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Abstract

We present a fully Bayesian inverse scheme to determine second moments of the stress glut using teleseismic earthquake seismo-

grams. The second moments form a low-dimensional, physically-motivated representation of the rupture process that captures

its spatial extent, source duration, and directivity effects. We determine an ensemble of second moment solutions by employing

Hamiltonian Monte Carlo and automatic differentiation to efficiently approximate the posterior. This method explicitly con-

strains the parameter space to be symmetric positive definite, ensuring the derived source properties have physically meaningful

values. The framework accounts for the autocorrelation structure of the errors and incorporates hyperpriors on the uncer-

tainty. We validate this methodology using a synthetic test and subsequently apply it to the 2019 Mw7.1 Ridgecrest earthquake

using teleseismic data. The distributions of second moments determined for this event provide probabilistic descriptions of

low-dimensional rupture characteristics that are generally consistent with results from previous studies. The success of this case

study suggests that probabilistic and comparable finite source properties may be discerned for large global events regardless of

the quality and coverage of local instrumentation.
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Key Points:6

• We develop a Bayesian inverse scheme to solve for stress glut second moments of7

earthquakes using teleseismic data.8

• We sample the positive-definite constrained posterior distribution using Hamiltonian9

Monte Carlo sampling and automatic differentiation.10

• Using the 2019 Ridgecrest sequence mainshock as an example, we demonstrate the11

efficacy and utility of this inverse framework.12
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Abstract13

We present a fully Bayesian inverse scheme to determine second moments of the stress14

glut using teleseismic earthquake seismograms. The second moments form a low-dimensional,15

physically-motivated representation of the rupture process that captures its spatial extent,16

source duration, and directivity effects. We determine an ensemble of second moment so-17

lutions by employing Hamiltonian Monte Carlo and automatic differentiation to efficiently18

approximate the posterior. This method explicitly constrains the parameter space to be19

symmetric positive definite, ensuring the derived source properties have physically mean-20

ingful values. The framework accounts for the autocorrelation structure of the errors and21

incorporates hyperpriors on the uncertainty. We validate this methodology using a synthetic22

test and subsequently apply it to the 2019 Mw7.1 Ridgecrest earthquake using teleseismic23

data. The distributions of second moments determined for this event provide probabilistic24

descriptions of low-dimensional rupture characteristics that are generally consistent with25

results from previous studies. The success of this case study suggests that probabilistic and26

comparable finite source properties may be discerned for large global events regardless of27

the quality and coverage of local instrumentation.28

Plain Language Summary29

Earthquake science is presented with the challenging problem of determining properties30

of earthquake sources that occur deep within the Earth using observations made at the31

surface of the Earth. Typically, the process for determining these important quantities32

involves finding solutions to complicated optimization problems that, given the necessarily33

poor data coverage, are poorly constrained. With this challenge in mind, we present a34

framework to solve for some fundamental properties of earthquake sources like spatial extent,35

rupture propagation direction, and duration. This approach requires few assumptions about36

the geometry of the fault that ruptured and the dynamics of the rupture process, in contrast37

to more traditional methods. This procedure also provides a probabilistic description of38

these earthquake source properties, which is essential, because the uncertainty inherent to39

this problem dictates that we cannot confidently choose any one particular solution. We40

demonstrate this method’s utility by applying it to the 2019 magnitude 7.1 Ridgecrest41

earthquake. Through this application, we show that this framework can yield probabilistic42

and comparable estimations of rupture properties for large global earthquakes using seismic43

data recorded at great distances.44
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1 Introduction45

Earthquakes are known to exhibit complex rupture processes that vary strongly in46

space and time. A better understanding of the factors controlling earthquake behavior47

consequently requires constraining the finite source properties of earthquakes. Today, high48

dimensional estimates (∼ 1000 parameters) of finite source properties are routinely com-49

puted for significant earthquakes (e.g. Wald & Heaton, 1992; Ammon, 2005; Moreno et al.,50

2010; Ide et al., 2011; Ross et al., 2019). These estimates usually involve the inversion for slip51

on a predefined fault plane using some combination of seismic, geodetic, and tsunami data52

with kinematic constraints placed on the rupture propagation (Hartzell & Heaton, 1983;53

Du et al., 1992; Saito et al., 2011). These solutions, termed finite-fault slip distributions,54

provide a detailed image of time-dependent slip behavior during an earthquake rupture.55

However, these inversions require often arbitrary parameterization of the source geometry,56

have a general lack of sensitivity to rupture velocity, and need substantial regularization57

due to the non-uniqueness of the inverse problem (e.g. Lay, 2018; Wang et al., 2020). This58

nonuniqueness presents challenges to objectively comparing finite source properties between59

events, and thus limits our ability to discern patterns in earthquake behavior that could60

inform a deeper understanding of earthquake phenomenology.61

The limitations of routinely computed estimates of finite source properties motivates62

the development of alternative estimates that overcome these limitations. One potential al-63

ternative is the second moment formulation (G. Backus & Mulcahy, 1976a, 1976b), in which64

higher-order mathematical moments of the stress glut, a source representational quantity,65

are used to describe basic properties of the rupture process in space and time. Higher-order66

stress glut moments have been successfully computed in the past (Bukchin, 1995; McGuire et67

al., 2000, 2001; McGuire, 2002, 2004; Chen, 2005; Meng et al., 2020), but this methodology68

has received little attention compared to slip inversions. The second-moment formulation69

yields low-dimensional, physically-motivated estimates of the spatial extent, directivity, and70

duration of earthquake ruptures. It requires no prior knowledge of the rupture velocity,71

and makes only mild assumptions about the source geometry. Being free of gridding and72

associated discretization issues that complicate slip inversions, the second moment formu-73

lation can more objectively facilitate comparisons between events, helping to find common74

patterns. Illuminating these patterns may help address outstanding questions in earthquake75

science relating to how fault zones may facilitate or impede earthquake ruptures.76

In this study, we use the well-studied 2019 Mw7.1 Ridgecrest earthquake as a vehicle to77

demonstrate our methodology (e.g. Ross et al., 2019; Barnhart et al., 2019). The wealth of78

high quality geodetic data and dense seismic instrumentation have been incorporated into79

numerous finite-fault slip distribution models (Ross et al., 2019; Barnhart et al., 2019; Liu80

et al., 2019; Xu et al., 2020; Goldberg et al., 2020; Wang et al., 2020; Jin & Fialko, 2020;81

Yue et al., 2021). Additionally, rapid field response studies have provided high resolution82

characterizations of the surface fault rupture and displacement (Ponti et al., 2020; DuRoss et83

al., 2020). Further, other source estimation techniques such as subevent inversion (Jia et al.,84

2020) and multi-array backprojection (Xie et al., 2021) have yielded additional constraints85

on the time-dependence of moment release during the mainshock.86

Our contributions in this paper are as follows. We develop a Bayesian inverse scheme87

for second moments using teleseismic data. We employ Hamiltonian Monte Carlo sampling88

and automatic differentiation to efficiently sample from the posterior distribution. In doing89

so, we apply a set of transformations that ensure positive definiteness of the second mo-90

ments. We demonstrate the efficacy of our methodology by applying the inversion scheme91

to the Ridgecrest mainshock. We show that our methodology is useful for determining92

probabilistic and comparable descriptions of low-dimensional rupture parameters with few93

a priori assumptions.94
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2 Preliminaries95

Because an earthquake is constituted by a localized zone of inelastic deformation, we
can represent the source region as a localized departure from elasticity. These departures
can be quantified using the so-called stress glut, Γ, the tensor field computed by applying
an idealized Hooke’s law to the inelastic component of strain in a system (G. Backus &
Mulcahy, 1976a, 1976b). The stress glut is nonzero only within the source region. The
stress glut is a complete representation of a seismic source in space and time that can be
used to reproduce displacements everywhere on Earth for an arbitrary source (Dahlen &
Tromp, 1998). Given the typically sparse distribution of seismic observations, solving for
the full stress glut is an ill-posed problem. We can simplify the stress glut by assuming the
source geometry is constant in space and time:

Γij(ξξξ, τ) = M̂ijf(ξξξ, τ) (1)

Where is M̂ is the normalized mean seismic moment tensor and f is the scalar function96

defined at the position ξξξ and time τ . This approximation reduces the solution from a tensor97

field to a scalar field and is most valid for seismic sources with stable source mechanisms.98

We can further reduce the dimensionality of the stress glut by first recognizing that99

any scalar function in a bounded interval may be uniquely determined by its collection of100

polynomial moments. Because f captures a static displacement, f is nonzero for infinite101

time and thus occupies an unbounded interval, but ḟ vanishes to zero at the cessation of102

rupture and is thus captured within a bounded interval. Hence, considering that the stress103

glut prescribes displacements due to an arbitrary seismic source, we can represent seismic104

displacements as the superposition of the spatiotemporal moments of the rate function ḟ .105

We represent the spatial and temporal components of these moments separately, with spatial106

order m and temporal order n. At low frequencies, we can truncate this infinite series such107

that we only include terms with moments of order m+n ≤ 2. We can then explicitly define108

the measured displacements for a station i at low frequencies as:109

ui(r, t) = ḟ (0,0)(ξcξcξc, τ c)M̂jl
d

dξl

∫ +∞

−∞
Gij(ξ

cξcξc, τ c, r, t)dt

−ḟ (1,1)
x (ξcξcξc, τ c)M̂jl

d

dξx

d

dξl
Gij(ξξξc, τ

c, r, t)

+
1

2
ḟ (2,0)
xy (ξcξcξc, τ c)M̂jl

d

dξx

d

dξy

d

dξl

∫ +∞

−∞
Gij(ξ

cξcξc, τ c, r, t)dt

+
1

2
ḟ (0,2)(ξcξcξc, τ c)M̂jl

d

dξl

d

dt
Gij(ξ

cξcξc, τ c, r, t) (2)

Where G is a Green’s tensor prescribing the path effects from a source with the centroid110

location ξcξcξc and centroid time τ c to an arbitrary station with the location r at time t, and111

ḟ (m,n)(ξcξcξc, τ c) is the moment of the scalar rate function ḟ(ξξξ, τ) of spatial order m and tem-112

poral order n taken about the source centroid in space and time (Bukchin, 1995). Equation113

2 is only valid at low-enough frequencies, and the determination of ”low-enough” depends114

on the spatiotemporal dimensions of the source.115

Several of the moments are of routine use in seismology, while the rest are worked with116

sparingly. The moment of order m+n = 0 is the scalar moment of the source. The moments117

of order m+n = 1 correspond to the spatial (m = 1) and temporal (n = 1) centroids of the118

source. Perhaps unfamiliar are the moments of order m + n = 2; these moments describe119

low-dimensional finite properties of earthquake sources. In particular, ḟ (2,0)(ξcξcξc, τ c) is the120

spatial covariance of the stress glut, ḟ (1,1)(ξcξcξc, τ c) is the spatiotemporal covariance of the121

stress glut, and ḟ (0,2)(ξcξcξc, τ c) is the temporal variance of the stress glut. These so-called122

second moments yield low-dimensional, physically-motivated approximations of the source123

volume, source directivity, and source duration respectively (G. E. Backus, 1977).124
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To understand the physical significance of these second moments, we emphasize that125

the spatial second moments and the temporal second moments are covariances and variances126

respectively. From these quantities we can thus obtain the standard deviation of the stress-127

glut distribution, and the standard deviation is a measure of the width of the distribution.128

We can then define characteristic dimensions of the source using standard deviations of the129

stress glut derived from the second moments (G. E. Backus, 1977; Silver & Jordan, 1983).130

These characteristic dimensions may be defined using a metric of ±1 standard deviation131

from the centroid:132

rc(n̂) =

√
n̂T · [ḟ (2,0)(ξcξcξc, τ c)/ḟ (0,0)(ξcξcξc, τ c)] · n̂,

tc = 2

√
ḟ (0,2)(ξcξcξc, τ c)/ḟ (0,0)(ξcξcξc, τ c), (3)

Where rc(n̂) is the extent of the characteristic volume from the centroid in the direction of133

arbitrary unit vector n̂ and tc is the characteristic duration of the source. We’ll also define134

a characteristic length of the source, Lc, as 2 · rc(ηηη), where ηηη is the principal eigenvector of135

ḟ (2,0)(ξcξcξc, τ c). Using the mixed second moments and the characteristic dimensions described136

in equation 3, we can get estimates of the velocity of the rupture:137

v0 = ḟ (1,1)(ξcξcξc, τ c)/ḟ (0,2)(ξcξcξc, τ c),

vu = Lc/tc (4)

Where v0 is the average instantaneous velocity of the centroid of the rupture and vu is an138

upper bound on the average velocity of the rupture. The quantities described in equations139

3 and 4 thus yield physically interpretable values with which we can evaluate and compare140

stress glut second moment solutions and contextualize these solutions in the broader source141

characterization literature.142

3 Methods143

3.1 Data and Preprocessing144

In this study we work with both real and synthetic seismic waveform data. The real145

data are vertical component seismic data from 48 Global Seismographic Network (GSN)146

stations (Figure 1). We selected these stations both by the source-to-receiver distance147

and by evaluating how well the waveforms were approximated by point source synthetics148

computed using the gCMT solution. The seismograms used in the inversion are 700 second149

windows about the surface wave packet that we manually selected from 7200 second windows150

that start at the gCMT centroid time for the Ridgecrest mainshock. In this study, we only151

use the vertical component of the seismograms and only include R1 arrivals. The addition of152

other phases like G1 arrivals and body waves, as well as R2 and G2 arrivals, would further153

constrain the posterior distribution, but we reserve the inclusion of these additional phases154

for future studies. We down-sample the waveform data to a 0.05 Hz sampling rate, which155

reduces the correlation between samples and minimizes the computational demands of the156

inversion. As part of the construction of the forward propagation matrix, we computed the157

Green’s tensor using the gCMT moment tensor and centroid location, which we perturbed158

to compute the requisite spatial derivatives numerically.159

To compute the Green’s tensor, we use the 3D Earth model S362ANI +M (Moulik &160

Ekström, 2014) and the full waveform modeling software Salvus (Afanasiev et al., 2019),161

which employs the spectral element method to simulate wave propagation. After computing162
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Figure 1. Left: Geographic setting of the 2019 Ridgecrest Sequence. Focal mechanism is the

gCMT solution for the sequence mainshock. Yellow star indicates the gCMT solution centroid

position. Green and red lines indicate USGS mapped quaternary faults (USGS & CGS, 2021) and

faults that were activated during the Ridgecrest Earthquake sequence (Ross et al., 2019). The

strike, dip, and rake of the true nodal plane as given by the gCMT solution are 321◦, 81◦, and 180◦

respectively. Map coloring is reflective of elevation. Right: Global distribution of stations from

which waveforms were used in this study.

this Green’s tensor, we initially keep these waveforms at a high frequency (4 Hz) to improve163

numerical stability when approximating integrals and derivatives. We take the necessary164

temporal and spatial derivatives and integrals of this Green’s tensor numerically using a165

centered finite difference approximation. For the spatial derivatives, we tested numerous166

finite difference offsets from the spatial centroid using synthetic tests, which are described167

subsequently. Given these tests, we prefer a perturbation distance of 250 m because this168

distance is both small enough to yield a reasonable approximation of the spatial derivative169

and large enough to be numerically stable. The construction of the forward propagation170

matrix, which we describe subsequently, requires both the gCMT moment tensor and the171

Green’s tensor derivatives and integrals.172

A particularly important step in the preprocessing of these waveforms is selecting which173

frequency band to use in the inversion. There are two key issues that need to be balanced174

when making this determination. Firstly, equation 2 is a low frequency approximation; at175

higher frequencies, moments of order m+ n > 2 become more significant. This means that176

the frequency band needs to be low enough such that we exclude moments of orderm+n > 2,177

or else the inversion will be biased by these higher-order terms. Secondly, moments of order178

m+n = 0 and m+n = 1 are used. The values used for these lower-order terms are robust,179

but are subject to error. Thus, we need to ensure that the contributions from moments of180

order m+n = 2 are large enough such that they exceed the magnitude of error of the lower181

order terms, otherwise the inversion will be dominated by this error. In short, the frequency182

band should be high enough such that the contribution of the second moments markedly183

exceeds the error on the solutions for the zeroth and first moments, and be low enough such184

that the contribution of the third moments is reasonably small. A good metric by which to185

make this selection is to use the observation that the contribution of moments of order m+n186

–6–
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is approximately proportional to (D/P )m+n (assuming (D/P ) < 1) where D is the source187

duration and P is the period (G. E. Backus, 1977). Looking at the distribution of scalar188

moment estimations for the Ridgecrest mainshock obtained using teleseismic data (GCMT,189

2019; USGS, 2019; Liu et al., 2019), we likely approach the order of the error on the zeroth190

moment when the contribution of the second moments exceeds 5% of the zeroth moment.191

To obtain a period band where the second moments are significant compared to the error192

on the lower-order terms and the contribution of the higher-order terms are always small193

compared to the second moments, we select a period band that obeys both (D/P )2 > 0.05194

and (D/P )3 < 0.05. Taking 25 s as an approximate source duration for the Ridgecrest195

mainshock, this yields a period band of 70-110 s. Since source durations are routinely196

estimated for global events (e.g. Vallée & Douet, 2016), this method of frequency-band197

selection is applicable to most other global events.198

We only use stations in the distance range 10−90◦, with the exception of a few stations199

with exceptional fits at distances just above 90◦ (see Figure 1), to minimize the bias imposed200

by the integrated effect of Earth model error. We then align the Green’s tensor and observed201

displacements of the remaining stations via cross correlation and select a 700 s window that202

encompasses the surface wave packets at each station. The time shifts, which are intended to203

correct for time errors due to variable Earth model inaccuracy, are performed at a frequency204

band at which the third moments are small. There is thus assumed to be minimal skewness in205

the source time function, and we then expect the cross-correlation to account for the Earth-206

model effected timing error without misaligning the centroid time. We apply a Hamming207

taper to the surface wave packet to minimize the contributions of signal at the start and208

end of the time window. These time windows constitute the time-segments of the Green’s209

tensor and data. Because the contribution of moments of order m + n = 2 should still be210

relatively small in the selected frequency band, the synthetic waveforms produced using a211

point source approximation should be similar to the observed waveforms. We thus perform212

an additional manual quality control of the remaining stations, and we remove stations that213

show a poor match between the data and the point source waveforms. Both the waveforms214

that were kept and the waveforms that were thrown out in the course of this quality control215

are shown in Figure S1.216

Before applying this methodology to real data, we will show a test of the outlined inver-217

sion procedure using a synthetic source. For this test, we prescribe a 55x15 km rectangular218

fault with a strike and dip corresponding to the nodal plane of the gCMT solution associated219

with the true rupture surface. We then define a grid of point sources, each with the gCMT220

source mechanism and equal fraction of the gCMT moment, along this prescribed fault such221

that the spatial release of moment can be approximated as uniform distributions of moment222

release along the strike and dip of the fault. We delay the activation of these point sources223

according to a prescribed rupture velocity of 2.5 km/s along strike, resulting in an event224

duration of 22 s, such that the moment release with time can also be approximated as a225

uniform distribution. Using the fact that the width of a uniform distribution is equal to226

2
√
3σ, where σ is the standard deviation of the Gaussian approximation of that uniform227

distribution, we can determine the true second moment solution for this synthetic source.228

3.2 Inversion229

Equation 2 describes the forward model for a second moment tensor source. While it
appears unruly, many of the terms that constitute it are easily accessible. For a given source,
we can observe ui(r, t) using seismic instrumentation; we can solve for G, M, and (ξcξcξc, τ c)
using routine techniques; and we can compute the necessary derivatives and integrals using
numerical methods. Thus, in equation 2, only the moments of the scalar function ḟ are
unknown. We can then pose equation 2 as a linear inverse problem:

d = Fp (5)

–7–
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where d is a vector of measured displacements, F is a forward propagation matrix of spatial230

and temporal integrals and derivatives of G, the columns of which are weighted by the231

components of M, and p is a vector of parameters which constitute the lower-order moments232

of the stress glut.233

Numerous Bayesian methods for source parameter inversion have been proposed for234

problems such as focal mechanism estimation (Wéber, 2006; Walsh et al., 2009; Lee et al.,235

2011; Duputel et al., 2014) and finite-fault slip distribution estimation (Monelli et al., 2009;236

Minson et al., 2013). Bayesian inference has been growing increasingly popular because it237

provides an ensemble of solutions that are informed by both data and prior distributions238

determined by physical constraints or ground truth. The Bayesian formulation described239

here allows for the computation of an ensemble of second moment solutions, with each240

providing a low dimensional estimate of the source process.241

The posterior distribution for this problem can be written as follows (e.g. Tarantola,
2005),

p(p, σ|d) ∝ p(d|σ,p) p(σ) p(p), (6)

where σ is a hyperparameter. For the likelihood term, p(d|σ,p), we use a multivariate242

normal distribution,243

p(d|σ,p) ∝ 1√
|Σ|

exp(−1

2
(d− Fp)T Σ−1 (d− Fp)) (7)

Since the observations are time-series data, errors in the forward model will be subject to244

temporal autocorrelation. We can account for this correlation structure through the data245

covariance matrix, Σ, as outlined in (Duputel et al., 2014). If di and dj are measured246

displacements that are on the same trace and are recorded by the same station:247

Σij = σ · exp(−|i− j|δt/∆t) (8)

Where σ is the hyperparameter included in equations 6 and 7, δt is the sampling rate, and ∆t248

is the period of the shortest period information included in the time-series. This prescribes249

a block diagonal matrix where the blocks have the same length as the time windows taken250

from each station. This correlation structure accounts for temporal correlation in the errors,251

but not any spatial correlation. In this paper we assume that the observations are spatially252

distributed sparsely enough that spatially-correlated errors are negligible.253

We use uninformed priors in this case study, but note that informed priors can easily be254

incorporated (Gelman et al., 2010). That is, with the physical interpretation of the second255

moment properties that we will describe shortly, priors on the spatial extent, directivity,256

and duration may be imposed given observational ground truth. For example, if the true257

nodal plane of an earthquake is known, Gaussian priors may be placed on the spatial second258

moment parameters to restrict the principal eigenvector of the spatial covariance matrix to259

abut the true nodal plane.260

The total number of parameters in this inverse problem is 11, and we approximate261

p(p, σ|d) using Markov Chain Monte Carlo (MCMC) sampling to obtain an ensemble of262

solutions. We do not solve for the zeroth or first order moments, and instead use the gCMT263

solution as our moment tensor and centroid location. Future work will focus on jointly264

solving for the lower order moments together with the second moments. As the parameter265

space is too large for efficient inference with standard Metropolis-Hastings type samplers,266

we instead sample from the posterior distribution using Hamiltonian Monte Carlo (HMC)267

sampling (Neal, 2010), which is an instance of the Metropolis-Hastings algorithm that can268

efficiently sample large parameter spaces using principles from Hamiltonian dynamics. This269

is accomplished in part by incorporating gradient information into the sampling process;270

–8–
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however, it requires a means to also compute gradients efficiently. Here, we accomplish this271

through the use of reverse-mode automatic differentiation (Innes, 2019).272

For each Markov chain in the inversion, we draw 5000 samples from the posterior dis-273

tributions after drawing 5000 burn-in samples. The momentum distribution has a diagonal274

mass matrix and the samples are updated using an ordinary leapfrog integrator (Neal, 2010).275

To evaluate convergence, we run at least 3 chains of the inversion and compute the Gelman-276

Rubin diagnostic using the computed set of chains (Gelman & Rubin, 1992). That is, we277

compare the variability within chains to the variability between chains to determine if the278

chains all converge to the same target distributions.279

Additionally, as described in prior work on this subject (Bukchin, 1995; McGuire et280

al., 2001), the second moments of the stress glut are covariances, and therefore only a281

subset of the parameter space produces valid solutions. Specifically, the second moments282

are symmetric positive definite,283

X =

[
ḟ (2,0)(ξcξcξc, τ c) ḟ (1,1)(ξcξcξc, τ c)

ḟ (1,1)(ξcξcξc, τ c)T ḟ (0,2)(ξcξcξc, τ c)

]
⪰ 0. (9)

Physically, this is equivalent to saying that the spatial extent and duration of the source are284

both non-negative. Typically, when performing a constrained Bayesian inversion, the easiest285

course of action is to sample under an unconstrained parameter space and subsequently286

transform those parameters into the necessarily constrained parameter space (Gelman et al.,287

2010). To this end, we note that, by the Cholesky Factorization Theorem, every symmetric288

positive-definite matrix can be decomposed into the product of some lower triangular matrix289

with a positive diagonal and the transpose of that same lower triangular matrix. This means290

that given X, there exists a lower triangular matrix L with positive diagonal components291

such that:292

X = LLT (10)

Thus, we can sample freely from the unconstrained off-diagonal components of L and from293

the natural logarithm of the diagonal components of L. Then, to evaluate our sample against294

our data, we can simply build L using our sample components and then construct X us-295

ing equation 10. From X we can extract a valid p with which we evaluate the likelihood296

of our sample. A keen observer may notice that while X need only be symmetric posi-297

tive semi-definite, the Cholesky factorization forces X to be positive definite. In practice,298

this distinction is inconsequential, as a positive semi-definite X suggests that at least one299

dimension of the source is identically zero, which will never be true in reality.300
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4 Results301

We first perform our inversion on the synthetic test described in the Methods section.302

In the interest of evaluating the resolvability of parameters for the Ridgecrest mainshock,303

we invert for these second moments using the same distribution of stations and the same304

windowing procedure that we use for the real event. For this test, we also use the mean σ305

from the to-be-described inversion of real data so we can test this inversion in the presence306

of realistic error. The marginal probability distributions for each parameter and the joint307

probability distributions for each pair of parameters are shown in Figure 4. These plots308

show that most of the parameters are either uncorrelated or weakly correlated with each309

other, with the exception of some weak correlation between some closely-related spatial310

variables and some spatial variables with the temporal variable. These plots also show that311

almost all the components of the expected second moment covariance matrix fall well within312

the ensemble of solutions, with the exception of a slight underestimate of the magnitude313

of the north component of the mixed second moment. This discrepancy may be due to314

the imperfect assumption of uniform moment release with time for this test due to the315

discretization of the source.316

We can further test the fidelity of our inversion results by computing synthetic wave-317

forms using equation 2 and evaluating the fit to the observed waveforms generated for this318

synthetic example. The waveforms for an ensemble of second moment solutions from a sin-319

gle chain for the synthetic test are shown for a subset of stations with a large diversity of320

azimuths and distances in Figure 3. The waveform fits match the synthetic observations321

very well, particularly when the full ensemble of solutions is considered. As is shown in322

this figure, the inclusion of the inverted-for second moments of the stress glut perturb the323

point-source waveforms to fit the synthetic observations, thus successfully accounting for324

the finiteness of the source.325

In order to represent the second moment solutions for the synthetic test in a more326

physically interpretable way, we convert the ensembles of second moments into ensembles327

of Lc, tc, |v0|, and vu. Additionally, because the directions associated with Lc and |v0|328

are important, we consider the strike (θ) and plunge (ϕ) associated with these quantities as329

well. We plot the ensembles of these quantities in Figure 4. We find that the ensembles of330

these converted parameters are largely normally distributed, and the values associated with331

the anticipated solution for the synthetic test all fall within these ensembles.332

Now, we invert for the second moments of the 2019 Ridgecrest mainshock using the real333

data. The distributions of the 10 independent parameters of the second moments for a single334

chain of the inversion using the real data are shown in Figure 5. We run the inversion for335

a set of chains, shown in Figure S2, and compute the Gelman-Rubin diagnostic (Gelman &336

Rubin, 1992) using these chains. The Gelman-Rubin values are far less than 1.1, suggesting337

that the chains have converged to the target posterior distributions for the second moments.338

The joint probability distributions for each pair of parameters are shown in Figure 5. As with339

the synthetic test, these joint distributions show that the inverted parameters are mostly340

uncorrelated with each other. Some of the marginal distributions of the second moments341

are skewed due to the positive-definite constraint placed on the inversion. The distribution342

for the hyperparameter σ is shown in Figure S3. We can also evaluate the waveform fits343

for the inversion using real data. A representative subset of these waveform fits is shown344

in Figure 6. The computed waveforms for the ensemble of solutions inverted for under this345

framework fit the observed waveforms reasonably well.346

Using these ensembles of second moments, we can summarize the physical parameters347

of the Ridgecrest mainshock. We show these distributions in Figure 7. As with the synthetic348

test, most of these ensembles are normally distributed, with the exception of ϕLc

, which is349

bimodal, which reflects some nonlinearity in the mapping between the raw second moments350

and the derived parameters. We find that, within two standard deviations, the characteristic351

length of the rupture is 47.3±6.0 km with strike and plunge of 327.7±7.5◦ and −0.2±9.1◦352
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Figure 2. Marginal and joint probability density plots for the 10 independent parameters in-

verted for the synthetic test in this study. Off-diagonal plots are 2-dimensional histogram plots

representing the joint probability distribution for each pair of independent parameters. On-diagonal

plots are kernel density estimate plots for the marginal distributions of the adjacent joint proba-

bility distributions. Black dotted lines indicated the anticipated solution for each parameter in the

inversion.
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Figure 3. Waveform fits for a large subset of the windowed waveforms for the synthetic test

conducted in this study. Waveforms are labeled according to the GSN station at which they were

generated. Black waveforms are synthetic observations. Gray waveforms are generated using a

single solution from the ensemble of solutions from our inversion. Waveforms from each solution in

the ensemble are plotted. Red waveforms are generated using the mean solution of the ensemble

of solutions from our inversion. Blue waveforms are generated using only the gCMT solution and

exclude any consideration of the second moments of the stress glut.

–12–



manuscript submitted to JGR: Solid Earth

Figure 4. Physically motivated representations of the ensembles of second moment solutions

for the synthetic test. A. characteristic length (Lc), B. characteristic length strike (θL
c

), C. char-

acteristic length plunge (ϕLc

), D. characteristic duration (tc), E. instantaneous centroid velocity

magnitude (|v0|), F. instantaneous centroid velocity strike (θv0), G. instantaneous centroid velocity

plunge (ϕv0), H. average velocity upper bound (vu). Histogram shows density of realizations in the

ensemble. Red vertical line shows the mean realization. Blue line shows the anticipated realization.

respectively. The characteristic duration of the rupture is 14.5 ± 1.1 s. The instantaneous353

centroid velocity of the Ridgecrest mainshock has a magnitude of 1.3 ± 0.3 km/s with354

strike and plunge of 127.4 ± 9.9◦ and 1.3 ± 4.8◦ respectively. Finally, the average velocity355

upper bound is 3.3± 0.6 km/s. We summarize the results for the spatial and mixed second356

moments by plotting projections of ellipsoids defined using rc(n̂) from equation 3, which357

yield descriptions of the volume in which most of the moment of the source was released,358

and v0 for a subset of 500 solutions from our ensemble of second moment solutions for this359

source in Figure 8.360
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Figure 5. Marginal and joint probability density plots for the 10 independent parameters in-

verted for in this study. Off-diagonal plots are 2-dimensional histogram plots representing the

joint probability distribution for each pair of independent parameters. On-diagonal plots are kernel

density estimate plots for the marginal distributions of the adjacent joint probability distributions.

–14–



manuscript submitted to JGR: Solid Earth

Figure 6. Waveform fits for a subset of the windowed waveforms used in this study. Waveforms

are labeled according to the GSN station at which they were recorded. Black waveforms are

observations. Gray waveforms are generated using a single solution from the ensemble of solutions

from our inversion. Waveforms from each solution in the ensemble are plotted. Red waveforms are

generated using the mean solution of the ensemble of solutions from our inversion. Blue waveforms

are generated using only the gCMT solution and exclude any consideration of the second moments

of the stress glut.
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Figure 7. Physically motivated representations of the ensembles of second moment solutions for

the 2019 Ridgecrest mainshock. A. characteristic length (Lc), B. characteristic length strike (θL
c

),

C. characteristic length plunge (ϕLc

), D. characteristic duration (tc), E. instantaneous centroid

velocity magnitude (|v0|), F. instantaneous centroid velocity strike (θv0), G. instantaneous centroid

velocity plunge (ϕv0), H. average velocity upper bound (vu). Histogram shows density of realizations

in the ensemble. Red vertical line shows the mean realization.
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Figure 8. Summary figure of the map-view spatial and directivity features of the 2019 Ridge-

crest mainshock as derived from the second moment inversion. Left: Map-view projections of a

500-solution subset of the ensemble of second spatial moment ellipsoids solved for in this study. El-

lipsoids are defined using rc(n̂) in equation 3. Right: Map-view projections of a 500-solution subset

of the ensemble of v0, as defined in equation 4, solved for in this study. Black lines represent the

surface-rupture faults mapped after the Ridgecrest mainshock. Yellow star marks the location of

the gCMT centroid of the Ridgecrest mainshock. Transparent blue lines represent a single solution

from the ensemble of second moment solutions. Solid blue lines represent the mean solution from

the ensemble second moment solutions.

5 Discussion361

When evaluating the solutions described in Figures 4, 7, and 8 and when contextualizing362

these solutions with previous results, it is important to keep in mind that these quantities363

are derived parameters from the variance of the stress glut distribution. This is distinct364

from other types of source parameterizations, such as finite-fault slip distributions, which365

attempt to solve for an approximation of the full stress glut distribution. Thus, the solutions366

presented in this study, while physically meaningful, ought to be considered as a separate367

category of rupture parameterization that should be compared to other rupture parameter-368

izations cautiously. With this in mind, we can begin to assess whether the solutions given369

in this study yield a reasonable low-dimensional story of the Ridgecrest mainshock rupture.370

In general, the ensemble of solutions for the Ridgecrest mainshock is well constrained371

and largely agrees with what is already known about the event. As is shown in Figure 8,372

the largest principal axis of the ellipsoid representation is well-aligned with the faults that373

are known to have ruptured during the mainshock. Additionally, the characteristic length374

of this rupture is in close agreement with the bulk of estimates of rupture extent for this375

earthquake. Also shown in Figure 8, the directivity vectors are aligned with these faults and376

suggest a rupture scenario in which the instantaneous centroid propagates from the NW to377

the SE. This unilateral behavior is in agreement with other estimates of the directivity of378

the event. The characteristic durations for this event, which suggest the period of time in379

which the majority of the moment, but importantly not all of the moment, was released, is380

also in agreement with other estimates of duration for this earthquake.381

The joint probability distributions shown in Figures 2 and 5 suggest that most of the382

independent parameters of the second moments of the stress glut are weakly correlated.383

In general, this weak correlation suggests that a perturbation in one parameter will likely384

have little effect on the values of other parameters. Perhaps most interesting are the weak385

correlations between the spatial second moments and the mixed second moments and the386

–17–



manuscript submitted to JGR: Solid Earth

weak correlations between the spatial second moments and the temporal second moments.387

These suggest the intuitive conclusion that changing the velocity of the centroid, which388

is related to the velocity of rupture, changes the volume that can be ruptured in a given389

amount of time, and changing the amount of time available for rupture changes the volume390

through which a rupture of fixed velocity can propagate.391

The low dimensional second moment estimate of the 2019 Ridgecrest mainshock il-392

lustrates the unique potential of this methodology for producing probabilistic estimates of393

finite source properties with few a priori assumptions on the fault geometry and rupture394

dynamics. The only requirement is a centroid moment tensor solution, which fits nicely into395

this framework, as the zeroth and first moments represent the scalar moment and centroid396

position of the earthquake respectively. In fact, the centroid moment tensor solution may397

be solved concurrently with the second moment solution (McGuire et al., 2000), but this in-398

troduces nonlinearity and significant additional computational/numerical complexity, which399

we reserve for future studies. The only constraint required in the inversion is that the source400

be non-negative in extent, which does not exclude any possible source scenarios. However,401

it is indeed easy to impose additional constraints on the second moments through the use of402

informed priors on the inversion parameters. Such informed priors should be imposed with403

the understanding that the second moments describe a covariance matrix of a 4-dimensional404

stress glut distribution. That is, informed priors are not necessarily being placed on the405

possible source dimensions, but instead are being placed on the possible covariances of the406

source distribution.407

The 2019 Ridgecrest mainshock is a well-studied event, and many of the features of408

the rupture that are illuminated by this inversion were already known. However, this study409

serves as an illustration of some key strengths of this technique. Firstly, this methodology410

provides an estimate of the full posterior distribution of these solutions. So, claims regarding411

rupture finiteness can be made in the context of the full range of possible solutions given the412

uncertainty in the problem. Having a posterior distribution thus allows us to apply some413

degree of confidence to specific claims about an earthquake rupture. Consequently, with414

this methodology, we can make probabilistically supported assessments of the significance415

of similarities and differences between solutions for different events. Another benefit of this416

approach is that, given a prescribed correlation structure in the data, the data covariance417

matrix is solved for as a hyperparameter in the inversion. This means that the uncertainty418

of the posterior is reflective of data uncertainty that is solved for dynamically according to419

the structure of the data and the model.420

Additionally, this methodology requires few of the a priori assumptions that present421

challenges and inaccuracies in other source finiteness estimation techniques, like finite-fault422

slip distributions. For example, this inversion technique does not require any prior character-423

ization of the fault surface. Although the fault surface for Ridgecrest is well-approximated,424

for many global events, like offshore earthquakes, determining a fault surface is challenging,425

and so this methodology presents a substantial advantage for these events. Indeed, this426

methodology does not even require that all of the slip take place on a surface, but instead427

allows for moment release in a volume. This is apparent in Figure 8, where the spatial second428

moment is represented as an ellipsoid with significant width orthogonal to the major axis429

of the ellipsoid. Indeed, with this methodology, scientifically interesting properties like the430

fault-normal width of rupture can be probabilistically constrained and compared between431

events.432

Another strength of this methodology is implicit in the fact that we employed this433

methodology using only GSN teleseismic data. Although the Ridgecrest earthquake occurred434

in an exceptionally well-instrumented area, for many global events teleseismic data is the435

only available information for characterizing the coseismic rupture. Thus for numerous436

events, given this limitation in data availability, robust information concerning rupture437

finiteness is scarce. This methodology then serves as a potentially pivotal tool in discerning438

probabilistic characterizations of earthquakes globally. Relatedly, large global events occur439
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infrequently, and thus historic events are a crucial component in our understanding of large440

earthquakes. The continuity of teleseismic data collection by the GSN for over two decades441

thus allows for this methodology to be readily applied to a large number of previous global442

earthquakes.443
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6 Conclusions444

In this study, we develop a Bayesian framework for computing second moments of the445

stress glut of earthquakes using teleseismic data. This framework incorporates a positive-446

definite constraint under Cholesky decomposition and employs Hamiltonian Monte Carlo447

sampling to efficiently probe the parameter space. This methodology provides robust esti-448

mates of uncertainty by sampling the posterior distribution of solutions with dynamic error449

computation and accounting for the temporal correlation structure in the waveform data.450

These second moments of the stress glut provide a low-dimensional, physically-motivated451

representation of source volume, directivity, and duration that requires no a priori assump-452

tions and is repeatable and comparable between events. We verify this methodology using453

a synthetic test and apply this framework to the 2019 Ridgecrest Sequence mainshock. We454

show that our solutions for this event yield event parameters that largely agree with what455

is known about this event and includes an estimate of the full posterior distribution. Our456

solution also illustrates some key strengths of this rupture-parameterization, namely the in-457

dependence of this solution from a prescribed fault surface and the reliance of this inversion458

on only teleseismic data.459
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Supplementary Figures1

Figure S1. Traces of stations submitted to manual quality control in this study. Station plots

with black outlines indicate stations that were kept. Station plots with red outlines indicate

stations that weren’t kept
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Figure S2. Kernel density estimate plots for multiple chains describing the distributions of in-

dependent components of the second moments of the stress glut for the 2019 Ridgecrest sequence

mainshock. Different colors (blue, red, and green) represent different chains of the inversion.

Figure S3. Distribution of hyperparameter σ determined in the inversion using real data and

included in the inversion using synthetic data.

–2–


