Importance of Secondary Ice Production to Ice Formation and Phase of High-Latitude Mixed-Phase Clouds during SOCRATES and MARCUS

Xi Zhao¹, Xiaohong Liu¹, Vaughan Phillips², Sachin Patade², Minghui Diao³, Ching Yang³, and Neel Desai³

¹Texas A&M University College Station ²Lund University ³San Jose State University

November 23, 2022

Abstract

Measured ice number concentrations are often much higher than the number concentrations of ice nucleating particles (INPs) in moderately cold mixed-phase clouds, suggesting the potential importance of secondary ice nucleation (SIP). However, the occurrence frequency and importance of SIP relative to primary ice nucleation for ice formation and mixed-phase cloud properties are largely unknown. Representing the SIP processes in weather and climate models is equally challenging. In this study, we present a process-level understanding of SIP in high-latitude mixed-phase clouds based on integrated model-observational analyses of the NSF SOCRATES aircraft and DOE ARM MARCUS ship-borne data. We run the Community Earth System Model version 2 (CESM2) nudged towards the MERRA2 Reanalysis and output the modeled clouds and aerosols along the aircraft flight and ship tracks for direct model-observation comparisons. We found that CESM2 with a physical representation of SIP processes (e.g., ice-ice collisional break-up, droplet shattering during rain freezing) better capture the observed ice crystal number concentrations (ICNCs) and cloud properties. SIP often dominants the ice formation in the moderately cold mixed-phase clouds, and transforms ~30% of pure liquid-phase clouds simulated in the model into mixed-phase clouds. We also compare modeled ice enhancement ratio due to SIP to ICNC and INP number concentrations observed during SOCRATES and MARCUS.

Importance of Secondary Ice Production to Ice Formation and Phase of High-Latitude Mixed-Phase Clouds during SOCRATES and MARCUS

Xi Zhao¹, Xiaohong Liu¹, Vaughan Phillips², Sachin Patade², Minghui Diao³

¹Texas A&M University

²Department of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden ³San Jose State University

Measured ice number concentrations are often much higher than the number concentrations of ice nucleating particles (INPs) in moderately cold mixed-phase clouds, suggesting the potential importance of secondary ice nucleation (SIP). However, the occurrence frequency and importance of SIP relative to primary ice nucleation for ice formation and mixed-phase cloud properties are largely unknown. Representing the SIP processes in weather and climate models is equally challenging.

In this study, we present a process-level understanding of SIP in high-latitude mixed-phase clouds based on integrated model-observational analyses of the NSF SOCRATES aircraft and DOE ARM MARCUS ship-borne data. We run the Community Earth System Model version 2 (CESM2) nudged towards the MERRA2 Reanalysis and output the modeled clouds and aerosols along the aircraft flight and ship tracks for direct model-observation comparisons. We found that CESM2 with a physical representation of SIP processes (e.g., ice-ice collisional break-up, droplet shattering during rain freezing) better capture the observed ice crystal number concentrations (ICNCs) and cloud properties. SIP often dominants the ice formation in the moderately cold mixed-phase clouds, and transforms ~30% of pure liquid-phase clouds simulated in the model into mixed-phase clouds. We also compare modeled ice enhancement ratio due to SIP to ICNC and INP number concentrations observed during SOCRATES and MARCUS.