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Abstract

Improving the estimation of COg2 exchange between the atmosphere and terrestrial ecosystems is critical to reducing the large
uncertainty in the global carbon budget. Large amounts of the atmospheric CO2 assimilated by plants return to the atmosphere
by ecosystem respiration (Reco), including plant autotrophic respiration (Ra) and soil microbial heterotrophic respiration (Rh).
However, Ra and Rh are challenging to be estimated at large regional scales because of the limited understanding of the complex
interactions among physical, chemical, and biological processes and the resulting high spatio-temporal dynamics. Traditional
approaches for estimating Reco including process-based (PB) models are limited by human knowledge resulting in limited
accuracy and efficiency. Accumulation of the in situ observation of net ecosystem exchange (NEE), weather, and soil, and
satellite data of GPP, LAI and soil moisture make it possible for applying data driven machine learning (ML) approaches. But
the ML model approach has disadvantages of omission of domain knowledge and lack of interpretability. Here we propose a
novel knowledge guided machine learning (KGML) method for predicting daily Ra and Rh in the US crop fields. With Gated
Recurrent Unit (GRU) as the basis, we develop the KGML models constructing the hierarchical structure of ML with a mass
balance constraint. The KGML models were pre-trained using synthetic data generated by an advanced agroecosystem model,
ecosys, and re-trained with real-world FLUXNET observation data. We extrapolate the best KGML model to crop fields over
the US with the help of satellite data, reanalysis climate forcings, and soil database to reveal the spatio-temporal variations and
key controlling factors. We believe this study advances the interpretable machine learning concept for carbon cycle estimation

and will shed light on many other process-based biogeochemistry research.
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Accurate estimation of carbon budgets is vital to assessing the climate change mitigation

regional carbon budgets over cropland dominates the landscape such as the U.S. Midwest. 2!

However, there is still no reliable product on cropland carbon budget with high spatial and 2|

temporal resolutions over the U.S. Midwest.
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Empirical studies use flux tower observations to quantify different components of cropland | B
carbon budget at local scale, such as net ecosystem exchange (NEE), but it is difficult to scale a | | » .
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capturing this opportunity requires going beyond the ML limitations, including limited _..2020 (Reco)
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local observations up to regional scales.

Although there is an increasing interest in leveraging recent advances in machine learning,

generalizability to out-of-sample scenarios, demand for massive training data, and low
interpretability due to the “black-box” use of ML
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To fill this gap, we used the knowledge-based artificial intelligence to integrated the advanced 81 ‘ ' ' 42

ecosystem model, ecosys, with a new remotely-sensed daily ecosystem gross primary

production (GPP) observations to estimate the crop yield, ecosystem respiration (Reco), and
NEE at field scale in the U.S. Midwestern cropland.
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Fig. 3. The performance of KGML-ag-Carbon and pure machine learning (ML) in
crop yield estimation. (a) and (b) were the model performance validated using
210 counties randomly selected in the study area for corn and soybean,
respectively, and (c) and (d) were the model performance validated using the
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