
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
92
61
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Detection of forced change within combined climate fields using

explainable neural networks

Jamin Kurtis Rader1,1, Elizabeth A. Barnes1,1, Imme Ebert-Uphoff1,1, and Chuck
Anderson1,1

1Colorado State University

November 30, 2022

Abstract

Assessing forced climate change requires the extraction of the forced signal from the background of climate noise. Traditionally,

tools for extracting forced climate change signals have focused on one atmospheric variable at a time, however, using multiple

variables can reduce noise and allow for easier detection of the forced response. Following previous work, we train artificial

neural networks to predict the year of single- and multi-variable maps from forced climate model simulations. To perform this

task, the neural networks learn patterns that allow them to discriminate between maps from different years—that is, the neural

networks learn the patterns of the forced signal amidst the shroud of internal variability and climate model disagreement. When

presented with combined input fields (multiple seasons, variables, or both), the neural networks are able to detect the signal of

forced change earlier than when given single fields alone by utilizing complex, nonlinear relationships between multiple variables

and seasons. We use layer-wise relevance propagation, a neural network explainability tool, to identify the multivariate patterns

learned by the neural networks that serve as reliable indicators of the forced response. These “indicator patterns” vary in time

and between climate models, providing a template for investigating inter-model differences in the time evolution of the forced

response. This work demonstrates how neural networks and their explainability tools can be harnessed to identify patterns of

the forced signal within combined fields.
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Abstract16

Assessing forced climate change requires the extraction of the forced signal from the back-17

ground of climate noise. Traditionally, tools for extracting forced climate change signals18

have focused on one atmospheric variable at a time, however, using multiple variables19

can reduce noise and allow for easier detection of the forced response. Following previ-20

ous work, we train artificial neural networks to predict the year of single- and multi-variable21

maps from forced climate model simulations. To perform this task, the neural networks22

learn patterns that allow them to discriminate between maps from different years—that23

is, the neural networks learn the patterns of the forced signal amidst the shroud of in-24

ternal variability and climate model disagreement. When presented with combined in-25

put fields (multiple seasons, variables, or both), the neural networks are able to detect26

the signal of forced change earlier than when given single fields alone by utilizing com-27

plex, nonlinear relationships between multiple variables and seasons. We use layer-wise28

relevance propagation, a neural network explainability tool, to identify the multivariate29

patterns learned by the neural networks that serve as reliable indicators of the forced30

response. These “indicator patterns” vary in time and between climate models, provid-31

ing a template for investigating inter-model differences in the time evolution of the forced32

response. This work demonstrates how neural networks and their explainability tools can33

be harnessed to identify patterns of the forced signal within combined fields.34

Plain Language Summary35

Using machine learning tools called neural networks, we identify patterns of the36

changing climate within climate model data. Changes in the climate can be identified37

earlier when detecting patterns within maps of multiple variables and seasons than for38

single maps alone. By visualizing the patterns learned by the neural networks, we can39

identify which regions, variables, and seasons are most important for detecting climate40

change. These patterns offer insight into how climate change is represented in different41

climate models, and how the patterns of climate change will evolve over time.42

1 Introduction43

Changes in the climate system comprise the Earth system’s response to anthropogenic44

external forcings (e.g. greenhouse gas and aerosol emissions), natural external forcings45

(e.g. variations in the solar cycle, volcanic activity), internal variability (natural vari-46

ations in the climate due to internal processes), and the interactions between them. Dis-47

tinguishing which features of climate change are the product of external forcings, rather48

than a byproduct of internal variability, is critical for mitigation and adaptation science49
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(Field et al., 2014; Maher et al., 2021; Mankin et al., 2020; Sanderson et al., 2018). To50

identify the forced response to external forcings, changes in the climate are often sim-51

plified into “signal” and “noise” components (e.g., Hawkins & Sutton, 2009; Mahony &52

Cannon, 2018; Scaife & Smith, 2018). The signal of climate change captures all anthro-53

pogenic and natural external forcings, which we refer to as the forced signal or forced54

response in this study. Climate noise, a combination of internal variability (natural vari-55

ations in the climate due to internal processes) and climate model disagreement in the56

magnitude of the response, often acts to obscure the forced signal (Santer et al., 2011).57

Innovative methods are required to determine which behaviors of the climate are58

the result of the forced signal and which are the result of climate noise. Decades of re-59

search have provided a diverse toolkit for this task (North & Stevens, 1998) which in-60

cludes linear regression (e.g., Mudelsee, 2019; Santer et al., 1996; Sippel et al., 2020; Solow,61

1987), empirical orthogonal functions and linear discriminant analysis (e.g., Santer et62

al., 2019; Schneider & Held, 2001; Wills et al., 2018, 2020), and linear inverse models (e.g.,63

Solomon & Newman, 2012), to name a few. Recently, neural networks have also entered64

the fold. Neural networks are machine learning algorithms that are able to detect com-65

plex, nonlinear relationships between input and output data (Abiodun et al., 2018). Be-66

cause neural networks are able to detect highly complex relationships, they are useful67

for many high dimensional problems and have become prevalent in several atmospheric68

science research fields, such as weather forecasting (e.g., Lagerquist et al., 2019; Lee et69

al., 2021; Weyn et al., 2020), climate model parameterizations (e.g., Brenowitz & Brether-70

ton, 2018; Gettelman et al., 2021; Silva et al., 2021), and, most relevant to the focus of71

this study, detection of a forced climate response (e.g., Barnes et al., 2019, 2020; Labe72

& Barnes, 2021; Madakumbura et al., 2021). To detect patterns of forced change, Barnes73

et al. (2020) trained a neural network to predict the year label of maps of annual-mean74

temperature (or precipitation) from climate model simulations for forced historical and75

future scenarios. Given that the internal variability in any given year differs between the76

various climate models, the neural network had to learn patterns of the forced climate77

response. Using neural network explainability methods, they then visualized the regions78

that were most reliable indicators for identifying change across the CMIP5 models. Barnes79

et al. (2020) demonstrated that neural networks, and their explainability methods, are80

powerful tools for extracting forced patterns from climate data. This neural network method81

is a natural approach for isolating the forced climate response. While many other meth-82

ods require assumptions to be made about the time evolution of the forced signal and83

internal variability within the system, neural networks do not (Barnes et al., 2019). Fol-84

lowing Barnes et al. (2020), neural networks have since been used to explore the sensi-85

tivity of regional temperature signals to aerosols and greenhouse gases using single-forcing86
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large ensembles, and to detect the signal of extreme precipitation in observational datasets87

(Labe & Barnes, 2021; Madakumbura et al., 2021).88

Though many climate signal detection studies focus on single variables, such as annual-89

mean temperature or a single season of precipitation (Gaetani et al., 2020; Li et al., 2017;90

Santer et al., 1996, 2019), there are benefits to studying climate change through a mul-91

tivariate lens (Bindoff et al., 2013; Bonfils et al., 2020; Mahony & Cannon, 2018). Many92

variables in our atmosphere are closely interconnected, so when the variables are intel-93

ligently selected signals of change within multiple variables may be detected earlier than94

in single variables alone. For example, departure from natural variability can be seen decades95

earlier in bivariate maps of summertime temperature and precipitation than in either96

variable alone (Mahony & Cannon, 2018). Similarly, Fischer and Knutti (2012) found97

that climate model biases in the signal of relative humidity and temperature are neg-98

atively correlated such that climate model simulations of their combined quantity, heat99

stress, have considerably less spread. Combined variables have also been used to iden-100

tify the impacts of anthropogenic forcings on climate in observational datasets by iden-101

tifying the multivariate patterns that enhance the signal of change relative to the un-102

derlying noise (e.g., Barnett et al., 2008; Marvel & Bonfils, 2013). Understanding how103

the patterns of the forced response take shape through multiple atmospheric variables104

also allows for a deeper understanding of the physics at play, as in Bonfils et al. (2020).105

They explored the evolution of the climate fingerprint by analyzing the leading combined106

empirical orthogonal functions of temperature, precipitation, and climate moisture in-107

dex. This multivariate approach illuminated two cross-variable patterns of change: in-108

tensification of wet-dry patterns and meridional shifts in the ITCZ associated with in-109

terhemispheric temperature contrasts. Neither pattern can be fully explained by a sin-110

gle variable which highlights the utility of combining variables when identifying patterns111

of the forced response.112

Combining fields can be useful for identifying patterns of forced change that do not113

reveal themselves in single fields alone, but this added information does not come with-114

out its drawbacks. Many variables covary in complex and nonlinear ways, such as sea115

surface temperature and precipitation (Lu et al., 2015), drought indices (Wu et al., 2017),116

and snowpack, soil moisture and flood risk (Swain et al., 2020), often requiring complex117

statistics to isolate these interactions. Identifying nonlinear correlations within climate118

fields introduces another issue, namely in explaining the complex interplay between fields.119

These drawbacks highlight the need for methods that are both complex and explainable120

in multivariate climate analyses.121
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Providing a method for both nonlinear and multi-variable analysis of the forced re-122

sponse, this study extends the neural-network approach of Barnes et al. (2020) to com-123

bined fields of input. Combined fields could mean the same variable for different tem-124

poral segments (e.g. seasons), or different geophysical variables, both of which are ex-125

plored here. For the sake of consistency and comparability, this study largely follows the126

methodology of Barnes et al. (2020), however there are some departures. We standard-127

ize the input fields differently which improves the predictive skill of the neural networks.128

We also use a slightly simpler neural network architecture to reduce the computational129

expense of training a single neural network, and the results from multiple neural networks,130

rather than just one, are explored. Barnes et al. (2020) demonstrated the utility of neu-131

ral network explainability methods, and we use these methods in tandem with a clus-132

tering technique to enhance post-hoc explanations of neural network decisions.133

Section 2 outlines the climate models and observations analyzed in this study. Sec-134

tion 3 introduces the neural network design, the explainability technique (layer-wise rel-135

evance propagation; LRP), and their applications to detection of the forced climate re-136

sponse. We then apply these methods to global temperature and precipitation over land137

in Section 4. Here we investigate the benefits of combining variables and compare the138

results of the neural network with the classical approach of calculating signal-to-noise139

ratios. In Section 5, we explore the patterns of the forced response for extreme precip-140

itation over the Americas and investigate the applications of LRP to studying the evo-141

lution of nonlinear climate patterns across multiple climate models. Finally, Section 6142

summarizes the results of this work and its implications for future work in forced change143

detection.144

2 Data145

2.1 CMIP6 Climate Models146

We use climate model output from the sixth phase of the Coupled Model Intercom-147

parison Project (CMIP6; Eyring et al., 2016). Specifically we focus on monthly-, seasonal-148

, and annual-mean fields of 2-meter air temperature (K), precipitation rate (kgm−2 s−1),149

and precipitation rate from very wet days (kgm−2 s−1), hereafter referred to as temper-150

ature, precipitation, and extreme precipitation, respectively. We use the meteorological151

seasons of December-January-February (DJF), March-April-May (MAM), June-July-August152

(JJA), and September-October-November (SON) for calculating seasonal-mean fields.153

Defining seasons in this way allows for the earliest detection of forced change (see Fig-154

ure S1 for more details).155
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Very wet days are defined as days that exceed the 95th percentile of all days with156

precipitation over a pre-defined baseline period (Donat et al., 2016). This is a popular157

index for measuring changes in extreme precipitation (Cui et al., 2019; Kim et al., 2020)158

and is used as an indicator of climate change in the U.S. Global Climate Research Pro-159

gram (USGCRP, 2018). We define the baseline as the 40 years from 1980 to 2019, a pe-160

riod for which daily precipitation data exists in both the climate models and the obser-161

vations. To remove the instances in which climate models simulate sub-trace daily pre-162

cipitation totals, we only include days that simulated at least 1 mm of precipitation when163

calculating the 95th percentile of all days with precipitation (Dai et al., 2007).164

The neural networks are trained on CMIP6 climate model data. One ensemble mem-165

ber is selected for each of the 37 CMIP6 climate models analyzed so each climate model166

is only represented once in the training and testing data. Since daily output is required167

to calculate very wet days, we are limited to 32 models for extreme precipitation (Fig-168

ure S3). We analyze the climate model data from 1920 to 2098 under historical forcing169

(1920–2014) and the SSP585 scenario (2015–2098). SSP585 represents the highest de-170

velopment pathway within CMIP6 scenarios (O’Neill et al., 2016), combining shared so-171

cioeconomic pathway 5 (SSP5) and representative concentration pathway 8.5 (RCP8.5).172

Our neural network methodology requires that all climate model fields have the same173

shape. To accommodate this we regrid the climate model fields from their native res-174

olutions using the second-order conservative remapping method in the Climate Data Op-175

erators package from MPI (Schulzweida, 2019). This regridding step reduces the spatial176

resolution of the data for most climate models. For temperature and precipitation, the177

data is regridded to 4 degrees latitude by 4 degrees longitude. We elect to use lower res-178

olution data to reduce the computational expense of training neural networks over global179

maps of temperature and precipitation. Since the domain for extreme precipitation is180

smaller than the domain for temperature and precipitation (see the following paragraph),181

and higher resolution data may better capture regional extreme precipitation patterns,182

the data for extreme precipitation is regridded to a slightly higher resolution: 1.5 degrees183

latitude by 1.5 degrees longitude.184

Two spatial domains are considered in the results of this paper. For temperature185

and precipitation, the neural networks are trained on all land north of 60°S. Here, we186

choose to focus on land grid points because that is where humanity lives and will acutely187

feel the impacts of changing surface temperatures and precipitation. We also exclude Antarc-188

tica where climate models and reanalyses struggle to accurately simulate temperature189

and precipitation. Each map of temperature and precipitation has 948 unique data points.190

For extreme precipitation, the neural networks are trained on North and South Amer-191
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ica (land grid points bounded by 90°N, 55°S, 170°W, and 25°W). Here, we choose to nar-192

row the regional scope to show that neural networks are powerful tools for identifying193

the forced response even when the spatial domain, and thus the available data, is lim-194

ited. Each map of extreme precipitation has 2314 unique data points.195

2.2 Observations196

While this work largely focuses on the results of neural networks trained and tested197

on climate model data, we show that neural networks trained on climate model data can198

be applied to observational data as well. For temperature, we use the Berkeley Earth199

Surface Temperature (BEST) dataset (Rohde & Hausfather, 2020). This dataset pro-200

vides both a temperature climatology and the anomalies at monthly resolution from 1850201

to the present. We added the anomalies to the climatology to reconstruct the absolute202

temperature (K) at each grid point for all months between 1920 and 2019. Monthly ob-203

servational precipitation fields are obtained from the NOAA Global Precipitation Cli-204

matology Project (GPCP), version 2.3, for 1979 to the present (Adler et al., 2018). Since205

daily precipitation fields are required to calculate extreme precipitation, and daily GPCP206

precipitation observations are only available back to October 1996, we elected to calcu-207

late observed extreme precipitation using the European Centre for Medium-Range Weather208

Forecasts’ ERA5 global reanalysis (Hersbach et al., 2020) at 6-hour resolution from 1980209

to present. All observations are regridded in the same way as the climate model data for210

each respective variable.211

3 Forced Change Detection Framework212

3.1 Neural Network Design213

To identify indicator patterns of the forced response for combined fields we first de-214

velop artificial neural networks that, given maps of CMIP6 climate model output from215

every simulated year from 1920 to 2098, are tasked to predict the year that is being sim-216

ulated. The results for neural networks trained on ten different input vectors are explored217

in the following two sections. The input vectors include annual-, seasonal-, and monthly-218

mean data for temperature, precipitation, and temperature and precipitation combined,219

as well as seasonal-mean maps for extreme precipitation over the Americas. We use this220

diverse selection of input vectors to compare neural network performance and indicator221

patterns for single-field and combined-field inputs.222

The neural network architecture is illustrated in Figure 1. Each unit of the input223

layer corresponds to a different grid point in the input fields. For example, a neural net-224
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work that uses seasonal-mean maps of temperature and precipitation as input (two vari-225

ables and four seasons for a total of eight maps, 948 grid points per map) would have226

an input vector with 7,584 units. In all cases, this input layer is followed by two fully227

connected hidden layers with ten nodes each. The hidden layers are followed by an out-228

put layer that consists of 22 classes, one corresponding to each decade midpoint between229

1905 and 2115 (e.g. 1905, 1915, 1925, . . . , 2115). A softmax function is applied to the230

outputs to convert them to units of likelihood, where the sum of the output vector is one.231

This is a relatively simple architecture for a neural network. Neural networks with232

this architecture learn the patterns of forced change well, and more complicated archi-233

tectures do not substantially improve neural network performance (see Figure S2). It is234

also notable that this neural network architecture performs better than multiple linear235

regression, especially when trained on precipitation, and thus using nonlinear techniques236

improves our ability to detect the year via patterns of forced change (Figure S2). This237

simple architecture is also widely accessible to most in the climate science community238

as it can be trained on a personal laptop–highly complex architectures can be prohibitively239

computationally expensive (Chen et al., 2020). These neural networks were trained on240

a standard desktop computer with 16 GB of RAM and a 3.1 GHz, 6-core processor. Train-241

ing a single network took anywhere between two and ten minutes depending on the size242

of the input field. More details on the neural network design and hyperparameter tun-243

ing can be found in the supplementary materials.244

The neural network is tasked with “predicting the year” rather than “predicting245

the decade” as the output layer may suggest. To translate between decade midpoints and246

individual year labels, we use fuzzy encoding (Zadeh, 1965) such that each year can be247

mapped to one or more neighboring classes with varying degrees of membership (encoded248

as likelihood). This is different than traditional methods that would map each year to249

a single decade midpoint. In the traditional case, 2040 and 2049 would be considered to250

be members of the same class since they are in the same decade, and information would251

be lost as there is no way to distinguish whether the samples come from the beginning252

or the end of the decade. Using fuzzy encoding, this information of where a sample lies253

in each decade is retained. We use a triangular membership function (Zadeh, 1965) with254

a width equal to one decade such that each year has partial membership in one or two255

neighboring decade classes, and the total membership sums to one. Following this method,256

any year directly on a decade midpoint has membership in that class only while years257

that fall between decade midpoints have membership in the two neighboring classes. The258

year 1925, for example, is mapped to a likelihood of one for the class 1925 and a like-259

lihood of zero in all other classes. The year 2078 is mapped to a likelihood of 0.7 for the260
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2075 class and a likelihood of 0.3 for the 2085 class. Note that decoding class likelihoods261

back to their year is simply the decade-weighted sum of the likelihood: 0.7 × 2075 + 0.3262

× 2085 = 2078. A visualization of the encoding/decoding process can be found in Fig.263

2 of Barnes et al. (2020).264

3.2 Neural Network Training265

For each input vector we train 100 neural networks that differ only in which cli-266

mate models are randomly split into the training and testing sets. Partitioning so that267

each climate model’s samples are all part of either the training set or the testing set avoids268

issues with autocorrelation (i.e. near-identical data appearing in both the training and269

testing sets). One hundred neural networks provide a range of results across multiple com-270

binations of training and testing simulations and offer confidence that the results are con-271

sistent across CMIP6 climate models and do not overfit to any one training set. Each272

neural network is trained over the entire 1920-2098 period on 80% of the climate model273

simulations, and then tested on the remaining 20%. This leads to a training set of 30274

simulations and a testing set of 7 simulations for temperature and precipitation fields,275

and a training set of 26 simulations and a testing set of 6 simulations for extreme pre-276

cipitation fields. We train the neural networks using the binary cross-entropy loss (see277

Barnes et al., 2020) between the predicted class likelihoods and the correct class mem-278

bership weights, such that the loss function is minimized when the two are equal. Prop-279

erties of the neural network training process, such as the learning rate and activation func-280

tions, can be found in the supplementary materials.281

The neural networks have several hidden nodes which enable them to learn com-282

plicated relationships between the input and output data. However, with limited train-283

ing data, many of these learned relationships will capture patterns of the noise in the284

training dataset which can lead to overfitting (Srivastava et al., 2014). Atmospheric sci-285

ence data is also highly correlated in space and this collinearity can cause complications286

in the interpretation of the learned weights (Newell & Lee, 1981). Thus, to reduce over-287

fitting and address these issues, we apply ridge regularization (L2 regularization, see Barnes288

et al., 2020) to the weights of the first hidden layer. Ridge regularization adds a penalty289

(called the ridge penalty) to the square of the weights so the solution is penalized for hav-290

ing large weights. Through training, this acts to shrink the largest weights, thus spread-291

ing the weight out more evenly across multiple grid points. In our application this re-292

sults in a more even distribution of importance across regions with strong spatial cor-293

relation and improves the performance of the neural networks when given data they were294
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not trained on, namely those models in the testing set (elaborated on in Fig. 3, Section295

4 of Barnes et al., 2020).296

Unlike classical approaches which tune the neural network to reduce the mean squared297

error (MSE) between the predicted and truth outputs in the testing set (in our case this298

would be the MSE between the truth and predicted years), we select the ridge penalty299

that minimizes the time of emergence of the forced climate signal (see Section 3.3). Us-300

ing time of emergence, rather than MSE, to identify the appropriate ridge penalty en-301

sures that we are encouraging the neural networks to learn the patterns of the forced re-302

sponse across all decades. When a small ridge penalty is used, the neural networks are303

able to predict the year at the end of the 21st century almost perfectly, at the expense304

of the predictive skill in earlier decades. This results in a later calculation of time of emer-305

gence for the testing set. Slightly increasing the ridge penalty can allow the neural net-306

works to detect the climate change signal slightly earlier (Figure S4). The ridge penalty307

used for each input vector can be found in the supplementary materials. We use the same308

ridge penalty for all 100 neural networks trained on each input vector.309

All input fields (for climate models and observations) are standardized to assist with310

the training and overall performance of the neural network. We subtracted the 1980–2019311

mean at each grid point of the input fields for each climate model independently. This312

recasts each input field to measure the change relative to the 1980–2019 mean, rather313

than the raw magnitudes, which improves the predictive skill of the neural networks and314

is also appropriate for identifying indicator patterns of forced change. Since values for315

precipitation change are often on the order of 10−6, while the values for temperature change316

are on the order of 100, we normalized the data so the inputs to the neural network all317

have a similar magnitude. To do this, the data from 1980–2019 at each grid point for318

each climate model are detrended using ordinary least squares linear regression. We then319

take the multi-model mean of the standard deviation of the detrended 1980–2019 data320

for each grid point. The input fields are then divided by this new field of standard de-321

viations so the inputs are of the same magnitude and fall in a reasonable range for train-322

ing the neural networks. Since all our observational datasets include the years 1980 to323

2019, we standardize the observations as if they were additional climate models: raw ob-324

servations are subtracted by their own 1980–2019 mean, and divided by the same multi-325

model standard deviations that were used to standardize the CMIP6 data.326

3.3 Time of Emergence Calculation327

The time of emergence of the forced climate response (hereafter, simply “TOE”)328

is the time in which the forced response signal is distinguishable from the background329
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climate by the neural network. Specifically, we define the TOE as the year when the neu-330

ral network is able to distinguish that year’s map from any map over a historical base-331

line period. In this work we define this baseline period as 1920–1959 and, under this def-332

inition, the earliest possible TOE estimate is 1960. The TOE is estimated for each cli-333

mate model simulation independently and a schematic of how the TOE is estimated is334

presented in Figure 2. First, we calculate the maximum of the neural network-predicted335

years over 1920–1959 for each model, which is referred to as the baseline maximum. We336

then identify the TOE as the earliest year in which a map, and all subsequent maps, per-337

manently exceed the baseline maximum. In Figure 2, sample model 1 has a baseline max-338

imum of 1966 and permanently exceeds this prediction threshold in 2028. Sample model339

2 has a baseline maximum of 1981 and permanently exceeds this threshold in 1989. Thus,340

the TOE for sample models 1 and 2 are estimated as 2028 and 1989, respectively. In the341

following sections we present the TOE for the testing set, however TOE estimates are342

similar for both the training and testing sets.343

3.4 Layer-wise Relevance Propagation344

To visualize the patterns learned by the neural network we apply layer-wise rele-345

vance propagation (LRP) which highlights the regions that were most relevant in the neu-346

ral network’s decision-making process (Bach et al., 2015; Montavon et al., 2019). Toms347

et al. (2020) discusses in detail how LRP can be used for neural network explainability348

in the geosciences, though the most relevant details of LRP are described here.349

LRP is a neural network explainability method that traces how information flows350

through the pathways of a trained neural network. The values in a single-sample input351

vector (in our case, a single year) are passed forward through the neural network. Us-352

ing the same weights and activations used in the forward pass, LRP then propagates a353

single-valued output back through the neural network to infer the extent to which each354

of the values in the input layer contribute to the output (see Fig. 2 in Bach et al., 2015).355

We refer to this quantity as relevance. Through this backpropagation process the out-356

put value is conserved such that the sum of all relevance is equal to the output. At first357

order, relevance can be likened to the product of the regression weights and input map358

in a linear model. This quantity is natively unitless, but we convert it to a fraction by359

dividing by the output value. This way, we can consider the relevance of a single pixel360

in terms of its fractional contribution to the predicted class. Since LRP propagates only361

a single output value at a time, we propagate relevance only for the decade class with362

the highest likelihood. While the relevance maps detected by these networks evolve from363
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year to year, this evolution is slow so we find visualizing the highest likelihood decade364

is sufficient.365

There are several LRP decomposition rules which provide different methods of vi-366

sualizing neural networks (Lapuschkin, 2019; Mamalakis et al., 2021). In our applica-367

tions we use the αβ-rule which propagates positive relevance (regions that act to increase368

the class likelihood) and negative relevance (regions that act to decrease the class like-369

lihood) separately. Using the parameters α = 1 and β = 0 we choose to only propa-370

gate positive relevance, thus highlighting the regions that added to the likelihood of the371

selected decade class. We also looked at the relevance maps for β = 1 and found that372

propagating negative relevance did not impact the conclusions.373

3.5 Signal-to-Noise Ratio Calculation374

In Section 4, we compare the LRP relevance maps to maps of signal-to-noise ra-375

tio (S/N ratio), a more conventional method for identifying indicator patterns of the forced376

response. S/N ratio consists of three distinct components: the forced signal, which is di-377

vided by the sum of noise due to internal variability, and noise due to climate model dis-378

agreement. A higher S/N ratio indicates that the signal of the forced response within379

the climate models is very large relative to the underlying noise. We evaluate the S/N380

ratio for each grid point separately, following the methodology in Hawkins and Sutton381

(2012). First, we smooth the data from 1920 to 2098 for each climate model using a fourth-382

order polynomial fit. The signal is defined as the difference between 2090 and 1920 in383

the smoothed data, while internal variability is defined as the standard deviation of the384

residuals from the smoothed data, and climate model disagreement is defined as the stan-385

dard deviation of the signals calculated for all the climate models. S/N ratio is calcu-386

lated by dividing the climate signal by the 90% confidence interval in the noise: inter-387

nal variability and climate model disagreement. S/N ratio, and its components, can be388

seen in Figure S8.389

4 Global Precipitation and Temperature390

4.1 Time of Emergence391

Across all input vectors of temperature and precipitation, the neural networks are392

able to learn patterns of the forced response. In the early-to-mid 20th century the forced393

signal is small and undetectable by the neural networks amidst the noise of internal vari-394

ability and model disagreement, which leads to poor predictive skill (Figure 3). How-395

ever, as the signal increases in magnitude into the late-20th and 21st centuries, the neu-396
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ral networks are able to detect the patterns of the forced response and distinguish be-397

tween maps in different years. These patterns of the forced response detected by the neu-398

ral networks are generalizable across CMIP6 models, and as a result the neural network399

has predictive skill for seen data (the training set, see the supplementary materials) as400

well as unseen data (the testing set). These behaviors are shown in Figure 3 which presents401

the predicted years from one trained neural network for each combination of global pre-402

cipitation and temperature input fields. Across all input vectors, a similar story of the403

forced signal unfolds. Prior to the TOE, the neural network is unable to identify pat-404

terns that allow it to accurately predict the year. As a result, the neural network is equally405

confident (or unconfident) about which year, between 1920 and the TOE, each input came406

from, so it predicts years right around the middle of the 20th century. After the TOE,407

the predicted years tend to follow a 1:1 line with the truth years, indicating that the neu-408

ral network has identified reliable indicators of change for this period.409

Although the neural networks are trained on climate model simulations, their learned410

patterns can be used to predict the year for observational data as well. When observa-411

tions are used as input, the predicted years increase with time, just as they do for cli-412

mate model input (Figure 3). This means that the indicators of change derived by the413

neural networks trained on climate models simulations are largely consistent with the414

real world. Pearson correlations (r) of the actual years with the years predicted by each415

neural network are shown in Figure 4. All correlations are positive, indicating that the416

years predicted by the neural networks increase with time. These correlations are strongest417

for temperature and combined observations (r ≈ 0.9), but still quite high for precipita-418

tion (r ≈ 0.8). Correlations of actual years with predicted years are slightly higher for419

the combined temperature and precipitation observations than for temperature obser-420

vations alone (Figure S5), suggesting that the multivariate indicator patterns derived from421

climate model data are useful for understanding trends in the present-day climate. Across422

all variables, the highest observational correlations are found by the neural networks trained423

on seasonal-mean data. The correlation of actual years with predicted years for precip-424

itation observations are sensitive to the dataset of choice, which is expanded on in Sec-425

tion S4 and Figures S5 and S6.426

The average TOEs, calculated from the climate models in the testing sets of all 100427

trained neural networks for each input field (Figure 5), reveal that the forced response428

can be detected earlier in maps of temperature than in maps of precipitation (Figure 5a-429

c). When presented with combined fields the neural networks are, in many cases, able430

to detect the forced signal even earlier than when given single fields alone (Figure 5b,f).431

The TOE is generally earlier for the neural networks trained on seasonal-mean data than432
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for the neural networks trained on annual-mean data (Figure 5d-f). This is most notable433

for precipitation fields, likely because there are large seasonal precipitation responses muted434

by taking the annual mean (Tabari & Willems, 2018; Zappa et al., 2015). The TOEs are435

earlier for temperature and precipitation combined than temperature alone when using436

seasonal-mean maps (Figure 5b), but are approximately equal when using annual-mean437

or monthly-mean maps (Figure 5a,c), which suggests that precipitation only improves438

upon the detectability of the forced temperature signal when seasonal-mean fields are439

used. While annual-mean precipitation may mute seasonal precipitation signals, monthly-440

mean precipitation is noisy. In this case, seasonal means emerge as the appropriate tem-441

poral segments for detecting precipitation change, underlining the importance for the442

intentional and intelligent selection of neural network inputs.443

The neural networks identify the earliest TOEs when trained on seasonal-mean tem-444

perature and precipitation combined (Figure 5b,f). The TOE results for all 100 seasonal-445

mean neural networks are summarized in the box plots in Figure S7. While the improve-446

ment in forced response detection is small when precipitation is combined with temper-447

ature, it is still notable given that the forced signal of temperature is much clearer than448

the forced signal of precipitation. We use these variables as an initial example for em-449

ploying this neural network methodology. We anticipate that more robust results might450

be found for combinations of variables that have more distinct combined signals, such451

as humidity and temperature (Fischer & Knutti, 2012).452

4.2 Indicator Patterns for Combined Variables453

Having shown that the neural networks are able to predict the year given seasonal454

means of temperature and precipitation (Figures 3, 5), we now identify and explore the455

spatial indicator patterns used by the neural networks to make correct predictions. By456

understanding the neural networks’ decision-making process, we can identify which re-457

gions act as combined (multi-seasonal and multi-variable) indicators of forced change amidst458

a background of internal variability and climate model disagreement. To identify these459

indicator patterns, we apply LRP to all climate model samples in the training and test-460

ing sets from the year 2090 for the seasonal-mean combined neural networks. Averag-461

ing the LRP results for each season and variable, we highlight the regions that have the462

highest mean relevance across the 37 CMIP6 climate models and 100 trained neural net-463

works. The relevance maps for temperature (precipitation) are shown in Figure 6a-d (7a-464

d) and indicate the importance of each region in the neural networks’ predictions of the465

year 2090.466
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LRP identifies temperature over North Africa and Central Asia in JJA (Figure 6c)467

and the Andes and Central Africa in SON (Figure 6d) as the most relevant regions for468

predicting the year. For precipitation, the regions of highest relevance can be found in469

Canada and Russia in DJF and SON (Figure 7a,d) and in Central Africa and India in470

JJA and SON (Figure 7c,d). That is to say that these are the regional patterns iden-471

tified by the neural networks that indicate the presence of forced change across the CMIP6472

climate models. The scale of the color bars are different between Figures 6 and 7, such473

that the darkest regions in the temperature maps are approximately one order of mag-474

nitude more relevant than the darkest regions in the precipitation maps. Hence, the neu-475

ral network is relying more heavily on the temperature inputs than the precipitation in-476

puts in order to accurately predict the year. This is not surprising because the forced477

signal of temperature is clearer than the forced signal of precipitation (Fig. SPM.7 in478

Field et al., 2014). Even so, including seasonal precipitation allows the neural networks479

to detect forced change earlier within combined fields than in temperature fields alone480

(Figure 5b). The improvement in neural network performance provided by precipitation481

(alongside temperature) is particularly noteworthy given that the S/N ratio for temper-482

ature is larger than the S/N ratio for precipitation in all seasons and regions (Figures483

6e-h, 7e-h, discussed further in this section). In other words, the forced temperature sig-484

nal is always more pronounced than the forced precipitation signal, but the precipita-485

tion signal is still useful for detecting forced change.486

LRP is designed to highlight the regions that were most relevant for predicting the487

correct class (in our case, the correct decade class). These LRP indicator patterns for488

2090 are not the time-mean patterns of the forced response, they are the patterns used489

by the neural network to distinguish the end of the 21st century from all other decades.490

This is distinctly different from S/N ratio which identifies the regions where the forced491

change from 1920 to 2090 is largest relative to internal variability and climate model spread.492

Maps of S/N ratio for temperature are shown in Figure 6e-h, and the corresponding maps493

for precipitation are shown in Figure 7e-h, where a higher S/N ratio (darker green) in-494

dicates a clearer forced signal. These regions of high S/N ratio are consistent with other495

related studies (e.g., Hawkins et al., 2020). For the most part, the indicator patterns iden-496

tified by LRP correspond with the regions with the highest S/N ratios. Calculating the497

Spearman’s rank correlation (ρ) between each map of relevance and S/N ratio, we find498

that there is generally a strong positive correlation (0.71 ≤ ρ ≤ 0.77) between the LRP499

indicator patterns and the S/N ratios for temperature, and a moderate positive corre-500

lation (0.30 ≤ ρ ≤ 0.56) for precipitation. The exact correlation coefficients between501

each map are displayed in the subtitles for Figures 6e-h and 7e-h.502
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Given that precipitation only contributes a small amount of relevance compared503

to temperature, it is perhaps unsurprising that there are several regions where the S/N504

ratio for precipitation is high, but the relevance is low (e.g. Alaska in JJA, Figure 7c,g505

or South Africa in SON, Figure 7d,h). Most likely, the forced signal of temperature is506

clear enough that these regions do not add to the predictive skill of the neural networks.507

Regions also exist where the S/N ratio for temperature is high despite low relevance (e.g.508

North Africa in DJF, Figure 6a,e), although these are more rare, as hinted by the strong509

correlation between the temperature maps of S/N ratio and relevance. In contrast, there510

are fewer regions with high relevance despite low S/N ratios, but they do occur (e.g. SON511

temperatures in northern South America, Figure 6d,h). These high-relevance, low-S/N512

ratio regions confirm that the indicator patterns identified by LRP capture more than513

the local S/N ratio. Some reasons a region/variable/season may be important in terms514

of LRP, but not in terms of S/N ratio, are: 1) LRP may be identifying places in our data515

where a signal exists only in the combination of regions/seasons/variables, which would516

not be captured by this definition of S/N ratio. 2) Since LRP highlights the patterns the517

neural networks use to predict the correct decade over all other decades, it may be cap-518

turing abrupt nonlinear changes in the climate that are filtered out by the century-long519

analysis of S/N ratio In the next section, we discuss further applications of neural network-520

derived indicator patterns and task the network with the much harder problem of iden-521

tifying changes in extreme precipitation over the Americas.522

5 Extreme Precipitation over the Americas523

We now task the neural networks to predict the year given combinations of sea-524

sons for a single variable: extreme precipitation over the Americas. We choose to shift525

our focus for a few reasons. First, we wish to demonstrate that this neural network ap-526

proach can be extended to variables that have considerable noise (like extreme precip-527

itation, see Figure S8), and datasets that do not cover the globe. Second, extreme pre-528

cipitation has major implications for human health (Ali et al., 2019; Eekhout et al., 2018;529

Rosenzweig et al., 2002) but there is considerable disagreement between climate mod-530

els in its signal (Figure S8). This neural network approach can be used to identify agreed-531

upon patterns despite climate model spread. Further in this section, we will demonstrate532

that LRP maps can be used to investigate climate model differences and better under-533

stand the time evolution of the forced response.534

The extreme precipitation signal is not as pronounced as the temperature signal,535

and using the Americas rather than the full globe limits the amount of unique informa-536

tion in the input field. Nevertheless, the neural networks are still able to detect patterns537
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of forced change. Figure 8 depicts the years predicted by one neural network trained on538

seasonal-mean extreme precipitation. As in Figure 3, the neural network is unable to ac-539

curately predict the year given CMIP6 data prior to the TOE around 2010, whereafter540

the predicted years generally follow the 1:1 line with the truth years, indicating that the541

neural network has identified reliable indicators of change for this period. All Pearson542

correlations of the actual years with the predicted years for extreme precipitation in ob-543

servations are positive (r ≈ 0.4), demonstrating that the indicator patterns found in cli-544

mate models can be successfully applied to observations (Figure 4). These correlations545

are not as strong as those for mean precipitation observations, due in part to the mag-546

nitude of climate model disagreement in extreme precipitation as well as the observa-547

tional dataset used: ERA5. As shown in Figure S6, the correlations of actual with pre-548

dicted years for ERA5 precipitation observations are far smaller than those for GPCP549

observations. ERA5 tends to perform poorly in remote regions such as northern North550

America and northwestern South America (Bell et al., 2021), which may be responsible551

for these low correlations. The correlation between actual years and neural network-predicted552

years for extreme precipitation observations are explored in much more detail by Madakumbura553

et al. (2021).554

To investigate the indicator patterns used by the neural networks to predict the555

year when the forced signal first emerges from the background noise, we apply LRP to556

all climate model samples in the training and testing sets for all 100 neural networks at557

the TOE (using the TOE calculated for each climate model and neural network individ-558

ually, see Figure S9). LRP points to western South America in DJF and British Columbia559

in MAM and SON as the most relevant regions when the neural networks first detect the560

forced response (Figure 9a-d). These LRP maps exhibit a more even distribution in rel-561

evance across each region and season than the end-of-the-21st-century LRP maps of global562

temperature and precipitation (Figures 6a-d, 7a-d). Predicting the year at the TOE, when563

the signal has just barely emerged from the background climate, likely requires the neu-564

ral networks to use all of the information available to them.565

Up to this point, we have only considered the mean LRP maps across climate mod-566

els. Since the neural networks are nonlinear by nature, they can identify multiple pat-567

terns that differ between climate models for a given decade. We apply k-means cluster-568

ing to all 3200 LRP maps at the TOE (32 climate models samples, 100 neural networks)569

to identify two distinct indicator patterns that are being used by the climate models (Fig-570

ure 9e-l, see the supplementary materials for more details on k-means clustering). Tak-571

ing the difference between the mean LRP maps for clusters one and two reveals that the572

Amazon in JJA is a highly relevant region in cluster one, while western Canada in DJF573
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is a highly relevant region in cluster two (Figure 9m-p). With the sole exception of MPI-574

ESM1-2-HR, all 100 LRP maps for each individual climate model fall cleanly into one575

cluster or the other, suggesting that there are two distinct ways in which the forced sig-576

nal emerges in the CMIP6 simulations (Figure 10). Interestingly, when k-means is in-577

structed to identify 32 unique clusters within the LRP maps, each cluster contains all578

100 relevance maps for each of the 32 climate models. In other words, the pathway used579

by the neural networks to predict the year is unique to each climate model and distin-580

guishable from all other climate models, regardless of whether the climate model sam-581

ples appear in the training or testing sets (further investigated by Labe & Barnes, 2022).582

In the same way that indicator patterns can differ between models, indicator pat-583

terns are also able to evolve through time (e.g., Barnes et al., 2020; Labe & Barnes, 2021;584

Madakumbura et al., 2021). Comparing the LRP maps at the TOE (Figure 11a-d) with585

those at the end of the 21st century (Figure 11e-h) highlights the regions that become586

more important for predicting the year over time. The difference plots in Figure 11i-l587

reveal that the neural network learns to focus on Alaska during MAM, JJA, and SON,588

Greenland in JJA and SON, and Quebec in MAM and SON as the forced response be-589

comes stronger. These regions are more important for predicting the year at the end of590

the 21st century than the early 21st century. While further exploration is required, there591

are several reasons a region may become more relevant over time. For example, it may592

be that the region does not initially have a clear forced signal, but following some abrupt593

change (e.g. an ice-free Arctic) the forced signal becomes extremely pronounced. It may594

also be that the region has a signal that is consistently agreed upon by the majority of595

CMIP6 climate models, and becomes more relevant compared to other regions as climate596

model projections in those other regions drift apart. These time-varying patterns sup-597

port the idea that combined indicators are effective for identifying dynamically evolv-598

ing patterns of forced change.599

6 Conclusions600

Neural networks are powerful tools for identifying patterns of forced change in the601

climate system. When tasked with predicting the year given climate model simulations602

of temperature, precipitation, or extreme precipitation, artificial neural networks can learn603

these patterns of forced change that allow them to distinguish between maps from dif-604

ferent years. In combined fields, such as multiple variables, seasons, or both, the forced605

response can be detected earlier than in single fields alone. By visualizing the decision-606

making process of the neural networks with an explainability method we extracted re-607

liable, multivariate patterns of forced change. These neural network-derived combined608
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indicator patterns are complex and nonlinear and capture more than the local signal-609

to-noise ratio. Explainability methods take a huge step towards disentangling the rela-610

tionships learned by neural networks by pointing out what inputs contributed most to611

the final prediction, but they stop short of explaining why.612

Expanding on previous work by Barnes et al. (2020), we used k-means clustering613

in tandem with layer-wise relevance propagation to study the relationships learned by614

the neural networks. This approach revealed two distinct ways in which the extreme pre-615

cipitation response emerges in CMIP6 data. While combining neural network explain-616

ability methods with other statistical techniques can enhance explanations of neural net-617

work decisions, there is still a large gap between what the neural network has learned618

and what we can explain post hoc. Some unanswered questions, such as “why does tem-619

perature in Region A combine with precipitation in Region B to improve the signal of620

the forced response?” may be better answered with a different architectural approach,621

such as neural network designs that are inherently interpretable and do not require post-622

hoc approaches like LRP (Rudin, 2019). This is a natural next step for future work. The623

flexibility and accessibility of this framework provide several other future research di-624

rections. Given that this predict-the-year approach can be applied to observational data,625

one possible extension of this work could involve exploring the observed features of forced626

change that are consistent with climate model simulations. There is also space for these627

methods to be used to determine which definitions of seasons are optimal for detecting628

forced change. While we used meteorological seasons here, there may be more appropri-629

ate definitions, such as unique definitions of the wet and dry seasons, or the shoulder sea-630

sons, that vary between variables and regions. Furthermore, this framework should be631

expanded to other variables, regions of focus, and climate change scenarios, to identify632

the combined indicators that best elucidate the forced signal. For example, extreme pre-633

cipitation and extreme drought may combine to capture the increased volatility in pre-634

cipitation extremes that are expected with climate change (O’Gorman, 2015). Further635

application of this technique to compound climate extremes, such as heat wave inten-636

sity, drought duration, and flood frequency, may reveal that explainable neural networks637

are useful for assessing societal impacts and improving climate change preparedness.638

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1. Schematic of the fully connected neural network architecture. Inputs from

multiple maps of data are flattened into an input layer vector (size of the input layer ranges from

948 to 22,752). These inputs are fed through two hidden layers with ten nodes each. The neural

network is trained to predict the year that the data came from, outputting the likelihood that the

input data came from each decade midpoint between 1905 and 2115. This is then converted to a

year via fuzzy classification.
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Figure 2. Calculation of TOE. The TOE is defined as the earliest year in which a map,

and all subsequent maps, permanently exceed the maximum predicted year from the baseline

period (1920-1959). The baseline maximum for each model is indicated by the horizontal lines,

the last year that falls below the baseline maximum is circled, and the TOE is indicated by the

vertical lines. Sample model 1 (dark red) has a baseline maximum of 1966 and permanently

exceeds this threshold in 2028. Sample model 2 (light green) has a baseline maximum of 1981

and permanently exceeds this threshold in 1989. Thus, the TOE for sample models 1 and 2 are

estimated as 2028 and 1989, respectively.
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Figure 3. Neural network output for temperature and precipitation. Year predicted

by the neural network (y-axis) versus the truth year (x-axis) for temperature (a, d, g), precipita-

tion (b, e, h), and temperature and precipitation combined (c, f, i). Input maps include annual-

mean data (a, b, c), seasonal-mean data (d, e, f), and monthly-mean data (g, h, i). Testing data

is shown in color and observations are shown in white.
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Figure 4. Correlation of actual years with predicted years for observations. Pearson

correlations of the actual years with the years predicted by 100 trained neural networks given

observations of temperature, precipitation, and extreme precipitation. Correlations were com-

puted for all years beginning in 1980 where observational data exists for all variables. The box

plots indicate the first, second, and third quartile statistics, and the whiskers denote 1.5 times

the interquartile range, or the minumum/maximum value, whichever is less extreme. Outliers are

excluded for clarity, but can be found in Figures S5 and S6.
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Figure 5. Mean TOE for each input field. Comparison of the mean time of emergence

identified by neural networks trained on annual-mean (a), seasonal-mean (b), and monthly-mean

(c) input fields, and neural networks trained on temperature (d), precipitation (e), and temper-

ature and precipitation combined (f). 100 neural networks with different train-test splits were

trained for each input field. Each dot represents the mean TOE for all climate models in the

testing set for a single trained neural network, ranked from earliest to latest. Note the change in

the y-axes between panels, and that the TOE results for each set of neural networks appear once

in the panels a, b, and c, and once in d, e, and f.
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Figure 6. Combined indicator patterns of the forced response (temperature). Av-

erage temperature LRP results for the seasonal-mean combined neural networks (left, in yellow)

and S/N ratio (right, in green) for 2090. Darker shading indicates regions of temperature that

are more relevant for the neural network’s prediction or have a higher S/N ratio. The Spearman’s

rank correlation (ρ) between corresponding maps of relevance and S/N ratio are shown in the

subtitles of panels e-h.

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 7. Combined indicator patterns of the forced response (precipitation). Av-

erage precipitation LRP results for the seasonal-mean combined neural networks (left, in yellow)

and S/N ratio (right, in green) for 2090. Darker shading indicates regions of precipitation that

are more relevant for the neural network’s prediction or have a higher S/N ratio. The Spearman’s

rank correlation (ρ) between corresponding maps of relevance and S/N ratio are shown in the

subtitles of panels e-h.
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Figure 8. Neural network output for extreme precipitation. Year predicted by the

neural network (y-axis) versus the truth year (x-axis) given seasonal-mean maps of extreme pre-

cipitation. Testing data is shown in pink and observations are shown in white.
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Figure 9. Relevance map clusters at the TOE for extreme precipitation. Average

LRP results for: extreme precipitation at the TOE (a-d), each cluster identified by k-means (e-h,

i-l), and the difference between the clusters (m-p). In panels a-l, darker shading indicates regions

of extreme precipitation that are more relevant for the neural networks’ prediction of the year at

the TOE. In panels m-p, blue shading indicates the regions that are more relevant in cluster 1,

while red shading indicates the regions that are more relevant in cluster 2. Note that panels a-d

are identical to panels a-d in Figure 11.
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Figure 10. Climate models in each relevance map cluster at the TOE. The number

of times each climate model appears in each cluster when k-means is applied to the maps of rel-

evance at the TOE for 100 ANNs trained on extreme precipitation over the Americas. Only the

relevance maps for MPI-ESM1-2-HR appear in both clusters. All other relevance maps for each

climate model are found in one cluster or the other.
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Figure 11. Time evolution of extreme precipitation relevance. Average LRP results

at the TOE (a-d), 2090 (e-h), and the difference between (i-l). Darker shading in panels a-h high-

lights regions that were more relevant for the neural networks’ prediction of the year. In panels

i-l, red shading indicates regions where the relevance has increased over time, while blue shading

indicates regions where the relevance has decreased over time. Note that panels a-d are identical

to panels a-d in Figure 9.

–30–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Acknowledgments639

We thank the two anonymous reviewers, the Editor, Maria Rugenstein, and Jessica Witt640

for their constructive feedback, which substantially improved our study. I would also like641

to thank the members of the Barnes Group for all the science discussions that brought642

about new ideas, and my parents and siblings for their support through the pandemic.643

This material is based upon work supported by the U.S. Department of Energy, Office644

of Science, Office of Advanced Scientific Computing Research, Department of Energy Com-645

putational Science Graduate Fellowship under Award Number DE-SC0020347, and by646

NOAA MAPP grant NA19OAR4310289. We acknowledge the World Climate Research647

Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and648

we thank the climate modeling groups for producing and making available their model649

output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diag-650

nosis and Intercomparison provides coordinating support and led development of soft-651

ware infrastructure in partnership with the Global Organization for Earth System Sci-652

ence Portals.653

Data Availability Statement654

All data used in this study is publicly available and referenced throughout the paper.655

The CMIP6 simulations used in this study can be via the Earth System Grid Federa-656

tion (ESGF, https://esgf-node.llnl.gov/projects/cmip6/). Monthly temperature obser-657

vations are available through Berkeley Earth (http://berkeleyearth.org/data/). Global658

Precipitation Climatology Project monthly global precipitation fields are available through659

the NOAA Physical Sciences Laboratory (https://psl.noaa.gov/data/gridded/data.gpcp.html).660

Monthy, daily, and sub-daily precipitation reanalyses were provided by the European Cen-661

tre for Medium-Range Weather Forecasts (ERA5: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-662

datasets/era5) and the National Center for Atmospheric Research (JRA55: https://climatedataguide.ucar.edu/climate-663

data/jra-55). Python code used in this work has been made publicly available at https://github.com/jaminrader/ForcedChangeDetection2022.664
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S1 Neural Network Specifications

All units of the neural networks use a rectified linear unit (ReLU) activation function, except

for the output layer which uses a soft-max layer to rescale the final outputs of the neural network

such that they sum to one. We train the neural networks using the binary cross-entropy loss

between the predicted class likelihoods and the correct class membership weights, such that the

loss function is minimized when the two are equal. More information on the ReLU activation

function, the soft-max layer, and the loss function can be found in sections A1, A2, and A3 of

Barnes et al. (2020), respectively.

The neural networks were trained using the Keras Adam optimizer, an adaptive stochastic

gradient descent algorithm (Kingma & Ba, 2014). We used a learning rate that started at 0.001

and decayed linearly to 0.0005 over the span of 150 epochs. Although the Adam optimizer is

designed to alter the learning rate based on the momentum of training, the decaying learning

rate allowed the neural networks to train more quickly with improved performance. Weights and

biases were initialized using random values from a normal distribution.

As discussed in Section 3.1, our neural networks are fully connected with two hidden layers

and 10 nodes each in each layer. We found that this architecture allowed the neural networks to

capture forced change better than a linear model or even simpler architectures, such as neural

networks with only one hidden layer or five nodes in each layer (Figure S2). The additional per-

formance offered by more complicated architectures was small and increased the computational

resources needed for training. We elected to stick with the simplest model that performed well

with minimal computational expense. These neural networks can be trained on standard laptop
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or desktop computers in two to ten minutes depending on the input field, making them extremely

accessible to those in the climate science community.

As discussed in Section 3.2 and Figure S4, we applied a ridge penalty (L2 regularization) to

the input layer (see Barnes et al., 2020). The ridge penalty was selected such that the time

of emergence detected by the neural networks was the earliest. All input vectors used a ridge

penalty of 0.1, except for seasonal-mean temperature and precipitation combined input vector,

for which the TOE was earlier for a ridge penalty of 0.01 (see Figure S4).

Summary of Neural Network Specifications
Number of Hidden Layers 2

Number of Nodes in Each Hidden Layer 10
Hidden Layer Activation Function ReLU (Rectified Linear Unit)
Output Layer Activation Function Softmax

Ridge Penalty (applied to the weights of the 0.01 for seasonal-mean temperature and precip
first hidden layer) 0.1 for all other input fields
Loss Function Binary Cross-entropy
Optimizer Adam, tensorflow.keras.optimizers.Adam

Learning Rate Started==s at 0.001, decaying linearly to 0.0005
Number of Epochs 150

S2 Selection of Neural Network Hyperparameters

We explored a range of values for several neural network hyperparameters such as the learning

rate (from 10−4 to 10−1), the number of epochs (up to 1000), the ridge penalty (from 0 to 1,

see Figure S4), and the neural network architecture, where we examined the performance of

neural networks with 1, 2, or 3 hidden layers, and 5, 10, 20 or 50 nodes in each hidden layer

(see Figure S2). To choose these hyperparameters we employed a strategy similar to leave-

p-out cross-validation which is commonly used in the atmospheric sciences (Celisse & Robin,

2008). Specifically, we used 10 different train/test splits to explore the hyperparameter space
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and optimize the performance of our neural networks. Using 10 different train/test splits, rather

than just one, ensures that our hyperparameter selections are not overfitting to any one specific

way the climate models can be split into training and testing sets. Once the best hyperparameter

choices were made, we then used another 100 train/test splits for the results of this study, all of

which differed from the train/test splits used for tuning.

S3 K-means Clustering

Before applying k-means clustering, all LRP maps are converted into binary maps. Every grid

point on each LRP map is assigned a one or a zero depending on whether its relevance value is

greater than or less than the mean relevance across all maps and grid points. In this way, ones

indicate regions of high relevance, and zeros indicate regions of low relevance. K-means clustering

is then applied to these binary LRP maps (3200 in total, samples from 32 climate models for

100 neural networks). We used Sci-Kit Learn’s sklearn.cluster.KMeans function (version 0.22.1)

in Python with 100 different initializations and all other choices were left as default (Pedregosa

et al., 2011). The results for K = 2 are shown in the main paper. Using K = 2 identified two

clusters that were near-equal in size, and several runs of k-means with different random initial

conditions yielded near-identical results. Clustering for K = 3, 4, 5, 6, 7, 8, and 32 was also

explored, however the results for three or more clusters were less physically consistent.

S4 Additional Observational Datasets

In addition to the observational datasets in Section 2.2, we also test two additional precipita-

tion observations in Figures S5 and S6. First, we use the European Center for Medium-Range

Weather Forecasts’ ERA5 global reanalysis (Hersbach et al., 2020) at 6-hour resolution to con-
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struct observational monthly mean precipitation fields from 1980 to the present. Second, we use

the Japan Meteorological Agency’s Japanese 55-year Reanalysis (JRA55; Kobayashi et al., 2015)

mean 3-hour precipitation forecasts to construct observational monthly mean precipitation fields

from 1959 to the present.
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Figure S1. TOE detected by the neural networks given different definitions of

season. As in Figure 5d-f, but for each possible three-month combination of seasons. All three

definitions lead to similar TOE when neural networks are trained on global maps of temperature

or precipitation. When temperature and precipitation are combined, meteorological seasons lead

to the earliest detection of forced change.
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Figure S2. Skill across various neural network architectures. The mean testing binary

cross-entropy loss for ten trained neural networks with different train/test splits for 12 different

neural network architectures and one linear model for annual-mean temperature and annual-

mean precipitation. The white box indicates the neural network architecture that was used in

the main text (two hidden layers, 10 nodes each).
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Figure S3. Climate models used for each input variable. Temperature, precipitation,

and temperature and precipitation combined used the same 37 CMIP6 climate models. Extreme

precipitation fields came from 32 climate models for which daily precipitation fields were available.
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Figure S4. TOE and RMSE for various ridge penalties. The sensitivity of RMSE and

TOE to the ridge (L2) penalty used for 10 neural networks trained on seasonal-mean maps of

(a) temperature, (b) precipitation, and (c) temperature and precipitation combined. Each plot

shows the RMSE and TOE for neural networks trained with a ridge penalty of 1, 0.1, and 0.01

(denoted by red circles, blue stars, and orange triangles, respectively). The mean RMSE and

TOE for all 10 neural networks are indicated by the horizontal and vertical lines. Each neural

network for a given variable/ridge penalty differs only in which climate models were part of

the training and testing sets. While a ridge penalty of 0.01 leads to the smallest mean RMSE

in all cases, using a higher ridge penalty of 0.1 leads to earlier detection of forced change for

temperature and precipitation input vectors. As a result, we choose to use the ridge penalties

corresponding to an earlier TOE.
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Figure S5. Sensitivity of observational correlations to the source of precipitation ob-

servations: temperature and precipitation combined. Pearson correlations of the actual

years with the years predicted by 100 trained neural networks given observations of temperature

and precipitation. Correlations were computed for all years beginning in 1980 where observa-

tional data exists for all variables. The box plots indicate the first, second, and third quartile

statistics, and the whiskers denote 1.5 times the interquartile range, or the minumum/maximum

value, whichever is less extreme. The observational correlations for seasonal-mean combined

neural networks are sensitive to the dataset of choice, as observational correlations are higher

for GPCP than ERA5 or JRA55. This is not the case for the annual-mean and monthly-mean

combined neural networks, which have approximately the same correlations regardless of the

source of the observations. This is because the seasonal-mean combined neural networks rely

on precipitation to predict the year, while the annual-mean and monthly-mean combined neural

networks do not, as shown in Figure 5.
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Figure S6. Sensitivity of observational correlations to the source of precipitation

observations: precipitation only. Pearson correlations of the actual years with the years

predicted by 100 trained neural networks given observations of precipitation. Correlations were

computed for all years beginning in 1980 where observational data exists for all variables. The

box plots indicate the first, second, and third quartile statistics, and the whiskers denote 1.5

times the interquartile range, or the minumum/maximum value, whichever is less extreme. The

observational correlations are sensitive to the source of precipitation data. Correlations are

highest for GPCP, followed by ERA5 and JRA55. The observational correlations for ERA5

seasonal-mean extreme precipitation are similar to those for ERA5 seasonal-mean precipitation.
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Figure S7. Time of emergence for seasonal-mean fields. TOE was calculated for

each climate model in the testing sets of 100 trained neural networks. Each dot represents five

(rounded up) occurrences of the associated TOE year (i.e. one dot represents 1-5 occurrences,

two dots represent 6-10 occurrences, and so on). For added clarity, box plots indicate the first,

second, and third quartiles of the TOEs for each model, and whiskers denote 1.5 times the

interquartile range, or the minimum/maximum point, whichever is less extreme.
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Figure S8. Signal and noise for extreme precipitation over the Americas. Plots

of S/N ratio, and its components (signal, climate model variability, and internal variability) for

extreme precipitation in each season over North and South America. The signal is most clear

over the northern-most latitudes. The S/N ratio is below 1.5 in all seasons indicating that there

is considerable noise relative to the signal of change.
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Figure S9. Time of emergence for extreme precipitation over the Americas. TOE

was calculated for each climate model in the testing sets of 100 trained neural networks. Each

dot represents five (rounded up) occurrences of the associated TOE year (i.e. one dot represents

1-5 occurrences, two dots represent 6-10 occurrences, and so on). For added clarity, box plots

indicate the first, second, and third quartiles of the TOEs for each model, and whiskers denote

1.5 times the interquartile range, or the minimum/maximum point, whichever is less extreme.
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Figure S10. Neural network output for temperature and precipitation (with train-

ing data included). Same as Figure 3 with training data included. Year predicted by the

neural network (y-axis) versus the truth year (x-axis) for temperature (a, d, g), precipitation (b,

e, h), and temperature and precipitation combined (c, f, i). Input maps include annual-mean

data (a, b, c), seasonal-mean data (d, e, f), and monthly-mean data (g, h, i). Training data is

shown in gray, testing data is shown in color, and observations are shown in white.
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Figure S11. Neural network output for extreme precipitation (with training data

included). Same as Figure 8 with training data included. Year predicted by the neural network

(y-axis) versus the truth year (x-axis) given seasonal-mean maps of extreme precipitation. Train-

ing data is shown in gray, testing data is shown in pink, and observations are shown in white.
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Figure S12. Learning curves for temperature and precipitation. Binary cross-entropy

loss versus epoch of training for the training and testing data for the nine trained neural networks

shown in Figure 3, Figure S10.
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