Characterizing sub-core hysteretic relative permeability and capillary pressure for accurate imbibition coreflood modeling

Avinoam Rabinovich¹ and Evans Anto-Darkwah¹

¹Tel Aviv University

November 26, 2022

Abstract

Using x-ray tomography in coreflooding experiments allows to characterize the sub-core, mm-scale, multiphase flow properties such as permeability, porosity, relative permeability and capillary pressure. This has been studied previously for CO2-brine drainage experiments and a procedure has been developed for sub-core property estimation, showing that their implementation in numerical models leads to accurate predictions of experimental measurements, such as core saturation distribution. Much less work has been conducted regarding CO2-brine imbibition modeling. In this work we characterize hysteretic sub-core properties using experimental data of CO2-brine imbibition coreflooding conducted on two core samples. We adopt the approach of [1] for sub-core capillary pressure modeling and that of [2] for relative permeability modeling, however, we find that these are not sufficient for accurate modeling of saturation distribution within the core. We improve the models by considering a unique turning point and Land trapping coefficient for each mm-scale grid block in our model and also by calculating new imbibition characteristic relative permeability curves based on a procedure developed in [3]. Results show improvements in matching experimental data. [1] R. Pini, and S.M. Benson. "Capillary pressure heterogeneity and hysteresis for the supercritical CO2/water system in a sandstone." Advances in Water Resources 108 (2017): 277-292. [2] O. Dury, U. Fischer, and R. Schulin. "A comparison of relative nonwetting-phase permeability models." Water Resources Research 35.5 (1999): 1481-1493. [3] E. Anto-Darkwah, S.M. Benson, and A. Rabinovich. "An improved procedure for sub-core property characterization using data from multiple coreflooding experiments." International Journal of Greenhouse Gas Control 105 (2021): 103226.

Characterizing sub-core hysteretic relative permeability and capillary pressure for accurate imbibition coreflood modeling

Evans Anto-Darkwah and Avinoam Rabinovich

School of Mechanical Engineering, Tel Aviv University-Israel

Summary

- Drainage and imbibition coreflooding experiments were conducted on two core samples along with X-ray CT imaging resulting in detailed sub-core saturation distributions.
- Previous work estimated drainage relative permeability (k_r), capillary pressure (P_c) and 3D permeability distribution (k).
- In this work we characterize hysteretic sub-core k_r and P_c in order to accurately model imbibition coreflooding.
- We first adopt the methods of Pini and Benson (2017) for sub-core capillary pressure modeling and that of Dury et al. (1999) for relative permeability modeling, however, we find that these are not sufficient for accurate modeling of core saturation distribution.
- The models are improved using unique Land trapping coefficients for each mm-scale grid block in our model and also by calculating new imbibition characteristic relative permeability curves based on a procedure developed in Anto-Darkwah et al. (2020).
- Results show improvements in matching experimental data.

Experimental Data

- Corefloods were conducted at the Benson Lab in Stanford Univ.
- For drainage, P_c^D is obtained by MICP and fitted by:

$$P_c^D(S_w) = P_e \cdot (\tilde{S}_w)^{-1/\lambda}, \quad \tilde{S}_w = (S_w - S_{wi})/(1 - S_{wi}), \quad \tilde{S}_{w,m} = 1 - \tilde{S}_{nw,m}$$

Imbibition P_c^I is modeled by: $P_c^I(S_w) = P_{c,i} \cdot (\tilde{S}_{w,m}^{-1/\lambda} - 1)$

$$\tilde{S}_{nw,m} = \frac{1}{2} \cdot \left[(\tilde{S}_{nw} - \tilde{S}_{nw,r}) + \sqrt{(\tilde{S}_{nw} - \tilde{S}_{nw,r})^2 + \frac{4}{C_L} (\tilde{S}_{nw} - \tilde{S}_{nw,r})} \right], \quad C_L = \frac{1}{\langle S_{nw,r} \rangle} - \frac{1}{\langle S_{nw,r} \rangle}$$

 C_L - global land trapping coefficient - drainage and imbibition entry pressures

 $P_{c,i} = P_e \cdot (1 - \tilde{S}_{w,i}^{-1/\lambda})^{-1}$

nw,r - turning point and residual saturations

A, B and C are fitting parameters obtained from simultaneous fitting of $k_{rco_2}^D$, $k_{rco_2}^I$ curves

Rock	λ	Α	В	С	CL	n _w	P _e (kPa)	S_{nw,i} (Global)	S _{nw,r} (Global)
Bent	1.35	1.78	0.329	1.06	1.236	3.79	3.14	0.561	0.331
Shezaf	0.35	0.76	0.001	1.19	1.496	9.10	3.89	0.411	0.254

Permeability estimation

Permeability distributions k(x, y, z) were previously obtained from drainage experiments (Anto-Darkwah et al. 2020)

Sub-core scale imbibition $k_{rco}^{b,I}$, $P_c^{b,I}$ curves

- We used the previous equations for $k_{rco_2}^I$, P_c^I however, grid block values: C_L^b , $\tilde{S}_{nw,r}^b$, are used as opposed to global values Grid block land coefficients were calculated as: $C_L^b = \frac{1}{S_{nw,r}^b} \frac{1}{S_{nw,r}^b}$

Imbibition characteristic K_{ri}^{char} curves

 $k_{rco_2}^{I,char}(\overline{S}_w^b)$ curves changes with each grid block

 A^{char} , B^{char} , C^{char} , n_w^{char} are optimized so core effective reliperm matches the experimental measured values

Rock	Achar	Bchar	Cchar	n _w char
Bent	1.792	0.319	0.992	3.70
Shezaf	0.775	0.049	1.238	7.75

Results

TEL AVIV אוניברסיטת

UNIVERSITY תלאביב

• Flow simulations are conducted with the new sub-core scale $k_{ri}^{I,char}$, $P_c^{I,char}$ as input

Bentheimer saturation comparisons

Shezaf saturation comparisons

Relative permeability comparisons

