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Abstract

A seamless numerical model of coupled multiphase flow and inertial mechanics in fractured porous media is proposed. The model

develops an automatic time step size control method to efficiently and accurately capture transitions between flow with small

deformation, quasi-static slip, and dynamic rupture with seismic wave propagation. The model utilizes a mixed and embedded

approach that represents fractures explicitly. The mixed discretization combines an extended finite element method (XFEM)

with a projection embedded discrete fracture and matrix (pEDFM) finite volume method. Mechanical inertia is approximated

implicitly using a stable Newmark scheme, and fracture contact constraints for stick-slip conditions are enforced by a Lagrange

Multiplier approach that is stabilized by Polynomial Pressure Projection (PPP). The temporal adaption method combines

discretization error, Coulomb friction, and slip rate considerations to capture pre-seismic triggering, co-seismic spontaneous

rupture, and arrest. The model is applied to simulate multiple cycles of induced seismic rupture under various multiphase fluid

production and injection scenarios. This is enabled by time step size control to automatically span transitions across seven

orders of magnitude in timescales.
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Key Points:6

• A seamless numerical model is developed to approximate coupled multiphase7

flow and transient poromechanics in fractured reservoirs using an embedded8

mesh approach.9

• A temporal control method is developed to simultaneously consider accuracy,10

slippage, and slip rate, and it is applied to accurately capture pre-seismic trig-11

gering, co-seismic spontaneous rupture, and rupture arrest, as well as multiple12

cycles of these. This is accomplished by the method’s ability to accurately13
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gated empirically in capturing reactivation and nucleation seismic rupture under17

fluid injection.18
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Abstract19

A seamless numerical model of coupled multiphase flow and inertial mechanics in frac-20

tured porous media is proposed. The model develops an automatic time step size con-21

trol method to efficiently and accurately capture transitions between flow with small22

deformation, quasi-static slip, and dynamic rupture with seismic wave propagation.23

The model utilizes a mixed and embedded approach that represents fractures explicitly.24

The mixed discretization combines an extended finite element method (XFEM) with25

a projection embedded discrete fracture and matrix (pEDFM) finite volume method.26

Mechanical inertia is approximated implicitly using a stable Newmark scheme, and27

fracture contact constraints for stick-slip conditions are enforced by a Lagrange Multi-28

plier approach that is stabilized by Polynomial Pressure Projection (PPP). The tem-29

poral adaption method combines discretization error, Coulomb friction, and slip rate30

considerations to capture pre-seismic triggering, co-seismic spontaneous rupture, and31

arrest. The model is applied to simulate multiple cycles of induced seismic rupture32

under various multiphase fluid production and injection scenarios. This is enabled by33

time step size control to automatically span transitions across seven orders of magni-34

tude in timescales.35

1 Introduction36

Subsurface engineering systems are the subject of fluid injection or production37

and mechanical forcing at various stages of their operation. These activities drive38

complex multiphase flow and deformation dynamics across multiple scales and extents.39

Depending on the particular engineering or scientific objectives, the modeler will select40

a suitable system model by ignoring specific effects deemed negligible within the in-41

tended range of operating parameters under study. This practice is not only beneficial42

for parametric simplification but also toward realizing timely computational workflows.43

An example of this practice is to use a coupled model for fluid flow and quasi-static44

mechanics when engineering resource recovery or subsurface storage operations and45

a distinct transient elastic deformation model to study seismic wave propagation oc-46

curring over a short duration. This work pertains to developing a seamless model47

spanning coupled multiphase fluid-flow and quasi-static deformation and seismic prop-48

agation and slip in the presence of fractures. The critical technical development is a49

temporal adaptivity algorithm to adapt the computational cost of simulation locally50

according to the underlying physical processes occurring throughout the simulation.51

Moreover, the adaptive algorithms enforce accurate and efficient simulation of either52

extreme (aseismic and seismic deformation), as well as any number of transitions to53

occur across them.54

Figure 1: The closed-loop engineering cycle; after (Jansen et al., 2005, 2008). A target
engineering system is observed and a model is reconciled with observations (red sub-
cycle). The model is used to design and optimize engineering interventions that are subse-
quently applied to the system (green cycle).
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A primary utility of this approach is in cases where: i) the operating parame-55

ter range is itself not known or limited a priori, and ii) when there is no adequate56

characterization of the conditions for which a particular set of physics (e.g., inertial57

mechanics) have marginal versus first-order effects. A prototypical example of an58

engineering application in which this is the case is the computer-assisted closed-loop59

reservoir management (CLRM) workflow illustrated in Figure 1. In the CLRM work-60

flow, a model is continually reconciled with observations of the target system as they61

are acquired and through an iterative process (data assimilation). Subsequently, the62

reconciled models are used in another iterative process to design and optimize future63

engineering activity (decision engineering). The modeling component is subject to64

various plausible parameters or engineering control circumstances in these iterative65

sub-processes. Thus, the onus is to adapt continually and reconcile what physics to66

approximate or neglect while simultaneously expediting turn-around times.

Figure 2: Illustration of two modeling approaches: a) stitched models apply either a flow
simulation or seismic propagation model, and they provide approximate mechanisms to
transfer state and parameter information between them; and b) seamless models encode a
single set of equations and assumptions, and rely on internally adaptive solution methods
to expedite computation.

67

As illustrated in Figure 2, two broad classes of simulation models may be applied.68

The first class, which we refer to as stitched, relies on coordination across two separate69

sub-models: one for coupled flow and quasi-static deformation and the other for seismic70

wave propagation. Selection logic is necessary to determine which limiting assumptions71

of either model are more appropriate for the scenario at hand. In the context of CLRM,72

further logic is necessary to enable the transfer of state and parameter information73

back-and-forth across the two models. In the contexts of both the data-assimilation74

and design workflows, observations can subsequently only inform a sub-model at a75

time. The proposed modeling approach is of the second class, which we refer to76

as seamless. The model applies a single set of governing models and constitutive77

relationships regardless of the simulation case at hand. Instead, the model relies on78

logic to adaptively determine suitable numerical solution approaches (especially time-79

step size). The goals of the automatic adaptations are to expedite computational80

performance while accurately honoring the local dynamics at hand. Time adaptivity81

is essential in this approach to efficiently and accurately capture the seismic process,82

given the vast disparity in characteristic scales between seismic deformation (e.g.,83

milliseconds) and transient flow (e.g., hours). For example, if solution states and84

controls indicate minor deformation, the model would allow for large time-step sizes85

on the order of a month. Furthermore, as slow fault activation occurs, time-steps86

need to be adapted to capture quasi-static slip with sufficient accuracy to determine87

more precisely whether and when a transition to dynamic rupture will occur. Under88

inertial dynamic wave propagation, the model sufficiently refines time-steps to capture89

waveform information at receivers. Finally, the adaptivity allows for multiple cycles90

across changing operational controls.91
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Seamless modeling of quasi-static and dynamic hydromechanical processes at92

the system scale is challenging and understudied. Stitched models, on the other hand,93

have received considerable focus. These models combine independent advances in94

quasi-static hydromechanical simulation using the Biot theory of poroelasticity (Biot,95

1941), with elastodynamic simulation.96

Examples of quasi-static hydromechanical models and their application to peri-97

ods before fault rupture include Jha and Juanes (2014); Cappa and Rutqvist (2011).98

Jha and Juanes (2014) developed a fixed-stress scheme to couple the hydrodynamic99

General Purpose Research Simulator (Cao, 2002) with the Pylith (Aagaard et al.,100

2013) mechanics model. The model was applied to investigate relationships between101

the pore pressure, fault-slip, and the onset of dynamic slip. Cappa and Rutqvist (2011)102

introduced a hydromechanical fault-permeability model into the coupled fluid flow and103

geomechanics simulator TOUGH–FLAC. The model itself links the finite-volume mul-104

tiphase flow TOUGH2 model with the finite-difference geomechanics model FLAC3D.105

Despite excluding inertial effects, quasi-dynamic models augment quasi-static models106

with a shear-traction radiation damping term correlated with slip velocity. Quasi-107

dynamic models were applied to study unbounded and co-seismic fault-slip (Rice,108

1993; Rice & Ben-Zion, 1996; Cueto-Felgueroso et al., 2017, 2018). However, given109

that inertial and viscous effects of fluids on wave propagation are ignored, Thomas et110

al. (2014) and Cueto-Felgueroso et al. (2018) show that quasi-dynamic models produce111

markedly different nucleation and rupture estimates compared to those obtained using112

fully dynamic approaches.113

There are several reports of switching between a quasi-static model for the inter-114

seismic period to a dynamic rupture model for the co-seismic period. Cappa and115

Rutqvist (2012) for instance, switch from a quasi-static model once the shear stress116

state exceeds the static friction and transfer the simulated stress state at that point117

to initialize a dynamic rupture model. Similar switching strategies are also adopted118

by Buijze et al. (2017, 2019); Meng (2017); Meng and Wang (2018); Jin and Zoback119

(2018); Paap et al. (2020); Schwartzkopff et al. (2021) with variations in the quasi-static120

and dynamic models used. Buijze et al. (2017) model fluid injection indirectly by en-121

forcing various pressure scenarios, and Buijze et al. (2019) show an application of the al-122

gorithm for natural gas production systems with faults. Meng (2017); Meng and Wang123

(2018) adopt an incompressible fluid model (steady flow) such that fluid properties and124

porosity do not change with pressure. Jin and Zoback (2018) modeled single-phase125

compressible fluid flow with a quasi-static coupled hydromechanical model. Paap et126

al. (2020) implement a coupled modeling approach using FLAC3D and SPECFEM2D127

and Schwartzkopff et al. (2021) develop a multiphase coupled quasi-static model and128

a dynamic mechanical model using the extended finite element method (XFEM). The129

switching criterion used is the length of the quasi-statically slipping patch along the130

fault.131

Pampillón et al. (2018) report a seamless dynamic single-phase poroelastic model132

with an incompressible fluid. The model limited the time-step size adaptively according133

to slip rate, and its efficacy compared to a quasi-dynamic approach was demonstrated.134

This work develops a temporal adaptivity indicator to simultaneously consider con-135

tact traction, local discretization error, and slip rate to capture the fluid flow activity136

without fault-slip, pre-seismic triggering, co-seismic spontaneous rupture, and post-137

seismic arrest. Moreover, the method applies general multiphase and compressible138

flow in the matrix and fractures, fully dynamic poromechanics, fracture contact, and139

stick-slip conditions. The seamless model is validated, and we characterize the effi-140

cacy of the temporal adaptivity indicator for accuracy and computational efficiency.141

Finally, we apply the model to injection-induced aseismic and seismic slip scenarios142

and simultaneous injection and production scenarios in the presence of faults.143

–4–
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The proposed model extends an established quasi-static approach (Ren and144

Younis (2018); Ren et al. (2018)) that couples an extended finite element method145

(XFEM) (Khoei & Nikbakht, 2007; Khoei, 2014) approximation for mechanics with146

an Embedded Discrete Fracture and Matrix (EDFM) (Lee et al., 2001; Li & Lee,147

2008; Moinfar et al., 2013) approximation for multi-phase fluid flow within the matrix148

and fractures. The particular projection-based variant (pEDFM) (Jiang & Younis,149

2016b, 2017) is used to capture high contrast fracture-matrix cross-flows accurately.150

While the model was previously extended to accommodate fluid-driven fracture prop-151

agation (Ren & Younis, 2019, 2021a), this work neglects these effects. The model is152

extended to incorporate inertial terms, and a stable and second-order fully-implicit153

Newmark temporal discretization approximation is applied. Additionally, we develop154

a fracture contact model with fracture stick-slip behavior, and slip-weakening fric-155

tion laws are adopted. The proposed methods treat contact forces in fractures using156

Lagrange Multiplier constraints, while a Polynomial Pressure Projection Method is157

adopted to stabilize the computation of contact traction. Finally, this work develops a158

temporal adaptivity indicator and time-step controller to simultaneously account for159

contact traction, local discretization error, and slip rate. We demonstrate that the160

method accurately captures fluid flow activity with fault-slip, pre-seismic triggering,161

co-seismic spontaneous rupture, as well as post-seismic arrest.162

The article is organized as follows: in Section 2, the mathematical and numerical163

models are presented. In Section 3, we develop a hybrid time step selection scheme to164

simultaneously control discretization error, and capture sharp transitions across stick-165

ing, quasi-static slip, and dynamic rupture. In Section 4, we present several numerical166

studies to demonstrate that the proposed methods accurately capture transitions if167

and when they are to occur. Moreover, the temporal adaptivity ensures that the com-168

putational cost of the seamless model is comparable to the use of stitched models.169

Finally, Section 5 discusses implications of this work and summarizes the conclusions.170

2 Governing Equations and Closure Relations171

The proposed model considers a two-dimensional spatial domain containing sev-172

eral fractures. The outer boundary is closed to fluid flow, but mechanically, it admits173

free movement mimicking infinite extent under an initial, steady in-situ stress field174

(absorbing boundaries). Fractures are modeled as one-dimensional, non-intersecting,175

and piece-wise linear curves with an implied variable aperture along the length. Sub-176

sequently, the matrix domain treats fractures as embedded internal boundaries. We177

consider general multiphase flow within the matrix according to the quasi-static Darcy178

law with spatially variable permeability. The reference (initial) porosity field is spa-179

tially variable. A Lagrange variation model is applied whereby dynamic changes to180

porosity are related to the underlying rock deformation and pore pressure fields. The181

model captures inertial, linear poroelastic mechanics under the small deformation limit,182

and the Biot theory that relates the pore pressure field to the effective stress is applied.183

Mechanically, the aperture at a point on a fracture may be zero (contact) or positive184

(open). Moreover, a point along a fracture under a contact condition may either be185

sticking (insufficient traction to overcome friction) or slipping. In all computational186

examples presented, a slip-weakening friction model is applied. Fluid flow in open187

fracture locales is assumed to follow a nonlinear Poiseuille (lubrication limit) model.188

Fluid transfer between an open fracture and the surrounding matrix obeys a Darcy-189

type law and the transfer rate scales linearly with the local difference in pore pressure190

and fracture fluid pressure. Under fracture contact conditions, fluid flow in the matrix191

across fractures can be assumed to be zero (barriers to fluid flow) or follow the native192

matrix conductivity (non-sealing or open).193
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2.1 Preliminaries and mathematical notation194

As illustrated in Figure 3a, we consider a two-dimensional open and bounded spa-
tial domain, Ω ⊂ R2, with outer-boundary ∂Ω and outward-oriented unit-normal field
nm (∂Ω). A collection of Nf fractures are represented by piece-wise linear segments
that do not mutually intersect within their interiors. The fractures Γf are embedded
within the matrix rock; i.e., the open matrix domain is defined as,

Ωm = Ω−
Nf⋃
f=1

Γf .

As illustrated in Figure 3b, fractures are oriented by local tangential coordinate

(a) Matrix-fracture domain. (b) Oriented fracture parameterization.

Figure 3: Illustration of embedded fractures and notation.

frames. Let l ≥ 0 denote the arc-length parameterization along a particular fracture
Γf , as measured from a selected tip x0

f . Then the local unit-normal field nf (x) is
oriented with respect to the local tangent, τf (l), and,

xf (l) = x0
f +

∫ l

0

τf (ν) dν ∈ Γf 1 ≤ f ≤ Nf .

The independent-state fields within the matrix are the fluid pore-pressure P (x, t),
fluid phase-saturation Sη (x, t), and displacement u (x, t) fields for x ∈ Ωm and t ≥ 0.
Note that while there are no restrictions to considering general multiphase flow, all
computational examples assume the presence of a maximum of two immiscible fluid
phases (i.e., η ∈ {0, 1}), and we neglect capillary effects. Within fractures, the inde-
pendent state-fields are the fluid pressure Pf (xf , t), and a phase volumetric fraction
Sf,η (xf , t). Discontinuity of state fields (independent and dependent) on Ωm across
fractures is accommodated by the orientation of a fracture’s local coordinate frame.
That is, we apply superscripts to refer to either side as nf = n+

f = −n−f . Subse-
quently, a locally discontinuous state-field such as displacement or pore-pressure will
take two-sided values at any point on a fracture. The jump function subsequently
defines an implicit fracture aperture (normal gap function),

gN = JuK · nf = (u+ − u−) · nf on xf (l) ∈ Γf , t ≥ 0, (1)

as well as point-wise tangential slip,

gT = JuK · τf = (u+ − u−)(I − nf ⊗ nf ) on xf (l) ∈ Γf , t ≥ 0. (2)

–6–
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2.2 Governing equations195

Within the matrix Ωm, the continuity of mass and momentum are enforced in
the forms, 

∂
∂t (φ∗S1ρ1) +∇ · (ρ1v1) + q1,mf = q1

∂
∂t (φ∗S2ρ2) +∇ · (ρ2v2) + q2,mf = q2

ρb
∂2u
∂t2 −∇ · σ − ρbg = f

, x ∈ Ωm and t > 0, (3)

where the Lagrange porosity φ∗ incorporates strain and pore pressure dependent com-196

pressibility, ρη denotes fluid phase density, ρb denotes the overall mass density on a197

bulk volume basis, vη denotes fluid phase velocity, qη,mf represents the phase mass198

transfer rate from matrix to fracture, qη denotes phase injection rate from wells, σ is199

the effective stress tensor, f denotes externally-applied body forces, and g denotes the200

acceleration due to gravity.201

Within the fractures Γf , f = 1, . . . , Nf , we model one-dimensional multi-phase
flow along the tangential coordinate affixed to one of the two tips. Matrix-fracture
exchanges of mass are then modeled with a source term. Adopting a lubrication flow
limit, the continuity equation for η ∈ {1, 2} in fractures is expressed as,

∂

∂t
(gNSηρη)− ∂

∂l

[
g3
N

ρηkr,η
12µη

(
∂Pf
∂l
− ρfg · τf

)]
− qη,mf = qη,f (4)

where µη is the phase viscosity, kr,η denotes phase the relative permeability, and qη,f202

represents phase injection directly into fracture space. Note that Equation 4 is math-203

ematically degenerate in locales where a fracture is closed under contact conditions;204

i.e., gN ≡ 0. Moreover, in such instances, the independent (fluid pressure and a phase205

saturation) and dependent (e.g., phase density) variables are undefined. Subsequently,206

auxiliary constraints are required, and they impose a complementary condition on207

Equation 4. The auxiliary data and conditions are presented in Section 2.3.208

The present model treats the exchange of fluids across the internal matrix and
open fracture boundaries as proportional to the local difference between pore pressure
and the fracture fluid pressure; i.e.,

qη,mf = Tf
ρηKr,η

µη

(
P± − Pf

)
Closed fractures may either admit flow across them through the matrix or act as flow209

barriers.210

2.3 Auxiliary data and conditions211

For the matrix, the auxiliary data are comprised of boundary and initial con-
ditions. Naturally, the independent state fields (P (x, 0), S1 (x, 0), and u (x, 0)) may
be initialized arbitrarily, subject to compatibility conditions with prescribed boundary
conditions to ensure well-posedness. In addition, the initial deformation velocity field
v ≡ ∂u

∂t must be specified. The outer boundary conditions are assumed to be closed
to fluid flow, i.e.,

vη · nm = 0, η ∈ {1, 2} and x ∈ ∂Ωm.

Mechanically, we model the outer-boundary as infinite (non-reflecting) by applying
absorbing boundary terms. The Lysmer absorbing boundary model (Lysmer & Kuh-
lemeyer, 1969) is applied by enforcing,

σ · nm = −apρ̄bV̄p
∂u

∂t
, and, (5)

σ · (1− nm ⊗ nm) = −asρ̄bV̄s
∂u

∂t
, x ∈ ∂Ωm. (6)

–7–
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In this model, 0 ≤ ap, as ≤ 1 are dimensionless parameters to control the degree of
absorption, and V̄p and V̄s are the average P- and S-wave velocity fields respectively.
The velocities are dependent on the independent state fields, and are weighted by
mixture density ρ̄b and mechanical parameters as,

V̄p =

√
E(1− ν)

(1 + ν)(1− 2ν)ρ̄b
, and, (7)

V̄s =

√
E

2(1 + ν)ρ̄b
, (8)

where E is the Young’s modulus and ν is the Poisson’s ratio.212

It is necessary to impose complementarity constraints within fractures to iden-
tify and treat open and closed (contact) stick or slip conditions. The augmentation
treats the complementarity constraints by introducing local Lagrange multipliers in
the normal λN , and tangential λT directions. These represent the traction on the
surface in each direction (Khoei & Nikbakht, 2007; Khoei, 2014). Under open con-
ditions, the local fracture aperture is greater than zero, gN > 0. Subsequently, no
additional constraints need to be applied, and the Lagrange multipliers are set equal
to zero. Otherwise (gN ≤ 0), contact conditions prevail locally, and constraints must
be imposed. In turn, these constraints differ under sticking or slipping conditions. In
this work, we apply conditions based on the stick-slip theory of friction developed by
Curnier (1984). Under the sticking condition gT = 0, the shear slip along the fracture
is limited by the frictional forces. Subsequently, according to the Coulomb friction
model, µfλN − λT > 0, and along with the constraint that λN > 0, the Lagrange
multipliers may be determined as two additional local degrees of freedom to satisfy
these constraints. In the case of sliding conditions (gT > 0) however, and λN > 0
is the only constraint, and the shear traction is set to satisfy λT = µfλN . These
complementarity conditions can be summarized as two sets of Karuch-Kuhn-Tucker
conditions for the normal,

gN ≥ 0,λN ≥ 0, gNλN = 0, (9)

and tangential directions,

gT ≥ 0, µfλN − λT ≥ 0, gT (µfλN − λT ) = 0. (10)

2.3.1 Constitutive relations213

Within the matrix, we model phase flow velocity using the multi-phase extension
of Darcy’s law,

vη,m = −k̄m
krη
µη

(∇P + ρηg) , (11)

where k̄m denotes a spatially varying, diagonal permeability tensor field, and Kr,η214

denotes the phase relative permeability relation that is generally a nonlinear func-215

tion of phase saturation. Empirical thermodynamic correlations are applied to model216

phase density and viscosity as functions of pore pressure or fracture fluid pressure as217

appropriate.218

The Lagrange porosity φ∗ integrates deformation dynamics under an assump-
tion of infinitesimal-displacement linear poroelasticity, and is computed as Dean et al.
(2006),

φ∗ = φ0 + αε+
1

M
(P − P0), (12)

where φ0 and P0 are the reference porosity and pressure, respectively, and α and M
are Biot theory parameters, and ε denotes the volumetric strain, which is the trace of

–8–
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the strain tensor, ε. The mixture density ρb is a function of displacement and pressure
as the volume-weighted sum,

ρb = (1− φ∗) ρs + φ∗ΣηρηSη, (13)

where ρs is the mass density of the solid matrix.219

The Biot theory of poroelasticity Biot (1941) is applied, and the effective stress
law based on the single-phase theory is modeled as,

σ = σ
′
− αPI, (14)

where σ
′

denoting the effective stress tensor acting between solid grains, and I is the
identity tensor. In turn, the effective stress σ

′
is related to displacement via the linear

elastic constitutive law,

σ
′

= λ (∇ · u) I +G
(
∇Tu+∇u

)
, (15)

where λ > 0 and G > 0 are Lamé coefficients measured experimentally for the matrix220

skeleton.221

Several models may be applied to the evolution of the fracture friction coefficient
µf . In the computational examples presented, we adopt the linear slip-weakening
law Andrews (1976). In this model, the friction factor µf is related to the slippage
|gT | as,

µf =


µs + µd−µs

dc
|gT | |gT | ≤ dc

µd |gT | > dc

, (16)

where µd is a dynamic coefficient parameter, µs is a static coefficient parameter, and222

dc is a critical distance parameter.223

To describe fracture rupture, we define the following terms:224

• Reactivation: reactivation occurs when one node on a fracture reaches Coulomb225

failure.226

• Nucleation: in space, once a critical slip length along a fracture is reached (nu-
cleation size), the slipping patch becomes unstable, forming rupture fronts with
accelerating slip and spontaneous propagation of elastodynamic rupture. Thus,
a rapid increase in slip rate and area are observed. The theoretical nucleation
size for a slip-weakening friction model can be estimated from the properties of
the given field. Following Jin and Zoback (2018), this is obtained as,

Lc =
Edc

2(1 + ν)(1− ν)(µs − µd)σn
, (17)

where σn is the normal stress at the onset of Coulomb failure.227

The proposed model extends an established quasi-static numerical scheme and228

solution methodology Ren et al. (2018); Ren and Younis (2021a) to incorporate fracture229

contact and slip dynamics as well as inertial poromechanics. The base quasi-static230

numerical method is first briefly described, and the reader is referred to Ren et al.231

(2018) and Ren and Younis (2021a) for further details. Following the review, we then232

develop two extensions to the method. The first extension incorporates closed and stick233

and slip constraints on fractures, and the second extension pertains to incorporating234

inertial effects in the coupled poromechanics.235

2.4 Review of the base quasi-static numerical model236

The model applies an independent Cartesian mesh to approximate Ωm and a237

one-dimensional Piecewise Linear Complex (PLC) mesh to approximate fractures Γf .238

–9–
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Generally, the fracture mesh (choice of segmentation of fractures) can be independent239

of the choice of matrix mesh. While this feature may be desirable in practice, in the240

computational examples presented, we select fracture segments to conform to the edges241

of the matrix mesh cells which they intersect. Mixed discretizations are applied to the242

mass and momentum conservation equations. The flow equations on the matrix and243

fractures are approximated using a finite-volume approximation (Lee et al. (2001) and244

Li and Lee (2008)). In contrast, the poromechanical equations are approximated using245

an extended finite element method XFEM (Moës et al. (1999)). A stabilized inter-246

polation of unknowns ensures complete coupling across the two systems. Staggering247

variables enable this; pressure and saturation unknowns are matrix cell and fracture248

segment centered, whereas displacement variables are located at mesh vertices. We249

apply interpolation schemes that guarantee the Ladyzhenskaya-Babuska-Brezzi (LBB)250

stability conditions. This mixed discretization approach improves the approximation251

of sharp saturation fronts in multiphase flow.252

Figure 4: Illustration of the geometry and finite-element enrichment of nodes and ele-
ments in the vicinity of an embedded fracture.

As illustrated in Figure 4, XFEM applies Heaviside and tip enrichment to nodes253

in the vicinity of fracture segments. This enrichment ensures accurate approximation254

of discontinuity in the displacement field as well as singularity at fracture tips. While255

the approach of Ren et al. (2018) accommodates fracture segment intersections and256

that of Ren and Younis (2021a, 2021c, 2021b) additionally accommodates fluid-driven257

tip propagation, both of these effects are neglected in the present work. The proposed258

work augments this enrichment with numerical constraint terms to model the fracture259

contact and stick-slip dynamics described in Section 2.3.260

We apply a projection Embedded Discrete Fracture and Matrix (pEDFM) finite261

volume approximation (Jiang and Younis (2016b); Ţene et al. (2017)) to the flow and262

transport equations within both the matrix and fracture segments. As illustrated in263

Figure 5, the matrix cell- and fracture segment-centered method introduces transmis-264

sibility connections that carry material flux. The transmissibility weights are functions265

of the local geometry and are subsequently computed offline in a preprocessing step.266

Closed fracture segments (Figures 5c and 5d) result in a degenerate mass conservation267

residual for that segment. Subsequently, the associated degrees of freedom and connec-268

tions must be annihilated or redistributed to the matrix cells. These alterations must269

be implemented dynamically as the opening of segments is dictated by the evolution270

of the underlying poro-hydro-mechanical process.271

2.5 Extension to incorporate fracture contact and slip conditions272

Introducing the variational form of the displacement field δu (x, t) and the as-
sociated variational strain tensor δε := ∇symδu , the weak form of the momentum
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(a) Isolated geometry (b) Open fracture (c) Closed permeable (d) Closed sealing

Figure 5: Illustration of the geometry and finite volume connectivity of a hypothetical
cell with an embedded fracture under various conditions: (a) geometry and projection
areas for a fracture segment with unknowns centered at F0, embedded in cell with un-
knowns centered at M1; (b) through (d) connectivity between segments and cells under
open, closed but transmissible, and closed sealing conditions.

balance in Equation 3 is,∫
Ωm

δu · (ρbü) dΩ +

∫
Ωm

δε · σdΩ−
∫

Ωm

δu · fdΩ =

∫
Γt

δu · t̄dΓ +Wf , (18)

where Wf denotes the externally-applied virtual work due to the internal fractures,
and t̄ denotes the traction forces applied to the traction (Neumman) boundary Γt on
outer boundary of Ωm. The second term on the left-hand-side of Equation 18 captures
the action of the total stress, and through the Biot model in Equation 14 expands to,∫

Ωm

δε · σdΩ =

∫
Ωm

δε : D : εdΩ−
∫

Ωm

δε : (αPI )dΩ, (19)

where D is the elasticity tensor of the solid skeleton, and P is the matrix pore pres-
sure. In Ren and Younis (2018, 2021a), fractures are assumed to be open exclusively.
Subsequently, the force boundary condition on fractures is modeled as,

W open
n,f =

∫
Γf

PfδgN dΓ, (20)

which posits that the fluid pressure within the fractures Pf leads to the sole surface273

force that is applied onto the matrix. We extend this model to account for changing274

conditions to closed fractures under either sticking or sliding conditions. A Lagrange275

Multiplier approach is applied to impose these constraints exactly. These conditions276

are listed in Equations 9 and 10 for the normal and tangential directions respectively.277

Further degrees of freedom are added for the contact pressure in the normal direction278

λN and the tangential traction λT . The Lagrange multipliers are aligned as the279

independent unknowns of additional algebraic equations, and they also contribute to280

alternative forms of Wf in the variational form of the momentum equations. These281

are developed next.282

Under closed conditions, the contribution of the normal traction λN to the bal-
ance of virtual work becomes,

W closed
n,f =

∫
Γf

λNδgN dΓ. (21)

The tangential virtual work term will depend on whether the segments are in a sticking
or slipping state. Under sticking conditions, the term is,

W closed
st,f =

∫
Γf

λT δgT dΓ. (22)
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Under sliding conditions however, a suitable friction model must be enforced. The
Coulomb friction model relates the friction coefficient and contact force as,

W closed
sl,f =

∫
Γf

sign(gT )µf ‖ λN ‖ δgT dΓ. (23)

In summary, the virtual work term for internal (embedded) fractures is,

Wf =


W open

n,f gN > 0

W closed
n,f +W closed

st,f gN = gT = 0

W closed
n,f +W closed

sl,f gN = 0, ‖gT ‖ > 0

. (24)

The additional variational equations with which the multipliers are aligned re-
quire numerical stabilization. This is necessary due to the failure of the discrete
subspace to satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) stability condition. In-
stability manifests in spurious oscillations in the normal and tangential tractions. We
apply the Pressure Projection Polynomial (PPP) method that adds a stabilization
term to the normal and tangential constraint equations, penalizing the deficiency in
displacement and contact traction approximation (F. Liu & Borja, 2010). The stabi-
lized normal contact constraint equation is,

∫
Γf

δλNgN dΓ−
∫

Γf

τ

2M
(N̂ −ΠN̂)T (λN −ΠλN ) dΓ = 0, (25)

and the tangential equation,

∫
Γf

δλT gT dΓ−
∫

Γf

τ

2M
(N̂ −ΠN̂)T (λT −ΠλT ) dΓ = 0, (26)

where M is the volume modulus of the bulk material and is equal to Young’s modulus
of elasticity, τ is a normalized stabilization parameter, and Π is a projection operator
that acts on the interface shape function N̂ as follows,

ΠN̂ = (
1

2
,

1

2
). (27)

With the variational problem in hand, an XFEM discretization is applied as
presented in Ren et al. (2018); Han et al. (2020); Ren and Younis (2021a). Introducing
dot notation to denote temporal derivatives, the spatially semi-discrete matrix form
of the resulting residual system is of the form,


Mü+Cu̇+Ku+GNλN +GTλT = F

GT
Nu+ SλN = 0

GT
Tu+ SλT = 0

, (28)

where M is the global mass matrix, C is the global damping matrix, K is the global
stiffness matrix, F is the externally applied load which may be time-dependent, GN

is the normal traction constraint on fractures, GT is the tangential counterpart, and
S is the stabilization matrix. In terms of the shape function matrix N , the shape
function of interfacial elements N̂ , and the displacement-strain transformation matrix
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B these coeffiencts are expanded as,

M =

∫∫
Ωm

NTρbNdΩ, (inertial term)

K =

∫∫
Ωm

BTDBdΩ, (internal force term)

F =

∫∫
Ωm

BT (αP I )dΩ +

∫
Γt

N · t̄dΓ, (external force term)

GN =

∫
Γf

JNKTnfN̂ dΓ, (normal contact force term)

GT =

∫
Γf

JNKT τfN̂ dΓ, (tangential contact force term)

S = −
∫

Γf

τ

2M
(N̂ −ΠN̂)T (N̂ −ΠN̂) dΓ, (stabilization term)

(29)

The global damping matrix C is modeled as a combination of Rayleigh damping
and and equivalent damping operator to model absorbing (non-reflecting) boundaries.
That is,

C = CR +CA, (30)

where the Rayleigh damping matrix CR is introduced to suppress oscillations under283

high frequency deformation. The damping is the classical mass and stiffness propor-284

tionate matrix (M. Liu & Gorman, 1995) and is,285

CR = aM + bK. (31)

a and b are the Rayleigh damping coefficients. The equivalent damping matrix CA is
derived from the absorbing boundary conditions and is assembled as,

CA =

∫
Γ

NT ρ̄bV NdΓ, (32)

The natural material velocity V is given as,286

V =



[
apV̄p 0

0 asV̄s

]
, if nΓ ‖ x

[
asV̄s 0

0 apV̄p

]
. if nΓ ‖ y

(33)

2.6 Temporal discretization287

The second extension to the base model is a temporal discrete approximation of
the inertial terms. We apply an implicit method derived from the generalized Newmark
GN22 scheme (Newmark, 1959). The scheme offers unconditional stability and second-
order accuracy with appropriate parameters. At a given time-step number n = 1, 2, . . .,
the state approximations at tn−1 are available, and the objective is to solve the coupled
algebraic for tn = tn−1 + ∆t. In Equation 28, all independent variables (both for flow
and mechanics) are taken at the target time level (fully-implicit). The velocity u̇ is
approximated as,

u̇ ≈ δ

β∆t

(
un − un−1

)
+

(
1− δ

β

)
u̇n−1 +

(
1− δ

2β

)
ün−1∆t, (34)

and the acceleration ü as,

ü ≈ 1

β∆t2
(
un − un−1

)
− 1

β∆t
u̇n−1 + (1− 1

2β
)ün−1, (35)
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where β and δ are user-defined parameters. A well-established numerical artifact288

of the temporal discretization of wave equations is oscillatory error modes at high289

frequency (see for example, Appendix A). A common numerical treatment is to apply290

dissipate damping to remove such high-frequency modal components. In terms of the291

Newmark method, a choice of δ > 0.5 introduces such high-frequency dissipation, and292

by further selecting β = 0.25(0.5 + δ)2, this dissipation may be maximized. On the293

other hand, a choice of δ 6= 0.5 results in a drop to first-order accuracy (Mathews &294

Fink, 2004; Géradin & Rixen, 2014). For this work, we select δ = 0.5 and β = 0.25,295

and to introduce sufficient dissipation while retaining asymptotic accuracy, we utilize296

Rayleigh Damping (Equation 31).297

2.7 Fully-coupled, implicit, and monolithic solution procedure298

The independent discrete fields are the matrix cell pore pressure P and phase299

saturation S, open fracture segment fluid pressure Pf and saturation Sf , the displace-300

ment vector field u, and the Lagrange Multipliers (λ). These unknowns are aligned301

with the pEDFM discrete mass conservation equations in matrix cells and fracture302

segments, along with Equations 28 respectively. The coupled nonlinear system of al-303

gebraic equations is solved at each time-step using an Inexact-Newton method. In this304

work, we lag the determination of the contact and slip conditions on fracture segments305

by one time-step. During the nonlinear solution process, we do not allow the fracture306

segment status to change until convergence. This generally improves nonlinear con-307

vergence by eliminating the local non-differentiability in the residual due to changing308

constraint equations. Otherwise, a common artifact is the occurrence of Newton k-309

cycles k > 1 where a segment may oscillate between sticking and slipping conditions310

across k consecutive iterations. This solution process is listed in Algorithm 1.311

Initialize guess for the primary variables V n = (P ,S,u,λN ,λT )
n−1

while not converged do
Assemble the Jacobian matrix J(V n,V n−1,∆t)
Calculate residual R(V n,V n−1,∆t)
Approximately solve δV from equation J−1δV = −R
Update primary variables V n = V n−1 + λδV with 0 < λ ≤ 1
Update u̇n, ün using 34 and 35

end
For each fracture segment, check contact conditions:
if λnT < µf ‖ λnN ‖ then

Designate segment to a sticking condition
else

Designate segment in a sliding condition, and set λnT = sign(gT )µf ‖ λnN ‖
end
Algorithm 1: Monolithic Inexact-Newton solution procedure for a time step

3 Proposed Adaptive Time-Step Control312

The proposed seamless model provides estimates for the displacement, fracture313

stress, and velocity fields at each time step. This allows for the design of a hybrid314

time step control strategy that combines discretization error, time to rupture, and315

slip velocity considerations simultaneously with little computational overhead. At any316

given point in a simulation, the underlying process will dictate which of these con-317

siderations becomes the limiting factor for an upcoming time step size. For instance,318

in pre-nucleation stages, the local time discretization error and the earliest time for319

a fracture node to experience rupture are likely to compete as the limiting factors.320

Progressing from rupture towards nucleation, the latter factor will tend to dominate.321
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After nucleation, the slip rate increases rapidly, and becomes the chief limiting factor.322

Approaching arrest, this effect diminishes, and gives way to the less restrictive error323

criteria, allowing for larger time step sizes.324

Before assembling these three criteria into an automatic time step control strat-325

egy, we develop the individual criteria. All criteria require prescribed maximum and326

minimum step sizes (∆tmax > ∆tmin > 0). The maximum step size may be related to327

other considerations such as changing well controls or the desired accuracy of flow vari-328

ables, for example. The minimum step size can be related to the fastest characteristic329

slip velocity scaled by the fracture geometry.330

3.1 Discretization error time step control331

An a posteriori local discretization error estimate and optimal step size selection332

method are proposed by Mayr et al. (2018) for the Newmark scheme applied to fluid-333

structure interaction problems. This approach is extended and applied to the current334

context.335

Given a time step solution, the method provides an assessment of whether or336

not an error constraint is satisfied, as well as a proposed time step size. If the error337

constraint is violated, the time step is repeated using a smaller proposed size. Oth-338

erwise, the proposed step size may be larger than the original, and it is used for the339

next solution step.340

At simulation time tn, the goal is determine a step size ∆tnerror ∈ [∆tmax,∆tmin]
so that the local error en+1 =

∥∥un+1 − u
(
tn+1

)∥∥
2

at the new time tn+1 = tn+∆tnerror
is less than prescribed tolerance ε1 > 0. The test for this condition uses the computed
estimate,

en+1 ≈
∥∥∥∥(β − 1

6
)∆tn,2(ün+1 − ün)

∥∥∥∥
2

, (36)

where β = 0.25 is the Newmark parameter, and ü is the computed acceleration using
the Newmark scheme. In addition to this a posteriori test, an optimized scaling factor
is computed to increase or decrease the time step size in order to satisfy the constraint.
This scaling factor is computed as,

k∗ =

√
ε1

en+1
. (37)

The following prescribed parameters are then required to compute the proposed
step size: 0 < kmin < 1 is a minimum allowed scaling ratio by which to decrease step
size, 1 < kmax is a maximum allowed scaling ratio to increase step size, and 0 < ks < 1
is a safety factor to reduce the need for frequent time step repetitions. Given these
parameters, the proposed step size is computed as,

∆t∗ = min (∆tmax,max (min (kmax,max (kmin, ksk
∗)) ∆tn,∆tmin)) . (38)

Finally, to further reduce the likelihood of overshoot, the proposed step size can
be taken as a convex combination with previous time-step sizes, i.e.,

∆tnerror = γn∆t∗ + ΣMm=1γn−m∆tn−merror, (39)

where γi are prescribed weights that satisfy ΣMm=0γn−m = 1, and M ≥ 0 is a prescribed341

number of previous steps to utilize.342

3.2 Earliest time to Coulomb failure343

Jin and Zoback (2018) define a Coulomb Failure Criterion (CFF) to indicate
whether a location on a fault is undergoing slip. In the continuous sense, the CFF is
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defined as,

CFF (x, t) = ‖σ · τf ‖ −µs‖σ · nf ‖, (40)

where σ · τf is the shear component of stress along the fracture and σ · nf is the344

normal component of stress. A negative CFF indicates a sticking condition, whereas345

a positive value indicates slip.346

A numerical counterpart to the CFF may be computed at each fracture loca-
tion i = 1, . . . , Nf . Using the Lagrange Multipliers, the numerical estimates at these
locations are,

Cni = ‖λnT,i‖ − µs‖λnN,i‖. (41)

At a fracture location for which Cni is negative, we estimate the time step size ∆tncff,i >

0 for the point to reach Coulomb failure (i.e., for which Cn+1
i = 0). This estimate is

based on extrapolation from a local model that is fitted to previous solution states.
In particular, we propose two alternative models: a linear model based on the current
and previous time step solutions, and a Legendre polynomial of minimal degree less
than two. In either case, the earliest time step for Coulomb failure is taken as,

∆tncff = min
1≤i≤Nf

∆tncff,i. (42)

The polynomial model memory storage requirement is double that of the linear model.347

While in cases for which the previous numerical CFF values are colinear, it produces348

an equivalent estimate to that of the linear model, in other cases, it will not. Example349

scenarios are illustrated in Figure 6, and the particulars of either model are developed350

next.

(a) Slowing trend (b) Co-linear example (c) Accelerating trend

Figure 6: Illustrations of CFF time step size prediction for three scenarios. Dashed and
solid lines represent interpolation and extrapolation, respectively, using the linear (blue)
and polynomial (red) models. © is a computed previous state, 4 is the linear prediction,
and � is the polynomial prediction.

351

3.2.1 Linear extrapolation352

As illustrated in Figure 6, for n > 0 the computed CFF values from previous
iterations may be used in a secant rule as,

∆tncff,i =

{
Cn

i

Cn−1
i −Cn

i

∆tn−1 if 0 > Cni > Cn−1
i

∆tmax otherwise
. (43)

–16–



manuscript submitted to Water Resources Research

3.2.2 Polynomial extrapolation353

For steps n > 1, the previous three state solutions are used to construct a local
minimal-degree polynomial model for the discrete CFF variation with ∆tn and the
nodal time for Coulomb failure is extrapolated. In particular, for fracture element
i, and given the computed values Cn−2

i , Cn−1
i , and Cni corresponding to time steps

∆tn−2 and ∆tn−1, the fitted Lagrange polynomial is,

Pi (∆tn) = α0C
n
i − α1C

n−1
i + α2C

n−2
i , (44)

where the coefficients are,

α0 =

(
∆tn + ∆tn−1 + ∆tn−2

) (
∆tn + ∆tn−1

)
∆tn−1 (∆tn−1 + ∆tn−2)

(45)

α1 =
∆tn

(
∆tn + ∆tn−1 + ∆tn−2

)
∆tn−1∆tn−2

(46)

α2 =
∆tn

(
∆tn + ∆tn−1

)
∆tn−2 (∆tn−1 + ∆tn−2)

(47)

An analysis for the minimal positive and real root of this polynomial yields a compu-
tational estimate for the target time step to achieve nodal Coulomb failure. We define
the following terms,

ai = ∆tn−2Cni −
(
∆tn−1 + ∆tn−2

)
Cn−1
i + ∆tn−1Cn−2

i , (48)

bi = ∆tn−2
(
∆tn−2 + 2∆tn−1

)
Cni −

(
∆tn−1 + ∆tn−2

)2
Cn−1
i +

(
∆tn−1

)2
Cn−2
i , (49)

ci = ∆tn−1∆tn−2
(
∆tn−2 + ∆tn−1

)
Cni , (50)

di = b2i − 4aici, (51)

r1,i = −b+
√
di

2ai
, and, (52)

r2,i = −b−
√
di

2ai
. (53)

Subsequently, the estimated earliest time to Coulomb failure is,

∆tncff,i =



− cibi if ai = 0, bi > 0, and ci < 0√
− ci
ai

if ai > 0, bi = 0, and ci < 0

− 2ci
bi

if ai =
b2i
4ci
, bi > 0, and ci < 0

r1,i if di > 0, ai < 0, 0 < bi <
√
di, and ci < 0

r2,i if di > 0, ai < 0,
√
di < bi, and ci < 0

r1,i if di > 0, ai > 0, bi < −
√
di, and ci < 0

r2,i if di > 0, ai > 0,−
√
di < bi <

√
di, and ci < 0

∆tmax otherwise

. (54)

3.3 Slip rate-based time step354

A rapid increase in tangential slip rate at fault locations can serve as an indicator
of the nucleation of dynamic rupture. Under quasi-static slip, the slip rate is relatively
much smaller than that after nucleation. Equation 2 provides a definition for slip, and
assuming that the fracture curvature remains constant, the rate of slip is subsequently,

ġT =
(
u̇+ − u̇−

)
(I − nf ⊗ nf ) (55)

Computational estimates of slip rate at fracture locations require knowledge of the
instantaneous one-sided velocity fields on either side of the fracture. In stitched models
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that apply a quasi-static assumption prior to rupture, velocity estimates may only be
obtained by extrapolation from previous state solutions. For example, at a fracture
location i and time step n, the instantaneous slip rate in a stitched model may be
approximated using an explicit first-order model as,

ġni,T =
1

∆tn−1

(
ui

+,n − ui+,n−1 − ui−,n − ui−,n−1
)

(I − nf,i ⊗ nf,i) (56)

The explicit estimate is prone to missing a sudden transition during rupture. Moreover,
it is particularly sensitive to the time step sizes used during the quasi-static process. In
the proposed seamless model, the estimates are obtained using the Newmark velocity
state directly, and without the need for extrapolation, i.e.,

ġni,T =
(
u̇+,n
i − u̇−,ni

)
(I − nf,i ⊗ nf,i) (57)

Introducing a prescribed safety factor 0 < η ≤ 1, the proposed time step size to
control slip-rate is obtained for each fracture node as,

∆tni,slip = min

(
∆tmax, η

dc
ġnT,i

)
, (58)

and globally, as,
∆tnslip = min

1≤i≤Nf

∆tnslip,i. (59)

3.4 Transition from dynamic rupture to arrest355

To efficiently accommodate a transition from dynamic rupture to arrest as well
as the possibility of multiple cycles of such transitions, we incorporate an additional
solution state indicator variable In ∈ {0, 1} that takes a value of one if any fractures
are undergoing dynamic rupture and zero otherwise. Following a transition over a time
step from a value of one to zero, a single quasi-static solution is performed to resolve
small transients, and allow for a rapid growth of the time step size. Suppose that at
time step n > 0 the model was in a dynamic rupture state (In−1 = 1), and that the
computed maximum slip speed drops below a prescribed threshold vthresh, i.e.,

gn+1
T,max < vmin. (60)

Then the state indicator switches (In−1 = 0), and a single quasi-static solution step356

is performed (by neglecting the inertial terms). Subsequently, small transients reach357

equilibrium, thereby allowing a rapid growth of the time step size in subsequent steps.358

3.5 Hybrid time step selection algorithm359

The proposed time steps obtained from each of the three considerations are com-360

bined into an adaptive control method for temporal advancement. Since the consid-361

eration for error control relies on a posteriori computation, it must be implemented362

using a try and adapt strategy.363

The time advancement algorithm is listed in Algorithm 2. Note that the slipping364

patch size of a given fracture is the total length of all contiguous elements along a365

fracture that are experiencing slip. Furthermore, vmin ∈ ]0, vthresh[ is a prescribed366

tolerance for the smallest allowable slip rate under dynamic rupture conditions.367

4 Computational Examples368

The proposed extensions are implemented in an in-house implementation writ-369

ten in the C++ programming language that utilizes the Automatically Differentiable370
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Input: V 0 = (u0, u̇0,p0,S0,λ0
N ,λ

0
T ), I0 = 0, and assuming sticking conditions.

Assign n← 0, t0 ← 0, L0 ← 0, and ∆t0 ← ∆tmin.
while tn+1 < tfinal do

Apply Algorithm 1 to solve time step for V n+1.
Estimate local error en, and proposed ∆tnerror.
if en > ε1 then

Cut time step size and repeat, ∆tn ← ∆tnerror
else

if In = 0 then
Compute slipping patch length, Ln+1 ← maxf=1,...,Nf

Ln+1
f

if Ln+1 ≥ Lc then
In+1 ← 1
∆tn+1 ← ∆tn+1

slip

else
In+1 ← 0
∆tn+1 ← min

(
∆tn+1

slip ,∆t
n+1
error,∆t

n+1
CFF

)
end

else
if gn+1

T,max < vmin then
In+1 ← 0
Solve a quasi-static step with ∆tmin

∆tn+1 ← min
(

∆tn+1
slip ,∆t

n+1
error,∆t

n+1
CFF

)
else

In+1 ← 1
∆tn+1 ← ∆tn+1

slip

end

end
Advance time step counter, n← n+ 1
∆tn ← min (∆tn, tfinal − tn)

end

end
Algorithm 2: Proposed adaptive time step advancement algorithm

Expression Templates (ADETL) library (R. Younis & Aziz, 2007; R. M. Younis, 2011;371

R. M. Younis & Tchelepi, 2012). The implementation aspects of the fluid flow in-house372

model are described in (Jiang & Younis, 2015b, 2015a, 2016b, 2016a, 2017), and the373

mechanical treatments in (Ren et al., 2016b, 2016a, 2018; Xu et al., 2021; Han et al.,374

2020) A direct sparse linear solver is used for validation examples, and a precondi-375

tioned fGMRES indirect method otherwise. Appendix A presents validation results376

characterizing the correctness and accuracy of the implemented temporal discretiza-377

tion. Appendix B presents a validation study of the implemented fracture contact and378

slip condition treatments.379

Two synthetic cases are constructed. The first (Figure 7a) is a single phase380

scenario where fluid is injected in the vicinity of a transmissible fault that is initially381

mechanically stable. The second (Figure 7b) is a two-phase injection and production382

scenario in a faulted reservoir that is sealed above and below.383

4.1 Model 1: Seismicity triggered by single-phase injection384

The domain is illustrated in Figure 7a, and a set of physical parameters are385

applied as listed in Table 1. The injection well is operated at a constant bottom hole386
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(a) Model 1. (b) Model 2.

Figure 7: Two synthetic models a) a single phase injection scenario in the vicinity of a
fault, and b) two phase injection and production in a faulted reservoir.

pressure of 5 MPa with reference to the uniform initial reservoir pressure of 0 MPa.387

The model is initialized under a diagonal far-field stress and this fixed initial pressure.388

That is, assuming that the fault is initially in a stable sticking condition under the389

static friction coefficient listed, the initial displacement field is obtained by enforcing390

static equilibrium. The simulation mesh is chosen such that the critical nucleation391

length (Lc = 2.37m in this case) is spanned by four elements. This provides sufficient392

resolution to capture rupture propagation fronts (Day et al., 2005). The investigation393

points P1, P2, and P3 in Figure 7a are chosen at three consecutive locations along the394

fault, collocated with the expected elements that span Lc.395

4.1.1 Simulated response396

To illustrate the simulated evolution of the state variables, we apply the proposed397

hybrid time-step selection method using the linear CFF model and the time-stepping398

parameters listed in Table 2. The injection process is controlled by a fixed bottom-hole399

pressure. The resulting fluid injection rate into the completed matrix gridblock is a400

function of the difference between this fixed injection pressure and the pore pressure401

in the matrix rock. Specifically, we apply a linear well-index relationship (Aziz, 1979),402

and the computed injection rate is illustrated in Figure 8.403

The fluid injection leads to a build-up in the pore pressure field that emanates404

outwards from the well, and towards the fault. Snapshots pf this evolution are pre-405

sented in Figures 9(a)-(c). Moreover, the change in density of the compressible fluid406

evolves as presented by the snapshots in Figures 9(d)-(f).407

These dynamics are also associated with a gradual reduction of the normal com-408

ponent of the effective traction on the fault, and the frictional strength according to409

Coulomb’s law. While the fault is initially sticking, gradually, the frictional strength410

will become equal to and then exceed the external shear stress on the fracture. This411

triggers a slip instability as the difference between shear traction and frictional strength412

induces acceleration and drives a propagation of rupture. Upon reactivation, consec-413

utive elements along the front experience slip consecutively. Once the length of the414

slipping elements reaches a critical value, nucleation is triggered. This occurs at a sim-415
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Table 1: Single phase injection case input parameters

Description Value Unit

Size 200×200 m×m
Mesh 213×217
matrix porosity φm 0.25
matrix permeability Km 1 mD
fracture porosity φf 1
fracture initial aperture 0.11 mm
matrix Young’s modulus E 40 GPa
matrix Poisson’s ratio v 0.25
matrix Biot’s coefficient α 0.8
fluid compressibility cf 5.1× 1−10 1/Pa
fluid viscosity µf 1× 10−3 Pa·s
fluid reference density ρf 1000 kg/m3

rock density ρs 3000 kg/m3

reservoir initial pressure Pini 0 MPa
injection pressure Pinj 5 MPa
static friction coefficient µs 0.6
dynamic friction coefficient µd 0.4
critical slip distance dc 0.1 mm
P wave absorption coefficient ap 1
S wave absorption coefficient as 1
Rayleigh damping coefficient a 2
Rayleigh damping coefficient b 2.0× 10−5

far-field stress tensor t̄ [-8.5,0; 0,-3.3] MPa

ulation time of approximately 120 hours. Figure 10 presents snapshots of the velocity416

field at various times after the onset of nucleation. Upon nucleation, the rupture front417

travels downwards along the fracture with accelerating rate until the leading rupture418

point arrives at the end of the fault. At this point, the induced seismic wave continues419

to propagate throughout the domain while the fracture slip velocity diminishes below420

the seismic slip threshold at which point, arrest occurs.421

4.1.2 Comparison of time step control factors in capturing reactivation422

and transition to nucleation423

The proposed hybrid controller simultaneously considers discretization error,424

CFF, and slip rate. To investigate the relative impacts of each of these considerations,425

we present simulation results using five alternative controllers. The combination of fac-426

tors considered by each controller are presented in Table 3. Controller ATS1 naively427

applies a constant time step size of ∆tmax until nucleation is observed, at which point428

slip rate control is applied thereafter. Table 3 also lists the times at which reactivation429

and nucleation are observed, as well as the number of time steps taken to reach these430

critical states. In all simulations, no time step cuts or repetitions were required, and431

the maximum number of nonlinear iterations required to converge time step solutions432

did not exceed five.433

Figure 11 presents the series of time step sizes taken using each of the five control434

methods. In these figures, the markers indicate the limiting factor that led to the se-435

lection of the step size. Additionally, the predicted times for the onset of reactivation436
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Table 2: time-step controlling parameters

Parameter Value Units

∆tmax 10000 s
∆tmin 0.0002 s
ε1 0.01 -
kmin 0.1 -
kmax 2 -
ks 0.9 -
M 1 -
γn+1 0.3 -
γn 0.7 -
η 5e-6 -

Figure 8: Fluid injection rate due to a fixed injection bottom hole pressure.

and nucleation are indicated. As illustrated in Figure 11a, the ATS1 approach takes437

only three constant sized time steps between reactivation and nucleation. This implies438

that the predictions of quasi-static slip progression are particularly prone to discretiza-439

tion errors, and the time of onset of nucleation cannot be more precise than ∆tmax.440

The ATS2 controller (Figure 11b) applies a slip rate consideration throughout, and441

prior to nucleation, it imposes step sizes that oscillate rapidly. Under sticking fracture442

conditions and at early times after reactivation, the slippage rate is nearly zero, and443

numerical errors lead to unreliable slip indicators. At later times past reactivation,444

these estimates are improved as the slippage rate is increased. ATS3 augments the445

slip rate consideration with discretization error control (Figure 12c). In this case, the446

discretization error is observed to be the only limiting factor prior to nucleation. Nev-447

ertheless, the time between reactivation and nucleation is once again poorly resolved.448

Finally, Figures 12 d and e present the results obtained using the proposed linear449

(ATS4) and quadratic (ATS5) methods. In both cases, the CFF criterion serves to450

ensure improved resolution during the interim period between reactivation and nucle-451

ation. During this period, both error and CFF considerations interplay to provide a452

refined definition of the time to nucleation. Implications of this capability are expected453

to also impact predictions of quasi-static slip that may not lead to nucleation. This is454

investigated further in a subsequent example.455
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Figure 9: Snapshots of the pore pressure field (a)-(c) and density field (d)-(f) at various
times: 51.62 hours, 120.65 hours (time of nucleation), and 20 ms after nucleation.

Figure 10: Snapshots of the magnitude of the particle velocity field at three selected
times after the onset of nucleation: (a) t=10ms, (b) t=20ms, and (c) t=30ms
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Figure 11: The series of time step sizes taken using 5 controllers: (a) ATS1, (b) ATS2,
(c) ATS3, (d) ATS4, and (e) ATS5. Marker colors indicate the limiting selection factor.
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Table 3: Five time step controllers used and the time to reactivation and nucleation, and
number of time steps to nucleation and time step cuts.

Control factors Performance metrics
Const. Slip Error CFF CFF React. Nucl. Steps to Steps to

rate (lin.) (quad.) [s] [s] React. Nucl.

ATS1 X 430000 450000 44 46
ATS2 X 426858 435388 94 96
ATS3 X X 425334 438084 66 70
ATS4 X X X 424645 434337 67 106
ATS5 X X X 424529 434842 72 85

We further examine the relative efficacy of these methods in capturing the tran-456

sitions across reactivation and nucleation. Figure 12 presents the time history of the457

computed estimates to the CFF function (Equation 41) evaluated at three consecutive458

elements along the fault (points P1, P2 and P3 in Figure 7a). Using all five controllers,459

P2 is the first location to experience slip (reactivation), followed by locations P2 and460

P3. Although this order is consistent for all methods, ATS4 and ATS5 appear to461

minimize the overshoot in CFF at the onset of reactivation. Figure 13a summarizes462

this finding using all methods for point P2. Figure 13b presents the slipping patch463

locations on the fault at the time of onset of nucleation using all five methods. While464

all methods overestimate the theoretical critical sliding patch length, the ATS4 and465

ATS5 methods considerably outperform the other approaches with all other factors466

being equal.467

4.1.3 Sensitivity to error tolerance468

The ATS4 and ATS5 methods are utilized using two values of the discretization469

error tolerance, ε1 ∈ {0.01, 0.1}. All other parameters remain unchanged. Figure 14470

presents the simulation time step sizes taken using the two methods and the two471

tolerances. As expected, looser error tolerances lead to considerable differences in the472

predictions for the onset of reactivation. Nevertheless, the predictions for the onset of473

nucleation are relatively unchanged. This is also as expected since the CFF control474

criteria act to prevent time step size overshoot.475

4.1.4 Sensitivity to the maximum allowable time-step size476

In practice, the initial time step size is typically chosen to resolve the antici-477

pated early dynamics; for example, the time for injected fluid to invade a single. Time478

step control seeks to adapt this scale as more simulation state information becomes479

available. In this test, we impose large initial time step sizes (injection to flood approx-480

imately 2500 cells in one time step), and we investigate controllers ATS4 and ATS5 to481

recover and capture reactivation and nucleation. With all other parameters of model 1482

being equal, we present simulations using ∆t0 = ∆tmax ∈ {50000s, 100000s}. Figure483

15 presents the time step size series taken. In all cases, prior to reactivation, the error484

controller aggressively reduces the time step size. Additionally, the CFF criteria also485

contribute to step size reduction since the initial time step size is almost large enough486

to reach reactivation in one step. Despite the extreme starts, the controllers predict487

reactivation reasonably, and produce step sizes that are adequately refined to cap-488

ture nucleation. While the overall number of time steps required for the simulations489

is reduced, the predictions for the onsets of rupture and nucleation vary consider-490

ably. Moreover, with larger time step sizes, we expect larger discretization error. This491
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Figure 12: Summary of the results for CFF profile after fracture reactivation using 5 con-
trollers: (a) ATS1, (b) ATS2, (c) ATS3, (d) ATS4, and (e) ATS5. Marker colors indicate
three points selected along the fracture.
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Figure 13: Analysis of reactivation and nucleation estimates: (a) Computed CFF evolu-
tion and predicted reactivation times at location P2, and (b) Computed critical slipping
patch lengths at nucleation.

Figure 14: Simulation time step sizes taken using ATS4 and ATS5 with ε1 ∈ {0.01, 0.1}.
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Figure 15: Time step series taken using ATS4 and ATS5 with ε1 = 0.01: a) ATS4 and
∆t0 = ∆tmax = 50000s; b) ATS4 and ∆t0 = ∆tmax = 100000s; c) ATS5 and ∆t0 =
∆tmax = 50000s; and d) ATS5 and ∆t0 = ∆tmax = 100000s.
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Figure 16: Traction profiles at equilibrium, following arrest using 5300 dynamic time
steps (green) and a single quasi-static step (blue) after arrest: (a) tangential traction, (b)
normal traction.

trade-off between computational expedience and accuracy can be leveraged to suit the492

purposes of simulation under different contexts.493

4.1.5 Accuracy of the proposed treatment of arrest494

In the proposed model, transitions from dynamic rupture (post-nucleation) to495

arrest are indicated by computed slip rates that drop below a threshold. These tran-496

sitions are implemented by taking a single quasi-static time step upon arrest in order497

to equilibrate small scale transients in the field and allow the time step size to rapidly498

recover from a scale of milliseconds to days. Values for the threshold rate for dynamic499

slip vthresh can range from 0.1 mm/s to 1 mm/s (McClure & Horne, 2011; McClure,500

2015; Wynants-Morel et al., 2020). We select vthresh = 0.1 mm/s and conduct sim-501

ulations using ATS4 with a loose error tolerance of ε1 = 0.5. Instead of applying a502

constant injection pressure at the well location, we apply a constant injection rate of503

0.518 m3/d and we stop the injection at the instant that nucleation occurs. In one504

simulation, we apply the proposed treatment for arrest (performing a single quasi-505

static solution step at arrest such that the fracture contact condition recovers to a506

sticking condition). In the other simulation, we continue with the minimum allowable507

time step size despite arrest, and subsequently resolve all small scale transients until508

they dissipate completely. Arrest is predicted to occur at 378789s by both models.509

Figure 16 presents the normal and tangential traction profiles at the final simulation510

time of t = 378789s obtained using the two simulations. The maximum relative differ-511

ence between the tangential and normal traction approximations are 0.1% and 0.06%512

respectively. Using dynamic time steps after arrest required over 5000 additional time513

steps to reach equilibrium, whereas the single quasi-static step approach accomplishes514

this in one step. This suggests that our proposed approach can be utilized to model515

multiple cycles of seismic events that are interspersed by periods of quasi-static behav-516

ior without a significant loss in accuracy and in an automated and computationally517

efficient manner.518

4.1.6 Capturing multiple interspersed cycles of reactivation and nucle-519

ation.520

We model two cycles of consecutively triggered seismic rupture. An injection rate521

of 0.518 m3/d is imposed until the onset of the first nucleation. Injection is halted until522

seismic arrest, after which injection is resumed at a rate of 0.777 m3/d until a second523
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Figure 17: Two cycles of triggered seismic rupture: a) time step size series using ATS4,
and b) the cumulative slippage at point P2 over time.

nucleation event occurs. The time step size series and cumulative slippage for point524

P2 obtained using ATS4 are presented in Figure 17. At the two nucleation events, the525

time step size is dramatically reduced to resolve the dynamics. Similarly, upon seismic526

arrest, the time step controller rapidly increases the time step size. This demonstrates527

effective automatic time step control across multiple transitions in the dynamics over528

timescales spanning seven orders of magnitude. Figure 18 presents the evolution of the529

slip and cumulative slip along the fracture during the first and second seismic rupture530

events. Rupture nucleates near the left end of the fracture and propagates along the531

fracture. The maximum slippage for the first and second events are 2.7mm and 2.4532

mm respectively, and the cumulative slips are 2.4 m and 2.2 m respectively.533

4.2 Model 2: Multi-phase injection and production operations534

After evaluating the overall performance of the proposed methods for capturing535

the onset and arrest of rupture under single-phase fluid injection, we turn to the536

application of the proposed methodology to the simulation of earthquake sequences537

induced by two-phase fluid injection and production operations in a faulted reservoir538

(Figure 7b). Our objective is to demonstrate efficacy and capability. We defer the539

use of our model in illuminating scaling laws, motivating hypotheses pertaining to540

characteristic dynamics, and process engineering and design to future work.541

In this model example, we study the impacts of injection rate and bottom hole542

production pressure on the nucleation and progression of seismic rupture. The simu-543

lation parameters used are listed in Table 4. Specifically, we consider two hypothetical544

well operation scenarios:545

• Case 1: injection rate of 8.6 × 10−5m3/s (46.74 bbl/day) and a production-546

well bottom hole pressure of 0.5MPa (1 MPa below the initial reservoir pore547

pressure).548

• Case 2: injection rate of 21.5 × 10−5m3/s (116.8 bbl/day) and a production-549

well bottom hole pressure of 1 MPa (0.5 MPa below the initial reservoir pore550

pressure).551

For these parameters, the critical slipping patch length for nucleation is Lc =3.45m,552

and five simulation mesh elements are used to span this length.553

–30–



manuscript submitted to Water Resources Research

Figure 18: Slip profile and cumulative slip profile for first (a-b) and second seismic events
(c-d)
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Table 4: Model 2 simulation case input parameters

Description Value Unit

Size 200×200 m×m
Mesh 213×217
reservoir porosity φr 0.25
reservoir permeability Kr 1 mD
seal porosity φs 0.1
seal permeability Ks 1 µD
fracture porosity φf 1
fracture initial aperture 0.11 mm
matrix Young’s modulus E 40 GPa
matrix Poisson’s ratio v 0.4
matrix Biot’s coefficient α 0.8
water compressibility cw 5.1× 10−10 1/Pa
oil compressibility co 3.5× 10−9 1/Pa
water viscosity µw 5× 10−4 Pa·s
oil viscosity µo 1× 10−4 Pa·s
water reference density ρw 897 kg/m3

oil reference density ρo 800 kg/m3

rock density ρs 3000 kg/m3

residual oil saturation Sor 0.05
residual water saturation Swr 0.15
water relative perm end point Kend

rw 1.0
oil relative perm end point Kend

ro 1.0
water exponential term Nw 2.5
oil exponential term No 2.5
reservoir initial pressure Pini 1.5 MPa
static friction coefficient µs 0.6
dynamic friction coefficient µd 0.4
critical slip distance dc 0.12 mm
P wave absorption coefficient ap 1
S wave absorption coefficient as 1
Rayleigh damping coefficient a 6
Rayleigh damping coefficient b 6.0× 10−5

far-field stress tensor t̄ [-8.5,0; 0,-3.3] MPa
Case 1 injection rate 8.6× 10−5 m3/s
Case 1 production pressure 0.5 MPa
Case 2 injection rate 2.15× 10−4 m3/s
Case 2 production pressure 1 MPa
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Figure 19: Summary of the time step size series obtained for two well operation scenar-
ios: (a-b) case 1, (c-d) case 2
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Figure 20: Snapshots of the pressure field at nucleation time: (a) case 1: pressure field at
3.43 days, (b) case 2: pressure field at 1.72 days

Figure 21: Slip profiles along the fault plotted every 0.2 ms over a duration of 60 ms:(a)
case 1, (b) case 2

Figure 19 presents the evolution of the time step size for both cases using the554

ATS4 time step controller. The onset of nucleation for case 1 occurs after 3.43 days555

whereas that for case 2 occurs sooner at 1.72 days. Upon nucleation, a time step size556

of 0.2 ms is used in both cases. Figure 20 presents the pore pressure fields for cases 1557

and 2 at their respective onsets of nucleation. Case 2 exhibits a higher pore pressure558

in the vicinity of the injection well due despite the lower production pressure. Figure559

21 presents the slip evolution along the fracture during dynamic rupture. For case 1,560

only fracture locations within the vicinity of the nucleation patch exhibit slippage, and561

with a maximum value of approximately 2.4 × 10−6 m. In case 2 on the other hand,562

seismic rupture propagates along the entire length of the fracture. The slip profile for563

case 2 shows that the rupture nucleates near the left end of the fracture. The rupture564

front moves towards the other end and gradually expands along the fracture. The565

slippage for each time step increases with time and the maximum magnitude of slip is566

around 2.4× 10−3 m which is much larger than that for case 1.567

Finally, Figure 22 presents snapshots the velocity fields for both cases at two568

times after nucleation. For case 1, a wave propagates outwards from the nucleation569

region which acts almost as a point source. Furthermore the magnitude of propagation570

velocity dissipates over time from approximately 1 × 10−4 m/s to 6 × 10−6, which is571

below the seismic rupture velocity threshold range. For case 2, the rupture front572

develops and becomes increasingly visible. The peak magnitude of velocity is greater573
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than 0.01 m/s. After the rupture front reaches the end of the fracture, a seismic wave574

propagates through the domain as the slip velocity along the fracture decays.575

Figure 22: Snapshots of the spatial distribution of the magnitude of the particle veloc-
ity after nucleation:(a-b) case 1 at t=10ms and t=30ms after nucleation, (c-d) case 2 at
t=10ms and t=30ms after nucleation

5 Discussion and Conclusions576

A seamless and time-adaptive numerical model is proposed for the simulation of577

multiphase flow and deformation in fractured formations. The model approximates578

transient poromechanics and multiphase flow in fractured reservoirs using a hybrid579

XFEM and pEDFM approach. The temporal discretization of mechanical inertia is580

accomplished using an implicit and unconditionally stable Newmark scheme. Fracture581

contact constraints are enforced using a Lagrange Multiplier method that captures582

stick-slip behavior. Computational examples apply a slip-weakening frictional model.583

We develop a novel time-step controller to capture the onset of fracture rupture and584

nucleation, should they occur. The controller is designed to automatically scale the585

simulation time-step size over seven orders of magnitude as necessary. The controller586

combines discretization error, Coulomb failure, and slip rate considerations to auto-587

matically adjust time-stepping to resolve the interseismic period and dynamic rupture588

within the allowed accuracy. The seamless model could be used in scenarios where no589

seismicity is to occur without any significant loss in computational efficiency. On the590

other hand, should quasi-static slip occur, the model will resolve this behavior at a591
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suitable temporal resolution. Finally, under dynamic rupture, the model not only cap-592

tures the fast dynamics, but is also capable of recovering automatically to drastically593

larger time scales upon arrest.594

In addition to computer implementations of the proposed model in three di-595

mensions, a number of refinements may be the subject of future work. The three596

time scales considered (multiphase flow with small deformation, quasi-static fracture597

slip, and dynamic rupture and wave propagation) are associated with widely different598

spatial supports for the changes in the solution state. More specifically, during dy-599

namic rupture, the fluid state fields exhibit changes that are localized to the vicinity600

of traveling mechanical waves. This behavior can be exploited by adaptive solution601

(e.g. R. Younis et al. (2010); S. M. Sheth and Younis (2017); S. Sheth et al. (2021))602

or mesh refinement methods. In terms of applications, the proposed seamless model603

may be used in a CLRM context to simultaneously assimilate flow, microseismic, and604

seismic data in a single model without a need for methods to cross-inform stitched605

components. Additionally, the model may enable the study of causal relationships the606

cross the three physical regimes considered.607

Appendix A Validation of temporal discretization608

Figure A1: An elastic bar that is fixed at two ends and subjected to an initial displace-
ment field: (a) schematic of the model problem, (b) initial displacement field

The implementation is applied to simulate a benchmark model problem presented609

in Torii and Machado (2012). The model problem is that of an elastic bar (non-610

porous) of length 1m that is fixed at both ends (FigureA1a). The mid-point of the611

bar is initially stretched towards the fixed right end (FigureA1b), and at t = 0 is612

released. With no dissipation, the displacement field will oscillate indefinitely due to613

the elasticity of the material and the fixed ends. The material elasticity and density614

are set as E = 1 Pa and ρ = 1 kg/m3 such that the characteristic wave speed615

is c =
√
E/ρ = 1m/s. An analytical solution is readily obtained by separation of616

variables. We compare numerical estimates obtained with our implementation using617

δ = 0.5 and β = 0.25 to the analytical solution. Note that the fluid flow equations and618

fracture models are absent in this case. To illustrate the solution response, Figure A2619

shows results obtained over a time interval of 10s. The numerical solution is obtained620

using a mesh size of 10000 elements and a fixed ∆t = 0.001s. The analytical and621

numerical solutions are in agreement: Figure A2a shows a snapshot of the displacement622

field at t = 1s, and Figure A2b shows the time evolution of the displacement of the623

mid-point of the bar.624

We conduct an asymptotic mesh refinement study following the approaches of (Jameson
& Martinelli, 1998). We consider two alternate meshes comprised of 100 and 10000 ele-
ments, and a set of alternate constant time step sizes; ∆t ∈ {0.1s, 0.01s, 0.001s, 0.0001s}.
Note that the time step sizes to attain a Courant–Friedrichs–Lewy (CFL) number of
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Figure A2: Simulated (red) and analytical (blue) response: (a) displacement fields at t =
1s, and (b) displacement evolution of the mid-point,

Figure A3: Displacement field snapshots at t = 1s obtained using various constant time
step sizes and two meshes: (a) mesh size 100 and (b) mesh size 10000.

one for the two meshes are 0.01s and 0.0001s respectively. Additionally, the computed
error for a given simulation mesh Ωh and time tn is defined as,

εnh := unh − u (Ωh, t
n) .

Figure A3 shows snapshots of the displacement field at t = 1s obtained using625

time step sizes ranging from 0.1s to 0.0001s. For the coarse mesh, these correspond626

to CFL numbers ranging from 10 to 0.01, and for the fine mesh, they range from627

1000 to 1. As expected, with CFL numbers greater than one, the numerical solutions628

approach the analytical solution. With CFL numbers less than one, oscillatory (dis-629

persive) error modes dominate, and become more prevalent with reduced CFL number.630

This behavior is well-studied in Hughes (2012), and for the purposes of our implicit631

approach, this is not an issue; the proposed method is aimed at simulation with CFL632

numbers greater than 1. Figure A4 provides a quantitative view of the asymptotic633

accuracy. At CFL numbers greater than one, the asymptotic accuracy in both the634

one- and infinity-norms is at least first-order accurate. At CFL numbers below one,635

the oscillatory modes will dominate.636
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Figure A4: Asymptotic error profiles : (a) ‖εnh‖∞ with time refinement, (b) ‖εnh‖1 with
time refinement, (c) ‖εnh‖∞ with spatial refinement, and (d) ‖εnh‖1 with spatial refinement.
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Figure B1: A straight interface under nonuniform compression; Geometry and boundary
conditions

Appendix B Validation of contact fracture sticking and slipping con-637

ditions638

This case is studied to evaluate the performance of Lagrange Multiplier method639

considering the behavior of the stick and slip condition under non-uniform compres-640

sion, as shown in Khoei (2014). The domain is [0, 1]×[0, 1] with the fracture intersected641

in the middle, as shown in Figure B1. The top boundary has prescribed displacement642

both in the x and y directions, and the displacement of the y direction changes along643

the boundary that causes the stick-slip behavior. The bottom boundary is constrained644

both in the vertical and horizontal directions. The simulations with two friction co-645

efficients µ = 0.1 and µ = 0.4 are implemented under the mesh of 75 × 75. [h] For

Figure B2: Straight interface under nonuniform compression with µ = 0.1 : (a) profile of
normal stress along the contact interface, (b) profile of slippage along the contact interface

646

the coefficient µ = 0.1, the contact interface is under the slip condition, the profiles647

of normal stress and slippage are plotted in Figure B2. Owing to the nonuniform648

displacement in y direction on the top boundary, the normal stress varies along the649

fracture and the place with smaller boundary displacement results in smaller normal650

contact traction, correspondingly, it has a larger slippage. For the coefficient µ = 0.4,651
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Figure B3: Straight interface under nonuniform compression with µ = 0.4 : (a) profile
of slippage along the contact interface (b) profile of tangential stress along the contact
interface

the normal contact stress is identical to the former case because the normal traction is652

independent of the stick and slip condition. However, for the slippage and tangential653

stress, the interface has two regions with the stick and slip behaviors, as shown in654

Figure B3. In the stick region, the relative movement is zero and the tangential stress655

is below the static friction force, and it gradually increases to the critical value along656

the fracture. In the slip region, the tangential traction is determined using the static657

friction model and the slippage is allowed on the interface.658
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Ţene, M., Bosma, S. B., Al Kobaisi, M. S., & Hajibeygi, H. (2017). Projection-based831

embedded discrete fracture model (pedfm). Advances in Water Resources, 105 ,832

205–216.833

Thomas, M. Y., Lapusta, N., Noda, H., & Avouac, J.-P. (2014, mar). Quasi-dynamic834

versus fully dynamic simulations of earthquakes and aseismic slip with and835

without enhanced coseismic weakening. Journal of Geophysical Research: Solid836

Earth, 119 (3), 1986–2004. doi: 10.1002/2013JB010615837

Torii, A. J., & Machado, R. D. (2012). Structural dynamic analysis for time re-838

sponse of bars and trusses using the generalized finite element method. Latin839

American Journal of Solids and Structures, 9 (3), 1–31.840

Wynants-Morel, N., Cappa, F., De Barros, L., & Ampuero, J.-P. (2020). Stress841

perturbation from aseismic slip drives the seismic front during fluid injection in842

a permeable fault. Journal of Geophysical Research: Solid Earth, 125 (7).843

Xu, S., Ren, G., Younis, R. M., & Feng, Q. (2021). Revisiting field estimates for car-844

bon dioxide storage in depleted shale gas reservoirs: The role of geomechanics.845

International Journal of Greenhouse Gas Control , 105 , 103222.846

Younis, R., & Aziz, K. (2007). Parallel automatically differentiable data-types for847

next-generation simulator development. In Spe reservoir simulation sympo-848

sium. doi: 10.2118/106493-MS849

Younis, R., Tchelepi, H. A., & Aziz, K. (2010). Adaptively localized continuation-850

newton method—nonlinear solvers that converge all the time. SPE Journal ,851

15 (02), 526–544.852

Younis, R. M. (2011). Modern advances in software and solution algorithms for853

reservoir simulation. Stanford University.854

Younis, R. M., & Tchelepi, H. A. (2012). Lazy k-way linear combination kernels855

for efficient runtime sparse jacobian matrix evaluations in c++. In Recent ad-856

vances in algorithmic differentiation (Vol. 87, pp. 333–342). Springer. doi: 10857

.1007/978-3-642-30023-3 30858

–44–


