Solar wind - magnetosphere coupling functions: pitfalls, limitations and applications

Michael Lockwood¹

¹University of Reading

November 24, 2022

Abstract

Solar wind-magnetosphere coupling functions have been in use for almost 50 years. In that time, a very large number of formulations have been proposed. As they become increasingly subsumed into systems analysis and machine-learning studies of the magnetosphere, it is timely to establish best practice in their derivation and their limitations. This paper carried out a number of studies to establish some key points. Particular attention is paid to the best metric used to evaluate their performance and how it depends on the application for which the coupling function is intended.

Solar wind - magnetosphere coupling functions: pitfalls, limitations and applications

3 Mike Lockwood ^{1*}

- ⁴ ¹ Department of Meteorology, University of Reading, Reading, U.K.
- 5 * **Correspondence**:
- 6 Corresponding Author
- 7 m.lockwood@reading.ac.uk

Keywords: Solar wind, magnetosphere, coupling functions, performance metrics, activity
distributions.

10 Abstract

11 Solar wind-magnetosphere coupling functions have been in use for almost 50 years. In that time, a

12 very large number of formulations have been proposed. As they become increasingly subsumed into

13 systems analysis and machine-learning studies of the magnetosphere, it is timely to establish best

- 14 practice in their derivation and their limitations. This paper carried out a number of studies to
- 15 establish some key points. Particular attention is paid to the best metric used to evaluate their
- 16 performance and how it depends on the application for which the coupling function is intended.

17 Plain Language Summary

18 Coupling functions are mathematical combinations of variables observed in the solar wind, just

19 before it impacts near-Earth space. They are used to predict the effect that the solar wind will have

20 (or, for retrospective studies, will have had) on the space-weather environment of the Earth. This

21 paper reports some studies aimed at improving their performance, how to best test their performance

22 for a given application, and which define best practice in their derivation and application.

23 **1** Introduction

24 Coupling functions are widely-used constructs in space physics designed to predict, or to

25 retrospectively analyze, the effect of given set of solar wind conditions incident upon the near-Earth

26 space environment, the magnetosphere. They do not try to allow for every physical mechanism 27 involved explicitly, rather they attempt to capture and amalgamate the key drivers and explain a large 28 fraction of the variance of a terrestrial space weather index or indicator. Correlations between 29 interplanetary parameters and terrestrial disturbance indices became possible after the first spacecraft 30 to visit interplanetary space had acquired sufficient data (e.g., Arnoldy, 1971) and the concept of 31 combining parameters into a coupling function that allows for the different influences on terrestrial 32 space-weather disturbance was first introduced in the PhD thesis of Perreault (1974). This led to the 33 much-used "epsilon factor" coupling function, ε (*Perreault & Akasofu*,1978). Unfortunately, there 34 was an error in the theoretical basis for ε (Lockwood, 2019) which causes it to perform significantly 35 less well than other coupling functions on all timescales (Lockwood & Finch, 2007). A large number 36 of alternative formulations have been proposed since (see reviews by McPherron, et al., 2015 and 37 Lockwood & McWilliams, 2022). Some of these coupling functions are based on theory, others are 38 empirical fits to observations. In reality, most are a mixture of both approaches, with theory guiding 39 the selection of parameters, and the mathematical formulation used to combine them, for empirical 40 coupling functions, whereas theoretically-derived coupling functions often use coefficients, 41 branching ratios or exponents that are taken from observations. Coupling functions have also been 42 derived and/or tested using global numerical MHD simulations of the magnetosphere (e.g., Wang et 43 al., 2014).

44 For all coupling functions, correlation with terrestrial space weather disturbance index has 45 traditionally been used as the metric by which their merit and performance is evaluated. In the past 46 not much attention was paid to the effects of this choice of performance metric, nor the effects of 47 averaging timescale, nor the fact that different parts, features and indices of the coupled 48 magnetosphere-ionosphere-thermosphere system respond differently to a given set of conditions. In 49 addition, when building a space weather climatology, we will need to know the form of the 50 occurrence probability distributions of indicators of space weather phenomena to predict probabilities 51 of certain conditions, events and integrated effects (Lockwood et al., 2019b, 2020) and little attention 52 has been given to matching the distributions of a proposed coupling functions to those of the space 53 weather indicator that they are designed to predict. Studies of coupling between the solar wind and 54 the magnetosphere are now starting to apply systems analysis and machine learning techniques (e.g., 55 McGranaghan et al., 2017; Camporeale, 2019; Borovsky and Osmane, 2019; Stephens et al., 2020; 56 see also collection of papers edited by Camporeale et al., 2018). This makes it very timely to take a

detailed look at coupling functions, and the pitfalls inherent in their use, so that any mistakes and
limitations are not carried forward and built into these new techniques.

59 A limitation of correlation studies that had not received much attention, at least until recently, is "overfitting" (Chicco, 2017). This is a recognized pitfall when signal-to-noise ratio in data is low, as 60 61 is often the case in disciplines such as climate science (Knutti et al., 2006) or population growth and 62 ecology (*Knape & de Valpine*, 2011). Overfitting occurs when a fit has too many degrees of freedom 63 and it can start to fit to the noise in the training data which, by definition, is not the same as the noise 64 in the test or operational data. As a result, the fit has reduced predictive accuracy and power. 65 Overfitting is a particular problem for the generation of coupling functions because there are a great 66 many sources of noise, not all of which have been recognized and some of which we cannot do much 67 about, particularly considering the need to have large datasets to cover all potential regions of solar 68 wind/magnetosphere parameter space. 69 In correlative studies of solar wind-magnetosphere coupling some major sources of noise are: 70 • Measurement errors and limitations in the interplanetary observations 71 • Measurement errors and limitations in the observations of the terrestrial space weather indicator

72 • Propagation errors. The lag between the interplanetary observations and the terrestrial response can 73 generally be accommodated by locking at the variation of the performance metric with applied lag 74 between the interplanetary and terrestrial data (for example using a lag correlogram, the correlation 75 coefficient as a function of lag). More of a problem is spatial structure and/or temporal evolution in 76 the solar wind and/or non-radial solar wind flow. All of these can cause the solar wind/interplanetary 77 magnetic field (IMF) detected by the spacecraft to be different to that incident upon the 78 magnetosphere. In this context, we must remember that many upstream monitor satellites are in large 79 halo orbits around the L1 Lagrange point and so are further from the Sun-Earth line than satellites in 80 geocentric orbits around the Earth.

• Effects of the bow shock and magnetosheath. In particular, the orientation of the shocked IMF in the magnetosheath at the dayside magnetopause is a critical factor in the coupling of energy, mass, and momentum into the magnetosphere and this may not always be simply related to the IMF orientation in the undisturbed solar wind. This difference is very likely to be highly dependent on the averaging timescale, τ . Systematic errors introduced by Earth's orbital characteristics. These include seasonal effects on
the global conductivity distribution of the ionosphere, dipole tilt effects at the dayside magnetopause,
on the tail lobes, on instantaneous antisunward flux transfer (and hence transpolar voltage)
(Lockwood et al., 2020d) and the cross-tail current sheet and, in theory, even annual changes in the

90 Sun-Earth distance.

• Data gaps. These are often ignored on the grounds that their effects average out. That is not entirely

92 the case because they are source of noise in correlation studies. In particular, they facilitate

93 overfitting. Lockwood et al. (2019a) demonstrated errors (both random and systematic) introduced

94 into optimum coupling functions by introducing synthetic data gaps into near-continuous data.

Short data series. If the training data do not adequately cover the range of possible values the
applicability of the coupling function will be compromised. Larger datasets also give greater
statistical significance to fits, allow higher time resolution studies and give lower uncertainties.

98 • Time history and pre-conditioning. The fundamental idea inherent in the derivation of most 99 coupling functions is that there is a given terrestrial response to a given set of upstream conditions. In 100 practice we known that, for example, the response of the tail in generating substorms to a given set of 101 conditions is different after a prolonged period of northward IMF (that leaves a low open 102 magnetospheric flux) compared to that following period of southward IMF that has generated a 103 large open flux. There are several other pre-conditioning mechanism that have been proposed, which 104 are discussed in section 13 of this paper. Preconditioning effects become a greater factor at lower 105 averaging timescales, τ .

106 Several of these noise sources raise the issue of averaging timescale (τ) used for both the

107 interplanetary and the terrestrial data. Correlations increase dramatically with averaging timescale, so

108 that whereas correlation coefficients of r of 0.7 (i.e., explaining just $r^2 = 0.49$ of the variance of the

109 terrestrial indicator) is a good achievement for $\tau = 1$ min., values of r of 0.98 (i.e., explaining $r^2 =$

110 0.96 of the variance of the terrestrial indicator) are readily achieved for $\tau = 1$ year. There are a

111 number of reasons for this. The greater numbers of samples means that the effects of random

112 transient fluctuations are reduced and statistical significance increased. In addition, observation and

113 propagation errors are averaged out and systematic orbital errors are reduced (and even averaged out

114 completely for τ that is an integer number of full years). In addition, short-term preconditioning

115 effects are averaged out.

The purpose of this article is not to evaluate and compare the many individual coupling functions that have been proposed. In general, they are similar in that the differences in their performance are relatively minor and often not statistically significant; furthermore, a coupling function that generates the largest r^2 for one terrestrial indictor is often not optimum for another or for a different averaging timescale. Rather, this paper looks at general principles, limitations, and pitfalls.

121 **2** Terrestrial disturbance indicators and indices

122 This paper aims to exploit the large dataset of interplanetary observations made since 1995, because 123 it has data gaps that are both much fewer in number and much shorter in duration than before this 124 date (Lockwood et al., 2019a). This requires comparison with terrestrial space weather indicators that 125 have been available almost continuously throughout that interval and that are homogeneous, in that 126 they have not changed to any significant extent in their accuracy, resolution, region of coverage, 127 method of construction, or dynamic range. These studies also require indicators that are, where 128 possible, global so that results are not specific to a restricted region and ideally have no seasonal 129 effects. This does not leave a great many possibilities.

130 For global geomagnetic indices there are the kp (and corresponding ap) and am indices, both derived 131 from the range of variation in the horizontal field component in 3-hour intervals, as detected by mid-132 latitude stations. Of these kp (and hence ap) are not suitable, partly because their construction 133 involves mapping the observations back to what would have been observed by the reference 134 Niemegk station using look-up tables before averaging. This imprints the characteristics of the 135 Niemegk site and location on the index and so, although they are measured by a network of stations 136 across the globe, *ap* and *kp* do not have a global response. In addition, the network of stations used to 137 generate them is clustered and not uniform (and predominantly northern hemisphere) and has 138 changed several times during the interval of interest. In contrast, the compilation of the am index 139 has remained relatively homogeneous and employs two rings of nearly equi-spaced stations at mid-140 latitudes, one in each hemisphere (Mayaud, 1980). It also deploys weighting functions to minimize 141 the effects of the relatively small inhomogeneities in the rings (in particular, the large longitudinal 142 gap in the southern hemisphere ring caused by the Pacific ocean). This makes the response of the am 143 index highly constant as a function of both Universal Time (UT) and time-of-year, whereas kp and ap 144 have strong UT and time-of-year variations which would be sources of noise in correlation studies 145 (Lockwood et al., 2019d). Hence am is ideal for coupling function studies, other than its major 146 limitation that it is only 3-hourly in resolution.

147 For higher time resolution geomagnetic indices, we have 1-minute values of the auroral electrojet 148 indices, AU, AL and AE (Davis & Sugiura, 1966). These are generated by a ring of 12 auroral stations 149 in the northern hemisphere. Southern hemisphere equivalents have been generated for limited 150 intervals but large longitudinal gaps between stations, caused by oceans, give them a strong UT 151 variation (Maclennan et al., 1991; Weygand and Zesta, 2008). Of particular importance is AL which 152 becomes increasingly negative as the nightside auroral electrojet intensifies, making it a sensitive 153 monitor of the substorm current wedge. A limitation of AL is that when terrestrial activity is high the 154 auroral oval moves equatorward of the stations, so very large activity is underestimated. This is 155 overcome by the SuperMAG SML index, constructed in the same way as AL but using all available 156 northern hemisphere mid-latitude stations (typically 100 in number) (Newell & Gjerloev, 2011). The 157 resulting advantages of SML over AL have been demonstrated and discussed by Bergin et al. (2020). 158 We here have carried out studies using both SML and AL and results are often not significantly 159 different and in most cases we only show the results for SML. The major limitation of both indices is 160 the fact that they are for the northern hemisphere only and this gives them a seasonal variation that is 161 a noise factor in correlation studies, which is only averaged out by averaging timescales that are an 162 integer number of whole years. Note that, in theory, both AL and SML can have positive values; 163 however, in the years 1996-2020 (inclusive) used here, only 53 out of 13150017 valid 1-minute SML 164 samples were positive and so -SML essentially behaves in the same way as a coupling function, i.e., 165 having a minimum value of zero and increasing with the level of activity.

166 For studies of the ring current the *Dst* index is widely used, compiled from a ring of four near-167 equatorial stations. This small number of stations gives *Dst* a marked UT variation for which there 168 are first-order corrections (Takalo and Mursula, 2001) but makes it is reliable only at hourly 169 resolution. Alternatives are SYM-H which uses 11 low-latitude stations (9 in the northern hemisphere, 170 2 in the southern) and is available at 1-minute resolution) and the SuperMAG SMR index which uses 171 all available stations (typically 100 in number) at magnetic latitudes between -50° and $+50^{\circ}$ with a 172 magnetic latitude correction factor and is available at 1-minute resolution (Newell & Gjerloev, 2012). 173 The problem with all these indices for coupling function studies is that they respond not only to the 174 ring current but also the magnetopause currents and the tail currents so there are negative values 175 caused by ring current enhancements and positive ones (of smaller magnitude) caused by 176 compressions that enhance the magnetopause currents and bring them closer to the observing stations 177 (Burton et al., 1975). Coupling functions on the other had have a baselevel of zero and only 178 increasingly positive values as activity is enhanced. We here use the SuperMAG SMR index, but to

179 make it suitable for coupling function studies we apply the correction that Burton et al (1975) applied 180 to Dst to remove the effects of the magnetopause currents and so give an index, Dst^* . Dst is 181 dominated by the ring current effect, with predominantly negative values that grow increasingly 182 negative as activity is enhanced. Burton et al. (1975) derived $Dst^*=Dst-b(P_{sw})^{1/2}-c$, where P_{sw} is the 183 solar wind dynamic pressure. Estimates of the optimum coefficients b and c vary slightly, and we 184 employ the frequently used values by O'Brien and McPherron (2000) of b = 0.76 (for P_{sw} in nPa) and 185 c = 11 nT. Hourly means of *SMR* correlate very highly with *Dst* (*r*=0.92) with a linear regression 186 $Dst=1.031 \times SMR-3.911$ nT which yields a correspondingly modified of SMR with a first order 187 correction for magnetopause and tail currents, $SMR^*=7.04 \times SMR-10.7$ nT, which is what we employ 188 here.

189 A recent survey of data from the SuperDARN radars over the past 25 years has yielded a dataset of 190 hourly means of the transpolar voltage, Φ_{PC} (Lockwood and McWilliams, 2021). However, unlike the 191 above geomagnetic indices, it cannot be used as a continuous data series. The reason is that the "map-192 potential" method used to derive Φ_{PC} is a data assimilation technique employing a model of the 193 ionospheric convection pattern, driven by the IMF orientation in the upstream solar wind. Tests 194 against values from satellite over-passes show that an average number of radar echoes for the thirty 195 2-minute pre-integrations in each hour must exceed 255 for the influence of the model in the $\Phi_{\rm PC}$ 196 data to be reduced to an undetectable level and this condition leaves 65133 usable hourly-mean Φ_{PC} 197 values, about one third of the total obtained over 25 years. Despite not being a continuous record and 198 despite the fact that it is only of hourly time resolution, these data are included in the present study 199 because magnetic flux transport (i.e., voltage) is a known to be the key and fundamental part of the 200 coupling of solar wind mass momentum and energy into the magnetosphere

201 **3** Compiling a coupling function

When compiling a coupling function for a given averaging timescale, very important principle that has sometimes been overlooked is that parameters should be combined at the highest resolution available and then averaged. Large errors can result if the data are averaged and then combined, particularly if they vary considerably during the averaging intervals. This general principle can be understood conceptually if, for example, we consider coupling functions that are aimed at quantifying the power input into the magnetosphere, P_{α} : over the averaging period τ , we want the total power input in that time, which by definition of the mean is

209
$$\int_0^\tau P_\alpha dt = \tau \times \langle P_\alpha \rangle_\tau \tag{1}$$

Similarly, if we use a coupling function aimed at quantifying the dayside reconnection voltage, Φ_D we want the total magnetic flux opened in the period τ , which is the integral of Φ_D over the interval, equal to $\tau \times \langle \Phi_D \rangle_{\tau}$. A common functional form used by a great many proposed coupling functions (see Table 1 of *Lockwood and McWilliams*, 2022) is

$$< C_f >_{\tau} = < B^a_{\perp} \rho^b_{sw} V^c_{sw} \sin^d(\theta/2) >_{\tau}$$
(2)

Where B_{\perp} is the transverse component of the IMF, perpendicular to the Sun-Earth line, V_{SW} is the 215 216 solar wind speed, ρ_{SW} is the solar wind mass density ($\rho_{SW} = m_{SW}N_{SW}$, where N_{SW} is the number 217 density and m_{SW} is the mean ion mass); and θ is the clock angle of the IMF in the Geocentric Solar Magnetospheric (GSM) frame of reference, defined as $\theta = tan^{-1}(|B_Y|/B_z)$. It is important to note the 218 difference between this definition and $\theta' = tan^{-1}(B_Y/B_z)$. The angles θ' and θ increases together from 219 220 0 to π , but as θ' increases further from π to 2π , θ decreases from π back down to 0. Thus whereas θ' 221 has a discontinuous change from 2π down to zero at purely northward IMF, but there is no such 222 discontinuous change in θ . This means that the extreme problems that arise for θ' when averages 223 straddle the discontinuity do not arise with θ . Adopting θ also means that there is no difference 224 between IMF $B_{\rm Y} > 0$ and $B_{\rm Y} < 0$ as far as the coupling functions are concerned. This may not be 225 adequate because power input into the magnetosphere and/or magnetopause reconnection voltage 226 and/or tail loading and unloading could all, potentially, be asymmetric with respect to the polarity of 227 $B_{\rm Y}$. However, it is vital we that avoid the 2π -to-zero discontinuity so we must use the definition of θ 228 and would have to amply a separate term employ to allow for any effects of the polarity of $B_{\rm Y}$.

From above, we want the combine-then-average value over an interval of duration τ , $\langle C_f \rangle_{\tau}$. In contrast, an average-then-combine procedure would yield

231
$$[C_f^*]_{\tau} = [B_{\perp}]_{\tau}^a < \rho_{sw} >_{\tau}^b < V_{sw} >_{\tau}^c .sin^d ([\theta]_{\tau}/2)$$
(3)

232 Which uses the inappropriate formulae

233
$$[\theta]_{\tau} = tan^{-1} (| \langle B_Y \rangle_{\tau} | / \langle B_Z \rangle_{\tau})$$
 (4)

234 and

214

235
$$[B_{\perp}]_{\tau} = (\langle B_Z \rangle_{\tau}^2 + \langle B_Y \rangle_{\tau}^2)^{1/2}$$
(5)

Figure 1a of *Lockwood and McWilliams* (2022) demonstrates that $\langle C_f \rangle_{\tau}$, from equation (2), and [C_f^*]_{τ}, from equations (3-5), are not only different, they are often very poorly correlated. This means that, given that $\langle C_f \rangle_{\tau}$ is what we require, an average-then-combine procedure can introduce considerable noise into the correlation and hence considerable error into the derived coupling function.

241 *Lockwood and McWilliams* (2022) show that the major errors in $[C_f^*]_{\tau}$, compared to the required 242 value of $\langle C_f \rangle_{\tau}$, largely arise from the $sin^d([\theta]_{\tau}/2)$ term and using $[\theta]_{\tau}$ from Equation (4) rather than

243 computing θ at the highest available time resolution, then combining all the parameters to compute

244 C_f and only then averaging. There is a similar but smaller problem with using equation (5) to

245 compute $B_{\perp} = (B_Z^2 + B_Y^2)1/2$ and *McPherron et al* (2013) and *Lockwood and McWilliams* (2022)

recommend it is computed at the highest available time resolution before inclusion in C_{f} .

There is, however, another problem that arises because, in general, there is a difference between "Hölder means" (also called "power means") $[\langle x^p \rangle_{\tau}]^{1/p}$ of a general variable *x* and the corresponding arithmetic means $\langle x \rangle_{\tau}$ and hence between $\langle x^p \rangle_{\tau}$ and $\langle x \rangle_{\tau}^p$. Only in the special case that the exponent p = 1 or that x is constant over the interval τ does and $\langle x \rangle_{\tau}^p$ exactly equal $\langle x^p \rangle_{\tau}$. However, *Lockwood and McWilliams* (2022) show that *p* is close enough to unity and the variability over the intervals of interest to make $\langle x \rangle_{\tau}^p \approx \langle x^p \rangle_{\tau}$ a valid approximation for *x* of B_{\perp} , ρ_{sw} and V_{sw} , but not for $sin^d(\theta/2)$, because of the greater variability of $sin(\theta/2)$, a problem made worse if

large d is used (values of d up to 9 have been proposed in the literature). This makes it valid to use

255
$$[C'_{f}]_{\tau} = \langle B_{\perp} \rangle_{\tau}^{a} \langle \rho_{sw} \rangle_{\tau}^{b} \langle V_{sw} \rangle_{\tau}^{c} \langle sin^{d}(\theta/2) \rangle_{\tau}$$
(6)

254

This is helpful because there is a problem in using equation (2) with an iterative procedure to evaluate optimum values of the exponents. The average has to be re-computed at the start of each round of the iteration, which takes computer time when dealing with large numbers of samples (25 years' data at 1-mimnute resolution is over 13 million samples); but, more importantly, is likely to cause the iteration to fail to converge to within the required accuracy, especially when noting that the intervals that have to be excluded, and be treated as a data gap, because they do not meet a set error requirement also changes with the exponent, as is discussed below. 263 The procedure adopted here to implement Equation (6) is that used by Lockwood and McWilliams 264 (2022). Specifically, we use a fixed d that is varied between 1 and 7.5 in steps of 0.1. For each d the 265 values of $\langle sin^d(\theta/2)_{\tau}$ are precalculated. Equation (6) is then used with the Nelder-Mead simplex 266 search method (*Nelder and Mead*, 1965; *Lagarias et al.*, 1998) to find the *a*, *b*, and *c* that maximize 267 the performance metric of choice for each d. (Lockwood and McWilliams use correlation coefficient 268 for this but other performance metrics could be used). A version of the test proposed by Vasyluinas 269 *et al.* (1982) is the deployed to determine the value of d (which sets the required values of a, b, and c) that gives linearity of $\langle C_f \rangle_{\tau}$ with $\langle T \rangle_{\tau}$, where T is the optimally lagger terrestrial index that we wish 270 271 to predict. This procedure is outlined in Section 9 of this paper and here we just note that the 272 polynomial fitting used can be weighted to give linearity over the whole range of T or over a selected 273 smaller range of T, based on the desired application of the coupling function.

274 Data gaps are often neglected in solar wind-magnetosphere coupling studies on the pretext that their 275 effects average out. In reality, they add noise to correlation studies and facilitate overfitting.. 276 Lockwood et al. (2019a) studied the effect on coupling functions by introducing synthetic data gap 277 into near-continuous data (with distributions of durations drawn from pre-1995 data when data gaps 278 were both more common and longer). Above, it was pointed out that the difference between $\langle x^p \rangle$ 279 and $\langle x \rangle^p$ increases for a non-unity power p with the variability of x within the averaging period and, 280 as explained below, that variability is also a key factor in determining what should be defined as a 281 data gap in averaged data. We can study the variability of interplanetary parameters by looking at 282 their autocorrelation functions (a.c.f.s) as a function of lag time. These are presented in Figure 1, 283 which is an extended and expanded version of Figure 1a of *Lockwood et al.* (2019a) (see also survey 284 by Maggiolo et al., 2017). It can be seen that the solar wind speed, V_{SW} has the highest persistence of 285 all the interplanetary parameters because its a.c.f. (in blue) declines least rapidly with lag time. V_{SW} 286 also shows the strongest peaks associated with solar rotation effects with a significant peak near 27 287 days and clear harmonics at 54 days and 81 days. The most variable parameter, with the lowest 288 persistence, is the IMF orientation factor $sin(\theta/2)$, the a.c.f. for which is shown in orange.

As well as the other interplanetary parameters, (the transverse IMF B_{\perp} in mauve, the solar wind mass

290 density ρ_{SW} in green, the solar wind speed V_{SW} in blue, and the IMF orientation factor $sin(\theta/2)$ in

291 orange, Figure 1 shows the a.c.f.s for three example coupling functions. The black line is for the

same example coupling function as used by *Lockwood and McWilliams* (2022) namely the estimate

293 of the energy input to the magnetosphere estimate by Vasyluinas et al. (1982), P_{α} , for a coupling

exponent $\alpha = 1/3$ (the one free fit parameter in P_{α}), which yields a = 2/3, b = 1/3 and c = 5/3, for which the optimum IMF orientation term exponent is found to be d = 4 (see Section 10). In addition, the dashed black line shows the same coupling function but with d = 2 to highlight the effect of varying *d*. A third coupling function is presented by the cyan line: this is the empirical coupling function C_{BEA} of *Boyle et al.* (1997) which was designed to predict transpolar voltages and uses

additive terms:

300

$$C_{BEA} = 10^{-4} V_{sw}^2 + 11.7 B \sin^3(\theta/2)$$
(7)

301 where V_{sw} is in km s⁻¹ and *B* is in nT. Notice this requires use of an empirical "branching ratio" 302 (10⁻⁴/11.7) which is derived from a best-fit to available data and the effects of getting into parameter 303 space beyond its applicability would be considerable as one or other of the two terms could then 304 dominate. This coupling function C_{BEA} does not fit the commonly used formulation given in 305 Equation (2).

306 It is interesting how the a.c.f.s of the interplanetary parameters influence that of these example 307 coupling functions. For the higher *d*, P_{α} behaves rather like $sin(\theta/2)$, whereas for the lower *d*, the 308 greater persistence of the other parameters reduces this tendency. Despite using a higher *d* of 3 than 309 the dashed line, C_{BEA} has less variability (more persistence) because of the additive term in V_{SW}^2 #

310 These a.c.f.s have an important implication for how we should handle data gaps. This is investigated 311 directly in Figure 2, which shows the root mean square (r.m.s.) percentage errors found by 312 synthetically inserting data gaps into continuous 1-minute data and computing the error they cause in 313 the mean as done by *Lockwood et al.* (2019) in their Figure 1b. For P_{α} , for example, data from the 314 years 1996-2020 (inclusive) yield N = 5153517 10-minute intervals in which all ten 1-minute data 315 integrations are available (in all the parameters required to compute P_{α}) and N = 589,293 1 hour 316 intervals in which all 60 1-minute data integrations are available. For each of these intervals a 317 fraction of the one minute variables were taken out at random and the mean computed for the 318 remaining fraction f of samples and the percentage error of that compared to the known mean for all 319 samples computed. This was repeated 10 times for each interval and the r.m.s. error, ε , for the 10N 320 estimates for that *f* computed. Data gaps were introduced in such a way as to match the distribution 321 of data gap durations that exists in the full data series. The blue lines in Figure 2a shows that the 322 high persistence of V_{SW} means that just one of the 10 one-minute samples gives a 10-minute mean 323 that has only a very small error ($\varepsilon < 0.5\%$). Figure 2a shows that errors are larger for the other solar

324 wind parameters which have lower persistence. To get ε below, for example, 2% (the lowest

- horizontal gray line) requires at least 60% of ρ_{SW} samples in the 10.miute interval, 90% of B_{\perp} and
- 326 C_{BEA} samples and all 10 samples for $sin(\theta/2)$ and both the P_{α} estimates. The very small error

327 introduced by V_{SW} means that the errors for B_{\perp} and C_{BEA} are almost identical. The effect on the two

- 328 P_{α} coupling functions show that errors caused by the low persistence of the IMF orientation factor
- 329 are considerably increased by a larger exponent *d*.
- 330 Figure 2b shows that errors are smaller by a factor of about 2 for the hourly means. To get the error 331 below 2% requires at least 11% of the 60 samples for ρ_{SW} , 51% for B_{\perp} , and 75% for $sin(\theta/2)$. For the 332 coupling functions C_{BEA} requires 62%, and P_{α} requires more than 91% for d = 2 and more than 333 97.5% for d = 4. This effect of the persistence on the required number samples in an average value 334 has been understood and exploited in the past: in particular, telemetry requirements have been 335 minimized by reducing the sampling rate of high-persistence parameters such as V_{SW} . However, it 336 has not been used in coupling function studies. In particular, the exponent d has often been treated as 337 a free fit parameter using the $sin^{d}(\theta/2)$ IMF orientation factor formulation.

338 The effect of increasing the exponent d on the errors in coupling functions due to data gaps has not 339 been considered before. Lockwood et al. (2019a) showed that interpolation to fill data gaps was the 340 worst policy for dealing with them, and just ignoring their existence was actually preferrable. Best 341 practice is to define an acceptable limit to the error ε of the average values over the averaging 342 interval τ and then only use samples that, from graphs like those in Figure 2, meet the corresponding 343 requirement for fractional availability in the interval, f. Correlations should then be done using 344 piecewise removal of the terrestrial data series before it is averaged at the time of the data gaps, 345 allowing for the propagation lag. The analysis presented here has demonstrated that increasing d also 346 increases the error in a coupling function introduced by data gaps. This additional noise makes 347 overfitting more likely when d is large. Good practice to avoid this would be to ensure that all 348 coupling function averages (for any d) are made from enough high resolution-samples to meet the set 349 required accuracy for the highest d that you with to try to use. This would ensure that the number and 350 accuracy of the averaged data used would be independent of the *d* employed, which means the merit 351 of a given value of d can be tested without introducing data accuracy issues.

352 4 The effects of the location of the upstream monitor and the limits to predictability

353 As noted in section 1, one potential source of noise in correlation studies, and hence error in the 354 derived coupling function, is the propagation of the solar wind from the monitoring spacecraft to the 355 vicinity of the Earth. One aspect of this is the required propagation lag from the spacecraft to the 356 dayside bow shock, where the solar wind- magnetosphere interaction sequence begins. To some 357 extent, this lag can be allowed for by varying the time lag and then using the optimum lag δt that 358 generates peak performance metric (if that metric is correlation, then this is the peak of a lag 359 correlogram). The difficulty is that the optimum lag changes with solar wind speed (and to a lesser 360 extent direction) and the IMF orientation. This means the duration of the intervals over which the 361 correlations are taken is a factor: if this is interval is too long the variations in the true lag will 362 introduce noise, but if the intervals is too short the correlation and its significance is reduced because 363 the number of samples is reduced.

364 A potentially more significant problem is that the spatial structure in interplanetary space and/or nonradial solar wind flows and/or evolution of the conditions in propagation mean that the conditions 365 366 that impinge on the magnetosphere are different from those that were observed by the upstream 367 monitor. The most continuous data series from upstream interplanetary spacecraft comes from 368 spacecraft in halo orbits around the L1 Lagrange point. In particular, the Advanced Composition 369 Explorer (ACE), the Global Geoscience International Physics Laboratory (known As "Wind") and 370 the Deep Space Climate Observatory (DSCOVR) have made observations from such orbits since 371 1996, 2004 and 2015, respectively. The study by Crooker et al. (1982) showed that distance R_{ZY} = $(Z^2+Y^2)^{1/2}$ of an L1 spacecraft (at coordinates X, Y and Z in the Geocentric Solar Ecliptic, GSE, frame 372 373 of reference) from the Sun-Earth line (the X axis) had a key influence on the correlation with the 374 corresponding data in the magnetosheath. The ACE halo orbit keeps its R_{ZY} below about $40R_E$ (where 375 $1R_{\rm E}$ = 6370 km is a mean Earth radius) and for DSCOVR $R_{\rm ZY}$ is below about 50 $R_{\rm E}$. Wind is in a larger Halo orbit with R_{ZY} up to about $100R_E$. The X coordinates of these spacecraft vary between 194 376 377 $R_{\rm E}$ and 264 $R_{\rm E}$. Walsh et al. (2019) show that the differences between conditions in the 378 magnetosheath and as observed from an L1 orbit increase with the R_{ZY} value of the L1 monitor.

379 Figure 3 studies the effect of the location of the L1 monitor on coupling function performance by

looking at correlations of an example coupling function with the *AL* and *SML* indices. The top panels

are for hourly means, the middle panels for 10 minute means and the bottom panels are for the basic

382 1-miniute integrations of the data. The coupling function used is the optimum fit of C_f (equation 2)

383 to SML (which was almost identical to that for AL) found by Lockwood and McWilliams (2021) with 384 a = 0.662, b = 0.061, c = 1.746; and d = 5.20. A basket of other coupling functions were used and the 385 results differed only in small details and the behavior discussed here was the same in all cases. The 386 left-hand column compares the distributions of correlation coefficient for C_f and SML (in blue) with 387 those for C_f and AL (in red) for all 2-day intervals available in the 1996-2020 (inclusive) dataset. The 388 distributions for AL and SML are almost identical at all three averaging timescales, τ . The 389 correlations increase with τ , with the means and modes of the distribution both increasing. The other 390 distributions in the left-hand panels will be discussed in the next section. The middle column of 391 panels is for AL and the right hand column for SML: both consider the location of the L1 craft. The 392 light grey areas are the overall distribution shown in the corresponding panel of the left hand column 393 and the colored lines are subsets of the data sorted by the distance from the Sun-Earth line, R_{YZ} . The 394 data are divided into five quantile ranges of R_{YZ} (i.e., each containing 20% of the data). For both SML 395 and AL, the distributions are close to that for all cases for the four data subsets with $R_{YZ} < 81R_{E}$. In 396 these cases, shown by the green, orange, blue and cyan lines, there are no systematic changes with 397 R_{YZ} . However, there is a systematic change for the fifth quantile range $R_{YZ} \ge 81R_{\rm E}$ (the mauve lines) 398 for which r values are consistently lower. Interestingly the effect is different for AL and SML, with 399 AL showing significantly more lower values of r at all three averaging timescales, whereas for SML, 400 although the correlations significantly lower for $R_{YZ} \ge 81R_E$ at $\tau = 1$ min., the effect, although still 401 present, is much smaller for the larger τ values. It is expected that the effect of large R_{YZ} would 402 become greater at lower τ as the averaging smooths out spatial structure in interplanetary space. We conclude that although the correlations do start to degrade at $R_{YZ} \ge 81R_E$ there is no evidence that at 403 lower R_{YZ} the distance for the L1 monitor from the Sun-Earth line is introducing significant noise 404 405 into the overall correlations.

406 As mentioned above, correlation coefficients are not the only metric by which a coupling function 407 should be derived and evaluated, indeed it is sometimes not the best metric to use. A very important 408 application of coupling functions is in predicting large space weather events, and correlation 409 coefficient can be dominated by the core of the distribution of space weather indicators, rather than 410 the large-event tail of that distribution. Figure 4 employs a two-dimensional normalized histogram format that, hereafter, will be referred to as a "data-density plot": this is used in preference to a 411 412 scatter plot, in which information would be lost as many data points would be overplotted because 413 they are so numerous. The fraction of all data points n/2n falling in small bins is color-coded on a

414 logarithmic scale: in each panel of Figure 4 the bins of width 0.05 along both axes. The low end of 415 the color scale used is chosen to be just below the "one count level" $(\log_{10}(1/\Sigma n))$, i.e., corresponding 416 to n = 1) to ensure that outlier data, with just one sample in a bin, show up as a blue pixel. Overlaid 417 on the data density plots in Figure 4 are quantile-quantile (q-q) plots. The latter are a test of how 418 alike two distributions (of general parameters x and y) are and the points of a q-q plot line up along 419 the x = y diagonal if the distributions of x and y are identical. The form of deviations from the 420 diagonal can be used to infer in what way the distributions differ. Figure 4 is for the SML index 421 (normalized by dividing by its overall mean value) along the x axis, and the similarly normalized 422 coupling function $C_f / \langle C_f \rangle$ in the y axis where C_f is the same as was used in Figure 3. The q-q plots 423 use 1000 quantiles, 0.1% apart, shown by the white dots connected by the thin red line. This means 424 that the top/rightmost white dot in each panel is for the 99.9 percentile of the distributions. In each 425 case a lag correlogram is taken and the plot is for the optimum lag δt which gives the peak 426 correlation, r. Both δt and r are given in each panel. Note that δt is the lag after the predicted arrival 427 rime of the measured C_f at the nose of the bow shock. The top row is for $\tau = 1$ hr, the middle for $\tau =$ 428 10min., and the bottom for $\tau = 1$ min. The left-hand column is for all data, the middle column for the 429 20% of L1 data from closest to the Sun-Earth line ($R_{YZ} < 28R_E$) and the right-hand plots for the 20% 430 of L1 data from furthest away from the Sun-Earth line ($R_{YZ} \ge 81R_E$). The core of the data density 431 plots give and overall indication of the level of agreement (also given by the correlation coefficient r) 432 but the outliers (in blue) give an idea of the scatter for the largest events. For the all-data column on 433 the left, the q-q plot for $\tau = 1$ hr is very close to the ideal diagonal for all quantiles up to the 99.5 434 percentile. There is some small systematic deviation at the very lowest values, with the q-q plots 435 below the line at the very lowest values and slightly above the above that. This is more pronounced 436 for $\tau = 10$ min and $\tau = 1$ min and will be discussed later. However, above the 99.5 percentile 437 (*SML*/*SML*> above 6) we see a slight but increasing deviation toward the large $C_f/\langle C_f \rangle$, which 438 means the C_f distribution is bvery slightly "heavy-tailed" (also called "thick tailed" or "fat tailed"), 439 compared to that for SML. In other words, this C_f tends to predict slightly too many of the very large 440 *SML* events. The middle plot of the top row is again for hourly means but only for data taken close to 441 the Sun-Earth line. Here the tail of the q-q plot remains close to the ideal line all the way to the 99.8 442 percentile and only start to show slight signs of a fat-tail C_f distribution at the 99.9 percentile. On the 443 other hand, for the data taken furthest from the Sun-Earth line (the top right plot) the fat-tail of C_f is 444 more pronounced and is for data above the 99.2 percentile. Hence there is a tendency for all these 445 data to predict too many large events, but the data density plots scatter around this trend is large.

446 This behavior is essentially the same for $\tau = 10$ min and $\tau = 1$ min. and is particularly pronounced 447 for the latter and the deviation seen for the large R_{YZ} data subset extends to close to the 50% 448 percentile (the median, which is quite close to the mean SML), so the occurrent of all above-average 449 events is overestimated. This shows the fat-tailed nature of the tail of the C_f distribution is worst at 450 the larger R_{YZ} values for the L1 satellite location, which is consistent with peak geoeffective solar 451 wind conditions (very large C_f) passing over the spacecraft but then missing the Earth (which probably still receives large C_f , but not as large as seen by the spacecraft) and the *SML* enhancement 452 453 is not as large as we would predict from the L1 data. The tendency can also be seen from the data 454 density plot at large C_f . Note that there are far fewer examples of the opposite happening, i.e., that 455 the spacecraft fails to see the largest C_f that hits the Earth. This asymmetry is the cause of the 456 deviation of the q-q plot. Hence this is more than a matter of spatial structure in the solar wind and 457 random chance as that would enhance C_f at Earth as much and as often as reduce it.

Hence the q-q plots and the data density plots at large values (meaning typically 5 times the mean and above) indicate that increased distance from the Sun-Earth line of an L1 monitor does somewhat reduce our ability to predict or quantify the largest events. Note that this effect would not have been identified from the correlation coefficients alone.

462 **5** The effect of spacecraft location on correlations with auroral activity indices

463 Walsh et al. (2019) make the point that coupling across the magnetopause depends on the properties 464 of the near-magnetopause magnetosheath rather than those in interplanetary space and that the two 465 differ because the solar wind and IMF are process on crossing the bow shock and passing through the 466 magnetosheath. We here investigate this, and the effect of spatial structure in the undisturbed solar 467 wind, using data from the THEMIS-B spacecraft. THEMIS stands for *Time History of Events and* 468 Macroscale Interactions during Substorms and for the time interval studied here (2011-2018, 469 inclusive), the THEMIS-B spacecraft was in geocentric orbits and between about 55 $R_{\rm E}$ and $65R_{\rm E}$ 470 from Earth which resulted in it being in the undisturbed solar wind for approximately 70% of the 471 time, in the shocked solar wind of the magnetosheath about 15% of the time and inside the 472 magnetosphere for the remaining 15%. Correlations between L1 craft and THEMIS-B data are here 473 found in this section using the same procedure as in the previous section for L1 data, by taking the 474 peaks of the lag correlograms for 2-day segments of data.

475 Because of the near-circular geocentric orbit of THEMIS-B, the undisturbed solar wind data are at 476 distances R_{YZ} from the Sun-Earth line of between zero and $55R_E$ (towards both the dawn and dusk 477 flank of the magnetosphere). A study of correlation coefficients with SML data revealed no consistent 478 changes with R_{YZ} (not shown here). The THEMIS-B magnetosheath data are from between X of 479 $-25R_E$ and $-50R_E$ (i.e., down-tail) and at similar ranges of Y values (in GSE), both positive and 480 negative (i.e., on either flank) and at Z that precesses between $-5R_E$ and $+5R_E$. Hence these are not 481 promising locations from which to be calculating coupling functions, when one really wants to know 482 the sheath conditions near the nose of the magnetosphere. However, although there will be 483 differences between the conditions in the magnetosheath near the nose and at THEMIS-B, one does 484 at least know that THEMIS is sampling solar wind that has impacted Earth's bow shock.

485 The orange and green lines in the left-hand panels of Figure 3 show the correlations with the SML 486 index of the example coupling function from THEMIS-B data when it was in the undisturbed solar 487 wind (orange line) and in the magnetosheath (green line). The same coupling function is used as in 488 the other panels of Figure 3. The orange line should be compared with the thin dashed blue line that 489 shows the corresponding distribution of correlations for the L1 data taken at the same time as the 490 solar wind THEMIS-B data (allowing for the optimum propagation lag). Similarly, the green line 491 should be compared with the thin dot-dash blue line that shows the corresponding distribution of 492 correlations for the L1 data taken at the same time as the sheath THEMIS-B data (again allowing for 493 the optimum propagation lag).

494 There are a number of points to note from these comparisons that are seen at all three averaging 495 times. Firstly, the distributions of correlations using THEMIS-B data are quite similar to the 496 simultaneous distribution for the L1 data, especially for when THEMIS-B is in the undisturbed solar 497 wind. Hence, it initially appears that the propagation from L1 to THEMIS-B is making only small 498 differences to the correlations. However, it transpires that this is only true for the overall average 499 performance demonstrated by the distribution of r values: it is not true for the individual correlations 500 taken over 2-day intervals. For some of the 2-day intervals, the correlations for L1 data and 501 THEMIS-B data with SML are essentially identical whereas in others they can differ greatly: the 502 r.m.s. difference between the two for $\tau = 1$ min, $\tau = 10$ min and $\tau = 1$ hr. was 0.15, 0.15 and 0.17 503 when THEMIS-B was in the undisturbed solar wind and 0.28, 0.28 and 0.32 when THEMIS-B was 504 in the sheath. Secondly, the distributions for the THEMIS data show a marked tendency to lower 505 values than seen for the study of all L1 data (the solid blue lines). However, because the subsets of 506 the L1 data at the same times also show the same tendency, we know that this is not predominantly a 507 propagation effect associated with the locations of the spacecraft. Rather, detailed inspection shows

508 that these lower correlations are caused by lower average levels of solar and space weather activity 509 during the THEMIS-B interval (2011-2018) than during the full L1 dataset (1996-2020). Thus, 510 coupling functions perform better when space weather activity is high. This will be demonstrated and 511 discussed again later. However, there are differences between the performance for the L1 and Near-512 Earth data. These are generally small for THEMIS-B in the solar wind and the most significant is for 513 $\tau = 1$ hr. when THEMIS in the magnetosheath, an observing location that generated a significantly 514 better distribution of correlations than the L1 data. Thirdly, the correlations for THEMIS-B in the 515 magnetosheath are similar to those for THEMIS-B in the undisturbed solar wind, but again there are 516 differences for $\tau = 1$ hr. when better agreement is found with *SML* when THEMIS-B is in the sheath 517 than in the solar wind.

518 At all three locations (near L1, near-Earth undisturbed solar wind and down-tail magnetosheath) 519 averaging over 10 minutes makes only marginal improvements to correlations with SML, whereas 520 averaging over an hour makes significant improvements. This is expected, given that SML is 521 enhanced during substorm expansion phases which is the response of the magnetosphere to the 522 accumulation of open flux in the geomagnetic tail during the prior growth phase (*McPherron*, 1970; 523 Milan et al., 2009) which usually lasts between about 15 and about 90 minutes (Partamies et al., 524 2013). Li et al. (2013) show that for very high open flux production rates, growth phases can last less 525 than 10 min and for very low rates more than 90 min.; from their distributions 0.1% of growth phases 526 last less than 10 min. and whereas 64% last more than one hour but only 30% last more than 90 min. 527 In addition, *Li et al.* show that the substorm expansion phases that follow growth phases lasting 528 longer than an hour are considerably weaker (quantified by maximum auroral power). Hence $\tau > 1$ 529 hr. should give higher correlation coefficients with *SML* by integrating the coupling function over the 530 strong growth phases.

531 6 Comparisons of L1 data and near-Earth interplanetary and magnetosheath data indices

To understand better the correlation differences caused by spatial structure in the solar wind, Figures 5 and 6 compare directly the data observed at L1 with that observed by the THEMIS-B spacecraft during the 2011-2018 period. Figure 5 is for 10min. averages. The top row shows the distribution of correlation coefficients *r* between L1 data and the corresponding data recorded by THEMIS-B when in the undisturbed solar wind. The rows are for different parameters, from left to right: the IMF *B*, the solar wind number density N_{sw} , the solar wind speed V_{sw} , the IMF orientation factor $sin(\theta/2)$, and the example coupling function used in Figures 1 and 2, namely the *Vasyluinas et al.* (1982) estimate of 539 the energy input into the magnetosphere P_{α} with a coupling exponent of $\alpha = 1/3$ and d = 4. The mean 540 ion mass m_{sw} was assumed not to change between L1 and THEMIS and in computing P_{α} for the 541 THEMIS-B data. In each plot, the grey area is for all data and the blue and mauve distributions look 542 at the distribution for below two, relatively low, global space weather activity levels. These are 543 determined using the planetary 3-hourly *am* index, averaged over the 2-day period over which the 544 corresponding correlation was taken. The mauve histogram is for am < 40 nT and the blue line is for 545 am < 20 nT. The behavior that can be seen in all the distributions is that the lower correlations are 546 occurring at low activity levels, with most values below 0.5 occurring at am < 20 nT and almost all at 547 am < 40 nT. This effect is emphasized by the bottom row of panels in Figure 5. These panels show 548 the scatter plot of the r values as a function of average am for the 2-day interval they are computed 549 over. It can be seen that lowest r values occur at low am. The 20nT and 40nT thresholds used in the 550 upper panels are also shown. Superposed in cyan on the scatter plots are the mean values in 6 551 quantile ranges of *am*. They show that, on average, the correlation increases with larger *am* for *B*, 552 N_{Sw} and V_{Sw}, but only very slightly for the IMF orientation factor $sin(\theta/2)$ and P_{α} . The rise in 553 correlations with *am* implies that there is less small-scale structure in the interplanetary medium 554 when activity is high, consistent with the fact that high activity is driven by large-scale coherent 555 interplanetary structures such as Coronal Mass Ejections (CMEs) and Corotating Interaction Regions 556 (CIRs).

557 The loss of correlation between L1 and THEMIS-B can be caused by spatial structure but also could 558 reflect random instrumental errors in both or either of the measurements made by the spacecraft. 559 Note that systematic calibration errors (in gain or offset) would not degrade the correlation between 560 the two data series. The similarity of the correlation distributions for the different parameters strongly 561 suggests that they have a common cause, such as spatial structure in the solar wind, rather than error 562 in the various instruments that observed the parameters.

The middle panels are the same as the upper panels but are for THEMIS-B in the magnetosheath. The correlations with L1 data for *B*, N_{SW} and V_{SW} are all lowered and in these cases the global activity level quantified by *am* appears to have little effect. The reduction in *r* varies with the location of THEMIS-B in the sheath and is caused by the processing of the plasma and field on crossing the bow shock and passing through the magnetosheath to the point of observation. However, the distribution of correlations with the L1 data for $sin(\theta/2)$ are very similar for THEMIS-B in the magnetosheath and THEMIS-B in the undisturbed solar wind. Theoretically, the clock angle in the undisturbed solar 570 wind would be conserved into the magnetosheath, for some simplified situations but this is not 571 generally the case and, in practice, although clock angle θ is conserved to some degree, changes are 572 introduced and can be quite large (Coleman, 2005; Crooker et al., 1985; Walsh et al., 2019; Zhang et 573 al., 2019). Thus, it is somewhat surprising that the distributions of r for $sin(\theta/2)$ for THEMIS inside 574 and outside the bow shock are so similar. Even more surprising, given the changes to the correlations 575 for B, N_{SW} and V_{SW} caused by the processing in passing through the bow shock and magnetosheath, 576 is that the coupling function P_{α} shows a similar distribution of correlations for THEMIS-B inside and 577 outside the bow shock. This must reflect the dominant role in P_{α} (and all coupling functions) of the 578 clock angle and the IMF orientation term.

579 Part (e) of Figure 5 gives an insight into where agreement between the coupling function P_{α} and the 580 SML index is likely to be lost for this averaging timescale of 10 min. The mean correlation with the 581 L1 value of P_{α} falls from unity at L1 to 0.71 in the near-Earth undisturbed solar wind which falls 582 further to 0.66 in the magnetosheath and to 0.53 with SML The distributions of r reflect this fall in 583 mean correlation and the mode values falling from unity to 0.86 in the near-Earth solar wind to 0.66 584 after crossing the bow shock and to 0.59 in the auroral electrojet. The end-to-end correlation caused 585 by this interaction chain can only be as good as that of the weakest link and the similarity of the 586 distributions of r with SML for L1, near-Earth and sheath observations (discussed in the previous 587 section) implies that although some correlation is clearly lost because of spatial structure in 588 interplanetary space and by the processing by traversal of the bow shock and sheath, the biggest 589 uncertainty remains in accounting for the driving mechanisms of the auroral currents by the 590 magnetosheath flow.

Figure 6 is the same as Figure 5 for hourly means. The most obvious difference is that correlations are all greatly enhanced. The same analysis of the loss of agreement can be applied. The mean correlation falls to 0.84 in near-Earth undisturbed solar wind which falls further to 0.75 after crossing the bow shock and to 0.63 in the auroral electrojet. The mode values of the distributions of r fall to 0.94 in the near-Earth solar wind to 0.82 after crossing the bow shock and to 0.75 in the auroral electrojet.

597 **7** A quick survey of coupling function performance as a function of timescale

598 Given the extremely large number coupling functions proposed since epsilon was published in 1978, 599 it is not possible to survey the performance of all the proposed formulations. Nor would it be a useful 600 comparison. Lockwood and McWilliams (2022) make the point that a coupling function's

601 performance depends upon both the averaging timescale τ used and which terrestrial space-weather

- 602 indicator it was designed to predict. In this section, we review the performance of a small basket of603 proposed coupling functions against the terrestrial indices discussed in section 2 but, importantly, as
- a function of timescale.

605 Figure 7 is a "postage stamp" presentation of lag correlograms for averaging timescales τ which 606 increase from 1 minute to 1 year from left to right with different rows being for different parameters. 607 The top 6 rows (a-f) are interplanetary parameters, the next 5 rows (g-k) are for different coupling 608 function combinations of interplanetary parameters and the bottom 4 rows (1-o) are for the four 609 selected terrestrial disturbance indexes. In each row the lag correlograms are given for the parameter 610 in question with: (mauve line) -SML; (green line) $-SMR^*$; (blue line) Φ_{PC} (available for $\tau \ge 1$ hr. 611 only); and (orange line) am (available for $\tau \ge 3$ hrs. only). In all case, a positive lag corresponds to 612 the parameter, defined by the row number, being lagged. The lags covered are chosen for teach τ to 613 be large enough to define the width of the main peak but small enough to make any lags between the 614 peaks detectable. In all cases the correlations are for all valid data taken between 1995 and 2019 615 (inclusive).

616 Before discussing the correlograms between interplanetary parameters and the terrestrial activity 617 indices, we first discuss the relationships between those terrestrial indices, analyzed in the bottom 4 618 rows of Figure 7. In these rows, one of the four variations plotted is therefore an a.c.f. rather than a 619 cross-correlogram. Row (1) is for the *am* index (for $\tau \ge 3$ hrs). It can be seen that -SML is highly 620 correlated with *am* which is known because both these indices are dominated by the auroral electrojet 621 of the substorm current wedge (see supplementary information to Lockwood et al., 2019a). The 622 -SMR* index shows a more persistent but delayed response consistent with the longer integration 623 times of solar wind forcing that correlate best with enhanced ring current (Lockwood et al., 2016). 624 The transpolar voltage Φ_{PC} correlates less well with am than the geomagnetic indices and tends to lead *am* at peak correlation. This can be seen most clearly in row (m) which is for Φ_{PC} (for $\tau \ge 3hrs$) 625 626 and which shows the responses of all the geomagnetic indices are slightly after the peak in Φ_{PC} . This 627 is expected because of the duration of substorm growth phases in which Φ_{PC} is enhanced by 628 reconnection in the dayside magnetopause but the geomagnetic indices not yet strongly enhanced. 629 But note also that there is a second component because Φ_{PC} is also enhanced by reconnection in the 630 cross-tail current sheet in the subsequent substorm expansion phases (Lockwood and McWilliams,

631 2021a) as predicted by the expanding-contracting polar cap (ECPC) model of the excitation of

632 ionospheric convection (*Cowley and Lockwood*, 1992). This gives an in-phase element to the

relationship between Φ_{PC} and the *-SML* and *am* indices. Rows (n) and (o) confirm the delayed

634 response of -SMR with respect to the other indices discussed above. For $\tau = 27$ days the

635 correlograms cover –2.5 BR to +2.5 BR, where BR is a Bartels solar rotation period (27 days) and

the harmonic peaks seen in the a.c.f.s of interplanetary parameters in Figure 1 are a factor and make

the main peak less pronounced. For the annual timescales shown in the right-hand panels of rows thesame behavior is seen in all 4 of these rows which is associated with the nature of the solar cycle, as

639 discussed below.

640 The top row (a) of Figure 7 is for the magnitude of the IMF, B. Moving from left to right we see that 641 peak correlations with -SML increase from a modest 0.5 for $\tau = 1$ min. to 0.95 for $\tau = 1$ year. Peak 642 correlations with $-SMR^*$ for $\tau < 1$ day exceed those for -SML but lag behind them reflecting the 643 time for the ring current to be enhanced. All parameters show the rise in peak correlation with τ . This 644 rise has four main causes. Firstly, random noise (such as measurement errors) are increasingly 645 averaged out within the averaging period. Secondly, systematic noise (such as seasonal and dipole tilt 646 effects) are averaged out, but only completely for $\tau = 1$ year. Thirdly the ranges of variability in both 647 B and the terrestrial indices are reduced by the averaging. And lastly, factors which have an influence 648 at low τ tend towards constant values under the central limit theorem (*Fischer*, 2010): as will be 649 shown in the next section, the most important example of this is the IMF orientation factor. The lag 650 correlograms for *am* and *-SML* are somewhat asymmetric, with higher correlation tending to linger 651 after the peak, slightly more than the persistence seen in the rise up to the peak. This asymmetry is 652 considerably more pronounced for $-SMR^*$. This was also noted in the correlation study for $\tau = 5$ min. 653 by Maggiolo et al. (2017). For τ up to about 1 day the correlograms are similar for all four terrestrial 654 indices (-SML, -SMR*, Φ_{PC} and am). However, the asymmetry is seen even in the annual means for 655 the geomagnetic indices -SML, $-SMR^*$ and *am* but not in the transpolar voltage Φ_{PC} . This difference 656 between the behavior is interesting as it implies there is some magnetospheric "memory" (i.e., 657 preconditioning by prior years) in action for geomagnetic indices that is not present in Φ_{PC} . This 658 could indicate that there is a small solar cycle variation in the difference between dayside and 659 nightside reconnection rates and hence in open solar flux which means prior years. This also will be 660 discussed below in relation to the coupling functions.

661 The second row in Figure 7 is for the solar wind mass density, ρ_{sw} . Peak correlations are much lower 662 in this case than for IMF *B* and the lag correlograms are highly asymmetric, with small, zero or even 663 negative correlations before the peak and larger ones after it. The peaks for ρ_{sw} lag behind the peaks 664 for *B*. There is no significant effect of ρ_{sw} on annual timescales. The results of *Lockwood and* 665 McWilliams (2021a) show that transpolar voltage is increased slightly by enhanced solar wind 666 dynamic pressure (and hence ρ_{sw}) and *Lockwood et al.* (2019b) show that geomagnetic activity is also 667 enhanced by enhanced solar wind dynamic pressure. Modelling shows that this second effect is 668 associated with the squeezing of the tail and its effect in increasing the energy stored in the tail and 669 the total current flowing in the cross-tail sheet Lockwood et al. (2019c), a factor which increases the 670 amplitude of the "equinoctial" (a.k.a., "McIntosh") pattern in geomagnetic activity that is associated 671 with the dipole tilt (*Lockwood et al.*, 2019c). This is consistent with the lack of an effect of ρ_{sw} in 672 annual means, for which dipole tilt effects are averaged out. The enhanced correlations are seen for 673 timescales up to about a day, which is what we expect for the squeezing effect in the tail and the 674 persistence of the solar wind dynamic pressure.

675 The third row of Figure 7 is for the solar wind speed, V_{sw} . As for *B*, peak correlations grow with τ . 676 Correlograms are again asymmetric, but in the opposite sense to ρ_{sw} , with larger values at negative 677 lags that fall sharply for positive lags. These negative lags (meaning that correlation is seen with 678 solar wind speed that was observed after the terrestrial activity) does not question causality and was 679 also noted in the correlation study for $\tau = 5$ min. by *Maggiolo et al.* (2017), who correctly interpret it 680 as being due to the geoeffectiveness of enhanced solar wind density and field (and the potential for 681 enhanced southward out-of-ecliptic IMF) in CIR and CME fronts ahead of fast solar wind, caused by 682 the enhanced solar wind interacting with slow solar wind ahead of it. That a similar asymmetry is 683 present for annual means in the far right can be understood because solar wind effects are greater in 684 the declining phase of the solar cycle when low-latitude extensions to coronal holes form giving 685 more fast streams: hence the declining phase activity will correlate better with annual means for the 686 prior year than for the next year.

The next three rows, (d), (e) and (f), look at the variation of three IMF orientation factors of the form $sin^{d}(\theta/2)$, being for d = 2, d = 4 and d = 6 The behavior is very similar in all three cases, with peak correlations growing with τ up to about 1 day, after which they decline again. Note that no significant correlations (at the 2- σ level) were obtained at $\tau = 1$ year because at this timescale $sin^{d}(\theta/2)$ (for all d) is essentially constant, as will be discussed later. This is also the reason why peak correlations for

- 692 $sin^{d}(\theta/2)$ decline for $\tau > 1$ day and one of the most important reasons why correlations with *B* and V_{sw}
- frow with increased τ . *Lockwood and McWilliams* (2021) review proposed values for *d* and note that
- they range from 1 to 9, but most lie in the range between 2 and 6 studied here.

695 The next five rows are for examples of coupling functions that combine the factors studied in the 696 previous rows and have been chosen to cover a range of d from 2 to 6. Row (g) is for the Vasyluinas 697 *et al.* (1982) power input into the magnetosphere estimate P_{α} for $\alpha = 1/3$ and d = 4; row (h) is for the *Boyle et al.* (1997) transpolar voltage prediction, C_{BEA} (which uses an additive term with d = 3); row 698 699 (i) is for the empirical "Nearly Universal" coupling function of Newell et al. (2007), C_U (for which d 700 = 2.67); row (j) is for the theory-based coupling function of *Borovsky and Birn* (2014) (for which d =701 2); and row (k) is for the empirical coupling function of *Temerin and Li* (2006), C_{TL} (for which d =702 6). Although there are some small differences, Figure 7 makes the point that they are actually rather 703 similar in their performance is we used correlation as a metric. Correlations rise with τ from 704 typically 0.65 for $\tau = 1$ min to up to 0.99 for $\tau = 1$ year. Incidentally, this is not to say that the form of 705 the coupling function does not matter; for example, the best performance of a coupling function found in this survey was that derived by McPherron et al. (2015) for predicting the -SML index, 706 giving a correlation of 0.688 at $\tau = 1$ min, rising to 0.973 for $\tau = 1$ year: this coupling function (with 707 708 $a = 0.70 \pm 0.01$, $b = 0.096 \pm 0.009$, $c = 1.92 \pm 0.04$ and $d = 3.67 \pm 0.04$) was derived empirically using 709 best practice and the AL index (which is very similar to SML) for $\tau = 1$ hour. The worst-performing 710 was the epsilon factor, ε , which yielded correlations that varied from 0.47 to 0.62 for the same range 711 of τ .

712 The correlations for coupling functions are dominated by the effect of the IMF orientation factors up 713 to about $\tau = 1$ day (removing the other factors was found to cause only relatively minor loss of 714 correlation) but for $\tau = 1$ year the IMF orientation factor makes no difference and no loss of 715 correlation at all is incurred if it is omitted at this timescale. Rather than looking at the relatively 716 small differences between the various coupling functions, we here look at their common behavior. A 717 feature seen for all the better coupling functions is that after the peak, the correlation falls faster for 718 Φ_{PC} than for all the three geomagnetic indices. This is consistent with the effect of some open flux, 719 transported into the tail by enhanced Φ_{PC} remaining there and continuing to drive and enhanced level 720 of geomagnetic activity until the enhanced open flux has decayed away (Lockwood and McWilliams, 721 2021). The annual correlations are also asymmetric, with transpolar voltage weakly showing the sort

of solar cycle effect noted for solar wind speed, whereas the geomagnetic parameters weakly

- showing the long-term memory effect seen for the IMF. As noted above, this is also seen in the
- 724 correlograms for $\tau = 1$ year between the various terrestrial indices in rows (l)-(o).

725 8 Occurrence distributions of coupling functions and the data that they predict

726 An aspect of coupling functions that has not attracted much attention in the past is what they predict 727 for the occurrence distribution of a given terrestrial parameter. Much of this has because interest has 728 focused on large events, in other words on the large-event tail of the distribution and not on its "core" 729 around the mode value. The reason for this is that much of space weather science is concerned with 730 the major disturbance events. However, there is another aspect the space weather associated with the 731 integrated effects of activity. Examples include: integrated lifetime radiation doses for spacecraft 732 electronics and for astronauts; and integrated GIC induced current effects on power grid transformers 733 and on pipeline corrosion. However, it is not just these "lifetime dose" issues that mean we should 734 also consider the full distributions, they are very likely to be important for understanding 735 preconditioning effects in the magnetosphere, in which the response of the magnetosphere in a large 736 event also depends on the accumulated activity level of prior intervals. Preconditioning is discussed 737 further in Section 13. If we are to learn how to allow for and predict preconditioning effects, we need 738 to look at the whole distribution of the coupling function and how well it matched that of the 739 parameter it is attempting to predict. For these reasons a full space weather climatology should look 740 at the full distributions of parameters, and not just the large event tails. These distributions depend 741 critically on averaging timescale (Lockwood et al., 2019a; b; c).

Figure 8 presents a postage stamp plot of occurrence distributions for the same parameters, averaging

timescales and data interval as Figure 7. The grey histograms give the number of samples n,

normalized by its peak value n/n_{max} , in bins that are 0.01 wide. These are histograms of the

normalized parameter value $x/\langle x \rangle$, where $\langle x \rangle$ is the mean over all available samples. The vertical

mauve lines are at the distribution mean, $x/\langle x \rangle = 1$. The *n* values are normalized by n_{max} rather than

747 Σn because the latter can requires some very large *y*-axis scales when the distribution tends to a delta 748 function.

The distributions for the IMF, *B* and solar wind mass density ρ_{sw} at $\tau < 1$ day are close to lognormal and do not change much in form with τ . However, for larger τ , the central limit theorem begins to have a large effect and distributions narrow and become more Gaussian as they evolve towards the delta function that would be obtained for τ equal to the whole 25-year dataset. The distribution for

- solar wind speed V_{sw} is different because, unlike *B* and ρ_{sw} , V_{sw} never falls anywhere close to zero
- and has a baselevel value of around 350 km s⁻¹. This makes the distribution of $V_{sw} / \langle V_{sw} \rangle$ narrower: it too narrows under the central limit theorem as τ is increased.
- 756 Lockwood et al. (2019b) and Lockwood and McWilliams (2022) explain the details of how the strange distributions of $sin(\theta/2)$, and hence of $sin^{d}(\theta/2)$ shown in Figure 8, arise for low τ . 757 758 However, it should be noted that such a distribution will arise for most IMF orientation factors that 759 allow for the "half-wave rectifier" aspect of IMF orientation control of coupling between the solar 760 wind and the magnetosphere. For example, because the distribution of the southward component of 761 the IMF in GSM coordinates, B_Z , is symmetric about zero, use of a half-wave rectified southward (B_S 762 $= -B_Z$ for $B_Z < 0$ and $B_S = 0$ for $B_Z \ge 0$), yields a distribution in which 50% of the samples are in a delta function at $B_S = 0$. Because of the large variability in θ these distributions of $sin^d(\theta/2)$ evolve 763 764 quickly with increased τ , in general from the strange distributions at high time resolution to a 765 lognormal, and then to a gaussian that then thins to a delta function. However, the evolution depends 766 strongly on the value of d: for example, for d = 2 the distributions remains symmetric at all τ and the 767 lognormal phase is not seen. In general, the larger the value of d, the greater the delta function spike 768 at zero and the larger is the τ value needed to remove it and obtain a lognormal form. Hence the value 769 of d used has great effects on the distribution of the coupling function. Note that for $\tau = 1$ yr., the 770 larger variability of θ means that the distributions of $sin^{d}(\theta/2)$ are reduced to delta functions for all. 771 This is the reason why highly successful coupling functions on annual timescales, giving correlations 772 of about 0.98, do not contain an IMF orientation terms. It is also why no significant correlations 773 could be found for $\tau = 1$ yr. in rows (d), (e) and (f) of Figure 7.

774 The coupling function distributions in rows (g)-(k) show that for $\tau \leq 1$ day they are highly dependent 775 of the form of the IMF orientation term used and, in particular, the value of d. The strange shape to 776 the distributions only evolves at larger τ into the lognormal and quasi-Gaussian distributions seen for 777 the terrestrial indices. For the *Borovsky and Birn* (2014) coupling function with d = 2, this is 778 achieved by $\tau = 3$ hrs., whereas for the *Temerin and Li* (2006) coupling function with d = 6 this is only achieved with $\tau \ge 1$ day. At timescales of an hour and less the $sin^{d}(\theta/2)$ formulations do not 779 780 work well in terms of matching the core and low-activity end of the distribution, but the additive 781 formulation of the *Boyle et al.* (1997) coupling function C_{BEA} means that it provides a much better 782 match at low τ . However, close inspection shows that the *Boyle et al.* (1997) formulation has a light high-activity tail compared to the terrestrial geomagnetic indices, whereas $sin^{d}(\theta/2)$ formulations 783

(sometimes with large *d*) can fit the high activity tail rather better. Thus, none of the formulations

- available at the present time are suitable for quantifying both the core of the distribution and the
- 786 large-event tail. We note that the *Boyle et al.* (1997) formula was designed to predict transpolar
- voltages, the distribution for which do not show as heavy large-event tail as the geomagnetic indices,
- 788 particularly at larger τ .

789 9 Correlation coefficients as a metric of performance

790 Previous sections have used linear correlation coefficients as a metric to assess the performance of 791 various coupling functions. This is indeed the metric that has been used in almost all coupling 792 function studies. In this section, we look at the implications of the adoption of this metric and ask if it 793 is always appropriate. Vasyliunas et al (1982) make the important point that correlation coefficients 794 do not guarantee linearity of the coupling function over the range of activity level you are most 795 interested in. For example, if you are interested in a very large and extreme event tail, correlation 796 coefficient could be set by the large number of samples in the core of the distribution and that might 797 not be the best fit to the small number of tail samples that you are interested in. More subtly, 798 Lockwood and McWilliams (2022) demonstrate that even in the core of the distribution, peak linear 799 correlation coefficient between samples does not necessarily guarantee you linearity and linearity 800 between a coupling function and the terrestrial indicator that it aims to predict is what one requires.

801 Figures 9, 10 and 11 of Lockwood and McWilliams (2022) present their implementation of the test 802 for linearity suggested by Vasyliunas et al (1982) (for Φ_{PC} am and SML, respectively). This ensures 803 that $F(\theta)$ is of the correct form for the proposed G to give a linear coupling function. Note that the 804 polynomial fit used by Lockwood and McWilliams (2022) could be weighted to ensure that the 805 linearity is over the range of the terrestrial index that is of greatest interest, although in the 806 implementation by Lockwood and McWilliams (2022) equal weighting was given to equal width 807 averaging bins that covered the whole range of $F(\theta)$. The full procedure for the derivation of the 808 optimum value of d and its 1σ , 2σ , and 3σ uncertainties, is described in the paper by Lockwood and 809 McWilliams (2022). At each d, the Nelder-Mead simplex search yields the values of exponents a, b, 810 and c and hence their optimum values (and their uncertainties) are also defined.

- 811 The correlation obtained for Φ_{PC} , for example, is r = 0.858, an extremely high value for $\tau = 1$ hr.
- 812 which means that $r^2 = 73.6\%$ of the variance in hourly transpolar voltages is explained. It is the fit
- 813 given by the linearity condition. However, it is not the fit that gives the highest possible value of *r*:

- that was obtained for d = 2.20 and was r = 0.8646 (explaining 74.8% of the variance). What is
- 815 happening here can be seen in Figure 8 of *Lockwood and McWilliams* (2022): Part a of that figure is
- 816 for d = 1.1 (too low); Part b is for d = 2.2 (and yields the highest correlation); Part c is for d = 6.5
- 817 (that is too high); and Part d is for d = 2.5 (that yields linearity). These plots show that maximizing r
- 818 also minimizes the rms deviation of observation and coupling function fit, $\Delta_{\rm rms}$ and so minimum $\Delta_{\rm rms}$

819 does not give linearity either.

820 There is an important point to note about Figure 8c of Lockwood and McWilliams (2022) in which 821 the *d* value is too large, in relation to identifying and quantifying transpolar voltage "saturation" 822 effects (e.g., *Hairston et al.*, 2005; *Shepherd*, 2007). These effects are when the transpolar voltage 823 does not increase as much with solar wind forcing at higher forcing levels than at lower ones and 824 may even lead to a leveling off such that there is a maximum voltage that can be achieved. Global 825 MHD simulations (for example, Kubota, 2017) can reproduce such effects and so do indicate it is a real phenomenon. There is no reason to doubt that saturation does occur to some extent in Φ_{PC} , but 826 827 the nature of the mechanism(s) is still a matter of debate and it is not at all clear that this saturation 828 effect in Φ_{PC} causes saturation to anything like the same degree in geomagnetic indices, if at all 829 (Borovsky, 2021b). Some geomagnetic indices do not show any saturation effect, others do but to 830 varying degrees. In general, any geomagnetic index saturation is less pronounced than that in Φ_{PC} , a 831 fact that is reflected in the distributions shown in Figure 8 in that the large event tail is fatter and 832 longer for geomagnetic indices than for Φ_{PC} . This urges caution when quantifying a saturation effect because it demonstrates that similar behavior can be brought about by an inadequate coupling 833 834 function. A similar point was recently made by Borovsky (2021b).

835 **10** Fitting the bulk of the distribution and the large event tail

836 Figure 9 returns to the point about fitting the core of distribution, versus fitting the large-event tail for

837 the fits to Φ_{PC} described above. The gray area bounded by the black line in Figure 9a is the

- distribution of the 65133 valid hourly transpolar voltage values in the survey of 25 years of
- 839 SuperDARN by Lockwood and McWilliams (2021). The yellow and cyan lines break this distribution
- 840 into two subsets, for IMF $B_Z \ge 0$ (in GSM) in cyan and $B_Z < 0$ in yellow. The two sub-set
- distributions cross at $\Phi_{PC}/\langle \Phi_{PC} \rangle = 0.85$, below which the distribution is increasingly dominated by
- northward IMF and above which is increasingly dominated by southward IMF: at Φ_{PC} below about

- 843 $0.3 < \Phi_{PC} >$ the distribution is almost exclusively due to northward IMF whereas for above about
- 844 $2 < \Phi_{PC} >$ it is almost exclusively due to southward IMF.
- Figure 9b repeats the observed distribution (as a black line) and compares it to the mauve line, which
- is the distribution for the optimum (linear) fit C_f (given by equation 2 with d = 2.50) discussed in the
- previous section. Also shown for comparison, the blue line is C_f for the optimum fit to the
- simultaneous –*SML* data (given by Equation 2 with d = 5.20) and the green line is the predictions of
- 849 the *Boyle et al* (1997) formula (Equation 7), C_{BEA} . It can be seen that C_{BEA} matches the distribution
- 850 exceptionally well, whereas C_f with d = 2.50 only matches well for Φ_{PC} above about $2.5 < \Phi_{PC} >$ and
- is very poor in the northward-IMF dominated part of the distribution below $0.85 < \Phi_{PC} >$. This
- problem increases with *d* and is very severe for C_f with d = 5.20).

853 To understand the implications of these fits, the lower panels of Figure 9 are the same data as in the 854 upper panels, but shown as cumulative distributions functions (c.d.f.s) rather than probability 855 distribution functions (p.d.f.s). Figure 9c makes the point that about a third of the total flux transport 856 across the polar cap takes place when the IMF is northward and about 2/3 when it is southward. This 857 is a prediction of the ECPC convection model, as discussed by Lockwood and McWilliams (2021). 858 Figure 9d shows the predictions for integrated flux transport by the various coupling function fits. 859 The observed distribution shows that 36% of the total flux transport is at below-average values of 860 Φ_{PC} and, not surprisingly given Figure 9b, this is very well matched by C_{BEA} which predicts 38%, but 861 not so well matched by C_f which gives 28% with d = 2.50 and just 22% with d = 5.20. Hence using 862 C_f with even the optimum d underestimates the total flux transport in quiet times, but because in 863 Figure 9f the mauve line reaches close to unity at very large activity levels, it correspondingly 864 overestimates the flux transport at high activity levels.

865 Figure 10 is the same as Figure 9 but for the observed distribution of -SML values for $\tau = 1$ hr. The 866 p.d.f.s and c.d.f.s are shown for in the right hand panels for C_f with 4 different d values, including (in 867 green) the optimum linear fit value of d = 5.20, derived using the same procedure as was used for 868 $\Phi_{\rm PC}$ in Section 10. The other lines are for (in mauve) d = 2.0 (too low); (in blue) d = 3.82 (gives peak 869 correlation, r); and (in orange) d = 7.5 (too high). As noted earlier, the observed distribution for 870 -SML is much more "heavy tailed" than for Φ_{PC} and this makes the poor fit for the northward-IMF-871 dominated part of the curve less pronounced although still present. The higher d of the fit means the 872 behavior for -SML is much more like a "half-wave rectified" behavior than it is for Φ_{PC} . In terms of

the integrated value, the problem of missing the contribution of very quiet times is not as marked as it is for Φ_{PC} , but it is still present and is indeed inherent in the $sin^d(\theta/2)$ formulation. Figures 10b and 10d show that the higher *d* value or 5.2, on the other hand, can match the large-event tail of the distribution well.

877 Figure 11 looks at how well individual cases, as well the SML distribution, are matched by these 878 coupling functions. The four panels are for the same four values of d that were used in Figure 10. 879 Each shows a data density plot of normalized SML against normalized C_f , overlaid with a q-q plot, as 880 used in Figure 4. The colour scale is chosen so that a single hourly average in a counting bin (pixel) 881 of size 0.03×0.03 will show up in blue and so, at the extremes, the data density plot takes on the 882 information of a scatter plot for individual samples. It can be seen that although the fit is good at low, 883 average and moderately high values, the scatter is increasingly large at high and extreme values. The 884 q-q plots in Figure 11c show how the optimum linear fit, despite giving a lower correlation than in 885 Figure 11b, is matching the observed distribution very well, the agreement being almost perfect up to 886 the 99 percentile and the predicted tail is just marginally heavier than that for the observations for the 887 largest percent. For the peak correlation, shown in Figure 11b, the deviation from the ideal is also 888 small but the predicted tail is detectably thin for *SML*/*<SML*> above about 2.5. Again, peak 889 correlation is not giving the best match to the very large events, but we note that the scatter is high 890 and so the accuracy of individual hourly predictions is not high, despite the overall correlation being 891 high.

Note that all the q-q plots in Figure 11 shows a deviation from linearity at low values. This is a problem inherent with the $sin^{d}(\theta/2)$ IMF orientation factor that becomes more pronounced as *d* is enhanced. This means using this formulation with a large *d* to fit the large event tail causes problems for fitting the core and small value end of the distribution. To avoid this, we could use different coupling functions to model the core and the large event tail of the distribution, but a better solution would be to derive a better IMF orientation factor that can accommodate both.

898 11 Variations over parameter space

Thus far, we have been looking at coupling functions derived and evaluated over all usable observations taken over a 25-year interval. But this does not tell us how a coupling function performs in different parts of parameter space. To illustrate this point, Figure 12 looks at the performance of two different coupling functions, both designed to predict Φ_{PC} , over IMF (*B*) and solar wind speed 903 (V_{sw}) parameter space. Data are divided into 40 inter-quantile ranges of both V_{sw} and B. Figure 12a 904 gives the fraction of available samples in each V_{sw} -B bin (on a logarithmic scale). Note the bin 905 widths change because they are defined by the quantiles for that parameter. Figure 12b givens the 906 mean value of Φ_{PC} in the same bins. The other two panels of Figure 12 show the fraction of the 907 variance r^2 of the transpolar voltage Φ_{PC} that is explained by coupling functions (c) C_{BEA} and (d) P_{α} for d = 2.5, where r is the correlation coefficient. The peak of the lag correlograms r is found and r^2 908 909 plotted as a function of V_{sw} (along the x-axis) and B (along the y axis). Figure 12a shows that 910 samples are rarest for high V_{sw} and low B and low V_{sw} and high B, whereas they are most common is 911 low B and low V_{sw} . When taking correlations between the coupling functions only those with 912 significance exceeding the 2- σ level are retained and those failing that test are in the parameter space 913 where sample numbers are low.

Figures 12c and 12d are for the *Boyle et al.* (1997) and *Vasyluinas et al.* (1982) coupling functions,

915 C_{BEA} and P_{α} respectively, where P_{α} is for $\alpha = 1/3$ and d = 2.5. The overall correlations are *r* are

916 0.733 and 0.784 respectively (r^2 of 54% and 61%). The variation over parameter space is very similar

- 917 for the two coupling functions and also considerable, with r^2 varying between 0.25 and 0.75. There is
- 918 a marked trend with highest correlations for low V_{sw} and high B and lowest correlations for high V_{sw}

919 and low *B*. It is clear that a high correlation can hide a considerable variation in performance over

920 parameter space.

921 12 Preconditioning

The fact that observed correlations are as high as they are (although the level varies considerably with averaging timescale, τ) places limits on the importance of factors that have been omitted, which thus far we have largely regarded as a source of noise. This section looks at preconditioning by the preexisting state of the magnetosphere-ionosphere-thermosphere system or other variations that can alter the response to a given set of interplanetary conditions, which is (in the author's view) the most interesting and the most challenging scientifically.

There are two ways in which preconditioning can come about. The first concerns the orbital and characteristics of Earth which cause an annual variation in the Earth-Sun distance, and seasonal and Universal Time (*UT*) effects associated with the dipole tilt (see review by *Lockwood et al.*, 2020a). There have been attempts to allow for dipole tilt effects in coupling functions (*Svalgaard*, 1977; *Murayama et al.*, 1980, *Li et al.*, 2007, *Luo et al.*, 2013) with terms that allow for the fraction of the calendar year, *F*, and *UT*. In addition, such effects have been included in the filters used in the linear 934 prediction filter technique (McPherron et al., 2013). However, the F-UT effects are not independent 935 of solar variations. For example, ionospheric conductivity effects will also depend on the flux of EUV 936 and X-ray ionizing radiations (for which F10.7 or sunspot number are often used as proxy indices) and 937 Lockwood et al. (2020b; c; d) have shown that the amplitude of the F-UT pattern in geomagnetic 938 activity (the "equinoctial", a.k.a. "McIntosh" pattern) is linearly proportional to the solar wind dynamic 939 pressure. There are a number of theories as to how this dipole tilt arises (see Lockwood et al., 2020a) 940 and each has implications for how an *F*-UT dependence should be introduced. Note also that seasonal 941 effects mean that this allowance will be different for truly global indices such as am and for northern-942 hemisphere-only indices such as AL and SML. Hence although some allowance for these effects could 943 be achieved used by using F and UT with average values for solar-terrestrial variables, full allowance 944 is likely to require the inclusion of more free fit parameters which increases the potential for, and 945 probability of, overfitting.

946 The second form of pre-conditioning relates to the pre-existing activity level of the magnetosphere-947 ionosphere-thermosphere system and hence on the prior history of the solar wind driving it. There are 948 a number of proposed mechanisms. The storage-release system that yields the substorm cycle shows 949 that the response of the magnetosphere depends on the pre-existing flux of open magnetospheric field. 950 A method to allow for this using an extremely large number coupled equations was proposed by *Luo* 951 et al (2013). Another way of dealing with this non-linearity is by using neural networks (e.g., Gleisner 952 and Lundstedt, 1999). One more widely-used technique to allow for the non-linearity of response 953 caused by this type of preconditioning is the local linear prediction filter technique (Vassiliadis et al., 954 1995; Vassiliadis, 2006), in which moving average filters are continually calculated as the system 955 evolves and these are used to compute the output of the system. The filter used is derived or selected 956 according to the state of the system.

The design of the best filter to use, or the best set of coupled equations would, in general, depend on the physical preconditioning mechanism(s) that are active and many have been proposed. These are numerous. They include: mass loading of the near-Earth tail with ionospheric O^+ ions from the cleft ion fountain (*Yu and Ridley*, 2013); the formation of thin tail current sheets (*Pulkkinen and Wiltberger*, 2000); the development of a cold dense plasma sheet (*Lavraud et al.*, 2006); and mass loading of the dayside magnetopause reconnection region (*Walsh and Zou*, 2021).

The best way to include the effects of the above mechanisms into coupling functions is far from clear,although system science studies could potentially provide answers. However, some other proposed

965 preconditioning effects may be easy to include because they involve other terrestrial indices that can 966 be predicted using a purpose-designed coupling function. An example would be the proposed effect on 967 the reconnection rate in the cross-tail current sheet of enhanced ring current (*Milan et al.* 2008; 2009; 968 Milan 2009) for which predictions of the Dst, SYM-H or SMR indices, based on the prior history of a 969 relevant coupling function, could be used to modify the predicted response in another index (for 970 example Φ_{PC} or *SML*) for a given values of its optimum coupling function. The magnetosphere 971 sometimes responds to continued solar wind forcing (over a period of tens of minutes) by generating a 972 substorm, or a string of substorms and sometimes with a steady convection event (e.g., Kissinger et al, 973 2012; Lockwood et al., 2009; Milan et al., 2021). It is known that the response of the auroral electrojet 974 indices depends on the current Dst value (Gleisner and Lundstedt, 1999; O'Brien et al., 2002; Juusola 975 et al., 2013). This evidence points to using a preconditioning factor based on Dst, or other ring current 976 index, may be viable. This raises an interesting point about timescales, as Lockwood et al (2016) have 977 shown that *Dst* correlates best with the integrated solar wind forcing over a prolonged (~12 hr.) prior 978 period. Hence the precondition term may well require a different averaging timescale than the main 979 coupling function.

980 13 Concluding remarks

981 This paper has taken a general and detailed look at solar wind-magnetosphere coupling functions. 982 These have been used for almost 50 years now, but an in-depth review is now timely because systems 983 analysis techniques are increasingly being applied to the magnetosphere (see review by *Borovsky and* 984 Valdivia, 2018). For example, Borovsky and Osmane (2019) introduced methodology using a state-985 vector-reduction technique and canonical correlation analysis which treats the magnetosphere as an 986 example of a multivariable system driven by multiple inputs that identifies independent modes of 987 reaction of the magnetospheric system to its drivers. Techniques such as these are likely to offer 988 solutions to many of the limitations of traditional coupling function-terrestrial observation correlation 989 analysis, particularly in the limitations of preconditioning and the effects of the pre-existing state of 990 the magnetosphere. In addition, application of machine learning techniques should avoid common 991 problems such as overfitting (e.g., Camporeale, 2019; Baumann and McCloskey, 2021). However, 992 other limitations and sources of noise may be unwittingly carried forward into these techniques. 993 Hence it is timely to step back review them.

Testing the predictive and analysis uses of coupling functions also raises another set of
complications, with a variety of performance metrics available for consideration (*Liemohn et al.*,

996 2018). The most appropriate one (or ones) for the application in question should be deployed,

- 997 especially in the context of forecasting (Owens, 2018). The derivation and testing of coupling
- 998 functions has, in the past, been almost entirely based on correlation analysis and it clearly has an
- 999 important role into the future, but this paper has highlighted that it is not always the most appropriate
- 1000 metric to be using, and metrics more appropriate to the specific application are likely to be needed.

1001 Acknowledgements. The work presented in this paper was supported by STFC consolidated grant 1002 number ST/M000885/1 and by the SWIGS NERC Directed Highlight Topic Grant number 1003 NE/P016928/1/. The author acknowledges the use of data from the SuperDARN project. 1004 SuperDARN is a collection of radars funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, United Kingdom and the United States of 1005 1006 America. In addition he is grateful to the staff of the Space Physics Data Facility, NASA/Goddard 1007 Space Flight Center, who prepared and made available the OMNI2 dataset used: these interplanetary 1008 data were downloaded from http://omniweb.gsfc.nasa.gov/ow.html; and of the World Data Center for 1009 Geomagnetism, Kyoto who generate and make available the AL index from http://wdc.kugi.kyoto-1010 u.ac.jp/aeasy/index.html and of L'École et Observatoire des Sciences de la Terre (EOST), a joint of 1011 the University of Strasbourg and the French National Center for Scientific Research (CNRS) and the 1012 International Service of Geomagnetic Indices (ISGI) for making the am index data available from 1013 http://isgi.unistra.fr/data_download.php. He is also grateful to the many groups who built and 1014 operated the instruments that have monitored near-Earth interplanetary space, particularly on the 1015 spacecraft ACE, Wind and THEMIS-B, and to the SuperMAG project for the SML index and 1016 acknowledges the following projects and PIs: Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI 1017 Ian Mann; CANMOS; The S-RAMP Database, PI K. Yumoto and K. Shiokawa; The SPIDR 1018 database; AARI, PI Oleg Troshichev; The MACCS program, PI M. Engebretson, Geomagnetism 1019 Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida Institute of 1020 Technology; SAMBA, PI Eftyhia Zesta; Chain, PI K. Yumoto; SAMNET, PI Farideh Honary; The 1021 institutes who maintain the IMAGE magnetometer array, PI Eija Tanskanen; PENGUIN; AUTUMN, 1022 PI Martin Connors; DTU Space, PI Rico Behlke; South Pole and McMurdo Magnetometer, PI's 1023 Louis J. Lanzarotti and Alan T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Antarctic 1024 Survey; McMac, PI Peter Chi; BGS, PI Susan Macmillan; Pushkov Institute of Terrestrial 1025 Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Juergen Matzka; MFGI, 1026 PI B. Heilig; IGFPAS, PI J. Reda; University of L'Aquila, PI M. Vellante; BCMT, V. Lesur and A. 1027 Chambodut; Data obtained in cooperation with Geoscience Australia, PI Marina Costelloe; and the 1028 SuperMAG, PI Jesper W. Gjerloev. The author also thanks Joe Borovsky for insightful 1029 conversations about this work and, with Simon Wing, for organizing, the on-line Workshop "Solar 1030 Wind - Magnetosphere Interaction" in August/September 2021 at which this work was first 1031 presented.

1032 **References**

- Arnoldy, R. (1971), Signature in the interplanetary medium for substorms, *J. Geophys. Res.*, **76** (22),
 5189–5201, doi:10.1029/JA076i022p05189.
- 1035 Baumann, C. and A.E. McCloskey (2021) Timing of the solar wind propagation delay between L1
- and Earth based on machine learning, J. Space Weather Space Clim., 11 (2021) 41, doi:
- 1037 10.1051/swsc/2021026
- 1038 Bergin, A., Chapman, S. C., & Gjerloev, J. W. (2020). AE, DST, and their SuperMAG counterparts:
- 1039 The effect of improved spatial resolution in geomagnetic indices. *Journal of Geophysical Research:*
- 1040 Space Physics, **125**, e2020JA027828. doi: 10.1029/2020JA027828
- 1041 Borovsky, J. E. (2013), Physical improvements to the solar wind reconnection control function for
- 1042 the Earth's magnetosphere, J. Geophys. Res. Space Physics, **118**, 2113–2121,
- 1043 doi:10.1002/jgra.50110.
- Borovsky J.E. (2021a) Is Our Understanding of Solar-Wind/Magnetosphere Coupling Satisfactory?,
 Front. Astron. Space Sci., 8, 634073, doi: 10.3389/fspas.2021.634073
- Borovsky J.E. (2021b) On the Saturation (or Not) of Geomagnetic Indices, *Front. Astron. Space Sci.*8, 740811, doi: 10.3389/fspas.2021.740811
- Borovsky, J. E., and Birn, J. (2014) The solar wind electric field does not control the dayside reconnection rate, *J. Geophys. Res. Space Physics*, **119**, 751–760, doi: 10.1002/2013JA019193.
- Borovsky, J.E. & J.A. Valdivia (2018) The Earth's Magnetosphere: A Systems Science Overview
 and Assessment, *Surv Geophys.*, **39** (5), 817–859, doi: 10.1007/s10712-018-9487-x
- 1052 Borovsky, J. E. and Osmane, A. (2019) Compacting the description of a time-dependent
- 1053 multivariable system and its multivariable driver by reducing the state vectors to aggregate scalars:
- the Earth's solar-wind-driven magnetosphere, *Nonlin. Processes Geophys.*, 26, 429–443. doi:
 1055 10.5194/npg-26-429-2019.
- Boyle, C. B., Reiff, P. H., and Hairston, M. R. (1997), Empirical polar cap potentials, *J. Geophys. Res.*, **102** (A1), 111–125, doi:10.1029/96JA01742.
- 1058 Burton, R. K., McPherron, R., & Russell, C. (1975). An empirical relationship between
- 1059 interplanetary conditions and Dst. *Journal of Geophysical Research*, **80** (31), 4204–4214.
- 1060 https://doi.org/10.1029/JA080i031p04204
- Camporeale, E. (2019). The challenge of machine learning in Space Weather: Nowcasting and
 forecasting. *Space Weather*, **17**, 1166–1207. doi: 10.1029/2018SW002061
- Camporeale, E., S. Wing and J.R. Johnson (eds.) (2018) Machine Learning Techniques for Space
 Weather, Elsevier, ISBN 978-0-12-811788-0, doi:10.1016/C2016-0-01976-9
- 1065 Chicco, D. (2017) Ten quick tips for machine learning in computational biology, *BioData Mining*,
 1066 **10** (1), Article # 35, doi: 10.1186/s13040-017-0155-3

- 1067 Coleman, I. J. (2005). A multi-spacecraft survey of magnetic field line draping in the dayside
- 1068 magnetosheath. Annales Geophys., 23, 885–900, doi: 10.5194/angeo-23-885-2005
- 1069 Cowley, S. W. H., and Lockwood, M. (1992), Excitation and decay of solar-wind driven flows in the 1070 magnetosphere-ionosphere system, *Annales Geophys.*, **10**, 103-115.
- 1071 Crooker, N. U., Luhmann, J. G., Russell, C. T., Smith, E. J., Spreiter, J. R., & Stahara, S. S.
- 1072 (1985).Magnetic field draping against the dayside magnetopause. *Journal of Geophysical Research*, 1073 **90** 3505 3510 doi: 10.1029/JA090iA04p03505
- 1073 **90**, 3505–3510, doi: 10.1029/JA090iA04p03505
- 1074 Crooker, N. U., Siscoe, G. L., Russell, C. T., & Smith, E. J. (1982). Factors controlling degree of
- 1075 correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements. *Journal of* 1076 *Geophysical Research*, **87** (A4), 2224–2230. doi: 10.1029/JA087iA04p02224
- 1077 Davis, T. N., and Sugiura, M. (1966), Auroral electrojet activity index AE and its universal time
- 1078 variations, J. Geophys. Res., **71** (3), 785–801, doi:10.1029/JZ071i003p00785.
- 1079 Hairston, M.R., Drake, K. A., and Skoug, R. (2005), Saturation of the ionospheric polar cap potential
- 1080 during the October–November 2003 superstorms, J. Geophys. Res., **110**, A09S26,
- 1081 doi:10.1029/2004JA010864.
- 1082 Kissinger, J., McPherron, R. L., Hsu, T.-S., and Angelopoulos, V. (2012), Diversion of plasma due to
- high pressure in the inner magnetosphere during steady magnetospheric convection, *J. Geophys. Res.*, **117**, A05206, doi:10.1029/2012JA017579.
- 1085 Knutti, R., Meehl, G.A., Allen, M.R. & Stainforth, D.A. (2006). Constraining climate sensitivity
 1086 from the seasonal cycle in surface temperature. *Journal of Climate*, **19** (17), 4224 4233. doi:
 1087 10.1175/JCLI3865.1
- 1088 Knape, J., & de Valpine, P. (2011) Effects of weather and climate on the dynamics of animal
- population time series. *Proc. Royal Society B: Biological Sciences*, 278 (1708), 985-992, doi:
 10.1098/rspb.2010.1333
- 1091 Kubota, Y., Nagatsuma, T., Den, M., Tanaka, T., and Fujita, S. (2017), Polar cap potential saturation 1092 during the Bastille Day storm event using global MHD simulation, *J. Geophys. Res. Space Physics*,
- 1093 **122**, 4398–4409, doi: 10.1002/2016JA023851
- Finch, I.D., and M. Lockwood (2007) Solar wind-magnetosphere coupling functions on timescales of
 1 day to 1 year, *Annales Geophys.*, 25, 495-506, doi: 10.5194/angeo-25-495-2007
- Fischer H. (2010) A History of the Central Limit Theorem. Sources and Studies in the History of
 Mathematics and Physical Sciences. Springer, New York, NY. ISBN 978-0-387-87856-0. doi:
 10.1007/978-0-387-87857-7
- 1099 Gleisner, H., and H. Lundstedt (1999), Ring current influence on auroral electrojet predictions, 1100 *Annales Geophys.*, **17** (10), 1268–1275. doi: 10.1007/s00585-999-1268-x
- 1101 Juusola, L., N. Partamies, and E. Tanskanen (2013), Effect of the ring current on preconditioning the
- 1102 magnetosphere for steady magnetospheric convection, *Geophys. Res. Lett.*, **40**, 1917–1921,
- 1103 doi:10.1002/grl.50405

- Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. (1998) Convergence Properties of the
- 1105 Nelder-Mead Simplex Method in Low Dimensions. *SIAM Journal of Optimization*. **9**, (1) 112–147,
- 1106 doi: 10.1137/s1052623496303470
- 1107 Lavraud, B., M. F. Thomsen, J. E. Borovsky, M. H. Denton, and T. I. Pulkkinen (2006),
- 1108 Magnetosphere preconditioning under northward IMF: Evidence from the study of coronal mass
- ejection and corotating interaction region geoeffectiveness, J. Geophys. Res., 111, A09208,
- 1110 doi:10.1029/2005JA011566.
- 1111 Liemohn, M. W., McCollough, J. P., Jordanova, V. K., Ngwira, C. M., Morley, S. K., Cid, C., et al.
- 1112 (2018). Model evaluation guidelines for geomagnetic index predictions. *Space Weather*, **16**, 2079–
- 1113 2102. doi: 10.1029/2018SW002067
- 1114 Li, H., C.Wang, and Z. Peng (2013), Solar wind impacts on growth phase duration and substorm
- 1115 intensity: A statistical approach, J. Geophys. Res. Space Physics, 118, 4270–4278, doi:
- 1116 10.1002/jgra.50399.
- Li, X. L., K. S. Oh, and M. Temerin (2007), Prediction of the AL index using solar wind parameters, *J. Geophys. Res.*, **112**, A06224, doi: 10.1029/2006JA011918
- Lockwood, M. (2019) Does adding solar wind Poynting flux improve the optimum solar windmagnetosphere coupling function? J. Geophys. Res. (Space Physics), 124 (7), 5498-5515 doi:
 10.1029/2019JA026639
- Lockwood, M. & K.A. McWilliams (2021) A survey of 25 years' transpolar voltage data from the
 SuperDARN radar network and the Expanding-Contracting Polar Cap model, *J. Geophys. Res.*, 126,
 e2021JA029554, doi: 10.1029/2021JA029554 (2021)
- Lockwood, M. & K.A. McWilliams (2022) On optimum solar wind magnetosphere coupling
 functions for transpolar voltage and planetary geomagnetic activity, *J. Geophys. Res.*, in press, doi:
- 1127 10.1029/2021JA029946
- Lockwood, M., M.R. Hairston, I.D. Finch, and A.P. Rouillard (2009) Transpolar voltage and polar
 cap flux during the substorm cycle and steady convection events, *J. Geophys. Res.*, **114**, A01210,
 doi:10.1029/2008JA013697
- Lockwood, M.J. Owens, L.A. Barnard S. Bentley, C.J. Scott, and C.E. Watt (2016) On the Origins and Timescales of Geoeffective IMF, *Space Weather*, **14**, 406 432, doi: 10.1002/2016SW001375
- 1133 Lockwood, M., S. Bentley, M.J. Owens, L.A. Barnard, C.J. Scott, C.E. Watt, and O. Allanson
- 1134 (2019a) The development of a space climatology: 1. Solar-wind magnetosphere coupling as a
- function of timescale and the effect of data gaps, *Space Weather*, **17**, 133-156. doi:
- 1136 10.1029/2018SW00185
- 1137 Lockwood, M., S. Bentley, M.J. Owens, L.A. Barnard, C.J. Scott, C.E. Watt, O. Allanson and M.P.
- 1138 Freeman (2019b) The development of a space climatology: 2. The distribution of power input into
- the magnetosphere on a 3-hourly timescale, *Space Weather*, **17**, 157-179. doi:
- 1140 10.1029/2018SW002016

- 1141 Lockwood, M., S. Bentley, M.J. Owens, L.A. Barnard, C.J. Scott, C.E. Watt, O. Allanson and M.P.
- 1142 Freeman (2019c) The development of a space climatology: 3. The evolution of distributions of space
- 1143 weather parameters with timescale, *Space Weather*, **17**, 180-209. doi: 10.1029/2018SW002017
- Lockwood, M., Chambodut, A., Finch, I. D., Barnard, L. A., Owens, M.J. and Haines, C. (2019d)
- 1145 Time-of-day / time-of-year response functions of planetary geomagnetic indices, J. Space Weather
- 1146 Space Clim., 9, A20, doi: 10.1051/swsc/2019017
- 1147 Lockwood, M., M.J. Owens, L.A. Barnard, C. Haines, C.JV Scott, K.A. McWilliams, and J.C. Coxon
- 1148 (2020a) Semi-annual, annual and Universal Time variations in the magnetosphere and in
- 1149 geomagnetic activity: 1. Geomagnetic data, J. Space Weather Space Clim., 10, 23, doi:
- 1150 10.1051/swsc/2020023
- 1151 Lockwood, M., K.A. McWilliams, M.J. Owens, L.A. Barnard, C.E. Watt, C.J. Scott, A. McNeill and
- 1152 J.C. Coxon (2020b) Semi-annual, annual and Universal Time variations in the magnetosphere and in
- 1153 geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind
- dynamic pressure and magnetospheric flux transport, *J. Space Weather Space Clim.*, **10**, 30, doi:
- 1155 10.1051/swsc/2020033
- 1156 Lockwood, M.J. Owens, L.A. Barnard, C.E. Watt, C.J. Scott, J.C. Coxon and K.A. McWilliams
- 1157 (2020c) Semi-annual, annual and Universal Time variations in the magnetosphere and in
- 1158 geomagnetic activity: 3. Modelling, J. Space Weather and Space Climate, 10, 61 doi:
- 1159 10.1051/swsc/2020062
- 1160 Lockwood, C.A. Haines, L.A. Barnard, J. Owens, C.J. Scott, A. Chambodut, and K.A. McWilliams
- 1161 (2021) Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic
- activity: 4. Polar Cap motions and origins of the Universal Time effect, J. Space Weather and Space
- 1163 *Climate*, **11**, 15, doi: 10.1051/swsc/2020077
- 1164 Luo, B. X., X. L. Li, M. Temerin, and S. Q. Liu (2013), Prediction of the AU, AL, and AE indices
- using solar wind parameters, J. Geophys. Res. Space Physics, **118**, 7683–7694, doi:
- 1166 10.1002/2013JA019188.
- 1167 Maclennan, C. G., Lanzerotti, L. J., Akasofu, S.-I., Zaitzev, A. N., Wilkinson, P. J., Wolfe, A., and
- 1168 Popov, V. (1991), Comparison of "Electrojet" Indices from the northern and southern hemispheres, J.
- 1169 Geophys. Res., 96 (A1), 267–274, doi:10.1029/90JA01366.
- 1170 Maggiolo, R., Hamrin, M., De Keyser, J., Pitkänen, T., Cessateur, G., Gunell, H., & Maes, L. (2017).
- 1171 The delayed time response of geomagnetic activity to the solar wind. Journal of Geophysical
- 1172 Research: Space Physics, 122, 11,109–11,127, doi: 10.1002/2016JA023793
- 1173 Mayaud, P.-N. (1980), Derivation, Meaning and Use of Geomagnetic Indices, *Geophysical* 1174 *Monograph*, 22, American Geophysical Union, Washington, DC. doi: 10.1029/GM022.
- 1175 McGranaghan, R. M., Bhatt, A., Matsuo, T., Mannucci, A. J., Semeter, J. L., & Datta-Barua, S.
- 1176 (2017). Ushering in a new frontier in geospace through data science. *Journal of Geophysical*
- 1177 Research: Space Physics, **122**, 12,586–12,590. doi: 10.1002/2017JA024835
- 1178 McPherron, R. L. (1970), Growth phase of magnetospheric substorms, J. Geophys. Res., 75 (28),
- 1179 5592–5599, doi:10.1029/JA075i028p05592.

- 1180 McPherron, R. L., D. N. Baker, T. I. Pulkkinen, T. S. Hsu, J. Kissinger, and X. Chu (2013), Changes
- in solar wind-magnetosphere coupling with solar cycle, season, and time relative to stream interfaces,
- 1182 J. Atmos. Sol. Terr. Phys., 99, 1–13, doi:10.1016/j.jastp.2012.09.003

McPherron, R. L., T.-S. Hsu, and X. Chu (2015), An optimum solar wind coupling function for the
AL index, J. Geophys. Res. Space Physics, 120, 2494–2515, doi: 10.1002/2014JA020619

- 1185 Milan, S. E. (2009), Both solar wind-magnetosphere coupling and ring current intensity control 1186 of the size of the auroral oval, *Geophys. Res. Lett.*, **36**, L18101, doi:10.1029/2009GL039997
- Milan, S. E., P. D. Boakes, and B. Hubert (2008), Response of the expanding/contracting polar cap to
 weak and strong solar wind driving: Implications for substorm onset, *J. Geophys. Res.*, **113**, A09215,
 doi:10.1029/2008JA013340
- 1190 Milan, S.E., J. Hutchinson, P. D. Boakes, and B. Hubert (2009a) Influences on the radius of the 1191 auroral oval, *Annales Geophys.*, **27** (7), 2913 – 2924 doi: 10.5194/angeo-27-2913-2009
- 1192 Milan, S. E., Grocott, A., Forsyth, C., Imber, S. M., Boakes, P. D., and Hubert, B. (2009b) A
- superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: open

1194 magnetic flux control of substorm intensity, Annales Geophys., 27 (2), 659-668, doi: 10.5194/angeo-

- 1195 27-659-2009
- 1196 Milan, S. E., Carter, J. A., Sangha, H., Bower, G. E., & Anderson, B. J. (2021). Magnetospheric flux
- throughput in the Dungey cycle: Identification of convection state during 2010. *Journal of*
- 1198 *Geophysical Research: Space Physics*, **126**, e2020JA028437. doi: 10.1029/2020JA028437
- 1199 Murayama, T., T. Aoki, H. Nakai, and N. Hakamada (1980), Empirical formula to relate the auroral 1200 electrojet intensity with interplanetary parameters, *Planet. Space Sci.*, **28**, 803–813, doi:
- 1201 10.1016/0032-0633(80)90078-1
- Nelder, JA & R. Mead (1965) A Simplex Method for Function Minimization, *The Computer Journal*,
 7, (4), 308–313. doi: 10.1093/comjnl/7.4.308 and Errata, *The Computer Journal*, 8 (1) Issue 1, 27,
 doi: org/10.1093/comjnl/8.1.27
- 1201 doi: 012/10.1095/comjin/0.1.27
- 1205 Newell, P. T., & J. W. Gjerloev (2011), Evaluation of SuperMAG auroral electrojet indices as
- 1206 indicators of substorms and auroral power, J. Geophys. Res., 116, A12211,
- 1207 doi:10.1029/2011JA016779.
- Newell, P. T., & Gjerloev, J. W. (2012). SuperMAG-based partial ring current indices. *Journal of Geophysical Research*, **117**, A05215. doi: 10.1029/2012JA017586
- 1210 Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F. J. (2007), A nearly universal solar
- wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, *J. Geophys. Res.*, **112**, A01206, doi:10.1029/2006JA012015.
- 1213 Newell, P. T., Sotirelis, T., Liou, K., and Rich, F. J. (2008), Pairs of solar wind-magnetosphere
- 1214 coupling functions: Combining a merging term with a viscous term works best, *J. Geophys. Res.*, 1215 **113** A04218 doi:10.1029/2007IA012825
- 1215 **113**, A04218, doi:10.1029/2007JA012825.

- 1216 O'Brien, T. P., and McPherron, R. L. (2000), An empirical phase space analysis of ring current
- 1217 dynamics: Solar wind control of injection and decay, *J. Geophys. Res.*, **105** (A4), 7707–7719, 1218 doi:10.1029/1998JA000437.
- 1219 O'Brien, T. P., S. M. Thompson, and R. L. McPherron (2002), Steady magnetospheric convection:
- 1220 Statistical signatures in the solar wind and AE, *Geophys. Res. Lett.*, **29** (7), 1130-1133,
- 1221 doi:10.1029/2001GL014641.
- Owens, M. J. (2018). Time-window approaches to space-weather forecast metrics: A solar wind case
 study. Space Weather, 16, 1847–1861, doi: 10.1029/2018SW002059
- 1224 Partamies, N., Juusola, L., Tanskanen, E., Kauristie, K. (2013) Statistical properties of substorms
- during different storm and solar cycle phases, *Annales Geophys.*, **31** (2), 349-358, doi:
 10.5194/angeo-31-349-2013
- 1227 Perreault, P.D. (1974). On the relationship between interplanetary magnetic fields and
- 1228 magnetospheric storms and substorms, PhD thesis, Univ. of Alaska Fairbanks, Ann Arbor. (Order
- 1229 No. 7910269). Available from ProQuest One Academic. (302740827). Retrieved from
- 1230 https://www.proquest.com/dissertations-theses/on-relationship-between-interplanetary-
- 1231 magnetic/docview/302740827/se-2?accountid=13460
- Perreault, P.D., & Akasofu, S. I. (1978). A study of geomagnetic storms. *Geophysical Journal International*, 54, (3), 547-573. doi: 10.1111/j.1365-246X.1978.tb05494.x
- 1234 Pulkkinen, T.I. and M. Wiltberger (2000) Thin current sheet evolution as seen in observations,
- empirical models and MHD simulations, *Geophysical Research Letters*, 27, 1363-1366 doi:
 10.1029/1999GL003726
- Shepherd, S.G. (2007) Polar cap potential saturation: Observations, theory, and modeling, *J. Atmos. Sol.-Terr. Phys.*, 69 (3), 234-248, doi: 10.1016/j.jastp.2006.07.022
- 1239 Stephens, G. K., Bingham, S. T., Sitnov, M. I., Gkioulidou, M., Merkin, V. G., Korth, H., et al.
- 1240 (2020). Storm time plasma pressure inferred from multi-mission measurements and its validation
- 1241 using Van Allen Probes particle data. *Space Weather*, **18**, e2020SW002583. doi:
- 1242 10.1029/2020SW002583
- 1243 Svalgaard, L. (1977), Geomagnetic activity: Dependence on solar wind parameters, in *A Monograph*
- 1244 *from Skylab Solar Workshop 1, Coronal Holes and High Speed Wind Streams*, edited by J. B. Zirker, 1245 pp. 371–441, Colo. Assoc. Univ. Press, Boulder.
- Takalo, J., & K. Mursula (2001), A model for the diurnal universal time variation of the Dst index, J. *Geophys. Res.*, **106** (A6), 10905–10913, doi:10.1029/2000JA000231.
- Temerin, M., and X. Li (2006), Dst model for 1995–2002, J. Geophys. Res., 111, A04221, doi:
 10.1029/2005JA011257
- Vassiliadis, D. (2006), Systems theory for geospace plasma dynamics, *Rev. Geophys.*, 44, RG2002,
 doi:10.1029/2004RG000161.

- 1252 Vassiliadis, D., A. Klimas, D. Baker, and D. Roberts (1995), A description of the solar wind-
- magnetosphere coupling based on nonlinear filters, J. Geophys. Res., 100 (A3), 3495–3512, doi:
 10.1029/94JA02725.
- Vasyliunas, V. M., Kan, J. R., Siscoe, G. L., & Akasofu, S.-I. (1982). Scaling relations governing
 magnetospheric energy transfer, *Planetary and Space Science*, **30** (4), 359–365. doi: 10.1016/00320633(82)90041-1
- Walsh, B. M., & Zou, Y. (2021). The role of magnetospheric plasma in solar wind-magnetosphere
 coupling: A review. *Journal of Atmospheric and Solar-Terrestrial Physics*, 219, 105644. doi:
 10.1016/j.jastp.2021.105644
- Walsh, B. M., Bhakyapaibul, T., & Zou, Y. (2019). Quantifying the uncertainty of using solar wind
 measurements for geospace inputs. *Journal of Geophysical Research: Space Physics*, 124, 3291–
 3302, doi: 10.1029/2019JA026507
- 1264 Wang, C., Han, J. P., Li, H., Peng, Z., and Richardson, J. D. (2014), Solar wind-magnetosphere
- 1265 energy coupling function fitting: Results from a global MHD simulation, *J. Geophys. Res. Space*1266 *Physics*, **119**, 6199–6212, doi:10.**1002**/2014JA019834.
- 1267 Weimer, D. R., D. M. Ober, N. C. Maynard, M. R. Collier, D. J. McComas, N. F. Ness, C. W. Smith,
- 1268 and J. Watermann (2003) Predicting interplanetary magnetic field (IMF) propagation delay times
- 1269 using the minimum variance technique, J. Geophys. Res., 108 (A1), 1026, doi:
- 1270 10.1029/2002JA009405.
- Weygand, J.M. & E. Zesta (2008), Comparison of auroral electrojet indices in the Northern and
 Southern Hemispheres, *J. Geophys. Res.*,**113**, A08202, doi:10.1029/2008JA013055.
- 1273 Yu, Y., and Ridley, A. J. (2013), Exploring the influence of ionospheric O+ outflow on
- magnetospheric dynamics: dependence on the source location, J. Geophys. Res. Space Physics, 118,
 1711–1722, doi:10.1029
- 1276 Zhang, H., S. Fu, Z. Pu, J. Lu, J. Zhong, C. Zhu, W. Wan and L. Liu (2019) Statistics on the
- magnetosheath properties related to magnetopause magnetic reconnection, *Astrophys. J.*, 880 (2),
 122 (37p.p.), doi 10.3847/1538-4357/ab290e

1279 Figures

1280

1281 Figure 1. (a) Autocorrelation functions (a.c.f.s) as a function of lag time (on a log scale) for 1-min 1282 samples of: (blue) solar wind speed, V_{SW} ; (green) solar wind mass density, ρ_{SW} ; (mauve) the 1283 transverse component of the interplanetary magnetic field (IMF), B_{\perp} ; (orange) the IMF orientation 1284 factor $sin(\theta/2)$, where θ is the IMF clock angle in GSM coordinates; (black) the estimated power 1285 input to the magnetosphere, P_{α} for a coupling exponent of $\alpha = 1/3$ and d of 4; (black dashed) P_{α} for a 1286 coupling exponent of $\alpha = 1/3$ and d of 2; and (cyan) the coupling function of *Boyle et al.* (1997) (see 1287 Equation 7 of text). The vertical gray lines marks times of 10 minutes, 1hour, 2 hours, 6 hours, 1 1288 day, 27 days and 1 year.

1290 **Figure 2**. The root mean square (r.m.s.) percentage errors, ε , in (a) 10-minute and (b) 1-hour means 1291 of 1-minute integrated data as a function of data availability within the averaging interval, f, for the 1292 same parameters as in Figure 1, shown using the same color scheme. The horizontal gray lines in are 1293 uncertainties ε of 10%, 5% and 2%, in both panels and the graphs set threshold requirements for f to 1294 meet those levels of uncertainty. The data in (b) are based on all 589293 (boxcar) hourly means in 1295 the Omni data for 1996-2020 (inclusive) for which all 60 1-minute integrations of all parameters 1296 were available. The data in (a) are based on the 5153517 (boxcar) 10-minute means from the same 1297 interval for which all 10 1-minute integrations of all parameters were available. For each of these boxcar means, (1-f) samples were removed at random 10 times and the r.m.s. error thereby 1298 1299 introduced computed by comparison with the value for all data (f = 1). (based on Figure 1b of 1300 Lockwood et al., 2019).

1302 Figure 3. Distributions of correlation coefficients at optimum lags over 2-day intervals between an 1303 example coupling function from L1 satellite data (the Omni dataset) and the AL and SML 1304 geomagnetic indices. The example used is the optimum coupling function C_f with the best-fit coefficients for SML found by Lockwood and McWilliams (2021) giving $C_f = B^{0.662} (m_{sw}N_{sw})^{0.016}$ 1305 $N_{sw}^{1.746} \sin^{5.2}(\theta/2)$. The data are for 1996-2018 (inclusive) for AL and 1996-2020 (inclusive) for SML. 1306 The bottom panels (g, h and i) are for 1-minute integrations of data ($\tau = 1 \text{ min}$), the middle panels (d, 1307 1308 e and f) for 10-minute running means of the 1-minute data ($\tau = 10 \text{ min}$), and the top panels (a, b and 1309 c) for 1-hour running means of the 1-minute data ($\tau = 60$ min). For each 2-day interval, the 1310 correlations was evaluated at lags between the L1 data (propagated to the nose of the bow shock 1311 using the procedure of Weimer et al. (2003) and the geomagnetic index of between -80 min. and 1312 +120 min. and the peak value used. The left-hand plots compare the distributions for all data for AL 1313 (in red) and *SML* (in blue). These distributions are repeated by the light grey shaded areas for *AL* in

- 1314 the middle panels and for *SML* in the right-hand panels: also shown by the colored lines in these
- 1315 panels are the variations for 5 quantile ranges (i.e., 20% of the data in each) of $R_{YZ} = (Y^2 + Z^2)^{1/2}$, the
- 1316 distance of the L1 craft from the Sun-Earth line (the *X* axis). The left-hand panels also show the
- 1317 distribution of correlations with SML for the same coupling function measured by THEMIS-B over
- the interval 2011-2018 when it was in the undisturbed solar wind (orange line) and in the
- 1319 magnetosheath (green line). The thin blue dashed line and dot-dash lines are the corresponding
- distributions for the L1 data and SML for the same times (allowing for the optimum propagation
- 1321 delay) as the THEMIS-B data from, respectively, the undisturbed solar wind and the magnetosheath.

1323	Figure 4. Data density plots overlaid with quantile-quantile (q-q) plots to compare the distributions
1324	of the <i>SML</i> index (lagged by δt) and the example coupling function P_{α} used in Figure 1 of <i>Lockwood</i>
1325	and McWilliams (2022). The cyan dashed line in each panel is perfect agreement of lagged P_{α} and
1326	<i>SML</i> . The data are for 1996-2020 (inclusive) which yields $\Sigma n = 12,720,434$ valid data pairs for $\tau = 1$
1327	min. As in Figure 1, the bottom panels (g, h and i) are for 1-minute integrated data ($\tau = 1$ min), the
1328	middle panels (d, e and f) for 10-minute running means of the 1-minute data ($\tau = 10$ min), and the top
1329	panels (a, b and c) for 1-hour running means of the 1-minute data ($\tau = 60$ min). The left-hand plots
1330	are for all data, irrespective of the location of the L1 monitor. The middle panels are for the 20% of

Solar wind magnetosphere coupling functions

- 1331 P_{α} samples closest to the Sun-Earth line $(R_{YZ} = (Y^2 + Z^2)^{1/2} < 28R_E)$ and the right-hand panels are for
- 1332 the 20% of P_{α} samples furthest from the Sun-Earth line ($R_{YZ} > 81R_E$). The q-q plots use 1000
- 1333 quantiles, 0.1% apart, shown by the white dots, the largest value being the 99.9% quantile of both the
- 1334 P_{α} and *SML* distributions. The underlying data density plots shows the fraction of samples $n/\Sigma n$,
- 1335 colored in bins that are 0.05 wide in both the $P_{\alpha} < P_{\alpha}$ and *SML* in the left hand column (for
- 1336 the full dataset) and 0.10 wide in the other two columns (for which Σn is lower by a factor of 5 than
- 1337 for the full dataset). The lower end of the logarithmic color scales used is the one count level (i.e., for
- 1338 n = 1). The peak correlation r and the lag δt (between predicted arrival of the solar wind at the nose
- 1339 of the bow shock and the *SML* response) giving peak correlation is also given in each panel.

1341 **Figure 5.** Peak correlation coefficients r between data from the near-Earth Themis-B spacecraft for 1342 the interval 2011-2019 (inclusive) and the lagged Omni dataset (from interplanetary spacecraft in 1343 halo orbits around the L1 point) for 8-hour intervals (which yields 48 fully-independent samples in 1344 each correlation). This plot is for 10-point running (boxcar) means of 1-minute integrations of the 1345 Omni data and corresponding means of the Themis-B data that have been linearly interpolated from 1346 the basic of 96-second integrations to the times of the Omni data. The upper panel gives the 1347 distribution of peak correlation coefficients, r for when Themis-B is in the undisturbed solar wind. 1348 The middle panels are the corresponding distributions for when Themis-B is in the magnetosheath. 1349 The lower panels are scatter plots of r for the Themis-B data from the undisturbed solar wind as a 1350 function of the am geomagnetic index (interpolated linearly from the 3-hourly index values). The L1 1351 satellite data are lagged using the optimum lag which yields peak correlation. Columns are for (a) the 1352 Interplanetary Magnetic Field (IMF), B; (b) the solar wind number density, N_{sw} ; (c) the solar wind 1353 speed, V_{sw} ; (d) the IMF orientation factor, $\sin(\theta/2)$, where θ is the IMF clock angle in Geocentric 1354 Solar Magnetospheric (GSM) coordinates; and (e) an example of a coupling function, the Vasyluinas 1355 et al. (1982) power input into the magnetosphere estimate, P_{α} for a coupling exponent $\alpha = 1/3$ and d 1356 = 4. Note that the mean ion mass m_{sw} for the Themis-B data are taken to be the same as from the 1357 Omni dataset. A correlation coefficient is assigned only if more than 90% of the possible 1-minute 1358 data pairs are available for all the 6 parameters, which yields 3090 correlations for each parameter for 1359 when Themis-B is in the undisturbed solar wind and 754 for when it is in the magnetosheath. In the 1360 upper plots, the histograms shaded grey are for all data, whereas the mauve and orange lines are 1361 histograms for am < 40 nT and am < 20 nT, respectively. The number of samples n in each bin is 1362 plotted as a ratio of is peak value. The mean value of r is also given. In the bottom panels, the am =1363 40 nT and am = 20 nT thresholds used in the upper panels are shown by mauve and blue vertical 1364 lines and the cyan dots are means of r and am in 6 equi-spaced quantile ranges of the am index. The

- 1365 black lines in the upper two panels of part (e) give the distribution of *r* values between the optimally-
- 1366 lagged L1 values of P_{α} and the *SML* index for this τ of 10 min. This distribution has been
- 1367 normalized to the n/n_{max} y axis such that the area under the black line is the same as that of the grey
- 1368 area and gives a mean correlation between P_{α} and the *SML* of 0.531.

1370 Figure 6. The same as Figure 5 for hourly means of the data from 2011-2019, inclusive. The 1371 correlations are made using 60-point running (boxcar) means of both the Omni and Themis-B data 1372 for 2-day data segments (which again yields 48 fully independent samples in each interval). 1373 Correlation coefficients r are only given if at least 90% the number of potential 1-minute data pairs 1374 are available in the 2-day interval for all 6 parameters which yields 812 correlations for each 1375 parameter for when Themis-B in in the undisturbed solar wind and 184 for when it is in the 1376 magnetosheath. The black lines in the upper two panels of part (e) is the normalized distribution of 1377 correlations between the optimally-lagged L1 values of P_{α} and the *SML* index for this τ of 1 hour which has a mean value of 0.632. 1378

Solar wind magnetosphere coupling functions

1379

Figure 7. Lag correlograms for the various averaging timescales τ between interplanetary
 parameters, coupling functions and terrestrial space weather disturbance indices using data from

1382 1996-2020. The columns (from left to right) are for $\tau = 1$ min.; $\tau = 10$ min; $\tau = 1$ hr; $\tau = 3$ hrs.; $\tau = 10$ 1383 6 hrs; $\tau = 1$ day; $\tau = 27$ days; and $\tau = 1$ year. The top 6 rows (a-f) are interplanetary parameters, the 1384 next 5 rows (g-k) are for different coupling function combinations of interplanetary parameters and 1385 the bottom 4 rows (1-o) are for the selected terrestrial disturbance indexes. Specifically, rows are for: 1386 (a) IMF, B; (b) solar wind mass density, sw; (c) solar wind speed, V_{sw} ; (d) the IMF orientation factor 1387 $F(\theta) = \sin^2(\theta/2)$; (e) $F(\theta) = \sin^4(\theta/2)$; (f) $F(\theta) = \sin^6(\theta/2)$; (g) the Vasyluinas et al. (1982) power input 1388 into the magnetosphere estimate P_{α} for $\alpha = 1/3$ and d = 4: (h) the Boyle et al. (1997) transpolar voltage prediction, C_{BEA} ; (i) the empirical "Nearly Universal" coupling function of Newell et al. 1389 1390 (2007), C_U (for which d = 2.67); (j) the theory based coupling function of *Borovsky and Birn* (2014) 1391 (for which d = 2); (k) the empirical coupling function of *Temerin and Li* (2006), C_{TL} (for which d =1392 6); (1) the *am* planetary geomagnetic index; (m) the transpolar voltage Φ_{PC} from the SuperDARN 1393 radar using the Lockwood and McWilliams (2021) dataset with mean number of echoes exceeding 1394 255; (n) the SuperMAG SML auroral electrojet index (Newell and Gjerloev, 2011) and (o) the 1395 modified SuperMAG SMR ring current index, SMR* (see Section 2 of text). Note that the Φ_{PC} data 1396 are hourly integrations and *am* is a range index derived from 3-hourly intervals. In each panel, the correlations if the parameter in question for that row with -SML, $-SMR^*$, Φ_{PC} ($\tau \ge 1$ hr. only) and am 1397 1398 $(\tau \ge 3 \text{ hrs. only})$ are shown by mauve, green, blue and orange lines, respectively. In all panels, a 1399 positive lag corresponds to the parameter, defined by the row number, is lagged. Note that the orange 1400 lines in row (1) are autocorrelation functions of *am*; the blue lines in row (m) are autocorrelation 1401 functions of Φ_{PC} ; the mauve lines in (n) are autocorrelation functions of *SML*; and the green lines in 1402 (o) are autocorrelation functions of SMR^* . Correlations that do not meet the 2σ significance level are

1403 omitted.

Figure 8. Distributions of the same parameters *x* and timescales τ as in Figure 7, also for data from 1406 1996-2020.. In each case, the histogram is of *x* (normalized to its overall mean value, i.e., *x*/<*x*>)

Solar wind magnetosphere coupling functions

- 1407 and the vertical mauve dashed line is at $x/\langle x \rangle = 1$. Bins are of width $\langle x \rangle/10$ and histograms are
- 1408 normalized, with the number of samples in each bin n, being plotted as a ratio of its maximum value,
- 1409 $n_{\rm max}$.

Solar wind magnetosphere coupling functions

1412

1413 Figure 9. (Top) probability density functions (pdfs) and (bottom) cumulative distribution functions 1414 (c.d.f.) of (left) normalised observed transpolar voltage $\Phi_{PC}/\langle \Phi_{PC} \rangle$ and (right) normalised hourly 1415 coulping functions, $C_f < C_f >$. In the left hand plots tellow lines are for data when the lagged 1416 southward IMF is southward in the GSM frame ($B_z < 0$, using the optimum lag of 30 min. found by Lockwood and McWilliams, 2021) and the cyan line for when it is northward ($B_z \ge 0$). In the right-1417 hand plots, the green line is for the transpolar voltage predictor of *Boyle et al.* (1997); C_{BEA} , the 1418 1419 mauve line the best empirical C_f fit to the transpolar voltage derived in Figure @@ of Lockwood and *McWilliams* (2022) and shown in Figure @@d (giving a = 0.642, b = 0.018, c = 0.552, d = 2.50). The 1420 1421 blue line is the corresponding best fit to the SML geomagnetic index (with a = 0.662, b = 0.061, c =1422 1.746, d = 5.20: see Figure 10). The black lines in (b) and (d) are for the observations, i.e., they are 1423 the same as in (a) and (c), respectively. Part (c) shows that 64% of the total convection flux transport 1424 in the magnetosphere takes place during southward IMF and 36% takes place during northward IMF 1425 or IMF $B_Z = 0$. The vertical dashed line in part (d) is at $C_f / \langle C_f \rangle = 1$ and shows that below-average 1426 tranpolar voltage is responsible for 35% of the observed flux transport over the polar cap, which is very close to the 36% predicted by C_{BEA} . However, the poorer fits to the low values of the 1427 distribution mean that the empirical fits using the $F(\theta) = sin^d(\theta/2)$ formulation do not predict this 1428 1429 number as well, C_f for d = 2.50 giving 28% and , C_f for d = 5.20 giving 22%.

Figure 10. The same as Figure 9 for fits to the *SML* geomagnetic activity. Part (c) shows that 75% of1432the integrated activity in takes place during southward IMF and 25% takes place during northward1433IMF or IMF $B_Z = 0$. The vertical dashed line in part (d) shows that below average SML is responsible1434for 29% of the integrated activity which is very close to the 30% predicted by C_f for d = 2.00 (mauve1435line) but exceeds the 24% for d = 3.86 (which gives peak correlation between C_f and *SML*, r – the1436blue line), the 22% for the optimum d of 5.20 (which yields linearity between C_f and *SML* - green1437line) and the 19% for the excessive d of 7.5.

1439 Figure 11. Data density and overlaid quantile-quantile (q-q) plots for the normalized hourly averaged 1440 SML geomagnetic index and the normalized empirical hourly averaged coupling function C_f for: (a) 1441 d = 2.00 (which gives the mauve lines in Figure 10); (b) d = 3.86 (which gives peak correlation 1442 between C_f and *SML* and the blue lines in Figure 10); (c). d = 5.20 (which yields linearity between C_f 1443 and *SML* and the green lines in Figure 10) and d = 7.5 (which gives the orange lines in Figure 10). 500 quantiles (white dots) are used at separation of 0.2% and the lower end of the colour scale used is 1444 1445 below $log_{10}(1/2n)$ (i.e., the one count level, n = 1) to ensure that even single hourly samples show up 1446 as a blue pixel. Pixels (counting bins) are 0.03×0.03 in size. For these hourly data $\Sigma n = 61922$ and so 1447 there are either 123 or 124 hourly values in each quantile.

Figure 12. Analysis of the fraction of the variance r^2 of the transpolar voltage Φ_{PC} explained by coupling functions (c) C_{BEA} and (d) P_{α} for d = 2.5, where *r* is the correlation coefficient. Data are divided into 40 inter-quantile ranges of both the solar wind speed V_{sw} and IMF *B*. The peak of the lag correlograms *r* is found and r^2 plotted as a function of V_{sw} (along the *x*-axis) and *B* (along the *y* axis). Part (a) gives the fraction of samples in each bin (on a logarithmic scale); (b) gives the mean transpolar voltage in each bin.

1455 Funding

- 1456 The work presented in this paper was supported by two UKRI grants to the University of Reading:
- 1457 the UK Science and Technology Facilities Council (STFC) consolidated grant number
- 1458 ST/M000885/1 and the UK Natural Environment Research Council (NERC) Directed Highlight
- 1459 Topic "Space Weather Impact on Ground-based Systems (SWIGS)", Grant number NE/P016928/1/

1460 Data Availability

- 1461 The datasets used in this study are publicly available. The Omni interplanetary are available from
- 1462 NASA's Space Physics Data Facility http://omniweb.gsfc.nasa.gov/ow.html the Themis-B data
- 1463 from NASA's Coordinated Data Analysis Web (CDAWeb)
- 1464 https://cdaweb.gsfc.nasa.gov/index.html/; satellite locations from NASAs satellite Situation Center
- 1465 https://sscweb.gsfc.nasa.gov; the AL index data from World Data Center for Geomagnetism, Kyoto
- 1466 http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html and the *am* index form the International Service of
- 1467 Geomagnetic Indices (ISGI) http://isgi.unistra.fr/data_download.php; the SML and SMR
- 1468 geomagnetic indices from the SuperMAG project at The Johns Hopkins University:
- 1469 https://supermag.jhuapl.edu/. The SuperDARN radar data and associated processing software is
- 1470 available from Virginia Polytechnic Institute and State University http://vt.superdarn.org/tiki-
- 1471 index.php?page=Data+Access or from PI groups participating in the project.