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for predictions; thus this problem still remains unsolved. The paper presents a novel methodology for estimating spatial models

on big data and predicting in new locations. The approach uses bootstrap and tessellation to calibrate both model and space.

The best bootstrapped model is selected with the PAM (Partitioning Around Medoids) algorithm by classifying the regression

coefficients jointly in a non-independent manner. Voronoi polygons for the geo-points used in the best model allow for a

representative space division. New out-of-sample points are assigned to tessellation tiles and linked to the spatial weights

matrix as a replacement for an original point what makes feasible usage of calibrated spatial models as a forecasting tool for
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example illustrates a model for business locations and firms’ profitability.
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Abstract: Spatial econometric models estimated on the big
geo-located point data have at least two problems: limited com-
putational capabilities and inefficient forecasting for the new
out-of-sample geo-points. This is because of spatial weights matrix
W defined for in-sample observations only and the computational
complexity. Machine learning models suffer the same when using
kriging for predictions; thus this problem still remains unsolved.
The paper presents a novel methodology for estimating spatial mod-
els on big data and predicting in new locations. The approach uses
bootstrap and tessellation to calibrate both model and space. The
best bootstrapped model is selected with the PAM (Partitioning
Around Medoids) algorithm by classifying the regression coefficients
jointly in a non-independent manner. Voronoi polygons for the
geo-points used in the best model allow for a representative space
division. New out-of-sample points are assigned to tessellation tiles
and linked to the spatial weights matrix as a replacement for an
original point what makes feasible usage of calibrated spatial models
as a forecasting tool for new locations. There is no trade-off between
forecast quality and computational efficiency in this approach. An
empirical example illustrates a model for business locations and
firms’ profitability.

Keywords: tessellation; Voronoi polygons; spatial point-pattern; bootstrapping;
spatial weights matrix; spatial big data; predictions out-of-sample

Plain Language Summary: The paper proposes a highly novel forecasting
methodology with the spatial econometric model in the case of point geo-located
data. It links statistics, econometrics and machine learning, never combined to-
gether as here. It is dedicated to big spatial data as it deals with computational
complexity by limiting dataset size. It solves unsolved: how to borrow spatial
information from the neighbourhood to predict in new out-of-sample locations.
It uses a few smart tricks, which do not exist until now in the scientific litera-
ture: bootstrap, which is here resampling of subsets, to find most representative
observations in many trials; PAM (Partitioning Around Medoids) algorithm to
find the middle (most representative) model and to refer to mutual relations
between model’s coefficients; Voronoi polygons for data used in the best model
to create catchment areas for new points – we use them to substitute old point
with new out-of-sample location to run the prediction which uses information
from the basic model. It proves that by using only a part of the dataset for
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estimation, one gets a very good model, while estimation saves time.

1. Introduction

The key point in the geo-located data is the similarity in the neighbourhood
expressed as spatial autocorrelation and captured by spatial weights matrix
W (more in Appendix). Classical spatial econometrics uses W matrix with
contiguity criterion in modelling regional areal data and k nearest neighbours
W matrix for point data. This W matrix, being a core of spatial econometrics,
simultaneously is its main problem – due to being intractable in big data and
defined only for the observations used for model fitting. This generates two
severe problems for spatial econometrics on point data: 1) usage in the case
of big data and 2) predictions for new locations. As for now, alternatives for
W in big data are not satisfactory – parallel computing increases the speed
but does not solve the critical issue of memory; spatial machine learning is
still discussed (Kopczewska, 2021) as W is not easy to substitute; models on
spatially aggregated point data and polygon-based W erase the information from
the local neighbourhood and cut the local variability; kriging, which may deal
with out-of-sample smoothing of the target variable, needs inverting distance-
dependent large and dense covariance matrices, which limits its applications in
big data (Perdikaris et al., 2015); Matrix Exponential Spatial Specification can
work only with a single neighbour in classical spatial models (LeSage & Pace,
2007; Arbia, 2014). Neglecting spatial autocorrelation in geospatial data is
also dangerous as it mostly results in bias, inconsistency, overfitting of the non-
spatial model and its false predictions (e.g. Ibrahim & Bennett, 2014). Recent
advances include for big spatial data, primarily the storage solutions, and for
out-of-sample predictions, mostly the discussion on challenges (Jiang, 2018).

Spatial big data starts at the current edge of the computational capabilities
of W, which lies around 70.000 observations (Arbia et al., 2019), and for big-
ger datasets, one needs new methods. The real challenge is to estimate the
spatial econometric models using W and information from the neighbourhood
for big data - datasets of thousands or millions of geo-points, e.g. for real es-
tate valuation or business location. Currently, only super-computers can do
this task. And even if the current computational progress enables estimation
on larger datasets than before, one can easily imagine increasingly bigger tasks
that already may appear and will be too complicated again.

The feasibility of geo-data micro-econometric spatial models on the standard
machines can be achieved with a bootstrapping technique. Till now, bootstrap
was considered mainly as a tool supporting the small-sample data (e.g. Hall,
2013; Hesterberg, 2015), and the bootstrapping replications were expected to
discover the hidden population statistical properties. In general, bootstrap is
used mainly for smoothing (e.g. Davison et al. 2003), testing (e.g. Manly,
2006), confidence intervals (e.g. DiCiccio & Efron, 1996), internal validation of
models (Tran & Tran, 2016). In spatial analyses, bootstrap is used in the uncer-
tainty bands in functional kriging (Franco-Villoria & Ignaccolo, 2017), testing
the spatial non-stationarity in the Geographically Weighted Regression coeffi-
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cients (Harris et al., 2017), correlation functions (Loh, 2008), sampling under
known joint distribution (García-Soidán et al., 2014), testing Moran’s I (Jin &
Lee, 2015), discovering uncertainty of parameters (Uboldi et al., 2014, Dalposso
et al., 2019, Castillo-Páez et al., 2020). However, bootstrapping can be used
oppositely, shrinking big data size while preserving its statistical properties.
Predominantly, data are reduced by sampling in univariate statistical analyses,
and for the econometric purposes in the multivariate analyses by Lasso (Tibshi-
rani, 1996), bootstrap of the candidate parameters matrices (Ye & Weiss, 2003),
bolasso (Bach, 2008) or PCA (e.g. Rosipal et al., 2001) when cutting redundant
variables. However, bootstrapping can be an efficient tool in limiting the num-
ber of observations, alternative to the sampling. Within this developing stream,
one can find a proposal by Barbian and Assunção (2017) of spatial subsemble for
partial estimations in spatially structured subsets and aggregating the results
in the spatial analysis.

Bootstrapped regression, based on the sampling of smaller subsamples and repli-
cating the model estimations, is present for 30 years (since Freedman, 1981 and
Wu, 1986, and now as Hesterberg, 2015; Harris et al. 2017). It enables operating
on a much narrower scale while obtaining consistent, efficient and non-biased
estimates (e.g. Davison et al., 2003; Efron & Tibshirani, 1997). However, there
are still two challenging issues because of the spatiality of data. Firstly, when
sampling the observations, one samples also the location. Thus, there is no
unique spatial weights matrix W as each estimated model is based on its indi-
vidual W because of the different spatial composition of points. Secondly, the
forecasting possibilities for a new geo-point are limited as the new point is not
represented in W.

This paper proposes the solution to all three issues discussed above: i) com-
putational problems in big data, ii) lack of unique W when sampling, and iii)
difficult forecasting for out-of-sample data. The subsequent sections present
the method and its justification. The logic is as follows: the paper starts with
true estimates of coefficients and its errors on population (full dataset), which
becomes the reference for other solutions and enables the quality comparisons
(sec.2). Straightforward reduction of the dataset (sampling) as an alternative
would reduce computation time and lower the model quality but does not solve
the problem of out-of-sample prediction and unique W (sec.3). Bootstrapped
regression improves computational aspects and keeps the characteristics of full
sample estimates but requires deciding how many replications and observations
to use (sec.4). Having bootstrapped distributions of beta coefficients in multi-
variate regression, one cannot simply choose an average of each beta coefficient
individually due to interrelated values – a solution is to choose the most central
set of coefficients in this multi-dimensional setting. This is equivalent to finding
the most representative model by searching for the medoid model using Parti-
tioning Around Medoids (PAM) clustering (sec.5). Locations of observations
used in the most central model are treated as the best approximation of point-
pattern and used to derive a representative spatial weights matrix W. Flexible
prediction for any new point within analysed territory requires linking in pairs
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the existing in-sample points with new out-of-sample points. This is possible
by partitioning the area into disjoint subregions using tessellation and pairing
points that belong to the same tessellation tile (sec.6). Forecasting which inputs
to the model one new point and all-but-one old points gives well-fitted predic-
tions (sec.7). The proposed method is discussed (sec.8) and summarised (sec.9).
All stages are presented in Fig.1

Figure 1: Design of study

The paper’s novelty is in: a) using bootstrap to shrink the dataset size, which
is different from typical applications of bootstrap to small samples, b) selecting
the best bootstrap multivariate model with Partitioning Around Medoids algo-
rithm, c) substituting train data with test data in W for predictions based on
pairing design, d) pairing in-sample and out-of-sample locations by overlaying
new points on the tessellated surface with old points and assigning to underlying
tiles. All those innovations build complex approach to estimate spatial models
on big data and run predictions for out-of-sample data. This methodology is
novel in spatial econometrics, and it gives very stable and efficient results at the
low level of computational effort.
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1. Reference full-sample spatial econometric model

Let’s assume the dataset with more than n=37,000 geo-located point obser-
vations, which are static real business locations within a region (Fig.2). The
geo-referenced point-locations (x,y) are supplemented with a real business char-
acteristic (z) as an industry branch (agriculture agri, production prod, construc-
tion constr, service serv), employment size (empl), Euclidean distance to Lublin
core city (dist). The analysed dataset is the representative 10% sample of real
REGON register for the Lubelskie region in Poland in 2014. The profitability
(roa) (understood as Return on Assets) was generated assuming the premium
of 1,5% in the core city and normal distribution with given parameters within a
sector - N(2%, 0.045%2) in agriculture, N(3,5%, 0.045%2) in production, N(5%,
0.045%2) in construction and N(8%, 0.045%2) in service.

The research goal is to estimate and calibrate the model explaining the prof-
itability of a given firm (j) with its location and characteristics, including all
possible spatial information, and to forecast the profitability (z*) of a new en-
try firm in a given new location (x*,y*) for given industry, employment and
distance.

Figure 2: Locations of observations used in modelling

The paper considers four specifications of the same model. The first is a standard
linear model specification (estimated with Ordinary Least Squares, OLS):

roa𝑗 = 𝛽0 + 𝛽1 • empl𝑗 + 𝛽2 • prod𝑗 + 𝛽3 • constr𝑗 + 𝛽4 • serv𝑗 + 𝛽5 • dist𝑗 + 𝜀𝑗 (1)
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where j=1,2,…,n are observations in the dataset, roaj and distj are continuous
variables on the profitability and distance to the core city, emplj is a numeric
variable specifying the middle of the employment size class, prodj, constrj and
servj are the dummy variables differentiating the business sector from the agri-
culture (base level), while 𝜀𝑗 is error term.

The second, third and fourth specifications are spatial models: spatial error
model (SEM) (2), spatial autoregressive model (SAR) (3) and spatial Durbin
model (SDM) (4):

roa𝑗 = 𝛽0 + 𝛽1empl𝑗 + 𝛽2prod𝑗 +
𝛽3constr𝑗 + 𝛽4serv𝑗 + 𝛽5dist𝑗 + 𝜀𝑗
and 𝜀𝑗 = 𝜆𝑊𝜀𝑗 + 𝑢𝑗

(2)

roa𝑗 =
𝛽0 + �Wro𝑎𝑗 + 𝛽1empl𝑗 + 𝛽2prod𝑗 +
𝛽3constr𝑗 + 𝛽4serv𝑗 + 𝛽5dist𝑗 + 𝑢𝑗

(3)

roa𝑗 =
𝛽0 + �Wro𝑎𝑗 + 𝛽1empl𝑗 + 𝛽2prod𝑗 +
𝛽3constr𝑗 + 𝛽4serv𝑗 + 𝛽5dist𝑗+
+ 𝜃1𝑊empl𝑗 + 𝜃2𝑊prod𝑗 +
𝜃3𝑊constr𝑗+𝜃4𝑊 serv𝑗+𝜃5𝑊dist𝑗+𝑢𝑗

(4)

where 𝜀𝑗 is a spatially auto-correlated error term, decomposed to its spatial lag
�W𝜀𝑗 component and the iid random term 𝑢𝑗, �Wro𝑎𝑗 is autoregressive compo-
nent and �𝑊𝑋𝑗 are spatial lags of dependent variables X, and W is 37,000 x
37,000 spatial weights matrix using k=5 nearest neighbours (knn=5). Estima-
tion of models was run in R software (more in Appendix).

The estimation results show that in OLS model (eq.1) all variables are signif-
icant (*** for p-value<0.001) (Tab.1), goodness-of-fit is acceptable (R2=0.98,
AIC=43602). At the same time, the spatial autocorrelation of the error term
exists (Moran’s I standard deviate=316.91 using the knn=5 in W). Spatial mod-
els: SEM (eq.2), SAR (eq.3) and SDM (eq.4) with knn=5 W matrix were much
better fitted (with AICSEM=-3030.51, AICSAR=30491 and AICSDM=-3780.9 re-
spectively) than OLS and obtained significant spatial coefficients (rho 𝜌, lambda
𝜆, and theta �). There exists an upward bias in OLS coefficients of ca. 5% com-
pared to spatial models, while standard errors of OLS are almost doubled than
in SEM, SAR and SDM. Coefficients for prod, constr and serv are the premium
of profitability over the agriculture sector, taken as a base. The average ROA
for a basic sector - agriculture (𝜇ROA

agri =2%) added up with sectoral coefficients
(𝛽SEM

prod ≈ 1.5, 𝛽SEM
constr ≈ 3.0, 𝛽SEM

serv ≈ 6.0) sum up to the assumed average ROA
(𝜇ROA

prod=3.5%, 𝜇ROA
constr=5%, 𝜇ROA

serv =8%). Emp variable revealed instability which
has no importance for methods presented in a paper. For structural interpreta-
tion of a given factor’s impact on a dependent variable, one should use direct
and indirect impacts, estimated for the best-selected model.
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Table 1: Estimation results of OLS, SEM, SAR and SDM for a full
sample (37,000 obs)

models → variables ↓ OLS coefficient SEM coefficient SAR coefficient SDM coefficients (beta & theta)
intercept 2.577*** 0.0051 2.55*** 0.005 2.56*** 0.0095 2.623*** 0.044

empl 0.0003*** 0.000096 0.000031* 0.00011 0.00031*** 0.00011

prod 1.67*** 0.0117 1.67*** 0.0118 1.673*** 0.0118

constr 3.15*** 0.01013 3.15*** 0.0102 3.149*** 0.0102

serv 6.24*** 0.0049 6.25*** 0.0050 6.246*** 0.0050

dist -0.008*** 0.000069 -0.00957*** 0.00007 -0.0084*** 0.00070
lambda --- --- 0.85391*** --- --- --- --- ---
rho --- --- --- --- 0.126*** --- 0.83*** ---
AIC 41532 --- -30301.51 --- 30491.1 --- -37801.9 ---

There are a few remarks on the sample size Firstly, big data is not unequivocal
in terms of the size of the dataset, and it can be defined as ”data which exceed(s)
the capacity or capability of current or conventional methods and systems” (Ward
& Barker, 2013). Gandomi and Heider (2015) write about big data volume as
”multiple terabytes and petabytes”. However, in spatial estimation, most of the
routines stop at ca. n<70,000 spatial units when applied on standard computers
(see Arbia et al. 2019). Secondly, when testing the statistical solutions to
proxy the full sample, one needs an operationalisable dataset to compare the
subsample and full sample results. In the light of recent works by Arbia et
al. (2019), ca. 37,000 observations is a safe and substantial spatial dataset.
Thirdly, dealing with big data requires progress in the computational power of
computers and smart statistical solutions. With the flood of mass spatial data
(as mobile data, business locations, housing transactions, selling points etc.),
one can easily imagine the more extensive dataset, which is bigger than the
biggest operationalisable even for super-computers.

1. Simple sampling and computation time

Estimating the model on a full sample can be costly with regard to computa-
tional time, required computer memory and necessary effort for dataset collec-
tion. Sampling solutions understood as single estimation of a model on a subset
can give acceptable approximations of full-sample results at a much lower cost.
Subsample regression coefficients are expected to hold the full-sample estimates’
values, while the main difference appears in their standard errors (SE). The big
sample property of estimators saying that when expanding the size of the sample,
the accuracy of the estimation rises, and especially when doubling the sample,
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its variance decreases
√

2 times, is well-proven in the literature (e.g. Lenth,
2001). This rule can be expressed as equivalent to 10 • 𝑛−0.5 for n observations.
The efficiency of the variance estimator for the expanding window estimation
(or the inverted jack-knife), Effexp.window, with step s, for the observations from
1 to h�s taken from the total sample of n observations is:

Effexp.window = var�1∶(ℎ⋅𝑠)
var�1∶𝑛

(5)

where h is the number of steps, s is a length of the step, where h�s=n, var�1∶(ℎ⋅𝑠)
and var�1∶𝑛 are the variances of the estimator in a subsample and the full sample,
respectively. This allows for predicting the SE in a full sample, using a subsam-
ple estimate of SE. It shows how much one can cut the full sample to obtain
reasonable subsample results. The expanding window procedure, with the step
of the length of s=100 observations and h=1,2,3,…, 370 steps was applied on
the randomly resorted data in a full dataset. In this analysis model specification
was estimated 370 times on increasing dataset (100, 200, 300, …, 1000, …, 10000,
…, 37000 obs.).

Fig.3 illustrates beta coefficient and its SE for prod variable in OLS, SEM, SAR
and SDM. Beta coefficients for subsamples hold their central tendency towards
the full-sample estimate in all models, even if an over-bias of OLS compared with
spatial models is persistent. SE of coefficients were drawn twice: as empirical
SE - values of beta SE in specified models, and as theoretical SE - recalculated
beta SE using ”

√
2 rule” based on beta SE for 100 observations. Empirical and

theoretical values follow the same pattern what confirms the existence of the”
√

2
rule”. The efficiency of SE estimates Effexp.window at 10,000, 20,000, and 30,000
observations equals ca. 1.98, 1.36 and 1.12 respectively in all models (what
means that SE in a sample of 10.000 is ca. 2 times bigger than in full sample).
Thus, increasing the sample size may approximate the subsample SE to full-
sample SE, and only the subsample over 30,000 observations gives a relatively
slight increase in this efficiency.
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Figure 3: OLS, SEM, SAR and SDM estimation in the expanding
window: a) beta coefficient, b) empirical and theoretical standard
errors (SE)

Comparing the time cost of the calculations (Fig.4) shows that OLS estimation
takes from 0.002 sec for 100 obs. to 0.01 sec for 37,000 obs. and irregularities in
computation time result from machine RAM management. Spatial estimations
last much longer, from 3.8 sec for 1000 obs. to 40 sec for 37,000 obs. Com-
putation time increases linearly in OLS, while its expansion in spatial models
is multinomial quadratic. Spatial calculations last from 3,100 times (SAR) to
4,100 times (SDM) longer than OLS.

9



Figure 4: Computation time [in sec] in expanding data window: a)
for OLS, b) for SEM, SAR and SDM

The above analysis shows that spatial estimation on thousands of geo-located
observations is still very time consuming, if feasible at all, even when using opti-
mised routines. Computer scientists offer technical solutions: super-computers,
cloud service, parallel computations etc., to solve the technical problem of es-
timation. However, the massive inflow of individual spatial data causes bigger
data sets than currently served to become available; thus, technical problems
may remain unsolved. As in this paper, a statistical approach is to overcome, in
general, the obstacles of dealing with big spatial data. This is to underline that
simple sampling (in fact cutting the dataset) may not give satisfactory results
because of representativeness issue and have a limited possibility of using the
calibrated spatial model in forecasting for new geo-point, as it would result in
a new spatial weights matrix W, which could destroy the fine-tuned calibration.
There is a need for a smart solution to deal with computational problems in big
data, lack of unique W when sampling and difficulty of forecasting for out-of-
sample data to benefit from the information available. Thus the paper develops
a new methodological solution based on resampling, which is step-by-step tested
throughout the paper.

1. Challenges of bootstrapped spatial regression

The bootstrap’s original purpose was to support the estimation on a small sam-
ple when the limited availability of data was the main obstacle in getting rea-
sonable results. In big data, the availability of mass data redesigns bootstrap
motivations, which may become the way of limiting, not multiplying the data.
Before running the resampling procedure, which is to run many regressions on
different subsamples, one should understand how this design works to answer
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fundamental questions: how many iterations to use, what should be the size of
subsample, does the location of selected observations matter, are the estimates
of good quality. This Section clarifies those issues.

Following Fox (2015), the coefficient’s standard bootstrap error is the standard
deviation of the bootstrap coefficient replicates. Thus one can define the effi-
ciency Effboot of the bootstrapped estimation as:

Effboot = 𝑣𝑎𝑟(𝛽𝑖, 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝)
var�full sample

= 𝑓(𝑠, 𝑖) (6)

where s=1,2,…,S is the size of subsample in a bootstrap (number of observations
drawn from a full sample), i=1,2,…R is a number of the iterations (number of
replications of drawings), 𝑣𝑎𝑟(𝛽𝑖, 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝) is a variance of � estimate in an i-
iterated set and var�full sample is the known variance of � estimator derived for a
full sample or population.

There are at least three issues on the spatial sampling: i) the effective size of
the spatial sample; ii) the sampling design; iii) the number of replications and
the subsample’s size in the bootstrap. Even though the literature seems to be
rich, there is no clear answer to those issues.

The sample’s effective size was studied mostly from a non-bootstrap perspective
(e.g. Griffith & Zhang, 1999). Griffith (2008) builds a rule of thumb that
ca. n=400 observations may be sufficient in a spatial regression with a single
covariate. Chernick and LaBudde (2014), following Hall (1985) indicate, that
bootstrap can work for n=20 observations if there are i=2,000 replications.

The sampling design meets many recommendations. The literature usually ap-
plies parametric bootstrapping, residuals bootstrapping or observations boot-
strapping (e.g. Tran & Tran, 2016) as they differ in assumptions, advantages,
and disadvantages (Davison & Hinkley, 1997; Moulton & Zeger, 1991). For
spatial data, the spatial dimension is of great importance. Franco-Villoria and
Ignaccolo (2017) follow Lahiri (2003), that ”a bootstrap procedure needs to mimic
the data generating mechanism to reproduce the spatial dependence structure in
the bootstrap samples”, thus they recommend non-uniform sampling schemes.
This is contrary to Davison et al. (2003), who claim that ”The ordinary non-
parametric bootstrap uses uniform resampling from a data sample to mimic the
mechanism that originally produced that sample.” Alternatively, Griffith (2005)
proves that for the single-draw sampling designs in the case of spatial auto-
correlation, the hexagonal tessellation stratified sampling design performs the
best. Since Hall (1985) suggested the blocked bootstrap for spatial dependent
data, there is a discussion on the size of blocks (e.g. Hall et al.,1995; Nord-
man et al., 2007), shape of the blocks (e.g. Lahiri, 2003, Roberts et al., 2017),
if they should overlap (Kunsch, 1989, Carlstein, 1986) or comparisons are pre-
sented (Radovanov & Marcikić, 2014). For bias or variance estimation Hall et al.
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(1995) recommend 𝑛1/3 blocks. Chernick and LaBudde (2014, p.148), following
Lahiri (2003), indicate that ”bootstrap estimates under irregularly space grids
are consistent”. One popular method of selecting irregular non-overlapping par-
titions is k-means clustering of spatial coordinates (e.g. Russ & Brenning, 2010,
Schratz et al., 2019), which divides spatial points into spatially homogenous
k clusters and runs spatially stratified sampling from those clusters. Irregular
windows in bootstrap are also used by Kraamwinkel et al. (2018). This pa-
per applies k-means clusters for a stratified sampling of the subsample (Fig.5),
keeping a number of clusters between 50 and 100.

Figure 5: K-means non-overlapping clustering of points for stratified
sampling

Bootstrap replications and its subsample size are usually recommended as arbi-
trary. Harris et al. (2017) note that usually increasing the number of replica-
tions is easier than raising the sample size. They indicate that usually there are
i=999 replications, while in their study, because of the computational burden,
they use i=99, as the sampling design is simple. Escanciano and Jacho-Chávez
(2012), in bootstrapped regression, assume 300 replications, Hall et al. (1995)
take 200 replications, Efron and Tibshirani (1997) only 50 replications based on
the internal variance calculations, while Fox (2015) and Tran and Tran (2016)
apply 2,000 replications. Hesterberg (2015, p.380) insists on ”1000 bootstrap
samples for rough approximations, or 104 or more for better accuracy”.

In this paper we test the bootstrapped OLS regression efficiency, depending on
subsample size s and number of replications i, in a simulation on 37,000 observa-
tions. OLS models for a continuous dependent variable with m=5 explanatory
variables were estimated on the expanding by 1,000 number of observations,
starting with 1,000 (s=1,000, 2,000, 3,000, …, 37,000). For each s, i=2,000
replications were performed, sampled with replacement from 37,000 full sample.
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The distributions of the coefficients and the standard errors were derived by
sampling within 2,000 models a subsample i, which is equivalent to a number
of replications (i=100,200, 300, …, 2,000) (See Fig.6).

In bootstrapping the regression coefficients, �m are well-converging towards the
population parameter �m*, with the efficiency�1 for most of the scenarios (Fig.5d).
The variance of the estimators is almost independent of a number of iterations
(i on the x-axis), and strongly dependents on a size of a subsample (the conse-
quent lines and s on the y-axis) (Fig.5b). The regression coefficients’ bootstrap
variance is lower than the expected (theoretical) one from a single estimation as
in section 2 (Fig.5a) and reaches the efficiency ~ 1 at ca. 22,000 obs. For a big
sample (ca.30,000) it is lower by 90% than the theoretical one. The estimated
coefficients’ accuracy depends on sample size and symmetrically converges to-
wards the full-sample parameter (Fig.6d).

An efficient resampling design allows for avoiding the bias in the bootstrapped
OLS coefficients. The skewness of 𝛽𝑗 distributions was Skew=0±0.15, which
confirms no asymmetry in 𝛽𝑗 distributions, and consequently no bias. Also, a
symmetry of the upper and lower part of the boxplot (Fig.6c), as well as the
symmetric and centred distributions of betas for different sample sizes (Fig.6d),
confirm no bias in the estimation process.

Figure 6: Efficiency of the bootstrapped OLS regression

The above general analysis for OLS confirms that the bootstrap is an efficient
and convenient way to obtain the full-sample-like estimates at a low estimation
cost. The bootstrap models on a moderate-size sub-sample are achievable with
standard software and hardware and provide stable and high-quality results.
This analysis confirms that bootstrapped spatial models behave as non-spatial
ones (OLS). The comparison of the spatial and non-spatial models was run on
a subsamples of s=1,000, s=2,000, s=4,000 and s=8,000 observations boot-
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strapped i=500 times (Fig.7). Beta coefficient (Fig.7a) and spatial rho from
SDM (Fig.6c) are more precisely estimated with an increase of sample size,
and the standard error decreases by

√
2 when doubling the sample size (Fig.7b).

AIC, because of its dependence on sample size, cannot be used for setting proper
sample size, but its variance diminishes with the increase of sample size. This
confirms that the behaviour of bootstrapped coefficients and variances are simi-
lar in spatial and a-spatial models. One can confirm the above OLS conclusions
for spatial models that bootstrapping appears as an attractive way of approxi-
mating the estimation on a full sample. At the same time, data characteristics
are decisive for spatial and a-spatial specifications. The above shows that one
can consciously choose bootstrap parameters – the final model will use 500 iter-
ations (resamplings) of 8000 observations drawn randomly from the full sample.

Figure 7: Parameters of bootstrapped SDM: a) beta, b) standard
error, c) rho, d) AIC

1. Selection of the best model and best data representation

The bootstrapped regression estimation procedure with the parameters B(i,s,)
generates the i sets of the regression coefficients. Presented example runs i=500
bootstrapped models on s=8,000 observations. A model with a constant term,
estimated with m=5 explanatory variables in i=500 replications, gives a matrix
of size [i × (m+1+1)]=[500x7 ], while after inclusion of spatial parameters in
SDM [i × (m+m+2)]=[500x12]. All i scenarios (iterations, resamplings) are
estimated on the s-item subsamples of the randomly selected (but stored) ob-
servations. Selection of the best representation requires a multi-dimensional
methodology as the distributions of individual �m coefficients are not indepen-
dent of each other. Also, information on the location of observations that gave
the best model is necessary, as they will help to build W. This Section discusses
how to choose the best model and check its quality.
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This paper proposes a novel approach to choose the best model from many candi-
date bootstrap models – it uses Partitioning Around Medoids (PAM) algorithm
used in unsupervised learning. In general, the clustering methods as PAM are
designed to split the dataset into the most homogenous clusters with regard to
many variables analysed. The partitioning procedure assumes finding the best
combination(s) among the available ones to maximise the homogeneity within
the group and to maximise the heterogeneity between the groups. Analysed
points in PAM are multi-dimensional, and the applied distance metrics (e.g.
Euclidean or Manhattan) defines the joint relations between them. For a set
of bootstrap regression coefficients, a point is a set of coefficients from a single
model, while the calculated distances between the points compare the pairs of
models. To avoid the overflow of a single variable, the input data, and con-
sequently the coefficients, should be standardised. The quality of partitioning
(for c>1) is measured with silhouette or dissimilarity measures, computed for a
given distance metric. The result of partitioning is twofold: firstly, one gets the
id of the iteration set, which is the medoid of coefficients – the most typical set
of coefficients; and secondly, all iterations are assigned to a given cluster. More
details on PAM and silhouette in Appendix.

There are few possible number of clusters c. With c=1 medoids, all possible
observations are within the same cluster, while the best points representation
is single. With c=2 or more medoids, a double, triple or bigger set of ”the
best coefficients” is obtained. This can be interpreted as modelling in groups,
and then the differentiating criteria are to be found. However, it needs a solid
analysis of the significant differences among the groups. This method can also
sort out the outlier scenarios, especially those located on the edge of clusters.
The efficient estimation will support the c=1 partitioning, which simplifies the
procedure of finding the best (most representative) sampling combination 𝑓∗

𝑦 .
In fact, for c=1, the medoid model is the one with the least sum of (Euclidean)
distances to other models.

When assuming a single cluster only, there is a need to check the data’s clus-
tering tendency into more partitions. The Hopkins statistics tests if the data
is clusterable (H1) when h~0 (h<0.5). It compares the total distances between
the closest neighbours real pairs of points (𝑤𝑑

𝑗 ) and closest neighbours real point
and uniformly randomly distributed points 𝑢𝑑

𝑗 :

𝐻 = ∑𝑛
𝑗=1 𝑢𝑑

𝑗
∑𝑛

𝑗=1 𝑢𝑑
𝑗 +∑𝑛

𝑗=1 𝑤𝑑
𝑗

(7)

where ∑𝑛
𝑗=1 𝑢𝑑

𝑗 is the average distance to nearest neighbour between real point
and uniformly generated random point (with the same variance as the real data)
and ∑𝑛

𝑗=1 𝑤𝑑
𝑗 is the average distance to the nearest neighbour between the real

data. As the statistic is based on the randomly generated data, thus the values
of the statistics in iterations may differ. In the analysed example partitioning
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into one single cluster is the optimal division, which is confirmed with Hopkins
H statistics: HOLS=0.21, HSEM=0.18, HSAR=0.19 and HSDM=0.17.

For visualisation purposes, to see the medoid model’s selection, one needs two-
dimensional output, even when models are compared in i-dimensional space,
where i is the number of iterations, and the result of comparing i models is [i×i]
matrix). Multi-dimensional scaling (MDS) allows for dimension reduction from
[i× i] to [i×2]. It keeps the scale of original values - here, the multi-dimensional
Euclidean distance between pairs of the models (in fact, model coefficients) (see
Fig.8). The medoid scenario, located centrally in clusters on Fig.8, yield the
centred model coefficients.

Each point of scatterplot represents one (out of 500) model, medoid point (red)
is the most representative model. 2D representation proxies distances between
full set of regression coefficients in bootstrapped models.

Figure 8: 2D visualisation of multi-dimensional scaling of Euclidean
distance between beta coefficients in bootstrapped SDM model

One should note that the model with the lowest possible AIC or BIC is not a
representative model but an attractive outlier model. As the AIC and BIC are
sensitive to outliers and increase with the bootstrap sample size, they cannot
be used for deciding which sample size to use.

The quality of the bootstrapped model is measured in a typical way. Following
Escanciano and Jacho-Chávez (2012), the performance of the bootstrapping
estimators can be assessed with RAMSE (Root Average Mean Squared Error),
denoted as:

𝑅𝐴𝑀𝑆𝐸[𝑓𝑦] = √ 1
𝑖 ∑𝑅

𝑖=1 𝐴𝑀𝑆𝐸[𝑓 (𝑖)
𝑦 ], where AMSE [𝑓 (𝑖)

𝑦 ] = ∑𝑛
𝑗=1 [𝑓𝑖𝑦(𝑦𝑗)−𝑦𝑗]

2

𝑛 (8)
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where i is the number of replications i=1,2,…R, [𝑓𝑦] is the overall prediction

of the model, [𝑓 (𝑖)
𝑦 ] is the prediction of i-th replication, in particular 𝑓 𝑖𝑦(𝑦𝑗) is

the prediction of i-th replication for j-th observation, while 𝑦𝑗 is the value of
the dependent variable for j-th observation. In the analysed example, RAMSE
of the medoid model was significantly lower in spatial SDM and SEM models
(RAMSESEM=RAMSESDM=0.12) than in a-spatial models (RAMSEOLS=0.31)
and in spatial SAR model (RAMSESAR=0.27) (see Tab.3). This indicates the
substantially higher quality and better fit of the spatial models.

Tab.2&3 and Fig.9 show the details of estimation and comparison of medoid
models with average and full sample coefficients. Comparing the estimated
beta coefficients (Fig.9a) clearly shows the upward bias of 5%-10% in OLS and
relatively slight differences in betas between the full and medoid SEM, SDM and
SAR models. Bootstrapped (average and medoid) coefficients replicate well the
full-sample estimates. The coefficients and the standard errors of betas, differ
mainly for the constant term (variable 1), but not for the rest of the variables
(Fig.8a). Standard errors of estimates are as expected: the lowest in case of
medoid SDM and SEM, then all full models, and later for medoid OLS and SAR
(Fig.9b). All standard errors behave predictably and enable approximating the
full-sample error with the ”double size,

√
2 decrease in error” rule, while the most

representative middle models’ coefficients are as good as from the full models.
The medoid models’ efficiency is higher than the averaged models (columns 8-9
in Tab.2). Moran tests for the residuals’ spatial autocorrelation proved that
residuals from spatial models are random (Moran’s I=-0.085, p-value=1).

Values on X-axis represent consecutive variables, with 1 being the constant term.
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Figure 9: The comparison of the beta estimates in the OLS, SEM,
SAR and SDM models: a) beta coefficients, b) standard errors of
beta coefficients

The comparison of the medoid PAM-selected model with the full-sample and the
average results prove that the PAM algorithm selects the most typical medoid
representation, very similar to the average and full-sample results. The z-test for
equality of coefficients from a full-sample and PAM selected medoid bootstrap
regressions does not reject H0 about the equality, which means no bias (columns
1-3 in Tab.2). The value-added of the PAM-selected medoid model over the
averaged coefficients is that a) with PAM, one can replicate the subsample
observations that support this typical pattern and enable the further analysis
(tessellation), and b) that coefficients are considered jointly, not independently,
as in case of the average.

Those comparisons suggest that the bootstrapped spatial models, especially
SDM, replicate well the expected full-sample estimation using the limited sub-
sample only. This indicates that bootstrapping together with PAM procedures
are efficient tools to support the big data spatial econometrics. The bootstrap
estimates are as they were obtained from a full sample; their SE can be rescaled
by constant factor resulting from ”

√
2 rule”, while the computational effort is

incomparably lower and the spatial models are feasible. The obtained medoid
coefficients can be used to calibrate the econometric model and spatial weights
matrix.

1. Tessellation as a method of space calibration

The medoid combination of the regression coefficients selected with the PAM
algorithm above needs to be extended for a spatial dimension. The selected
observations, which were used in a medoid bootstrap model, are treated as the
best representation of the full sample, both regarding the values (z) as well
as in terms of a location (x,y). The issue here is about the representation of
spatial point distribution. By analogy to the econometric model’s calibration
by finding the best point estimates of regression coefficients, the calibration of
space is needed to obtain one and universal W necessary for a spatial estimation.

In the approach where the point data are aggregated within the polygons along
the administrative borders, the continuous polygonal representation of spatial
pattern exists but follows the aggregation and the MAUP problems. It also low-
ers the accuracy of spatial information. The sample representation of continuous
spatial data was developed well in geostatistics as a point pattern. There are
a few available methods as kriging or thin-spline etc. (e.g. Chun & Griffith,
2013). However, they are primarily single-dimensional and far from mimicking
the spatial weights matrix W.

This paper proposes using the Voronoi polygons (also called Dirichlet tessella-
tion or Thiessen Polygons) as a method of a discrete polygonal representation
of continuous spatial data based on a sample point data. In general, the tes-
sellation constructs the polygons around the points by delimiting the points
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in half of the distance between the points. The irregular shape tiles cover the
whole area of a region in a continuous and non-overlapping manner. Each tile
contains one point, and each point is assigned to one tile. For real geo-locations,
a list of the tessellation tiles may be shorter than a number of observations in
case of the overlapping locations. If locations of two points are the same, they
are assigned to a single and unique tile. Spatial weights matrix W in defining
the neighbourhood can accept the same neighbourhood information doubled in
rows for the overlapping points. Some solutions can be jittering of locations by
shifting location by a small value of epsilon.

The geo-locations of the observations that were used in the estimation of the
best Medoid model serve as the best representation of the spatial point pattern.
The tessellation transforms the point pattern into the continuous polygons set
(Fig.10). This natural tessellation replicates well the point pattern of underly-
ing location data. This approach to space delimitation and point data aggre-
gation does not suffer from the MAUP. Many studies from the last 40 years
(e.g. Sibson, 1980) confirm that tessellation is an attractive method for data
analysis because of its flexibility. Ahuja (1982) indicates the great potential of
the Voronoi polygons, which ”possess intuitively appealing characteristics, as
would be expected from the neighborhood of a point”, while Halls et al. (2001)
confirm the tessellation can be used efficiently ”in determining polygonal neigh-
bourhood relationships between point locations”. There is exhaustive literature
on the properties of the Dirichlet tessellation (e.g. Hinde & Miles, 1980; Du et
al., 1999), which generally sees mostly the favourable features of this method.

Figure 10: Voronoi tessellation of space for data underlying the
medoid combination of coefficients: a) for s=2,000 observations, b)
with new geo-locations (in red)

Recent developments started to link the tessellation to the bootstrap. Sec-
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chi et al. (2013) use the bootstrap and the tessellation to reduce the original
dataset and find the neighbourhood’s local representatives. Their approach is
statistically and computationally efficient, even if they use it in the context of
clustering the functional data, not spatial regression. More on tessellation in
bootstrapping in Appendix.

1. Forecasting for out-of-sample geo-located points

Spatial forecasting seems to have more challenges than available solutions. For
in-sample predictions (the same training and testing dataset) as well as for pre-
visions (the same spatial units, different values of variables), one can use the
well-known trend–signal–noise predictor (Cressie, 1993), which is suitable for re-
gional data only. For out-of-sample data (new locations, new values of variables)
Goulard et al. (2017) overviews the methods and propose the algorithms based
on kriging. Jiang (2018) similarly revises existing spatial predictions methods
for regional data and indicates challenges for other data types. Popular kriging
used for predictions in point patterns is not suitable for big data, and its fore-
cast, even in regression models, are based on smoothing of the surface of the
target variable. Zhu et al. (2018) propose using the Third Law of Geography,
which assumes that the similarity of characteristics of two locations is reflected
in a similarity of target variable at analysed points. The similarity is used as
a weight in the prediction of the target variable in a given point. When using
the spatial econometrics approach, the problem in forecasting with the spatial
micro-econometric model for the new location of the out-of-sample point (x*,y*),
is that it is not a part of the estimated W in a final model, while it must be
linked to this W. Simple recalculation of W in case of a new point added, would
decalibrate the model and potentially disturb the result, as the medoid combi-
nation would lose its properties of the best representation. Kriging, which is
often used, serves as a good approximating method, while it also has profound
limitations with regard to the sample size (van Stein, 2015). Thus, the alter-
native solution proposed here is to use the tessellation (Voronoi polygons) to
calibrate the space, assign new points to tiles via the ”overlying” procedure and,
consequently, link them to the already calibrated W (see Fig.10b).

An idea lies in the controlled imputation. In the analysed example, the final
W is 8,000 x 8,000 and tessellation tiles t were enumerated as observations.
Let’s assume that a new geo-point (xnew, ynew )=(x*,y*) was assigned to tile
no.17 (t17 out of t=8,000). As the new observation also contains the values
of the explanatory variables (z*), it can be imputed to the dataset in place of
observation no. 17, which automatically defines both a neighbourhood and a
place in W. With this replacement, the calibrated model can be easily used to
forecast the value of the dependent variable of a new point. The most important
feature of the spatial model – the characteristics of the neighbourhood – stay
unchanged. Thus the information necessary for computing the spatial lags is
available.

There are few methods of internal validation of models: simple validation by
splitting the population into learning and testing datasets; cross-validation (as
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the K-fold validation), where the dataset is divided into K subsets and in K
trials k-th subset is treated as a testing sample, while the other remaining
as learning samples; and bootstrap resampling, where the resampling param-
eters of the model are used in building their confidence intervals. Tran & Tran
(2016), following Kuhn and Johnson (2013), as well as Molinaro et al. (2005)
and Steyerberg et al. (2001, 2003), indicate that the bootstrap resampling is
more efficient than simple and cross-validation. This paper applies a complex
approach - validated bootstrap resampling: the regression coefficients selected
with PAM from a series of the bootstrapped models are in fact the central val-
ues in confidence intervals of the parameters. The observations which were used
in the final medoid model are treated as a learning sample, while the others
constitute ”out-of-sample” training sample, from which the test locations are
drawn.

The forecast quality can be measured with RAMSE (Root average mean squared
error), introduced in (6) as a measure of model quality. For out-of-sample
j observations from training data (x*,y*,z*), modified RAMSE compares the
forecasted ̂𝑦 with the observed y* as follows:

𝑅𝐴𝑀𝑆𝐸[𝑓∗𝑦 ] = √ ∑𝑛
𝑗=1 [𝑓∗𝑦(𝑦𝑗)−𝑦∗

𝑗]
2

𝑗 (9)

where 𝑓∗
𝑦 is the calibrated model - best model selected with PAM. In this ap-

proach, RAMSE includes only out-of-sample observations and their forecast,
while the observations used in calibration were omitted in calculating RAMSE.

For the analysed dataset, the quality check of four models calibrated on s=8,000
obs. was performed on out-of-sample j=100 obs. The new observations were
introduced to the calibrated model step-wise, one observation per check, to
keep as much original data in the model as possible. For each j, the respective
tessellation tail of point location was indicated, and original data for this tile
were removed. Thus, the theoretical values ̂𝑦𝑗 were calculated with n-1 original
observations from in-sample dataset (x,y,z) and single out-of-sample observation
(x*,y*,z*).

The goodness-of-fit of the models itself on training data is significantly better
in SDM and SEM models (RAMSESEM=RAMSESDM=0.12) and a few times
lower than in OLS (RAMSEOLS=0.31) and in SAR (RAMSESAR=0.27). In the
forecasts for out-of-sample data, RAMSESAR=0.508 and RAMSESDM=0.506
outperform RAMSEOLS=0.527 and RAMSESEM=0.542. For the dependent vari-
able roa ranged [1,10], RAMSESAR of ca.0.5 obtained in the bootstrap models
is an attractive result - on average 5% error of forecast.

This suggests that bootstrapped SDM model performed the best in terms of
RAMSE for model and forecasts, with all variables significant and lowest stan-
dard errors of estimates. Bootstrapped SDM is also far better than boot-
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strapped OLS and slightly better than other spatial bootstrapped models. Full
sample SDM gives similar RAMSE as bootstrapped SDM, both for a model
(RAMSESDM full=0.137) as well as for j=100 forecasts (RAMSESDM full=0.555).

This indicates two critical facts. Firstly, spatial estimation matters for the
quality of fit and spatial information reflected in the spatial weights matrix.
The value-added of using spatial models lies in the additional information on
spillovers that one can get, controlling for spatial autocorrelation and using the
specific neighbourhood information. Secondly, the proposed methodology of
calibrated tessellation and using a medoid model from bootstrapped sampled
alternatives is efficient and reliable for forecasting out-of-sample data at a rela-
tively low technical cost. Tessellation can be efficiently calculated for thousands
of points (Fig.10b).

1. Discussion of results

This novel multistep estimation procedure, designed for dealing with forecast-
ing for out-of-sample with spatial big-data models, is a mixture of traditional
econometrics, bootstrapping and machine learning. All its elements are well-
positioned in the literature. However, this combination was never proposed.
Treating 37,000 observations as big data has an only illustrative purpose: to
compare procedure and full-sample results and reliably asses the proposed so-
lution. All tests presented above confirm the power of the bootstrap approach
in improving estimates. Presented OLS, SAR, SEM and SDM models were
selected arbitrarily as a case study, and this procedure works for any model.

The paper outlines the idea of the approach and shows its high quality. When
applying the solution to other datasets, the researcher has to choose bootstrap-
ping parameters: the number of observations taken as a subsample, the number
of bootstrap iterations, and the number of k-means clusters to sample data from
irregular shapes. These decisions are the function of available computing capac-
ity and time. The analysis above showed that doubling the dataset doubles the
computation time (Fig.4b). Using standard PC with Windows and R, simu-
lation of a single spatial model on 5,000 observations, with five variables and
knn=5 W matrix iterated 500 times takes ca. 500(times)*2.5(sec)=20 minutes.
The recommended solution in this paper is to choose at least ca.5,000 obser-
vations and 500 replications. The bigger the subset, the more precise results,
but obtained in a longer time. Clustering procedures with k-means or PAM,
or CLARA may seem efficient for big data. However, they are sensitive to a
high number of clusters. The recommendation is to apply not more than 50-100
clusters.

Thus, the user of this multistep procedure is to: i) prepare the data, ii) decide
about the bootstrapping parameters (min. s=5000 observations and i=500 it-
erations), iii) divide sample into training (e.g. 90%) and test (e.g. 10%) data,
iv) cluster with k-means (eg. k=100) the geo-coordinates to run sampling of
locations from irregular shapes, v) estimate in a loop i times the desired model
(for a given variable specification and type of model), vi) select with PAM the
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best medoid model out of a set of i models, vii) tessellate the space with ob-
servations from best PAM-selected model, viii) overlay the new out-of-sample
points on the tessellated surface to assign points to tiles, ix) run the controlled
imputation in test dataset by replacing single observation data with new point
data, x) forecast value with n-1 old records and 1 new record. The estimates
obtained in this way are non-biased, efficient and guarantee low RAMSE.

This study is within the framework of spatial autocorrelation solutions, which in
taxonomy by Jiang (2018) is next to spatial heterogeneity, limited ground truth,
and multiple spatial scales and resolutions. As Jiang (2018) shown, there is a
customary attitude to use spatial econometrics to areal data and geostatistics
(as kriging) or GWR to point data. The trend of using spatial econometrics
to point data is increasing (Arbia et al., 2021; Abruzzo et al., 2021; Piacentino
et al., 2021; Santi et al., 2021), but due to discussed in paper limitations, not
exploited. The presented solution may push those studies forward. An impor-
tant aspect are the alternative solutions to the proposed one. For problems
of spatial heterogeneity, limited ground truth, and multiple spatial scales and
resolutions innovations slowly appear – as modifications of kriging and GWR,
decomposition-based ensemble, multi-task learning, semi-supervised learning,
active learning etc. However, as shown in Jiang (2018) there are more chal-
lenges than ready-to-use solutions, especially for spatio-temporal models, for
anisotriopic spatial dependency, and for big data. Spatial predictions need deep-
ened interest and bringing new concepts which enable bypassing the obstacles
identified until now.

1. Conclusions

Paper offers few methodological novelties and interesting solutions to economet-
ric problems. Firstly, it develops complex approach in spatial microeconomet-
ric modelling, solving computational efficiency problems in case of big spatial
data, lack of unique spatial weights matrix W when sampling, and difficulty of
forecasting for out-of-sample data. Secondly, it introduces a new method for
forecasting in the spatial models for the out-of-sample geo-located points by link-
ing in pairs train and test location to substitute in W. Pairing uses tessellated
surface to represent the generalised point pattern with Voronoi polygons and
assigns new points by overlaying them on tessellation tiles. Third, it uses the
bootstrap technique to shrink the dataset’s size and find the most representative
combination of sub-sample observations. Fourth, it introduces the double cal-
ibration concept in spatial models, calibrating both the regression coefficients
in SAR, SEM and SDM, and the spatial weights matrix W. Fifth, it applies
the Partitioning Around Medoids (PAM) algorithm in a joint analysis of the
bootstrap regression coefficients to select the jointly most middle scenario and
underlying observations – treated as the best representation of coefficients and
spatial sampling.

The proposed solution provides a stable, efficient and feasible approach to esti-
mate and calibrate typical (SAR, SEM and SDM) spatial econometric models
on geo-referenced big data and to forecast for the new out-of-sample locations.
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It significantly increases the computational efficiency of modelling. Bootstrap
estimations yield accurate estimates with highly efficient errors and precise fore-
casts. This method can find its applications in all micro-econometric problems,
especially in models for individual business locations and in real estate valua-
tion models for datasets of hundreds of thousands or more of observations. In
the case of large data sets or big data, the estimation on the whole dataset,
even when feasible, is usually technically very demanding. Thus the bootstrap
technique facilitates and simplifies the calculations without losing the accuracy.

Supplementary material: Information on: A) Spatial weights matrix, B)
The R software in estimation of spatial models, C) Clustering with Partitioning
Around Medoids (PAM) algorithm, D) Tesselation (Voronoi polygons), refer-
ences

Funding: This is a part of a project on ”Spatial econometric models with fixed
and changing structure of neighbourhood. Applications to real estate valuation
and business location” financed by National Science Center Poland (Krakow,
Poland) [OPUS 12 call, grant number UMO-2016/23/B/HS4/02363].

Data Availability: The dataset and R codes to replicate the whole analysis
are available at https://github.com/kkopczewska/bootstrapping.
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Table 2: Results of bootstrapped B(s=8,000 and i=500) OLS, SEM,
SAR and SDM regressions

B(i=500
iter,
s=8,000
obs)

modelCoefficient
in
the
sin-
gle
medoid
model
–
boot-
strap
ALL
SIG-
NIF

Average
co-
ef-
fi-
cient
from
mod-
els
–
boot-
strap
ALL
SIG-
NIF

Coefficient
in
the
full-
sample
model
ALL
SIG-
NIF

std.error
in
the
medoid
single
model
-
boot-
strap

average
std.error
from
mod-
els
-
boot-
strap

Std.dev
of
beta
in
boot-
strapped
mod-
els

Std.error
in
the
full-
sample
model

efficiency
ra-
tio
of
the
sin-
gle
medoid
model

efficiency
ra-
tio
of
the
av-
er-
age
single
model

efficiency
ra-
tio
of
the
boot-
strapped
mod-
els

(1) (2) (3) (4) (5) (6) (7) (8)=(4)/(7)(9)=(5)/(7)(10)=(6)/(7)
Intercept
Em-
ploy-
ment
Pro-
duc-
tion
Con-
struc-
tion
Ser-
vice
Dis-
tance

OLS 0.00009
1.71
3.12
6.27
-
0.008

0.0003
1.68
3.14
6.25
-
0.008

0.0003
1.67
3.15
6.24
-
0.008

0.0003
0.02
0.02
0.009
0.0001

0.0002
0.02
0.02
0.009
0.0001

0.0003
0.026
0.021
0.01
0.0002

0.0001
0.012
0.010
0.005
0.00007

3.0
1.9
1.9
1.9
1.9

2.0
1.9
1.9
1.9
1.9

2.7
2.2
2.1
2.0
2.4
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B(i=500
iter,
s=8,000
obs)

modelCoefficient
in
the
sin-
gle
medoid
model
–
boot-
strap
ALL
SIG-
NIF

Average
co-
ef-
fi-
cient
from
mod-
els
–
boot-
strap
ALL
SIG-
NIF

Coefficient
in
the
full-
sample
model
ALL
SIG-
NIF

std.error
in
the
medoid
single
model
-
boot-
strap

average
std.error
from
mod-
els
-
boot-
strap

Std.dev
of
beta
in
boot-
strapped
mod-
els

Std.error
in
the
full-
sample
model

efficiency
ra-
tio
of
the
sin-
gle
medoid
model

efficiency
ra-
tio
of
the
av-
er-
age
single
model

efficiency
ra-
tio
of
the
boot-
strapped
mod-
els

Intercept
Em-
ploy-
ment
Pro-
duc-
tion
Con-
struc-
tion
Ser-
vice
Dis-
tance

SEM 0.0002
1.50
2.99
6.00
-
0.009

0.00002
1.51
3.00
6.007
-
0.009

0.0003
1.67
3.15
6.25
-
0.008

0.0001
0.007
0.006
0.003
0.0004

0.00007
0.007
0.006
0.003
0.0004

0.00009
0.009
0.008
0.004
0.0003

0.0001
0.01
0.01
0.005
0.00007

0.97
0.63
0.64
0.74
6.75

0.63
0.62
0.62
0.71
6.82

0.84
0.84
0.80
0.86
5.15

Intercept
Em-
ploy-
ment
Pro-
duc-
tion
Con-
struc-
tion
Ser-
vice
Dis-
tance

SAR 0.0001
1.53
2.97
6.02
-
0.006

0.0002
1.52
2.99
6.01
-
0.006

0.0003
1.67
3.15
6.24
-
0.008

0.0003
0.019
0.016
0.009
0.0001

0.0003
0.019
0.017
0.009
0.0001

0.0002
0.023
0.018
0.007
0.0002

0.0001
0.01
0.01
0.005
0.00007

2.75
1.60
1.63
1.83
1.71

3.40
1.66
1.65
1.84
1.76

1.97
1.92
1.76
1.42
2.44
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B(i=500
iter,
s=8,000
obs)

modelCoefficient
in
the
sin-
gle
medoid
model
–
boot-
strap
ALL
SIG-
NIF

Average
co-
ef-
fi-
cient
from
mod-
els
–
boot-
strap
ALL
SIG-
NIF

Coefficient
in
the
full-
sample
model
ALL
SIG-
NIF

std.error
in
the
medoid
single
model
-
boot-
strap

average
std.error
from
mod-
els
-
boot-
strap

Std.dev
of
beta
in
boot-
strapped
mod-
els

Std.error
in
the
full-
sample
model

efficiency
ra-
tio
of
the
sin-
gle
medoid
model

efficiency
ra-
tio
of
the
av-
er-
age
single
model

efficiency
ra-
tio
of
the
boot-
strapped
mod-
els

Intercept
Em-
ploy-
ment
Pro-
duc-
tion
Con-
struc-
tion
Ser-
vice
Dis-
tance

SDM 0.0001/-
0.0005
1.51
/ -
1.30
2.99
/ -
2.65
6.01
/ -
5.33
-
0.01
/
0.01

0.00004/0.0001
1.51
/ -
1.33
3.00
/ -
2.69
6.01
/ -
5.38
-
0.01
/
0.01

0.0003/
-
0.0001
1.67
/
0.02
3.15
/
0.06
6.24
/
0.14
-
0.008
/-
0.0002

0.0001/0.0002
0.008/0.02
0.006/0.02
0.003/0.02
0.001/0.001

0.0001/0.0002
0.007/0.02
0.006/0.02
0.003/0.02
0.001/0.001

0.00009/0.0002
0.009/0.02
0.008/0.02
0.004/0.04
0.001/0.001

0.0001/0.0005
0.01/0.08
0.01/0.05
0.005/0.1
0.00007/0.0002

0.99/0.53
0.65/0.22
0.66/0.33
0.74/0.23
15.1/4.40

0.99/0.53
0.65/0.22
0.65/0.32
0.71/0.22
14.5/4.23

0.8/0.39
0.8/0.28
0.76/0.47
0.86/0.44
23.8/6.75

General remark: in SDM models values for � / �, all variables listed in a table
were significant at �=0.01.

Columns: (1) values of coefficients in selected model; (2) the average coefficient
of all bootstrapped models; (3) values of coefficients in full-sample model; (4)
standard errors of beta coefficients in selected model; (5) the average standard
error of all bootstrapped models; (6) the standard deviation of the bootstrap
coefficient replicates; (7) standard error at coefficient in full-sample model; (8)
std.error in medoid model compared to the standard error of coefficients for the
OLS model on a full sample; (9) std.error of average model compared to the
standard error of coefficients for the OLS model on a full sample; (10) std.error
in bootstrap model compared to the standard error of coefficients for the OLS
model on a full sample
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Source: Own calculations

Table 3: Parameters of bootstrapped B(s=8,000 and i=500) OLS,
SEM, SAR and SDM regressions

Parameters
of
estimation

OLS SEM SAR SDM

AIC in
medoid
model
Average AIC
RAMSE in
medoid
model
RAMSE of
forecast
(j=100 obs)
Spatial
parameter in
medoid
model
Average
spatial
parameter in
bootstrapped
models
Spatial
parameter in
full sample
model
Computation
time of
average
model (sec)
Computation
time (all 500
models) (sec)

7893
0.314
0.527
---
---
---
0.0025
1.28

-7660
0.124
0.542
Lambda=0.915***
Lambda=0.919***
Lambda=0.921***
2.14
1072

5252
0.274
0.508
Rho=0.127***
Rho=0.124***
Rho=0.126***
1.41
705

-7789
0.123
0.506
Rho=0.899***
Rho=0.905***
Rho=0.906***
2.85
1423

Source: Own calculations

SUPPLEMENTARY MATERIAL

A Spatial weights matrix

Spatial weights matrix W for n observations is n x n matrix. It includes neigh-
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bourhood information (1 if two observations are neighbours, and 0 if not) stan-
dardised by a total number of neighbours of a given observation. For the conti-
guity criterion, the neighbourhood is to share a common border, for k nearest
neighbours, it is to belong to a group of k observations with the shortest distance.
The inverse distance matrix assumes that all other observations are neighbours,
and the strength of relations is the inverse distance between observations.

Spatial weights matrix W is the crucial and sensitive element of spatial estima-
tion. The literature is not unequivocal about W selection, with studies being
indifferent on W selection (e.g. LeSage & Pace, 2014) as well as insisting on the
importance of W because of the potential bias of the coefficients or the direct
and indirect impacts (e.g., Lee & Yu, 2012). Aside from the estimation quality,
there is an issue of computational feasibility. The operational requirements of
big point geo-located data requirements fairly limit the possibility of using the
inverse squared distance W for all-to-all units, thus leaving the selection area
mostly to k-neighbours W. Contiguity W matrix is typically used for regional
data and not considered for point data due to no border. This paper in all
estimations uses knn=5 nearest neighbours spatial weights matrix W, made
symmetric upward. Only one matrix is being used to limit the degree of com-
plexity and concentrate on the paper’s central issue. The selection of the matrix
has no impact on the conclusions in this paper.

B The R software in estimation of spatial models

All estimations were programmed and run in R software and on standard PC
computer, what is to express the availability of the models for average applied
researchers. R software was used in estimation with packages spdep (Bivand &
Piras, 2015), sp (Bivand et.al, 2013), rgdal (Bivand et al., 2017), cluster (Maech-
ler et. al, 2017), doBy (Hojsgaard & Halekoh, 2016), spatstat (Baddeley et al.,
2015). Spatial estimation in R can be speed up by using planar, non-spherical
coordinates (option lonlat=NULL in knearneigh() function) and an alternative
sparse matrix decomposition approach (option method=”LU” in errorsarlm()
function). More on coding techniques in spatial analysis can be found in a book
by Kopczewska (2020).

C Clustering with Partitioning Around Medoids (PAM) algorithm

PAM algorithm clusters data around medoids which are the real points from
the dataset. In general, there are two phases of PAM: first one, to select initial
medoids and to calculate the cost function (BUILD) and the second one, to
change medoids for other and to check the improvements (decrease) in the cost
function (SWAP). The goal is to minimise the overall dissimilarity, measured
with distance (e.g.Euclidean, Manhattan), between the representatives of each
cluster and its members. The number of the clusters is assumed apriori. The
cost function sums the distances between each point and its closest medoid. For
two points 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛) the Euclidean
distance is calculated as ∑𝑛

𝑖=1 (𝑥𝑖 − 𝑦𝑖)
2 and Manhattan distance is calculated

as ∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖|. PAM is a twin procedure to k-means, but the most important
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difference is that k-means creates the centres of clusters not using real data but
simply with any available values which optimise the function, while PAM selects
out of existing scenarios. Thus, with k-means one cannot get the underlying
set of observations, which is necessary to build spatial weights matrix W and
tessellation procedure.

For quality check of clustering, most often, one uses the silhouette statistic. It
can validate the consistency within the clusters. The individual silhouette si
statistics (called also scaled individual separations) is expressed as 𝑠𝑖 = (𝑏𝑖 −
𝑎𝑖)/𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖), where ai is an average distance to all other objects in the cluster,
bi is a minimum of the average distance to other clusters (cluster by cluster).
The si statistics is limited s�[-1,1]. Negative si is undesirable, as it means that
ai>bi, so the other clusters are closer than ”our” cluster. Oppositely, positive si
is desirable. The best is si~1, which appears when ai~0, which means that the
distance in ”our” cluster is heavily reduced. The global silhouette s is expressed
as the arithmetic average of individual silhouette statistics si.

There are few potential alternatives for PAM. One is CLARA - big data equiv-
alent of PAM, which applies sampling to increase the computational efficiency
(while PAM operates iteratively on the whole dataset). However, the matrix of
regression coefficients in this case is not big data; thus, PAM is sufficient. The
other alternative is a multi-distribution joint copula function. This approach,
however, requires advanced multi-dimensional optimisation to detect a kind of
”optimum” for this surface, and the literature overview suggests it still needs
development to act efficiently in this kind of application. The general remark
is that unsupervised learning is still rarely linked to regression results, even if
opposite applications appear (Pan et al., 2013). PAM algorithm, because of the
random initial solution in some complex scenarios may fail (Bernábe-Loranca
et al., 2014), however here, the homogeneity of input data prevents clustering
problems.

D Tesselation (Voronoi polygons)

Voronoi polygons split the surface completely into non-overlapping tiles. As
they are based on lines located halfway between points, they naturally follow
the point pattern. The agglomeration of the points significantly increases the
variance of the areas of tiles by decreasing the size of tiles in dense areas, and
oppositely, enlarging tiles in peripheries. Thus, the tiles’ size is inversely corre-
lated with the probability of finding the observation in a given location. Also,
the sample size selected in the bootstrapping procedure is reflected in the num-
ber of tiles. The more observations (and consequently tiles) in the regression
model, the shorter the distance to the next neighbourhood and the more spa-
tially integrated tiles.

The presented solution uses tessellation as a method of calibration of space.
However, tessellation appears also in literature in connection to bootstrap. Her-
rera et al. (2013) represent the space with the continuous and non-overlapping
blocks for spatial block bootstrapping (SBB). However, those blocks are the set
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of n observations (not an individual one as in tessellation), formed around the
arbitrarily defined fixed points and following the rule that each observation is
assigned to the nearest point to form an n-long block. Herrera et al. (2013)
use SBB and resampling to test the inter-independence of the spatial processes.
They observe that the bootstrapped spatial ordering mismatches compared to
the original distributions are negligible, and SBB represents the spatial struc-
ture well. This supports this paper’s approach that Dirichlet tessellation around
the points that were the observations in medoid-coefficients regression can be
a robust subsample approximation of a full-sample point pattern. Most recent
studies (Righetto et al., 2020) also link mesh (grid, tessellation) with estimation
properties, while these studies are in their initial phase.
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