how SC impacts light 42 

and water-sensitive processes, and ultimately GPP. Improved models enhance our ability to 43 

simulate true ecosystem responses to management, resulting in a more accurate assessment of 44 

forest responses to management regimes and furthering our ability to assess climate mitigation and 45 

strategies. 46 

Plain Language Summary 47 

The way that trees are arranged within a forest impacts the forest’s ability to use light and 48 

water resources for photosynthesis. Forests that are arranged in more complex ways do a better 49 

job of using available resources, and have higher rates of photosynthesis, or productivity. By 50 

combining data that describes the complexity of the forest with data that describes how much 51 

photosynthesis is taking place, we can better understand which factors impact that relationship, 52 

and which types of forest complexity are the most important. We used data from a temperate forest 53 

with a long history of management and found that vertical complexity was the most influential, 54 

and that the intensity of management had a large impact on the relationship between complexity 55 
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and productivity. We also found that the relationship was controlled by how efficiently the forest 56 

used the available resources, and that the spatial resolution at which the data were examined 57 

changed the relationship. These findings will allow us to improve the mathematical models we use 58 

to test the impacts of forest management on forest productivity, which will enhance our ability to 59 

manage our resources in the face of climate change.  60 

1 Introduction 61 

Advancing our understanding of the relationship between forest structural complexity (SC) 62 

and key ecosystem functions such as carbon and water cycling requires quantification of the 63 

mechanistic links between structure and function. Mapping these links is a fundamental aspect of 64 

improving our ability to scale measurements from the leaf to stand to landscape level, a preeminent 65 

challenge in the field of ecosystem ecology (Bonan 2008, Fahey et al., 2019). Forest SC 66 

characterizes the three-dimensional arrangement of vegetation in a forest and includes variables 67 

such as rugosity, vertical complexity index, and mean canopy height (McElhinny et al., 2005, 68 

Atkins et al., 2018). Taken together, these variables constrain the ability of the forest to assimilate 69 

available resources, and thus the capacity for photosynthesis (Ehbrecht et al., 2021). The prevailing 70 

theory is that structurally complex forests are better able to optimize incoming light and water 71 

resources to assimilate carbon more effectively (Anten, 2016, Hardiman et al., 2011, Atkins et al., 72 

2018, Gough et al., 2016). It has been suggested that heterogeneous mixed forests with higher 73 

levels of SC are tied to a heightened ability to capitalize on available resources, in part due to 74 

functional trait variability and niche differentiation (Zhang et al., 2012, Williams et al., 2017, 75 

Hillebrand et al., 2008, Danescu et al., 2016). 76 

Studies have shown that integrating information obtained from SC metrics across spatial 77 

scales to describe overall SC can serve as a powerful indicator of ecosystem-scale functions such 78 

as gross primary productivity (GPP), augmenting other commonly measured characteristics 79 

including species composition and diversity (Atkins et al., 2018, Gough et al., 2019, Hardiman et 80 

al., 2011, Silva Pedro et al., 2017, Eitel et al., 2016, Fahey et al., 2019). Identifying not only which 81 

SC variables have the greatest potential to predict GPP, but what potential controls or influential 82 

factors of the structure-function relationship might exist is a vital aspect of this effort. Additionally, 83 

relationships between productivity and SC could provide mechanistic evidence for using these SC 84 

metrics as predictors of forest carbon storage capacity and functionality. 85 
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The application of Unoccupied Aerial System (UAS) Light Detection and Ranging 86 

(LiDAR) to derive physically based parameters such as SC variables helps to address critical 87 

knowledge gaps regarding our mechanistic understanding of how structure determines function 88 

(Atkins et al., 2018, Camarretta et al., 2020). As opposed to passive optical remote sensing 89 

approaches, active remote sensing tools such as LiDAR have demonstrated superior performance 90 

in capturing three-dimensional vertical profiles of stand structure (Lefsky et al., 1999, Eitel et al., 91 

2016). In addition to allowing for the quantification of complexity, LiDAR-derived SC metrics 92 

can facilitate a deeper understanding of the relationship between complexity and successional 93 

processes in heterogeneous mixed temperate forests (van Ewijk et al., 2011). This is an important 94 

endeavor as much of the work done to develop related ecological theory has been conducted in 95 

more mature coniferous forests with comparatively less species diversity (Pregitzer and 96 

Euskirchen, 2004, Ryan et al., 1997, Kane et al., 2010), which likely experience different control 97 

mechanisms on productivity than temperate deciduous or mixed forests (Gough et al., 2016). 98 

This approach is particularly useful in the temperate forests of the upper Midwest USA, 99 

where once even-aged forests are undergoing a transition to more complex systems as they 100 

approach advanced stages of successional development following a long history of intensive 101 

disturbance (Hardiman et al. 2011, Frelich, 1995, Bogdanovich et al., 2021). Variability in 102 

disturbance legacies combined with a primarily mixed deciduous-conifer forest composition and 103 

general landscape heterogeneity result in large variations in stand complexity at the ecosystem 104 

scale. As SC has been shown to be positively correlated with stand production, characterizing the 105 

mechanistic relationship between complexity and productivity will enable better representation of 106 

the potential impacts of these transitions on carbon sequestration in Midwestern forests (Forrester 107 

et al., 2013). The study design of the 2019 Chequamegon Heterogenous Ecosystem Energy-108 

balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD19) field 109 

experiment provided a unique opportunity to partially control for the influence of variability in 110 

climate, edaphic factors, and forest functional types on productivity, allowing for a more 111 

representative physiological understanding of the structure-function relationship than has been 112 

previously demonstrated. 113 

The objective of this study was to identify mechanistic relationships between forest 114 

structure and function, explore potential controls or mediating factors on that relationship, and 115 
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determine whether or not the structure-function relationship persisted when structural metrics were 116 

calculated at a variety of resolutions.  117 

In pursuit of this objective, this project addressed four primary research questions: 118 

1. Which SC metrics are most influential for the prediction of stand primary productivity in mixed 119 

temperate forests with a high degree of heterogeneity and a long history of management?  120 

2. How do management legacies impact these influential SC metrics, and ultimately stand 121 

productivity? 122 

3. Is the mechanistic relationship between forest structure and function direct, or is it mediated by 123 

other factors such as RUE? 124 

4. Is the mechanistic relationship between forest structure and function dependent upon the scale 125 

of structural metric calculation? 126 

2  Methods  127 

2.1 Experimental design 128 

During the CHEESEHEAD19 intensive field campaign spanning from June to October of 129 

2019, 17 eddy covariance (EC) flux towers from the NSF Lower Atmosphere Observing Facility 130 

(LAOF) were deployed across the 10 x 10 km study domain. These 17 towers were in addition to 131 

the preexisting AmeriFlux tall tower US-PFa, and two towers supported by Dr. Paul Stoy, bringing 132 

the total number of EC towers to 20. The primary research interests of CHEESEHEAD19 were to 133 

explore potential drivers behind the enduring lack of energy balance closure frequently observed 134 

over heterogeneous landscapes, and to address persistent challenges associated with upscaling 135 

surface energy fluxes (Butterworth et al., 2021). The study period reflects both the summer season 136 

land-atmosphere exchange as well as exchanges during the transition of vegetation into 137 

senescence. This observational period was chosen to support the energy balance related research 138 

interests of CHEESEHEAD19, as it captures the shift in energy balance from a latent heat flux 139 

dominant landscape to a sensible heat flux dominant landscape (Butterworth et al., 2021). Of the 140 

20 total towers, nine towers located in forested sites were selected to measure forest composition 141 

using UAS mounted LiDAR (Figure 1). These nine sites were selected given their 1) forested 142 

composition (several of the original 20 sites were located in wetland areas) and representative 143 
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forest type, 2) overlap with flux tower footprints, and 3) ease of access for UAS flying. While 144 

climatic conditions and topography are shared across the nine sites, the selected sites span a range 145 

of successional stages, dominant vegetation types, management histories, and degrees of 146 

heterogeneity. Pairing EC surface-atmosphere carbon and water fluxes with LiDAR-derived forest 147 

SC metrics, mechanistic relationships between forest structure and function were established.  148 

Mechanistic relationships were explored using best-subsets selection and structural 149 

equation modeling (SEM), specifically path analysis. The application of SEM allows for the 150 

establishment not only of which SC metrics are influential in predicting GPP, but the specific 151 

strengths, significance, and variability of their predictive power. Additionally, SEM allows for the 152 

testing of variables that potentially serve as mediators of the relationship between SC and GPP, 153 

through the comparison of reduced and saturated model designs (Fan et al., 2016). This study 154 

explored the viability of resource use efficiency (RUE) as a mediator of the structure-function 155 

relationship, as previous studies have demonstrated it to be a strong predictor of forest productivity 156 

(Atkins et al., 2018, Gough et al., 2019). Both water use efficiency (WUE) and light use efficiency 157 

(LUE) were used to represent overall stand RUE.  158 

RUE describes how well a forest stand captures and utilizes its available resources to fix 159 

carbon dioxide, with greater efficiency typically resulting in higher levels of biomass production 160 

(Binkley et al., 2004, Anderson-Teixeira et al., 2021). This paper focuses specifically on light and 161 

water as the primary limiting resources controlling the rate of photosynthesis, although other 162 

factors including the supply of CO2, concentration of photosynthetic enzymes such as Rubisco, 163 

and availability of catalysts including nitrogen and phosphorous have been explored at length in 164 

other studies (Tang et al., 2018, Hardiman et al., 2013, Ainsworth and Long 2004). Additionally, 165 

these mechanistic relationships were inspected at four structural metric calculation resolutions to 166 

determine whether the relationships persisted with scaling, or if they were simply artifacts of the 167 

resolution at which they were calculated. Structural metrics were calculated from LiDAR returns 168 

collected at spatial resolutions of 0.25 m, 2 m, 10 m, and 25 m. 169 

 170 

 171 

2.2 Site description  172 
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The study area is a 10 x 10 km domain located in the Chequamegon-Nicolet National Forest 173 

in Northern Wisconsin. Most of the region is heavily forested and trees are primarily deciduous 174 

but a significant conifer presence exists as well. There is a high degree of heterogeneity 175 

representative of a typical mid-latitude forest, displaying a diverse array of wetlands, meadows, 176 

streams, and lakes in addition to forest cover (USDA Forest Service, 2011). Typical homogenous 177 

patches of land cover are generally around 20 hectares or less (Desai et al., 2015). Heterogeneity 178 

is further accentuated by a long history of non-uniform forest management practices including 179 

thinning and clear-cuts, resulting in increased variability in stand age and structure. Forests in 180 

Northern Wisconsin typically have an age distribution centered around ‘middle age’, or 40 – 90 181 

years (Birdsey et al., 2014, Wisconsin Department of Natural Resources, 2019). This age pattern 182 

is reflective of the fact that the majority of the forested land was logged in the midˉ19th to early 183 

20th century to clear land for agricultural purposes (Desai et al., 2007, Gough et al., 2007, 184 

Rhemtulla et al., 2009), which was followed by subsequent periods of agricultural land 185 

abandonment, reforestation, fire suppression, and intensive timber harvest (Birdsey et al., 2006). 186 

In addition to human management, the region experiences natural disturbance due to windstorms, 187 

insect invasion, and occasionally fire (Gough et al., 2007). Fires were historically influential during 188 

times of land clearing and Euro-American settlement (Rhemtulla et al., 2009), but wind damage 189 

has had more consistent impacts on stand structure and carbon storage over time (Mladenoff et al., 190 

2008). 191 
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 192 

 193 

Figure 1. Map depicting the location of the study site within a regional and state context. The 194 

black circle on the state map depicts a 60km radius around the location of the Park Falls, Wisconsin 195 

WLEF tall tower. Colored dots represent the nine sites within the 10 x 10 km CHEESEHEAD19 196 

study domain (represented by the black square) selected for measurement of forest composition.  197 

 198 

The study domain is of relatively consistent low-grade elevation and human population is 199 

minimal. Slight variations in terrain elevation in combination with significant precipitation in all 200 

seasons results in a mix of saturated (wetland) and unsaturated (upland) sandy loam soils (Davis 201 

et al., 2003). Upland forests comprise roughly 65% of the landscape (Wisconsin Department of 202 

Natural Resources, 2019) and deciduous tree types include quaking aspen (Populus tremuloides 203 

Michx.), sugar maple (Acer saccharum Marsh), red maple (Acer rubrum L.), basswood (Tilia 204 

americana), beech (Fagus grandifolia), and several varieties of oak and birch. Coniferous tree 205 

varieties include balsam fir (Abies balsamea), red, white, and jack pine (Pinus resinosa, Pinus 206 

strobus, Pinus banksiana), and white spruce (Picea glauca). Wetlands are both forested and 207 

unforested and account for approximately 35% of the land cover (Wisconsin Department of 208 
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Natural Resources, 2019). Wetland tree species include alder (Alnus incana), cedar (Thuja 209 

occidentalis), tamarack (Larix larcina), and black spruce (Picea mariana) (Davis et al., 2003). The 210 

area has a K�̈�ppen climate classification of Dfb, and experiences a humid continental climate 211 

characterized by warm humid summers and cold snowy winters, with no significant difference in 212 

precipitation amount between seasons (Arnfield, 2020). 213 

 214 

 215 

Figure 2. Vegetation coverage at each of the nine forested sites: a) NE2 b) NE3 c) NE4 d) NW2 216 

e) SE3 f) SE5 g) SE6 h) SW2 and i) SW4. Coverage is segmented by both vegetation type and 217 

stand age.  218 

 219 

2.3 Measurements 220 

2.3.1 Flux Towers 221 

Exchanges of carbon, water, and energy between the atmosphere and the land surface were 222 

collected at a frequency of 20 Hz using an open-path infrared H2O and CO2 gas analyzer (Campbell 223 

Scientific EC150) and sonic anemometer to measure three-dimensional wind speed (Campbell 224 
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Scientific CSAT3AW). In addition to flux-specific instrumentation, the nine selected sites were 225 

similarly outfitted with meteorological instruments including slow-response air temperature and 226 

humidity sensors (NCAR SHT), barometers (Vaisala PTB210), and 4-component radiometers 227 

(Hukseflux NR01). Gas analyzers, sonic anemometers, barometers, and radiometers were all 228 

mounted at the top of the EC towers above the local forest canopy, mounting heights are presented 229 

in Table 1. Additional instrumentation included tower-mounted air temperature sensors at two 230 

levels within the canopy (2 m and mid-canopy, which varied by site), and soil sensors (NCAR 4-231 

level Tsoil, Meter EC-5 Qsoil, REBS HFT Gsoil, and Hukseflux TP01 Csoil) buried near the base 232 

of each tower in the upper soil profile (0 – 5 cm). Instrument power was supplied via exchangeable 233 

batteries, which occasionally resulted in minimal data loss due to limited recharging capacity at 234 

the field operations base. NR01 radiometer deployment was delayed for sites NW2, NE3, SW2, 235 

and SE5, therefore no data exists for approximately the first 25 days of the study period. 236 

Radiometer data was filtered for sensor wetness and cleaning periods. Gas analyzers were cleaned 237 

2 – 3 times during the study, and data was filtered out for periods of significant nighttime dew 238 

formation, which resulted in sensor biases.  239 

 240 

Table 1. LiDAR footprint size, instrument installation heights, and age and tree height metrics 241 

for each of the nine selected forest plots 242 

Site 

LiDAR 

Footprint 

(km2) 

Instrument  

Height  

(m) 

Avg. Tree 

Height  

(m) 

Avg. Age  

(years) 

NE2 0.48 32 14.20 56.77 

NE3 0.24 32 18.10 71.29 

NE4 0.18 32 18.70 108.5 

NW2 0.23 12 8.80 44.08 

SE3 0.82 32 8.10 42.00 

SE5 0.22 13 12.40 55.67 

SE6 0.23 32 10.30 49.50 

SW2 0.22 30 10.90 63.50 

SW4 0.82 32 13.50 76.27 
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 243 

Turbulent fluxes of carbon, water, and energy were calculated every thirty minutes from 244 

high frequency (20 Hz) eddy covariance measurements. Prior to gap filling, a friction velocity (u*) 245 

threshold calculation was performed using the approach outlined in Wutzler et al. (2018), where 246 

the u* threshold is estimated with the moving point test. u* is a reference wind velocity that 247 

represents the shear stress arising through movement across the land surface. Below the u* 248 

threshold, turbulent mixing is weak enough that flux measurements are considered non-249 

representative of the actual flux state, and thus net ecosystem exchange (NEE) flux data is filtered 250 

out during those time periods. Gap filling and filtering of flux data was performed using the 251 

software REddyProc (Wutzler et al., 2018). Prior to gap filling, an average of 37% of NEE values 252 

were missing across all nine sites, with individual site missing values ranging from 26% (SW2) to 253 

61% (SE5). Missing data occurred to some degree at every site, although the reasons for missing 254 

data (equipment malfunction or cleaning, temporary power loss, moisture interference, etc.) 255 

varied. GPP was approximated from NEE using the flux partitioning method described in 256 

Reichstein et al. 2005 and was calculated using both the nighttime and the light response curve 257 

methods for respiration (Reichstein et al., 2012).  258 
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 259 

Figure 3. Results of the four quality control (QC) checks that were assessed for EC data, as well 260 

as the combined QC assessment for each site. The gray scale represents the number of sites that 261 

passed or failed the QC assessment for each date and time during the measurement period.  262 

2.3.2 Drone-based LiDAR  263 

To characterize three-dimensional forest structure, we employed a Routescene © LiDAR 264 

onboard a UAS hexacopter DJI M600 Pro to collect high-density 3D scans (~600 points mˉ2). 265 

Over the span of June 25 – 29, 2019, we surveyed the footprints of the nine selected flux tower 266 

sites and areas ranging between 0.25 to 1 km2 per site (Table 1) with a flight footprint of 267 

approximately 500 m x 500 m. Autonomous flights (with a duration of ~20 minutes each) were 268 

programmed using Universal ground Control Software (UgCS) v3.2.113. Flights were performed 269 

at a speed of 6 m sˉ1, 60 m above ground level and 60 m side distance between parallel flight 270 

lines. Raw data was boresight calibrated, filtered and *.laz exported using Routescene 271 

proprietary software LidarViewer ©. Points within 1 mm radius were filtered and a box range 272 

filter centered on the sensor for each scan (scan rate 10 Hz) of 120 m width, 180 m height and 273 
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120 m length was applied, ensuring each flight line would have complete overlap with other 274 

flight lines. Random noise was addressed using a statistical outlier removal filter and combined 275 

(only for multiple flights per site) in CloudCompare v2.10.  276 

2.3.3 Stand age and disturbance  277 

Stand age and disturbance history data was obtained from the publicly available United 278 

States Department of Agriculture Forest Service Geodata Clearinghouse. All sites had multiple 279 

distinct age classes present, representing a range of successional statuses (Figure 4). The majority 280 

of the sites were dominated by stands in the young to middle age classes, although regeneration 281 

saplings younger than five years were not specifically accounted for. The young age class 282 

corresponds to the stand initiation and stem exclusion successional stages (Odum, 1969), and the 283 

middle age class, defined by Pan et al. (2011) as roughly 40 – 100 years, corresponds to the 284 

understory reinitiation stage. Two sites (NE4 and SW2) contain stands that fall within the old 285 

growth successional stage, characterized in the temperate Lake States (Minnesota, Wisconsin, and 286 

Michigan) by the presence of long-lived tree species that are at or greater than 120 years of age 287 

and exist in an advanced stage of structural development (Frelich, 1995). Forest Inventory Analysis 288 

data shows that the oldest forests sampled in the temperate Lake States region are between 200 –289 

210 years old (Birdsey et al., 2014).  290 

Several sites have experienced significant disturbance in the form of clearcutting and 291 

harvest (Figure 5), with the most recent harvest taking place in 2016 (SE6), and the most recent 292 

clear cut occurring in 2013 at stands in sites SE5 and NW2. Harvest is broadly defined here to 293 

include selective and shelterwood cuts as well as any harvest that is not stand replacing, whereas 294 

a clear cut specifies a stand replacing harvest occurring within the last fifty years. In addition to 295 

anthropogenic disturbance, sites SE6 and SE3 experienced substantial hail damage in the year 296 

2000, and large-scale defoliation resulting from Forest Tent Caterpillar infestation occurred across 297 

the domain in 2001 (Wisconsin Department of Natural Resources). Blowdown due to wind stress 298 

has also been noted at sites SW4, SE6, NW2, and NE2, with the damage being most substantial at 299 

site SE6. Neither wildfire nor prescribed burning management activities have been a significant 300 

disturbance factor at any of the study plots. Species specific planting has occurred at sites SW2, 301 

SE5, NW2, and NE2. 302 

 303 
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 304 

Figure 4. Age distribution at the nine selected forest sites, where colors represent different sites 305 

to highlight the presence of multiple forest age classes within a single site. 306 

 307 

 308 

Figure 5. Management practices and frequency of occurrence recorded at each site. 309 
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2.4 Statistical Analysis 310 

2.4.1 Metric extraction 311 

LiDAR generated datasets were analyzed using the R programming language (R Core 312 

Team 2021, Version 4.0.4) package lidR (Roussel et al., 2020). The cloth simulation filter was 313 

used to identify ground points (Zhang et al., 2016) and triangulation was used to construct a digital 314 

terrain model from the ground points, which was then height-normalized. For each plot, 20 LiDAR 315 

metrics were calculated to describe tree height, arrangement, and stand complexity using the R 316 

programming language package forestr (Atkins et al., 2018). forestr gives a comprehensive 317 

formulation of metrics for characterizing forest canopy SC and arrangement using either portable 318 

canopy LiDAR or terrestrial laser scanning ground-based LiDAR platforms. Several metrics 319 

described in the lidR R library were adapted for an area-based approach with a UAS platform 320 

(Table 2). With the exception of “Rumple” and “VerticalDistMax”, each of the metrics were 321 

calculated by creating a raster of the site with a value for each pixel, then finding the average or 322 

standard deviation for all pixels within the site. For example, to find the average tree height, a 323 

raster of each site was first created where each pixel in the raster was assigned the average height 324 

of all the LiDAR returns within the pixel. For this metric LiDAR returns under 0.5 m were removed 325 

to exclude most ground points from the calculation. To summarize the data as a single number, the 326 

mean of all the pixels in the raster was used. Each raster-based metric was calculated at a resolution 327 

of 0.25 m, 2 m, 10 m, and 25 m per pixel to check for resolution dependencies. 328 

Some metrics require additional explanation. Rumple was computed by creating a canopy 329 

height model for each site and dividing its area by the projected ground area. VerticalDistMax was 330 

computed by finding the vertical distribution of all the points in a site and determining which 331 

height bin contained the most points. Vertical bins of 0.5 m and a lower cutoff of 5 m were used 332 

to prevent the ground cover and understory from influencing the result. Both of these metrics were 333 

calculated on a per site basis instead of a per pixel basis. Leaf area index (LAI) was also calculated 334 

using the formulation provided in the forestr library (Atkins et al., 2018) and compared to LAI 335 

field measurements for verification, which showed a high correlation of R = 0.78 (p < 0.05). 336 

 337 

 338 
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Table 2. Description of LiDAR-derived forest complexity metrics 339 

Metric Description Source 

Rumple 
Ratio of the top surface area of the canopy to the projected 

ground area 

Kane et al., 

2010 

VerticalDistMa

x 

Height with the most points, using 0.5m bins above a cutoff 

height of 5m 

Atkins et 

al., 2018 

maxZ_mean Mean of max height of points in each pixel 
Atkins et 

al., 2018 

maxZ_sd Standard deviation of max height of points in each pixel 
Atkins et 

al., 2018 

sdZ_mean Mean of standard deviation of height of points in each pixel 
Atkins et 

al., 2018 

sdZ_sd 
Standard deviation of standard deviation of height of points 

in each pixel 

Atkins et 

al., 2018 

meanZ_mean Mean of mean of height of points in each pixel 
Atkins et 

al., 2018 

meanZ_sd Standard deviation of mean of height of points in each pixel 
Atkins et 

al., 2018 

density_mean Mean of density of points in each pixel 
Roussel et 

al., 2020 

density_sd Standard deviation of density of points in each pixel 
Roussel et 

al., 2020 

gap_fraction Fraction of pixels with returns below a cutoff height 
Atkins et 

al., 2018 

VCI_mean Mean of vertical complexity index 
van Ewijk 

et al., 2011 

VCI_sd Standard deviation of vertical complexity index 
van Ewijk 

et al., 2011 

LAI_mean Mean of leaf area index 
Atkins et 

al., 2018 
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LAI_sd Standard deviation of leaf area index 
Atkins et 

al., 2018 

RH25 Mean of 25th quantile of point heights 
Schneider 

et al., 2017 

RH50 Mean of 50th quantile of point heights 
Schneider 

et al., 2017 

RH75 Mean of 75th quantile of point heights 
Schneider 

et al., 2017 

RH95 Mean of 95th quantile of point heights 
Schneider 

et al., 2017 

canopy_ratio 
Mean of 95th quantile of heights minus the 25th quantile of 

heights divided by the 95th quantile of heights 

Schneider 

et al., 2017 

 340 

LUE was calculated as the ratio of total daily GPP to total daily incoming photosynthetic 341 

photon flux density (PPFD), where PPFD is the incident flux density of photosynthetically active 342 

radiation (PAR), or the number of photons incident per unit time on a unit surface (Olson et al., 343 

2004). PPFD is considered a synonym for incident PAR (IPAR) (Olson et al., 2004). The exchange 344 

of carbon between the forest plots and the atmosphere was measured by the EC towers directly 345 

and partitioned into GPP and ecosystem respiration, 𝑅  (Reichstein et al., 2012). The site EC 346 

towers were only equipped to measure incoming and outgoing shortwave and longwave radiation 347 

as well as net radiation, as opposed to direct measurement of PPFD. Incoming shortwave radiation 348 

was converted to PPFD using a fraction of incoming solar irradiance in the photosynthetically 349 

active region of 0.50 (Knauer et al., 2018). 350 

WUE describes the amount of carbon fixed per unit of water transpired (De Kauwe et al., 351 

2013), and was calculated here as grams of carbon produced as biomass for every kilogram of 352 

water released through evapotranspiration (ET). ET is the sum of evaporation from the land surface 353 

and transpiration from vegetation, and is both the key process determining water use in forests 354 

(Fisher et al., 2017, Mathias and Thomas, 2021), and the primary process through which the carbon 355 

cycle is connected to and maintains the water cycle (Raupach et al., 2005). Since ET was not 356 

directly measured by this eddy covariance system, latent heat flux was used as its equivalent.  357 
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2.4.2 Model determination 358 

A suite of linear regression models were tested to evaluate the relationships between SC 359 

metrics, RUE, and stand productivity. Non-linear models were not tested, as previous studies 360 

exploring multiple non-linear model representations have shown that although the relationships 361 

may in reality be non-linear, non-linear representations repeatedly failed to achieve statistical 362 

significance (Gough et al., 2019). The combination of SC and RUE metrics that best predicted 363 

stand GPP was assessed using best-subsets model selection. Model fit was evaluated using the 364 

Schwarz Bayesian Criterion (SBC), mean square error prediction (MSEP), and adjusted 𝑅  365 

(𝑅  ), where the model with the lowest significant SBC (p < 0.05), lowest MSEP, and highest 366 

𝑅   was selected as optimal. SBC was used as opposed to Akaike information criterion to 367 

account for the presence of multiple predictive variables and a relatively small sample size.  368 

High multicollinearity was a significant problem in determining which SC metrics were 369 

the most robust drivers of GPP. Several SC metrics had intercorrelation values that exceeded 0.98 370 

and thus were not included in SEM. This included metrics related to the height at which a given 371 

quantile of returned energy was reached relative to the ground, metrics RH25, RH50, RH75, and 372 

RH95. Variance inflation factors (VIF) were calculated for the best-fit models, and models were 373 

classified as having severe multicollinearity if the average VIF was greater than 10. Pearson’s 374 

correlation coefficients were used to determine the strength of pairwise interactions between 375 

variables for models where severe multicollinearity was a concern to determine which SC metric 376 

was likely driving the observed multicollinearity, and that variable was subsequently removed and 377 

the resulting model was reevaluated.  378 

SEM was used to ascertain the mechanistic relationship between stand productivity and the 379 

influential SC metrics determined through best-subsets selection, as well as whether or not the 380 

relationship was direct or was mediated by RUE. Path analysis, a subset of SEM where models are 381 

created as a series of regressions to specify causal relationships between variables (Fan et al., 382 

2016), was used to determine possible mediation effects of RUE through the comparison of 383 

reduced and saturated models. The reduced model allowed SC metrics to predict WUE and LUE, 384 

and WUE and LUE to then predict GPP. The saturated model allowed for the same prediction 385 

pipeline, but SC metrics could also bypass RUE and directly impact GPP (Figure 6).  386 
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 387 

 388 

 389 

Figure 6. Conceptual figure outlining the (a) reduced and (b) saturated SEM model designs. The 390 

reduced model (a) restricts SC metrics to influencing the dependent variable, GPP, indirectly 391 

through their effect on LUE and WUE, whereas the saturated model (b) allows SC metrics to affect 392 

GPP both directly and indirectly through LUE and WUE. Arrows indicate the direction of 393 

influence from one variable to the next. 394 

 395 

SEM was performed at each of the four LiDAR metric calculation resolutions to assess 396 

whether or not the mediation effect persisted with resolution changes. Reduced and saturated 397 

model fit was assessed using comparative fit index (CFI), standardized root mean square residual 398 

(SRMR), and SBC. CFI values closer to one indicate better model fit, so a threshold value of  ≥ 399 

0.80 was applied (Hu and Bentler, 1991). SRMR represents the difference between observed and 400 

expected variable correlations, and a threshold value of ≤ 0.90 was applied, with a lower value 401 
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indicating a better model fit. Maximum likelihood estimation was used to determine model fit, and 402 

parameter estimates were standardized across all observed variables. Bootstrapping was used to 403 

test the significance of indirect effects between SC variables and productivity through LUE and 404 

WUE as well as for estimation of standard errors and bootstrap-based confidence intervals. 1,000 405 

draws were performed for each indirect effect evaluated. Significance testing of mediation was 406 

performed using the R programming language (R Core Team 2021, Version 4.0.4) package lavaan 407 

(Rosseel, 2012).   408 

3 Results 409 

3.1 Stand productivity and resource use efficiency 410 

Of the nine CHEESEHEAD19 sites examined here, eight were classified as net carbon 411 

sinks, where a negative flux value indicates a net flux of carbon into the ecosystem from the 412 

atmosphere. A single site (NE2) was classified as a net carbon source, albeit a minor one, with a 413 

net flux of 35 gC mˉ2 released to the atmosphere over the entire measurement period. Additionally, 414 

at eight out of the nine sites greater variability in daily fluxes was observed for GPP than NEE, 415 

with an average variance of 28 gC mˉ2 for GPP compared to 7.8 gC mˉ2 for NEE. Across all sites 416 

average daily GPP ranged from 2.6 gC mˉ2 to 14 gC mˉ2, and average daily fluxes of NEE ranged 417 

between -3.5 gC mˉ2 and 0.30 gC mˉ2. Substantial variability was observed in daily total ecosystem 418 

respiration (Reco) as well, defined as the sum of both heterotrophic and autotrophic respiration, 419 

with an average variance of 20 gC mˉ2. The highest productivity (represented as GPP) was 420 

observed at sites NE2, SW2, and SW4, with average GPP ranging from 10 – 14 gC mˉ2 dayˉ1. 421 

Although NE2 has the highest productivity of the nine sites, it also has the highest average daily 422 

Reco (14 gC mˉ2 dayˉ1), resulting in its ultimate classification as a slight net carbon source to the 423 

atmosphere, as NEE = Reco – GPP. The three sites with the lowest productivity are NW2, SE5, and 424 

NE4. NW2 has a higher number of clear cuts than all other sites, several stands described as wet 425 

conifer bogs, and includes stands ranging in age from 7 – 111 years. SE5 includes a mix of aspen, 426 

pine, and upland hardwoods ranging in age from 19 – 92 years. NE4 is a considerably older site, 427 

with stand age ranging from 76 – 15 years, and consisting of mixed upland hardwoods, pine, and 428 

northern white cedar. Over the course of the June-October observational period, productivity 429 

peaked in June to mid-July and decreased into fall as leaves began to senesce, with an average 430 

change in GPP across all nine sites of 19 gC mˉ2. Of the sites, NW2 exhibited the least seasonal 431 
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change in productivity, with a total difference of only 5.9 gC mˉ2 between the start and end of the 432 

study period. 433 

Both LUE and WUE varied between sites, with the across-site average LUE equaling 0.70 434 

gC MJˉ1 and WUE equaling 4.1 gC kg H2Oˉ1. Average LUE variance was 0.19 gC MJˉ1 and average 435 

WUE variance was 1.4 gC kg H2Oˉ1. Site NE2 had the highest RUE overall, with a daily LUE of 436 

0.96 gC MJˉ1 and a WUE of 5.7 gC kg H2Oˉ1. NE2 also had the highest variability in RUE, although 437 

this variability follows a clear pattern indicating the changes in RUE potentially emerge as a 438 

response to changes in temperature or other climatic variables. Site NW2 had the lowest overall 439 

RUE, with a daily LUE of 0.33 gC MJˉ1 and a WUE of 2.9 gC kg H2Oˉ1. Site NW2 had the lowest 440 

variability in LUE (0.11 gC MJˉ1), but the fourth highest variability in WUE (1.4 gC kg H2Oˉ1).  441 

3.2 Classification of structural complexity 442 

Of the 20 LiDAR metrics originally calculated, ten unique metrics related to SC were 443 

shown through best-subsets selection to be both influential and statistically significant drivers of 444 

stand productivity when combined with RUE variables (p ≤ 0.05), and thus were included in 445 

subsequent SEM testing (Table 3). LUE and WUE were present in all of the best-fit models 446 

regardless of spatial resolution, but the specific SC metrics included in each of the four best-fit 447 

models varied depending upon resolution, although several overarching trends stood out. SC 448 

metrics describing vertical heterogeneity were the most prevalent and existed in each of the four 449 

final model formulations. VCI_mean was the most frequently observed SC metric, and was 450 

included in three of the four models. verticalDistMax and maxZ_sd were the second most prevalent 451 

metrics, each showing up in two out of the four models. While both metrics are measures of 452 

heterogeneity in SC, verticalDistMax is associated with vertical heterogeneity while maxZ_sd is 453 

associated with outer canopy heterogeneity. The remaining seven SC metrics each only appeared 454 

in a best fit model model formulation a single time, and included rumple, meanZ_sd, sdZ_sd, 455 

LAI_sd, maxZ_mean, sdZ_mean, and LAI_mean. Of these seven SC metrics, three are related to 456 

vertical heterogeneity (sdZ_sd, sdZ_mean, and meanZ_sd), one to outer canopy heterogeneity 457 

(rumple), one is a measure of tree height (maxZ_mean), and two describe the area and density of 458 

vegetation distribution (LAI_sd and LAI_mean). Of these seven SC metrics, three are only present 459 

in the 25 m resolution model, indicating that the 25 m model has the greatest departure from the 460 

other best fit models. Fit metric ranges for the single best fit model at each resolution displayed no 461 
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significant differences by resolution. Average 𝑅   was 0.32 with a range of 0.02, average BIC 462 

was 4425 with a range of 20, and average MSE was 16.58 gC mˉ2 dayˉ1 with a range of 0.44 gC 463 

mˉ2 dayˉ1. This suggests that SC metric’s viability as a driver of GPP isn’t restricted to fine or 464 

coarse resolutions.   465 

 466 

Table 3. Canopy structural complexity metrics included in SEM, isolated as highly influential 467 

through best-subsets selection for their strength as drivers of GPP. 468 

Resolution 

(m) Metric Symbol Units Complexity Category 

0.25         

 rumple        rumple - canopy heterogeneity 

 verticalDistMax 𝑉𝐴𝐼  m vertical heterogeneity 

 VCI_mean 𝑉𝐶𝐼  - vertical heterogeneity 

2         

 VCI_mean 𝑉𝐶𝐼  - vertical heterogeneity 

 LAI_mean 𝐿𝐴𝐼  - area and density 

 meanZ_sd 𝜎  m height 

10         

 verticalDistMax 𝑉𝐴𝐼  m vertical heterogeneity 

 maxZ_sd 𝑅  m canopy heterogeneity 

 maxZ_mean 𝐻  m height 

 VCI_mean 𝑉𝐶𝐼  - vertical heterogeneity 

25         

 maxZ_sd 𝑅  m canopy heterogeneity 

 sdZ_sd 𝑅  m vertical heterogeneity 

 sdZ_mean 𝑉𝑒𝑟𝑡  m vertical heterogeneity 

 LAI_sd 𝐿𝐴𝐼  - area and density 

 469 
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All ten of the site averaged SC metrics varied depending upon the LiDAR return spatial 470 

resolution. The majority of SC metrics decreased in value as resolution became coarser, however, 471 

three of the ten metrics (𝐻 , 𝑉𝑒𝑟𝑡 , and 𝑉𝐶𝐼 ) displayed the opposite trend. With the 472 

exception of rumple, metric value changes in response to shifting resolutions were approximately 473 

linear. The observed shifts in metric values with changing resolution indicated that the overall 474 

mechanistic relationships between SC metrics and productivity could be resolution dependent. The 475 

greatest differences with shifting resolution were observed in 𝑉𝐴𝐼  and 𝑉𝐶𝐼 . 𝑉𝐴𝐼  476 

decreased with decreasing spatial resolution, with values being reduced to 25 – 30% of the 0.25 m 477 

resolution value by the time a 10 m resolution was reached, and all sites had the same value (5m) 478 

upon reaching the 25 m resolution. 𝑉𝐶𝐼  increased with decreasing spatial resolution, with 479 

values increasing on average by 20% with each decrease in resolution, although the difference 480 

between 10 m and 25 m was less pronounced, with an average difference of 5%. 481 

 482 

 483 

 484 

Figure 7. SC metric values by site at each of the four metric calculation resolutions explored, 0.25 485 

m, 2 m, 10 m, and 25 m. 486 
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Vertical heterogeneity metrics describing the layering of the canopy such as 𝜎   and 487 

𝑉𝑒𝑟𝑡  generally had higher values at sites with distinct multilayered canopies such as NE2 488 

and SE5, and lower values at sites with a more consistent single layered canopy, such as site NE4. 489 

𝜎  is the standard deviation of the mean height of lidar returns for raster pixels, and conveys the 490 

variability associated with the leaf height in the canopy at which a large amount of vegetation is 491 

concentrated. 𝑉𝑒𝑟𝑡  is the mean of the standard deviation of lidar return heights of raster 492 

pixels in a given transect, and it describes how vertically spread out the canopy is by way of how 493 

variable average leaf height is in a given column (Hardiman et al., 2013). A higher value indicates 494 

greater variability in how the canopy is vertically distributed. The highest values were observed at 495 

sites SW4 and NW2, and the lowest values were seen at sites SW2 and NE4, with an overall range 496 

of 1.6 m to 5.6 m across all four spatial resolutions. Variability in 𝑉𝑒𝑟𝑡  values generally 497 

increases with decreasing resolution, with an increase in spread between sites of 58% from 0.25 m 498 

to 25 m resolution, whereas site-to-site variability decreased by approximately 46% with 499 

decreasing resolution for 𝜎  . 500 

SC metrics 𝑉𝐶𝐼  and vertical rugosity (𝑅 ) offer insight as to the degree of variability in 501 

the distribution of vegetation within each vertical column. Vertical complexity index (VCI, 502 

averaged across a given stand to become 𝑉𝐶𝐼 ) is an ecological metric with roots in information 503 

theory (Shannon, 1948). Applied to LiDAR data, 𝑉𝐶𝐼  describes how the vertical distributions 504 

of LiDAR returns differ from a uniform distribution, which is representative of the overall 505 

evenness of the vertical distribution of vegetation (van Ewijk et al., 2011), while 𝑅  communicates 506 

the variance in each vertical column’s mean leaf height variability (Atkins et al., 2018). A VCI 507 

value close to zero indicates that the distribution of points in each vertical height bin is uneven, 508 

while a value approaching or equal to one indicates an even distribution of points across height 509 

bins (van Ewijk et al., 2011). The highest 𝑉𝐶𝐼  values were observed at site NE2 (9% higher 510 

than the average of the other eight sites, at a resolution of 0.25m), and the lowest values were 511 

typically seen at sites SE3 and NW2, depending upon spatial resolution. Variability between sites 512 

increased with decreasing resolution, largely in part to a widening spread between SE3 and NW2 513 

and the remaining seven sites. The highest 𝑅  values, indicating a less uniform vertical distribution 514 

of vegetation, were measured at sites with multilayered canopies and multiple distinct age classes 515 

present, such as SW4 and NW2, which include stands ranging in age from 7 – 110 years.  516 
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The final SC metric addressing vertical heterogeneity is VerticalDistMax. VerticalDistMax 517 

is equivalent to the variable ‘mean height of vegetation area index maximum’ (𝑉𝐴𝐼 ) described 518 

in Atkins et al., 2018, and will be referred to as such for the sake of taxonomic consistency, 519 

although it is technically a mean value, not a mode as the variable name implies. Vegetation area 520 

density (VAD) is a dimensionless variable describing the density of vegetation in a given area 521 

(Atkins et al., 2018), and vegetation area index (VAI) represents the sum of densities in a vertical 522 

column. For resolutions 0.25 m and 2 m, the highest 𝑉𝐴𝐼  values are seen at sites NE3 and 523 

NE4, and the lowest values are seen at sites NW2 and SE3. For 10 m resolution only two values 524 

of 𝑉𝐴𝐼  exist, 5 m and 15 m, with three sites (NE2, NE3, and SW4) having values of 15 m and 525 

the remaining sites having values of 5 m. By 25 m model resolution all sites have the same 526 

𝑉𝐴𝐼  value of 5 m, indicating that the metric calculation resolution has a significant impact on 527 

𝑉𝐴𝐼 . 528 

Influential SC metrics representing outer canopy complexity include rumple and top 529 

rugosity (𝑅 ). Rumple is a three-dimensional metric that describes the degree of heterogeneity 530 

associated with the outer canopy layer, where a higher value corresponds to a more complex 531 

canopy (Kane et al., 2010). Rumple is defined as the ratio of the outer canopy surface area to the 532 

underlying ground surface area (Parker et al., 2004). Average rumple values were significantly 533 

impacted by metric calculation resolution, and substantially decreased at resolutions coarser than 534 

0.25 m, indicating that at coarser resolutions the outer canopy surface appears artificially 535 

smoothed. Variability between sites also decreased with decreasing resolution, and at resolutions 536 

coarser than 2 m, differences in rumple values between sites were negligible. For context, in a 537 

Douglas-fir and western hemlock dominated 500+ year old growth forest in Southern Washington 538 

(USA) with an extremely high level of outer canopy complexity, rumple values of 12 m were 539 

reported (Parker et al., 2004). 𝑅  refers to the standard deviation of LiDAR column maximum 540 

return heights (Atkins et al., 2018). The highest values of 𝑅  were observed at NE3 and NE4, with 541 

an average range of 3.6 m to 8.2 m across all four resolutions. As resolution becomes coarser the 542 

differences in values between sites becomes less pronounced, with a decrease in variability of 543 

approximately 41%.  544 

Average tree height (𝐻 ) serves as a simple measure of vertical stand structure, by 545 

describing the tree height averaged across all present species in a given stand. When combined 546 
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with descriptive species information, 𝐻  provides additional information regarding stand 547 

successional stage. 𝐻  values increase with decreasing resolution, presumably because taller 548 

trees dominate and skew the average when a larger field of view is utilized. 𝐿𝐴𝐼  is the standard 549 

deviation of leaf area index (LAI) for each raster pixel, and 𝐿𝐴𝐼  is the average LAI for each 550 

raster pixel. LAI is the ratio of the (one-sided) total leaf area per unit of ground area, and describes 551 

the amount of leaf tissue in the forest canopy. The highest values of 𝐿𝐴𝐼  were observed at sites 552 

NE3 and NE4, both among the oldest sites, and the lowest values were seen at sites SE3 and SE5, 553 

both fairly young aspen sites, with an overall range of 2.3 m to 3.7 m across all four resolutions. 554 

𝐿𝐴𝐼  describes the variability in LAI, and offers insight into how photosynthetic tissues are 555 

distributed in the forest canopy. The highest values were observed at site SW4, and the lowest 556 

values were seen at sites NE2 and NE3, with a total range of 0.34 to 1.4. 𝐿𝐴𝐼  values generally 557 

decrease with decreasing resolution, with a reduction in variability between sites (decrease in 558 

variability of 36% from 0.25 m to 25 m resolution).  559 

 560 
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 562 
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 563 

 564 

Figure 8. LiDAR point return 150 m transect images for the nine forested sites: a) NE2 b) NE3 565 

c) NE4 d) NW2 e) SE3 f) SE5 g) SE6 h) SW2 and i) SW4. Color saturation represents the 566 

relative number of returns. The x-axis represents longitudinal coordinates in meters, expressed at 567 

50 m intervals, and the y-axis is height above ground in meters. 568 

3.3 Structural equation modeling 569 

Comparison of SEM models showed that the reduced model, where SC metrics were 570 

restricted to influencing GPP through RUE as opposed to exerting direct influence over GPP, had 571 

a better overall fit than the fully saturated model. In other words, LUE and WUE actively mediate 572 

the mechanistic relationship between SC variables and GPP, and changes in SC result in changes 573 

in RUE and ultimately in GPP.  574 



manuscript submitted to Journal of Geophysical Research Biogeosciences 
 

Across all four models 28 mediation relationships were tested in total; 14 WUE mediated 575 

relationships and 14 LUE mediated relationships. 11 of the 14 WUE mediated relationships were 576 

significant, with all cases being partial mediation, complete mediation was not observed for either 577 

WUE or LUE. WUE as a mediator between GPP and the metric 𝑉𝐴𝐼  was never shown to be 578 

significant, with 𝑉𝐴𝐼  present in both the 0.25 m and 10 m resolution best fit models. WUE as 579 

a mediator between GPP and the metric 𝐿𝐴𝐼 , present in the 25 m resolution model, was also 580 

shown to be insignificant. Mediation strength, characterized by the magnitude of the indirect effect 581 

of a given SC metric on GPP through WUE as a mediator was 0.10 on average, with a range of 582 

0.14. Seven of the 14 LUE mediated relationships were significant, and metrics directly tied to 583 

light interception such as those related to LAI (𝐿𝐴𝐼  and 𝐿𝐴𝐼 ) were always significantly 584 

mediated by LUE. LUE significantly mediated relationships between GPP and 𝑉𝐶𝐼 , 𝐻 , 𝑅 , 585 

and 𝑉𝑒𝑟𝑡  as well, but the significance of mediation was not always consistent when a given 586 

SC metric was present in different resolution models. LUE never significantly mediated 587 

relationships between GPP and 𝑉𝐴𝐼 , rumple, 𝜎 , or 𝑅 , regardless of spatial resolution. 588 

Mediation strength of LUE on the relationship between a given SC metric and GPP was 0.02 on 589 

average, with a range of 0.08. WUE was shown to be a substantially stronger mediator between 590 

SC and GPP than LUE, with a standardized mediation strength 330% larger than that of LUE when 591 

averaged across all nine plots. Averaged across all sites, the correlation between daily WUE and 592 

daily LUE was 0.40. 593 

Mediation analysis by resolution showed differing trends between WUE and LUE as 594 

mediators. The significance of WUE as a mediator did not appear to be resolution dependent, 595 

whereas the significance of LUE as a mediator did appear to be dependent upon the spatial 596 

resolution of the model in question. For example, LUE was a significant mediator of 𝑅  in the 25 597 

m resolution model, but not in the 10 m resolution model. The presence of LUE as a significant 598 

mediator was more prevalent at coarser spatial resolutions (10 m and 25 m) than at finer resolutions 599 

(0.25 m and 2 m), and cases where the structure-function relationship was mediated by both WUE 600 

and LUE were observed more frequently at courser resolutions than at finer resolutions. In 601 

summary, for SC metrics that experienced mediation (all but 𝑉𝐴𝐼 ) the presence of a mediating 602 

factor in the overarching relationship between forest structure and function was consistent 603 

regardless of SC metric calculation resolution, but which individual relationships were 604 

significantly mediated changed with resolution shifts when LUE was the mediating variable in 605 
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question. Due to the variety of measurement units involved, beta coefficients were standardized to 606 

facilitate comparison and outliers were removed. Standardized beta coefficients show that at a 607 

resolution of 0.25 m, 𝑉𝐶𝐼  and rumple were the strongest drivers of GPP (β = 0.33, β = 0.11), 608 

at 2 m 𝑉𝐶𝐼  was the strongest driver of GPP (β = 0.35) followed by 𝜎  (β = 0.16), at 10 m 609 

𝑉𝐶𝐼  and 𝐻  were the strongest drivers of GPP (β = 0.33, β = 0.16), and at 25 m spatial 610 

resolution 𝑅  and 𝑉𝑒𝑟𝑡  were the strongest drivers (β = 0.22, β = 0.18). Additionally, all 611 

SC metrics were stronger drivers of WUE than of LUE. 612 

4 Discussion 613 

Our findings support the emerging consensus that a positive mechanistic relationship exists 614 

between SC and productivity in mixed temperate forests (Gough et al., 2019, Gough et al., 2016), 615 

but suggest that this is a multifaceted relationship impacted by additional factors such as the extent 616 

of species diversity and management history. Additionally, we found that this relationship is not 617 

direct but rather is mediated by the effective acquisition and assimilation of both light and water 618 

resources, and that RUE generally is enhanced by increasing SC. Furthermore, we show that in a 619 

heterogenous mixed temperate forest subject to disturbance, metrics describing the vertical profile 620 

of heterogeneity are the strongest drivers of productivity, as opposed to SC metrics that are 621 

constrained to the outer canopy. Through analysis of the structure-function relationship at four 622 

structural metric calculation resolutions ranging from 0.25 m to 25 m, we demonstrate that the 623 

scale of metric calculation has a significant impact on the metric values themselves, and thus on 624 

which SC metrics are ultimately included in predictive models of productivity. We showed that 625 

shifting the spatial resolution also changes the dynamics of the relationship between RUE and SC. 626 

Lastly, it was established that even in a study domain where sites have shared climatic and 627 

environmental conditions, differences in management and disturbance history as well as species 628 

diversity result in substantial variability in land-atmosphere exchanges of CO2. This is likely due 629 

to changes in forest composition and trait diversity in response to disturbance.  630 

4.1 Structural complexity  631 

𝑉𝐶𝐼  was the most frequently observed SC metric, and consistently proved to be the 632 

most robust driver of both RUE and GPP in models where it was present, irrespective of spatial 633 

resolution. However, SC metrics related to outer canopy heterogeneity such as 𝑅  and rumple were 634 
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also imperative. Three out of the four best fit models included SC metrics related to both vertical 635 

and outer canopy heterogeneity, although vertical metrics were more prevalent in all cases. 𝑉𝐶𝐼  636 

is closely related to the degree of canopy closure as well as tree size and distribution density (Kane 637 

et al., 2010), and is known to vary with stand structure and age (Kane et al., 2008). In an example 638 

presented by van Ewijk et al. (2011), a low VCI could correspond to the stand initiation stage, 639 

where the majority of point returns are congregated in the lowest vertical bins, whereas a mid to 640 

high VCI could correspond to a stand in the midst of understory re-initiation or even a transition 641 

into old growth, where vegetation is distributed between multiple height bins. The 𝑉𝐶𝐼  values 642 

observed within the study domain are consistent with the relative dominance of stands in the young 643 

to mid age classes.  644 

The SC metric 𝑉𝐴𝐼  conveys important information about biomass allocation patterns. 645 

Models that did not contain 𝑉𝐴𝐼  did contain SC metrics related to LAI, suggesting that 646 

incorporating a variable that accounts for the complexity in arrangement of vegetative tissues is 647 

essential when describing a stand’s ability to absorb incoming light. VAI is similar to the more 648 

commonly used LAI, but vegetative tissues include branches and stems in addition to 649 

photosynthesizing leaves (Scheuermann et al., 2018). However, it’s worth noting that several 650 

studies have shown that the influence of LAI on production saturates in importance over time, but 651 

the same trend has not been observed in VAI (Hardiman et al., 2011), potentially making it a more 652 

reliable metric overall when describing the area-related distribution of vegetative tissues. 𝜎   builds 653 

on the information provided by 𝑉𝐴𝐼  by representing the variability associated with the height 654 

of greatest leaf density, further describing canopy layering. High values (corresponding to a 655 

multilayered canopy) were observed at sites with a variety of age classes present, where harvest 656 

practices have resulted in patches of with unique canopy features, such as site NE2 (Figure 8).  657 

𝑉𝑒𝑟𝑡  is a reliable indicator of the spread between distinct canopy layers, high 658 

values were observed at sites such as NE2, which includes a dense canopy between 5 m – 10 m 659 

tall with an additional canopy around 25 m tall, and a fairly sparse degree of vegetation between 660 

the two canopies. Pairing this metric with 𝑅  illustrates the variability in vertical forest profiles, 661 

and offers insight into the arrangement of the understory. For example, high values of 𝑅  were 662 

observed at sites with dense non-uniform understories, such as site SW4. In addition to conveying 663 

information about forest successional stage when combined with species information, 𝐻  is 664 
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important to consider when interpreting the significance of observed rumple values (Kane et al., 665 

2010), as rumple generally increases with increasing 𝐻 . At first glance sites NE4 and NW2 666 

could be classified as having similar levels of complexity, with rumple values of 3.4 m and 3.5 m 667 

respectively at 0.25 m resolution. However, the large differences in 𝐻  between the sites (19 m 668 

versus 8.8 m) draws attention to the fact that the variance in complexity between the two sites is 669 

more pronounced, as a similar rumple value for a stand with less than half the 𝐻  of NE4 670 

indicates that NW2 has a higher degree of SC than is present at NE4.  671 

The prevalence of vertical heterogeneity metrics focused on canopy layering and 672 

vegetation distribution in the models explored here further substantiates the claim that vertical 673 

complexity is a strong driver of productivity in mixed temperate systems (Fahey et al., 2019), and 674 

emphasizes the role of vertical variation in driving biomass growth (Stark et al., 2012). All ten 675 

influential SC metrics explored here were sensitive to changes in metric calculation resolution, 676 

highlighting the need for consistency in the spatial resolution at which SC metrics are calculated, 677 

and for the disclosure of metric calculation resolutions when reporting SC metric values and 678 

interpreting the significance of findings. For most SC metrics, values decreased as resolution 679 

became coarser (with 𝐻 , 𝑉𝑒𝑟𝑡 , and 𝑉𝐶𝐼  as exceptions), as did variability between 680 

sites. Moreover, differences between sites became indistinguishable for both rumple and 𝑉𝐴𝐼  681 

at resolutions coarser than 10m. This signifies that for research questions centered around 682 

discerning differences in SC between sites and the potential impacts of those differences on 683 

ecosystem function, a finer resolution should be used for SC metric calculation. However, which 684 

sites are classified as most or least structurally complex overall is relatively consistent regardless 685 

of metric calculation resolution. Sites SE5 and NE2 consistently rank as the sites with the highest 686 

complexity, and sites SE3 and NW2 dependably rank as the sites with the lowest complexity. For 687 

some sites, such as NE3 and NE4, the comparative complexity ranking differs depending on which 688 

metric is being examined, for example both sites have very high complexity rankings in metrics 689 

𝐿𝐴𝐼 , 𝑉𝐴𝐼 , and 𝐻  regardless of resolution, but consistently rank low in metrics 𝑅 , 690 

𝐿𝐴𝐼 , rumple, and 𝑅 .  691 

Ultimately SC can’t be encapsulated by a single metric, and a select set of metrics will 692 

provide a more comprehensive representation. For instance, pairing a variable like 𝜎  that offers 693 

insight as to whether a canopy is single or multi layered with a variable like 𝐿𝐴𝐼  that describes 694 
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the density and arrangement of photosynthetic tissues will reveal more about a stand’s potential 695 

productivity than either variable in isolation could. However, which metrics should be included in 696 

predictive models of productivity isn’t a one size fits all situation, as shown here it is contingent 697 

upon spatial resolution.  698 

4.2 The structure-function relationship 699 

Here we showed that a positive mechanistic relationship exists between SC and forest 700 

productivity in mixed temperate forests, and that SC metrics which describe the vertical profile of 701 

heterogeneity are better predictors of GPP than metrics that are limited to the outer canopy alone. 702 

This is potentially due to vertical complexity metrics providing greater information content in 703 

terms of describing a forest’s successional stage and ability to capture light as it moves beyond the 704 

outer surface of the canopy and penetrates into the forest below (Zimble et al., 2003). As early 705 

successional species overtake forest gaps created by disturbance to establish multi-canopied 706 

stands, the more biodiverse forest with greater structural complexity and range of shade tolerances 707 

will make the forest more resource efficient under variable light conditions, increasing net carbon 708 

uptake (Hardiman et al., 2011, Hardiman et al., 2013, Hooper et al., 2005). For example, NE2, 709 

which has the highest GPP, WUE, and LUE, also exhibits high levels of SC across the majority of 710 

the metrics evaluated. NE2 is predominantly pine, with aspen and paper birch intermixed (Figure 711 

2). Due to a history of timber harvest and replanting (Figure 5) there is a significant secondary 712 

pine canopy (Figure 8) with an average age of 22 years. This multi-layered canopy is captured in 713 

the second highest values of 𝑉𝐶𝐼  observed across all nine sites (at a spatial resolution of 0.25 714 

m 𝑉𝐶𝐼  = 0.35, 10% higher than the following seven sites), while 𝐻  and rumple were also 715 

comparatively high, at 10% higher than average and 4.4% higher than average respectively.  716 

SEM highlighted WUE as a considerably stronger driver of GPP than LUE, but it's 717 

important to pause here and consider that the temperate mixed forests of Northern Wisconsin are 718 

not water limited ecosystems, and previous studies have shown that stand-scale productivity is 719 

predominantly a function of the capacity to harvest light and fix carbon (Reich et al., 2012), so 720 

why does WUE show up as highly influential when predicting GPP? The answer lies primarily in 721 

the relationship between WUE and LUE. The tiny stomata covering the leaf surface exist in a 722 

constant tradeoff between opening and sacrificing water for the chance to take up CO2, both of 723 

which are necessary ingredients for photosynthesis (Monteith, 1965). Regardless of available light, 724 
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when plants are water stressed, stomata close in an attempt to conserve existing resources, at the 725 

cost of reducing CO2 uptake and thus photosynthetic capacity (Hatfield and Dold, 2019, Kukal 726 

and Irmak, 2020). However, when a plant has a steady supply of water, stomata will more readily 727 

open and a greater amount of atmospheric CO2 can be fixed per unit of incident light (Binkley et 728 

al., 2004). A recent study by Ehbrecht et al. (2021) examining climatic controls on SC at the global 729 

scale found that SC was strongly correlated with water availability across all biomes examined, 730 

and that the relationship between water availability and use and SC can be tied to mechanisms 731 

determining tree size. This is because water availability effectively controls functional diversity 732 

and shade tolerance as well as tree size following the hydrological limitation hypothesis. Shade 733 

tolerant trees are found in greater abundance in systems where growth is not limited by factors 734 

other than light, meaning non-water limited systems, as is the case in Northern Wisconsin. All 735 

three of these factors (functional diversity, shade tolerance, tree size) contribute to SC (Thom et 736 

al., 2021).  737 

However, the importance of the relationship between SC and LUE cannot be understated, 738 

as it shows that the functional diversity driven by complexity is able to better capitalize on 739 

available resources (Williams et al., 2017, Penone et al., 2019). Additionally, although this study 740 

was limited in duration, other studies such as the Zhang et al., 2012 global meta-analysis of 741 

diversity productivity relationships showed that almost 30% of the variation in productivity 742 

between monocultures and polycultures was explained by heterogeneity of shade tolerance, and 743 

that high shade tolerance variation within a community is likely one of the most important life-744 

history traits, leading to more efficient resource use when scaled to the ecosystem level (Stark et 745 

al., 2012).  746 

For most SC metrics examined here, increasing SC is associated with increasing RUE, 747 

although the magnitude of the trend is dependent upon resolution. The exception is 𝐿𝐴𝐼 , which 748 

has a negative relationship with both WUE and LUE at all resolutions. The strongest positive 749 

relationship exists between 𝑉𝐶𝐼  and WUE, and the weakest relationship exists between 𝑅  and 750 

LUE. Mediation analysis showed that neither WUE or LUE significantly mediated the relationship 751 

between 𝑉𝐴𝐼  and GPP, suggesting that either the relationship is direct, or additional 752 

unaccounted for factors play the role of mediator. The most complex sites (SE5 and NE2) have 753 

differing relationships to productivity. Site NE2 has the highest GPP of all nine sites, but also has 754 
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the highest Reco, resulting in its classification as a small net source of CO2 to the atmosphere. Site 755 

SE5 has the second lowest seasonal GPP as well as the second lowest Reco. The two least complex 756 

sites, SE3 and NW2, have among the lowest total seasonal GPP and Reco. SW2 and SW4 have the 757 

second and third highest seasonal GPP, yet consistently display only moderately levels of SC at 758 

all four spatial resolutions. However, both of these sites contain stands in a wide range of age 759 

classes (Figure 4), indicating heterogeneity in successional stages, and both sites are noted as 760 

containing very wet areas, with older (>100 years) mixed conifer swamp stands.  761 

4.3 Disturbance impacts 762 

Whether or not forests develop structural complexity in response to a disturbance event 763 

depends on the frequency, scale, and intensity of the event (Ehbrecht et al., 2021, Ford and 764 

Keeton, 2017). Small scale disturbances tend to increase complexity by creating favorable 765 

conditions for understory trees to establish, which results in multi-layered canopies (Wisconsin 766 

Department of Natural Resources, 2020). This amplified sub-canopy growth occurs because 767 

disturbance drives a compensatory physiological response to more readily available light, which 768 

can also help sustain overall production even in the face of frequent low intensity disturbances 769 

(Hardiman et al., 2013). In contrast, larger scale disturbances tend to simplify SC initially 770 

leading to a temporary reduction in productivity, although stands often recover to pre-771 

disturbance carbon uptake levels within the 10 – 20 years following a major disturbance event 772 

(Amiro et al., 2010).  773 

With the exception of NE2, sites with a record of intensive disturbance, presented as 774 

clearcutting or shelterwood harvest, exhibit lower levels of complexity across the majority of SC 775 

metrics, and across all metrics addressing vertical complexity. One reason for this could be that 776 

the harvests at NE2 were all selective harvests, and resulted in distinct structurally heterogeneous 777 

‘patches’ within the site at different successional stages and with a high degree of canopy cover. 778 

In contrast to the primarily deciduous understory present at multiple other sites, several patches 779 

within NE2 feature a prominent conifer understory. As mixed conifers tend to show higher levels 780 

of vertical complexity than many purely deciduous stands do (Ehbrecht et al., 2017, Pommerening 781 

and Murphy, 2004, Zenner et al., 2012), the presence of a developing conifer understory could be 782 

contributing to a higher overall 𝑉𝐶𝐼 . This is supported by the presence of a substantial conifer 783 

understory at one other site, SW4, which exhibits the highest degree of 𝑉𝐶𝐼  amongst the nine 784 
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sites (0.35). Again, with the exception of NE2, sites with a record of more substantial disturbance 785 

had lower levels of productivity, and lower levels of RUE. For example, site NW2, which had the 786 

highest intensity of both clear cuts and harvest events (Figure 5), had the lowest GPP of all nine 787 

sites and also had the lowest average daily LUE (0.33 gC MJˉ1) and WUE (2.9 gC kg H2Oˉ1) values. 788 

More moderate disturbances such as thinning and selective harvest could be contributing 789 

to increased SC within the study area, through assisting in the transition to uneven aged stands 790 

(Gough et al., 2021). This is observed at site SE6, which consists of a 19-year-old mixed aspen, 791 

white spruce, and balsam fir stand, a 22-year-old jack pine stand, a 75-year-old aspen stand, and a 792 

92-year-old mixed upland hardwood stand (Figure 2). SE6 underwent species-specific commercial 793 

thinning to reduce stand density, which has been shown to impact stand growth and structure 794 

(Wisconsin Department of Natural Resources, 2020). SE6 also experienced salvage cutting to 795 

remove dead or damaged trees following a severe hail storm in 2000. Sites SE5 and NE2 796 

consistently ranked as the most complex sites regardless of spatial resolution, and both sites have 797 

experienced moderate management disturbances such as thinning as well as manual planting.  798 

4.5 Implications and shortcomings  799 

A 2018 review by Fahey et al. showed that although the prevalence of complexity 800 

terminology with respect to silviculture has increased over time, the actual incorporation of 801 

complexity metrics when designing long term silviculture projects has “plateaued in the past 802 

decade or more”. This could indicate that although awareness about the importance of forest 803 

complexity has increased, a lack of understanding regarding the long-term impacts of managing 804 

to enhance complexity persists. Through the exploration of mechanistic relationships between 805 

forest SC and function, this study highlighted which complexity metrics provide important 806 

information about RUE and productivity. These metrics can then be integrated as flexible 807 

structural parameters in mechanistic ecosystem models that simulate light and water-sensitive 808 

processes. Through this, we can improve the ability of models to mimic true ecosystem responses 809 

to management, from a biogeochemical perspective. This improved representation will allow us 810 

to explore the future response of forests to a variety of management regimes and representative 811 

concentration pathways, enhancing our ability to assess mitigation and adaptation strategies 812 

beyond direct observational studies, which often take many years to produce outcomes. This would 813 

facilitate more accurate predictions of the future of a suite of ecosystem goods and services 814 
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including carbon storage potential, which could significantly impact the development of natural 815 

climate solutions in the regional Midwest.  816 

The persistent superior performance of the reduced SEM, where the relationship between 817 

SC and GPP is moderated by RUE, suggests that although specific SC metric values change 818 

slightly with metric calculation resolution shifts, the existence of a mediation effect itself is not 819 

scale dependent. This indicates that the mechanistic relationships outlined here can be scaled up 820 

from the stand to the ecosystem level to provide novel insights into forest function and carbon 821 

storage potential. While this expands the utility of observational studies, it also provides new 822 

opportunities to validate and apply information obtained from satellites, such as the Global 823 

Ecosystem Dynamics Investigation (GEDI) high resolution ecosystem LiDAR, which is capable 824 

of measuring global forest canopy height and vertical structure (Dubayah et al., 2020).  825 

Although the EC method is the most well-established method for taking continuous 826 

measurements of energy and trace gas exchange (Desai et al., 2008), it is not without drawbacks. 827 

All measurements have associated uncertainty, and in the context of EC measurements these 828 

uncertainties can be segregated into several categories, depending on the type of error from which 829 

they are derived. These categories include instrument error, calibration error, technological 830 

limitations of the instruments themselves, inadequate sample size, and environmental conditions 831 

that violate the assumptions at the core of EC theory (Richardson et al., 2012). Some of these errors 832 

are stochastic and appear as random noise in the data, while other errors are systematic and result 833 

in a bias that is relatively constant over time. Numerous other studies have explored these 834 

uncertainties at length (Loescher et al., 2006, Hollinger and Richardson, 2005, Massman and Lee, 835 

2002, Richardson et al., 2006), but it’s worth noting general trends in overall EC uncertainty here. 836 

Random error in 30-minute fluxes ranges from 10 – 20% (Loescher et al., 2006), with annual 837 

estimates around 10% (Richardson et al., 2006), as error generally decreases with longer time 838 

series and averaging (Loescher et al., 2006). Flux uncertainty follows a strong seasonal pattern 839 

(uncertainty is generally higher during the growing season), and is sensitive to land cover type and 840 

wind speed (Richardson et al., 2006, Hollinger and Richardson, 2005). Error is also associated 841 

with the partitioning of NEE into GPP and Reco and varies by partitioning method, but a survey of 842 

23 methods conducted by Desai et. al (2008) showed that on average the difference in GPP was 843 
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less than 10%, with additional uncertainty depending on the abundance of gaps in the data. In this 844 

study, there was an average of 37% gaps in measured NEE values across the nine sites.  845 

This study primarily examined the influence of biotic forest factors, but the inclusion of 846 

prominent abiotic factors such as nutrient regimes could further enhance the study. Combining 847 

chemical analysis of leaves with the remote sensing of SC and EC measurements of land-848 

atmosphere carbon exchange would account for the influence of factors such as nitrogen 849 

availability in determining controls on RUE and productivity (Reich et al., 2012). Another 850 

limitation of this study is the relatively short window in which data was collected. The 851 

measurement period was designated as June through October to align with the seasonal shift in the 852 

domination of the surface energy balance from latent to sensible heat flux. Although this 853 

observational window supported the primary goals of CHEESEHEAD19 related to addressing 854 

issues of energy balance closure, from a carbon cycle perspective it failed to capture winter effects 855 

on net carbon budgets. Incorporating multi-year datasets would address this problem as well as 856 

allow for a more thorough examination of the influence of stand age on RUE and productivity, 857 

whereas here analysis was inconclusive. Although the high density of EC towers in a small study 858 

domain controlled for several factors such as differences in soil type, forest type, and mesoclimate, 859 

differences in microclimate still existed between sites. This is presented as variability in 860 

temperature, latent and sensible heat flux, and wind properties including turbulence. Although 861 

heterogeneity in land cover existed, there was very little difference in topography to drive 862 

variability in air circulation or relative humidity, so the observed differences in microclimate were 863 

likely due to diversity in vegetation type and density, as well as proximity to and abundance of 864 

water. Lastly, the somewhat small site sample size involved in this study suggests caution should 865 

be exercised when evaluating SEM fit statistics. 866 

5 Conclusions 867 

Quantifying mechanistic relationships between forest SC and productivity is essential to 868 

advancing our ability to scale measurements from the leaf to stand to landscape level. This will 869 

greatly enhance our capacity to directly assess landscape-level ecosystem functions and 870 

implications for natural climate solutions. We approached this challenge using a combination of 871 

UAS LiDAR-derived SC metrics, land-atmosphere exchange data from nine EC towers, and SEM. 872 

Through employing a high density of EC towers across a 10 x 10 km study domain, we were able 873 



manuscript submitted to Journal of Geophysical Research Biogeosciences 
 

to separate variability in climate, soil fertility, and forest functional types from structural controls 874 

on productivity, allowing for a more representative physiological understanding than has been 875 

previously demonstrated. We conclude that (i) structural metrics describing the vertical complexity 876 

of a forest (specifically 𝑉𝐶𝐼 ) are the strongest drivers when predicting productivity in temperate 877 

mixed forests with a significant degree of heterogeneity and a long history of management; (ii) 878 

variability in the type and intensity of management and disturbance legacies contribute to 879 

substantial differences in SC metric values as well as productivity; (iii) the relationship between 880 

forest structure and function isn’t direct, but is actively mediated by light and water RUE, with 881 

WUE being a stronger driver of GPP; and (iv) SC metric values change with shifts in resolution, 882 

resulting in changes to the mechanistic relationship between forest structure and function. This 883 

emphasizes the need for consistency in the spatial resolution at which SC metrics are calculated, 884 

and for the disclosure of metric calculation resolutions when reporting SC metric values and 885 

interpreting the significance of findings. These findings will allow us to improve mechanistic 886 

representation in ecosystem models of how SC impacts light and water-sensitive processes, and 887 

ultimately GPP. This will strengthen the ability of models to mimic true ecosystem responses to 888 

management, allowing for a more accurate assessment of the response of forests to various 889 

management regimes and representative concentration pathways, enhancing our ability to assess 890 

mitigation and adaptation strategies. 891 
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