Probabilistic estimation of glacier surface elevation changes from DEM differentiation: a Bayesian method for outlier filtering, gap filling and uncertainty estimation with examples from High Mountain Asia

Gregoire Guillet¹ and Tobias $Bolch^1$

¹University of St Andrews

November 23, 2022

Abstract

Various interdisciplinary studies have shown substantial discrepancies between modeled and remotely sensed glacier surface elevation change.

It is therefore crucial to better understand and quantify uncertainties associated to both methods.

We design a probabilistic framework with the aim to filter outliers, fill data voids and estimate uncertainties in glacier surface elevation changes computed from Digital Elevation Model (DEM) differentiation.

The technique is based on a Bayesian formulation of the DEM difference problem and specifically targets surging and debriscovered glaciers, both at glacier and regional scales.

We first define a set of physically admissible surface elevation changes as an elevation-dependent probability density function. In a second step, terrain roughness is defined as the main descriptor for DEM uncertainty. Each surface elevation change pixel is a probability distribution. We present validation experiments in High Mountain Asia and show that the model produces results consistent with conventional DEM differencing, while avoiding the caveats of already existing methods.

We further demonstrate that accounting for unstable glacier dynamics is crucial for accurate outlier filtering and robust uncertainty estimation. The technique can be applied to other types of remotely sensed glacier quantities (surface velocity

etc.) and so would help to improve the characterization of uncertainty associated with changes in glacier mass and dynamics.

Probabilistic estimation of glacier surface elevation changes from DEM differentiation: a Bayesian method for outlier filtering, gap filling and uncertainty estimation with examples from High Mountain Asia

Grégoire Guillet ¹, Tobias Bolch ¹

¹School of Geography and Sustainable Development, University of St-Andrews
 St Andrews, Scotland, United Kingdom of Great Britain and Northern Ireland

Key Points:

1

2

3

4

5

8

9	•	Probabilistic surface elevation change estimates are consistent with previously pub-
10		lished ones while not producing similar artifacts
11	•	Bayesian framework allow to unify outlier filtering, void filling and uncertainty es-
12		timation within a statistically coherent framework.
13	•	Results highlight the need to consider glacier dynamics when processing glacier
14		surface elevation change datasets

Corresponding author: Grégoire Guillet, gg70@st-andrews.ac.uk

15 Abstract

Various interdisciplinary studies have shown substantial discrepancies between modeled 16 and remotely sensed glacier surface elevation change. It is therefore crucial to better un-17 derstand and quantify uncertainties associated to both methods. We design a probabilis-18 tic framework with the aim to filter outliers, fill data voids and estimate uncertainties 19 in glacier surface elevation changes computed from Digital Elevation Model (DEM) dif-20 ferentiation. The technique is based on a Bayesian formulation of the DEM difference 21 problem and specifically targets surging and debris-covered glaciers, both at glacier and 22 regional scales. We first define a set of physically admissible surface elevation changes 23 as an elevation-dependent probability density function. In a second step, terrain rough-24 ness is defined as the main descriptor for DEM uncertainty. Each surface elevation change 25 pixel is a probability distribution. We present validation experiments in High Mountain 26 Asia and show that the model produces results consistent with conventional DEM dif-27 ferencing, while avoiding the caveats of already existing methods. We further demon-28 strate that accounting for unstable glacier dynamics is crucial for accurate outlier filter-29 ing and robust uncertainty estimation. The technique can be applied to other types of 30 remotely sensed glacier quantities (surface velocity etc.) and so would help to improve 31 the characterization of uncertainty associated with changes in glacier mass and dynam-32 ics. 33

³⁴ Plain Language Summary

Glacier volume changes are traditionally studied by subtracting datasets represent-35 ing the elevation of a glacier's surface at different time periods. These datasets, called 36 digital elevation models, are generated by various algorithms from images acquired by 37 air- and space-borne sensors. Digital elevation models are thus inherently erroneous rep-38 resentations of the true and unknown ground surface elevation. Errors in elevation will 39 ultimately generate incorrect values of glacier volume change that need to be filtered out. 40 Most methods used to filter incorrect signal in glacier surface elevation changes rely on 41 statistical thresholds, without using available knowledge on glacier physics. In this pa-42 per, we present a novel method to filter incorrect values and provide a measurement of 43 the uncertainty associated with glacier volume changes. This is done by evaluating how 44 likely the observed volume changes are, given what is already known about glacier physics. 45 More specifically we compare the computed glacier volume change with a set of admis-46 sible values defined by the glacier's parameters and flow regime. We test the proposed 47 methodology against already published results and find that existing caveats are elim-48 inated from our results. We further demonstrate the need to account for a glacier's flow 49 regime when dealing with volume change datasets. 50

51 1 Introduction

The increasing collection of surface elevation datasets has created a vast archive 52 of snapshots for the study of land ice. Digital elevation datasets have now become ubiq-53 uitous in the study of glaciers (Wheate et al., 2014; Falaschi et al., 2019; King et al., 2021), 54 ice caps (Bingham & Rees, 1999; Moholdt & Kääb, 2012; Papasodoro et al., 2015) and 55 ice sheets (Davis & Ferguson, 2004; Whitehead et al., 2013; Shean et al., 2019; Simon-56 sen et al., 2021) and present a large potential to further our understanding of ice dynam-57 ics, cryosphere/climate relationships and future sea level rise (Gardner et al., 2012). Lately, 58 efforts have primarily focused on producing new, more accurate digital elevation mod-59 els (DEMs) from air- and space-borne optical or radar sensors (Muskett et al., 2009; Neckel 60 et al., 2014; Moholdt & Kääb, 2012; Leinss & Bernhard, 2021), declassified imagery (Kim 61 et al., 2007; Dehecq et al., 2020) and state-of-the-art processing techniques (Noh & Howat, 62 2015; Mertes et al., 2017; Mölg & Bolch, 2017; Bhushan et al., 2021; Janowski et al., 2021). 63 In parallel, studies have used the generated elevation datasets to quantify glacier changes 64

over longer timescales (Bolch et al., 2011; Bhattacharya et al., 2021; King et al., 2020),
broader spatial scales (Hugonnet et al., 2021) and with higher temporal and spatial resolution (Aizen et al., 2006; Brun et al., 2016, 2017; Jakob et al., 2021).

The various DEMs used to compute glacier surface elevation changes are often of 68 uneven quality as many originate from different sensors (Toutin, 2008; González-Moradas 69 & Viveen, 2020), are processed using different algorithms (Futamura et al., 2002; Beyer 70 et al., 2018; Bhushan et al., 2021), have inconsistent spatial resolutions (Bolch et al., 2008; 71 Bhattacharya et al., 2021) or are affected by clouds (Bolch et al., 2005), among others. 72 73 These limitations can introduce substantial bias and uncertainties in the information derived from glacier surface elevation changes compute by differencing two or more DEMs 74 (Paul, Bolch, et al., 2017; Podgórski et al., 2019). Example of typical biases are erroneous 75 elevation measurements resulting from radar penetration in radar DEMs (Gardelle et 76 al., 2012), and data voids (or anomalous values) resulting from weather or illumination 77 conditions (Kaab, 2008; Bris & Paul, 2015; Paul, Bolch, et al., 2017) as well as tilts or 78 along/cross track biases in DEMs derived from optical sensors (Girod et al., 2017), among 79 others. 80

Mitigating biases on the information derived from DEM differences has been the 81 focus of substantial efforts in the past decades. While the state-of-the-art co-registration 82 method proposed by Nuth and Kääb (2011) has now become standard for eliminating 83 DEM shifts, elevation biases and higher-order sensor specific biases, a wide variety of out-84 lier filtering, gap filling and uncertainty estimation methods are used in individual stud-85 ies (Gardelle et al., 2013; Pieczonka et al., 2013; Pieczonka & Bolch, 2015; Shangguan 86 et al., 2015). More often than not, such methods rely on the implicit assumption that 87 glacier surface elevation changes are normally distributed over the study area. While rea-88 sonable at a global scale, this assumption is likely to be invalid at regional and glacier 89 scales, especially in regions where a substantial part of the glacierized area is affected 90 by surges or debris-covered. 91

Unstable glacier dynamics (glaciers surges) and extensive debris cover can indeed 92 heavily alter the mass balance signal, both at glacier and regional scales (Vincent et al., 93 2016; Vijay & Braun, 2018). In regions where surge-type or debris-covered glaciers are 94 numerous, such as High Mountain Asia where surge-type glaciers represent $\approx 20\%$ of 95 the glacierized area ($\approx 50\%$ in the Karakoram, see Bhambri et al. (2017); Guillet et al. 96 (2021) for more), the assumption of normality for surface elevation changes is thus un-97 likely to be valid, making standard outlier filtering methods unreliable. Accounting for 98 potential unstable dynamics or debris cover in the DEM differencing process and pro-99 viding a quantification of the uncertainties on the surface elevation changes is crucial. 100 Furthermore, given the widespread use of surface elevation changes, and by extension 101 geodetic mass balance, in different operations (Mayr et al., 2013; Duethmann et al., 2015), 102 keeping track of uncertainties and how they propagate through the chain of operations 103 is primordial. 104

In this paper, we present a method aiming at addressing both the outlier filtering/gap 105 filling and uncertainty estimation problems. We here aim to define a unified framework 106 to derive glacier surface elevation changes, based on a probabilistic formulation of DEM 107 differentiation. The method is specifically designed for contexts where the presence of 108 surge-type or debris-covered glaciers might alter the surface elevation signal. The out-109 lier filtering and gap filling problems are here seen as a Bayesian inference problem, where 110 we aim at providing the probability distribution of glacier surface elevation change, given 111 previous knowledge on glacier dynamics and error modeling. By unifying the DEM dif-112 113 ferencing problem with simple glacier elevation changes modeling within a statistically consistent framework we further aim to provide estimation of the uncertainty on glacier 114 surface elevation changes. 115

¹¹⁶ 2 The DEM differentiation problem: uncertainties and Bayesian for-¹¹⁷ mulation

118 2.1 Errors and uncertainties in elevation data

Digital elevation models are inherently imperfect representations of the true ground 119 surface. Errors, or deviations of the data from the true ground surface elevation, are tra-120 ditionally defined as either gross, systematic or random. While gross errors, or blunders, 121 originate from equipment failure and are thus unlikely in commercial elevation data sets, 122 many systematic errors have been documented in state-of-the-art commercial datasets 123 (Jacobsen, 2016; Nikolakopoulos, 2020). Examples include both planimetric (XY) and 124 vertical (Z) spurious pixel, line and edge effects as well as pits and spikes; all resulting 125 from the DEM production process. Random errors typically also arise from the editing 126 and processing steps, and represent random variations around the true ground surface 127 elevation. 128

More formally, the relationship between a DEM (\tilde{Z}) and the true surface elevation map it represents can be described as follows :

$$\tilde{Z} = Z + \epsilon \tag{1}$$

where \tilde{Z} is the imperfect representation of the true and unknown elevation Z and ϵ quantifies all the errors associated to each elevation measurement.

Deviations between \tilde{Z} and Z are often described using simple metrics, the most common descriptor being the root mean squared error (RMSE), for which estimates are usually provided in the DEM documentation:

$$RMSE := \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\tilde{Z}_{i} - Z_{i}\right)^{2}}$$

$$\tag{2}$$

Global error metrics however fail to fully characterize DEM errors (Liu & Jezek, 1999; 131 Carlisle, 2005; Erdoğan, 2010). DEM errors have been shown to vary spatially, and to 132 correlate with various local terrain properties, most notably terrain ruggedness (Kyriakidis 133 et al., 1999), slope and local elevation (Liu & Jezek, 1999; Aguilar et al., 2005). Furthermore, as the true real-world ground surface elevation (Z) is inaccessible, DEM errors them-135 selves are thus known up to a certain level of certainty. Considering that neither the true 136 ground surface elevation map Z, nor the true error map ϵ can be derived from realiza-137 tions of Z, we here propose to formulate Z as a range of values within which one can ex-138 pect Z to lie, with a certain level of certainty rather than a single value estimate affected 139 by errors. 140

141

2.2 DEM differencing and uncertainty quantification in glaciology

Among change detection methods, DEM differencing to produce DEMs of differ-142 ence (DoDs) is the most widespread in glaciology. Prior to being subtracted, two DEMs 143 of the same study area are traditionally co-registered. Co-registration is a widespread 144 processing step aiming at spatially aligning two (or more) elevation datasets. Features 145 present on both datasets should overlap as well as possible after co-registration. Perfect 146 match between the co-registered datasets is however unlikely. In glaciological applica-147 tions, misalignment of data sets may result in erroneous interpretation of surface eleva-148 tion changes leading to false identification of surge-type dynamics or incorrect estima-149 tions of glacier volume changes, for example. Further details on the co-registration pro-150 cedure can be found for example in Nuth and Kääb (2011); K. Wang and Zhang (2015). 151

From Eq. 1, one can formulate the difference between two co-registered elevation data sets acquired at different times (with $t > t_0$) as follows:

$$\begin{split} \dot{\Delta h} &= \ddot{Z}_t - \ddot{Z}_{t_0} \\ &= Z_2 - Z_1 + (\epsilon_t - \epsilon_{t_0}) \\ \tilde{\Delta h} &= \Delta h + \epsilon_{\Delta h} \end{split}$$
(3)

where Δh is the inexact representation of the elevation difference between the data sets, Δh is the true and unknown elevation difference and $\epsilon_{\Delta h}$ is the associated ill-constrained error. Δh conveys the geophysical signal of surface elevation change. As surface elevation changes in glaciers can be the consequence of a wide spectrum of phenomena, providing a robust estimate of Δh (i.e. Δh) is crucial. Common approaches to estimating Δh require filtering outliers from the computed DoD before filling potential gaps and estimating $\epsilon_{\Delta h}$.

159

2.2.1 Filtering of outliers and gap filling

¹⁶⁰ Outlier filtering refers to the process of identifying and removing pixels with non-¹⁶¹ physical Δh values. Outliers in DoDs originate, for example, from the presence of clouds ¹⁶² on one of the DEMs or in zones shadowed by adjacent topography.

A widespread method for outlier filtering consists in assuming that Δh follows a 163 Gaussian distribution centered around a mean $\mu_{\Delta h}$ with standard deviation $\sigma_{\Delta h}$. Any 164 Δh satisfying $|\Delta h| \ge 3 * \sigma_{\tilde{\Delta}h}$ is considered an outlier and filtered (Gardelle et al., 2013) 165 While the normality assumption is often reasonable, the distribution of Δh is likely to 166 be skewed or present heavy tails (Kargel et al., 2014; Nilsson et al., 2015), if, for exam-167 ple, a substantial numbers of glaciers in the study area display surge-type behavior or 168 an extensive debris cover (see section 2.3.2 for further details). Furthermore, both $\mu_{\tilde{\Lambda}h}$ 169 and $\sigma_{\tilde{\Lambda h}}$ are corrupted by outliers. 170

As a substitution to standard statistics-based outlier filtering methods, D. Wang 171 and Kääb (2015) proposed to bound admissible elevation change values between user-172 defined extrema. They typically assume Δh to lie within a non-symmetrical interval ([-30, 10]m* 173 a^{-1} for example), as glacier thickening is not believed to exceed maximum precipitation 174 and is likely to be outbalanced by thinning. While bounding admissible Δh values pro-175 duced reliable results within the tDEM framework proposed by D. Wang and Kääb (2015), 176 it is however restricted to the study of glaciers displaying stable dynamics. The more 177 complex surface elevation change patterns encountered, for example, in the presence of 178 surging glaciers (see Section 2.3.2 for more) requires different filtering approaches. 179

To account for potentially extreme $|\tilde{\Delta h}|$ values originating from unstable glacier 180 dynamics, Pieczonka and Bolch (2015) proposed a non-linear elevation-dependent filter. 181 Their method relies on weighting the standard deviation of Δh ($\sigma_{\Lambda h}$) by a rectangular 182 function computed in few steps. The major shortcoming of this filter originates from the 183 normalization process depicted by the authors in Equation E1. The computed w is not 184 a normalized value bounded between [0,1] and rather $w \in [0,\infty]$ and thus shows high 185 variability with glacier size. This leads to saturate the hyperbolic (tangent) function used 186 in Equation E2, and thus to an increase in the number of Δh values close to 0, for glaciers 187 with low elevation difference. Furthermore, as pointed out by the authors, the standard 188 deviation $\sigma_{\Delta h}$, used to test whether a given Δh is an outlier, is corrupted by anomalous 189 values and therefore not robust to outliers. 190

Gap filling here refers to the process of imputing values to missing DoD pixels using mathematical interpolation techniques. In the following, we briefly describe the most commonly used methods in GIS-based applications: inverse distance weighting (IDW) and kriging. For a more in-depth review of void interpolation methods and their applicability in glaciology, we refer the reader to the works of McNabb et al. (2019). ¹⁹⁶ 2.2.1.1 Inverse Distance Weighting (IWD) IWD is a deterministic interpolation ¹⁹⁷ method that computes the weighted average of observed values within the neighborhood ¹⁹⁸ of a given target point. The pixels in the vicinity of the target pixel carry heavier weights ¹⁹⁹ than more distant ones, with rate of weight decay being controlled by a power param-²⁰⁰ eter. Considering the unknown Δh value at pixel p, one can compute Δh_p as:

$$\tilde{\Delta h}_p = \frac{\sum\limits_{i=1}^n \left(\frac{\tilde{\Delta h}_i}{d_i^\beta}\right)}{\sum\limits_{i=1}^n \left(\frac{1}{d_i^\beta}\right)} \tag{4}$$

where *n* represents the number of pixels in the vicinity of the target pixel *p*, d_i is the distance between pixel *i* and the target pixel and β is the power parameter. Typical values of β range from 1 to 4, with $\beta = 2$ being the most common and providing the inverse distance-squared interpolator.

²⁰⁵ While IWD is an intuitive and computationally inexpensive method, it suffers from ²⁰⁶ a number of drawbacks (Li & Heap, 2014). The choice of the power parameter β and the ²⁰⁷ number of neighboring points *n* is often arbitrary even if methods such as cross-validation ²⁰⁸ can provide insight on these parameters. IWD is deterministic as the algorithm relies ²⁰⁹ on distances and thus does not provide any estimation of the uncertainty associated to ²¹⁰ the prediction. Finally, predictions provided by IWD are sensitive to outliers as well as ²¹¹ observation sampling.

2.2.1.2 Kriging Kriging is a spatial interpolation technique similar to IWD as 212 it is a linear estimator aiming at predicting an unknown function value (in this partic-213 ular case, surface elevation change on a DEM) at a target point as the weighted aver-214 age of neighboring known values. Many variants of Kriging have been developed over 215 the years (Weng, 2006; Li & Heap, 2014). In the present case we will only discuss Or-216 dinary Kriging (OK), as it is the most widely used variant in geoscientific applications. 217 The main difference between OK and IDW lies in the process of weight estimation, as 218 OK ensures minimum estimation variance given a specified spatial autocorrelation (var-219 iogram or other characterization of the spatial covariance or correlation). 220

OK is a more sophisticated linear estimator than IWD. It however presents similar drawbacks as it does not allow for prediction uncertainty quantification and is affected by potential skewness of the data (Li & Heap, 2014). Indeed, in cases involving spatially concentrated extreme values (surge-type glaciers actively surging for example), a crude estimation of the mean using a linear estimator will lead to instability in estimated values. Furthermore, as the data distribution is likely skewed, the mean is not an appropriate descriptor of an average value of the distribution.

228

2.2.2 Estimation of glacier surface elevation change uncertainties

Once outliers have been removed and gaps filled, a common strategy to estimate 229 Δh from realizations of Δh is to evaluate the associated error $\epsilon_{\Delta h}$. While there is no best 230 method to do so, error analysis frameworks have been proposed to provide the best pos-231 sible estimate of $\epsilon_{\Delta h}$ in glaciological applications. The standard deviation of Δh over 232 stable non-glacierized terrain is often used as first estimate. More recently, Gardelle et 233 al. (2013) assumed that the $\epsilon_{\Delta hi}$ associated to each elevation change pixel Δhi within 234 an elevation band equals the standard deviation of the band's Δh ($\sigma_{\tilde{\lambda}h}$) up to a coef-235 ficient depending on the spatial autocorrelation (see Equation 2 in Gardelle et al. (2013)). 236 As discussed by the authors, $\sigma_{\Delta h}$ not only captures the uncertainty associated to Δh but 237 also conveys the natural variability of surface elevation change in the corresponding el-238 evation band. Furthemore, this formulation only accounts for one-dimensional (band-239

wise, see Bretherton et al. (1999)) uncertainty and is not suited for 2-dimensional datasets
(Dehecq et al., 2020).

In the present paper, we propose a different uncertainty estimation strategy. We 242 rely on a probabilistic formulation of the DEM differencing operation to unify the out-243 lier filtering, gap filling and uncertainty modeling problems in a statistically coherent frame-244 work. We here aim to infer a distribution of values of Δh , compatible with a set of given 245 Δh and knowledge on glacier dynamics. Instead of producing a single point estimate for 246 Δh , we obtain a probability density function for each pixel of any considered DoD. The 247 248 probability density function is conditional on the observed surface elevation change (See Section 2.3.1), and any prior information on probable values of Δh (See Section 2.3.2). 249

2.3 Bayesian formulation

Let us consider the DEM differentiation problem for two co-registered DEMs for 251 which we compute Δh (as described in Equation 3). We note I any information avail-252 able about Δh known before considering Δh , called prior information. I here mainly in-253 cludes assumptions about glacier dynamics (stable or unstable). The Bayesian DEM dif-254 ferentiation problem amounts to finding $P(\Delta h | \Delta h, I)$ which is the probability density 255 of Δh conditional to knowing both Δh and I also known as the *posterior* probability den-256 sity function (PDF) of Δh . More formally, applying Bayes' theorem to our problem, we 257 can write: 258

$$P(\Delta h|\tilde{\Delta h}, I) = \frac{P(\tilde{\Delta h}|\Delta h, I)P(\Delta h|I)}{P(\tilde{\Delta h}|I)}$$
(5)

The right hand side of Equation 5 is composed of three terms, playing distinct roles in the inference process. $P(\Delta \tilde{h}|\Delta h, I)$ is called the *likelihood*. It represents the probability density of observing the glacier surface elevation changes as described by $\Delta \tilde{h}$ and a defined error model (see section 2.3.1) if we assume the true elevation map Δh and Ito be known. This term captures all the uncertainties related to different topographic parameters (terrain roughness, elevation etc.) and cloud cover (see section 2.3.1).

 $P(\Delta h|I)$ is called the *prior* and encodes all a priori information assumed about Δh , gathered from knowledge on the physics of glaciers and glacier dynamics. We discuss the prior term in greater details in section (see section 2.3.2).

Finally, $P(\Delta h|I)$ is a normalizing constant independent Δh and ensuring $\int P(\Delta h|\Delta h, I)d\Delta h =$ 1. Its value is of no practical significance for this work. We shall thus neglect it and remember that the posterior PDF (Eq. 5) is defined up to a normalizing constant.

271

250

2.3.1 Likelihood: elevation data-related uncertainties

The first ingredient of Bayesian inference is the likelihood, which here captures the DEM-related errors by describing the probability of observing $\Delta \tilde{h}$ under a given an error model and prior information I: $P(\Delta \tilde{h}|\Delta h, I)$.

Terrain morphology and sample density have been documented as first-order controls of DEM accuracy and uncertainty (Aguilar et al., 2005; Wise, 2011; Mukherjee et al., 2013; Hubacek et al., 2016). When differencing stereo DEMs (ASTER for example), the DoD is likely to present aberrant Δh values in areas with high terrain roughness such as steep rockwalls or clouded/low contrast zones, among others. Here, we use terrain roughness, hereafter denoted r, as the main descriptor for DEM errors and the main parameter for the error model.

Obscured regions in the input DEMs represent another major source of aberrant elevation change signal in DoDs (Paul, Bolch, et al., 2017), and will typically not dis-

play high roughness. Obscuring results from cloud cover or lack of contrast, mainly in 284 DEMS processed from 8-Bit sensors (ALOS-PRISM, ASTER or, declassified KeyHole 285 (KH) datasets such as Corona (KH4) or Hexagon (KH9), see Raup et al. (2015) for more) 286 and is usually mitigated by masking obscured regions. In the present framework, we pro-287 pose to capture obscuring within the likelihood and aim to evaluate how likely a specific 288 Δh_i is to result from obscured regions on DEM1 or DEM2. We typically expect aber-289 rant elevation change signal to be either positive or negative, depending on whether the 290 obscured regions are located on DEM1 or DEM2 and with greater absolute value than 291 the geophysical signal. We however assume aberrant signal resulting from low-contrast 292 area to be the same order of magnitude to that generated by the presence of clouds. 293

Given a pixel i, we consider three possible cases: either the pixel i of only DEM1 is obscured (event C_1), or pixel i of only DEM2 is obscured (event C_2), or the pixel is obscured in neither DEM (event C_0). We neglect the case where a same pixel is obscured on both DEMs at the same time. Marginalizing over all three cases, our likelihood writes as a mixture of conditional likelihoods:

$$\Delta \tilde{h} | \Delta h, I = \sum_{k=0,1,2} P(\Delta \tilde{h} | \Delta h, C_k, I) P(C_k | I)$$
(6)

The probabilities $P(C_1|I)$ and $P(C_2|I)$ are taken from the DEM's metadata (cloud cover extent provided by LPDACC for ASTER scenes for example) as well as the user's knowledge regarding each DEM's obscured extent, and we set $P(C_0|I) = 1 - P(C_1|I) - P(C_2|I)$.

We first consider the conditional likelihoods for the simpler cases C_1 and C_2 . Assuming the pixel *i* is obscured on DEM1 and not on DEM2 (case C_1), then DEM1 measures $\tilde{h}_1 = z_{\text{cloud}}$ and therefore $\Delta \tilde{h} = \tilde{h}_2 - z_{\text{cloud}}$. With only prior information *I*, we assume $z_{\text{cloud}} \sim \text{Uniform}(z_{\text{SRTM}}(i), z_{\text{ceil}})$, where $z_{\text{SRTM}}(i)$ is the local ground elevation for pixel *i* read from an SRTM DEM (which is immune to cloud artifacts). z_{cloud} is a ceiling value for possible cloud altitudes, which we set to $z_{\text{cloud}} = 9000 \text{ m}$. Assuming that most of the error comes from DEM1 in this case and approximating $\tilde{h}_2 \approx h_2 \approx z_{\text{SRTM}}$, we find:

$$\Delta h | \Delta h, C_1, I \sim \text{Uniform}(z_{\text{SRTM}} - z_{\text{ceil}}, \Delta h).$$
 (7)

Now assuming the pixel *i* is obscured on DEM2 and not on DEM1 (case C2), then DEM2 registers $\tilde{h}_2 = z_{\text{cloud}}$ and therefore $\Delta \tilde{h} = z_{\text{cloud}} - \tilde{h}_1$. With a similar reasoning to the C_1 case, we obtain:

$$\Delta h | \Delta h, C_2, I \sim \text{Uniform}(\Delta h, z_{\text{ceil}} - z_{\text{SRTM}}).$$
 (8)

We now turn to the case when neither pixel is obscured (case C_0), in which we have 303 to account for uncertainties caused by DEM errors. A typical approach to defining the 304 likelihood would be to state that given any r one can expect Δh to follow a Gaussian 305 distribution centered on 0 (as we assume $\Delta h \neq 0$ is only due to the presence of geo-306 physical signal) and with a standard deviation proportional to r (the higher r, the higher 307 the statistical spread of the Gaussian distribution). This can however be a problematic 308 in some cases, as Gaussian distributions are not robust to outliers. In this work, we pre-309 fer to follow the well-established practice of replacing Gaussian distributions with Student-310 t distributions, which present similar properties but feature heavier tails and are thus 311 more robust to potential outliers. We therefore define our likelihood as following a Student-312 t distribution: 313

$$\Delta \tilde{h} | \Delta h, C_0, I \sim \text{Student}(0, g(r), k = 5)$$
(9)

Figure 1: Distribution of Δh per roughness bin. (a) computed from the difference between the SRTM C-Band DEM and ASTER DEMs (see Section 3 for more) over the Hunza Basin, Karakoram datasets. b) generated from g(z) as fitted using data presented on panel a).

where g(r) is a scale parameter controlling the statistical spread of the distribution and k is the number of degrees of freedom of the Student-t distribution. In practice, values of $3 \le k \le 10$ are recommended for inference problems (Gelman et al., 2013); we here use k = 5.

Considering that errors on Δh do not scale linearly with elevation (Holmes et al., 318 2000; Darnell et al., 2008), it is reasonable to assume similar non-linearity with rough-319 ness. We here use a data-driven approach to further describe the relationship between 320 Δh and r. Given a specific study zone (throughout the present example we use data from 321 our first validation test case, see Section 3.1.1 for more), we first consider the computed 322 Δh DoD and a reference DEM from which roughness is computed. In practice we here 323 use the SRTM C-Band DEM (see 3.2.1) and calculate terrain roughness using the Geospa-324 tial Data Abstraction Library (GDAL) roughness algorithm (largest inter-cell difference 325 for a central pixel and it's surrounding cell see GDAL/OGR contributors (2021)). The 326 histogram of Δh per r bin gives further insight on q(r) (Figure 1). 327

The spread of Δh at low (i.e. relatively close to 0) roughness values on Figure 1 (a) is a consequence of the geophysical signal of glacier surface elevation change. The model g(r) thus aims to replicate the spread of Δh distributions for each r, as showed on Figure 1 (a). In the present case, we fit the generative model g(r) to 1 standard deviation of the Δh distribution per roughness bin. More formally, we thus define:

$$g(\mathbf{r}) = |\tanh\left(\frac{r}{s}\right)| * (\sigma_{r_max} - \sigma_{r_0}) + \sigma_{r_0}$$
(10)

where s is the resolution of the DEM used to compute the roughness, $\sigma_{\Delta h}(r_0)$ and $\sigma_{\Delta h}r_max$ are the standard deviations of the distribution Δh for r = 0 and the maximum r value over the whole roughness map respectively. In practice, we find $\sigma_{\Delta h}(r_0) = 4$ m and $\sigma_{\Delta h}r_max$ = 30 m to work best, and to be in the same order of magnitude as $\sigma_{\Delta h}$ values described by Gardelle et al. (2013). An example of $\sigma_{\Delta h}$ simulated using g(r) is shown on Figure 1 B.

2.3.2 Priors: glacier dynamics

334

Now that we have detailed the likelihood $P(\Delta h | \Delta h, I)$, we turn to the description of the prior term in Eq. 5: $P(\Delta h | I)$. The prior captures all information about Δh that is known regardless of Δh . In the present case, this comes from human expertise on glacier physics and previous measurements of glacier surface elevation changes in the studied contexts.

Surface elevation changes with altitude are mainly governed by the glacier's response 340 to climate and the dynamics of glacier flow as these parameters have the most impact 341 on the glacier's mass balance rate. Let us consider glacier-wide Δh for a glacier with neg-342 ative mass budget. It is reasonable to assume that maximum reduction in surface ele-343 vation will occur at the tongue of the glacier. Following Schwitter and Raymond (1993), 344 we can further assume than surface elevation lowering rates will non-linearly decrease 345 with increasing altitude, possibly reaching positive Δh in the accumulation zone. The 346 altitude, if it exists, at which $\Delta h \simeq 0$ is called the Equilibrium Line Altitude (ELA). 347 This typical Δh pattern can however be strongly altered when studying surge-type glaciers, 348 or glaciers presenting an substantial debris cover. 349

2.3.2.1 Surge-type glaciers Surge-type glaciers are characterized by a complex
 flow pattern, alternating between rapid unstable glacier flow (surge phase) and periods
 of stagnation or slow flow (quiescent phase) (Jiskoot, 2011; Benn et al., 2019; Truffer et
 al., 2021).

Surges initiate from an ice buildup in a reservoir zone, and propagate to a receiving zone, typically the glacier terminus. As a consequence of rapid downward mass transfer during surges, the glacier terminus usually advances and the glacier's surface elevation increases in the lowermost parts of the ablation zone (Rankl & Braun, 2016; Guillet et al., 2021).

Surging glaciers thus exhibit complex and contradictory Δh patterns. During the surge phase, surface elevation lowering in high altitude (in the reservoir zone, usually in the vicinity of the ELA) is associated to considerable surface elevation increase at comparatively low altitudes. During the quiescent phase a positive Δh signal is observed in high altitudes as the ice builds-up in the reservoir zone, while, in the ablation zone, the melting of stagnant or slow flowing ice leads to strongly negative Δh .

2.3.2.2 Debris-covered glaciers Supraglacial debris cover in the ablation zone will 365 strongly influence the glacier's mass balance by directly affecting surface melt rates (Benn 366 et al., 2012; Brun et al., 2018). A scattered, thin debris cover will typically lead to a lo-367 cal decrease in albedo, and thus, to an increase in melt rate while dense and thick de-368 bris covers usually provide insulation to the underlying ice Nakawo and Young (1981); 369 Nicholson and Benn (2006); Pratap et al. (2015). Debris cover thus entails higher Δh 370 variability in the ablation zone compared to what is usually observed for clean-ice glaciers 371 (Brun et al., 2016). 372

We now come back to the formulation of our prior probability taking into account the above considerations. The aim here is to define, for each pixel of the DoD, a set of admissible Δh values considering glacier dynamics.

First, we define an elevation-dependent function to model glacier surface elevation variations: $(z_i = z_{i-i-1})$

$$\Delta_{h_i}(z_i) = e^{-\left(\frac{z_i - z_{\min}}{Z}\right)} * \left(\delta_{h_{front}} - \delta_{h_{acc}}\right) + \delta_{h_{acc}}$$
(11)

with

$$\mathcal{Z} = \frac{z_{ELA} - z_{min}}{2} \tag{12}$$

where z_i is the elevation of *i*-th pixel on the elevation map, z_{min} is the minimum glacier elevation and z_{ELA} is the elevation of the equilibrium line. While z_{ELA} must be provided by the user and relies, for example, on previous publications from the same study zone, z_i and z_{min} are read directly from a DEM (SRTM-C DEM in the present cases, see Section 3 for more). $\Delta_{h_{front}}$ and $\Delta_{h_{acc}}$ respectively represent the maximum admissible accumulation at the terminus and in the accumulation zone of the glacier. For pixels at

Figure 2: Example of prior distribution on Δh for a synthetic surge-type glacier spanning between 6000 and 3000 m a.s.l. of elevation. Priors are calculated at the front (red, 3000m a.s.l.) and the ELA (blue, 5400 m a.s.l.) of the glacier. The prior distribution at the front of the glacier (red) allows for both surging and rapid thinning related-extreme Δh values. Stricter priors at higher altitudes narrow admissible surface elevation changes.

higher elevations than the ELA, we define a stricter prior on Δh to rule out any unphysical surface elevation change. We formulate $|\delta_{h_{acc}}| = p * n_y$ where p captures the knowledge over the glacier's accumulation and n_y is the date range covered by the DoD. p can thus be the yearly mean precipitation in the study zone, or the direct accumulation rate derived from ice-core studies; both are typically derived from previous published results. Other mass gain process occurring in the accumulation zone such as avalanching and snow transportation by wind are not accounted for.

Similarly as in Section 2.3.1, we define $P(\Delta h|I)$ a Student-t distribution with k = 5 degrees of freedom and use $\Delta_{h_i}(z_i)$ as scaling parameter to control the statistical spread of the distribution:

$$\Delta h | I = \text{Student}(0, s, k = 5) \tag{13}$$

with:

$$s = \frac{\Delta_{h_i}(z_i)}{\delta_u} \tag{14}$$

where δ_u is the inverse cumulative distribution function of the Student-T distribution.

Figure 2 shows an example of priors for two pixels of a synthetic glacier extending from 6000 to 3000 m a.s.l. with chosen ELA of 5400 m. We defined the average yearly precipitation to be $0.5m * a^{-1}$ and $n_y = 10$. The weaker prior allows for greater variability in $\Delta_{h_i}(z_i)$ at the front of the glacier with values ranging between -300 and 300 (99% credible interval). Above the ELA, stricter constraints narrow the range of admissible $\Delta_{h_i}(z_i)$ values to [-40, 40](99% credible interval).

We have now specified the full prior (Equation 13, with terms discussed in Section 2.3.2) and likelihood using the error model (Equations 6, 9, 7, 8). We can therefore evaluate the posterior probability density using 5 for any value of $\Delta \tilde{h}$. The filtered value is finally computed by numerical integration as the median of the univariate posterior probability density function.

Figure 3: (a) : Location of Case Study 1 area in the Karakoram region (black square in Google Earth inset). The main investigated glaciers are represented by their outlines (white solid line) from the RGI V6.0. Baseline image is a natural color Landsat 8 OLI acquired on August 25 2020. b): Location of Case Study 2 area in the Central Himalaya (black square in Google Earth inset). The main investigated glaciers are represented by their outlines (white solid line) from the RGI V6.0. Baseline image is a natural color Landsat 8 OLI acquired on November 11 2020

3 Validation 401

In this section, we set p validation test cases to demonstrate the technique pre-402 sented throughout the paper. Using a combination of DEMs of different origins (SRTM, 403 ASTER, Hexagon KH-9 and Cartosat 1), we assess key aspects of our method, with an emphasis on surge-type and debris-covered glaciers. We consider the problem of estimat-405 ing Δh from realizations of Δh and knowledge on glacier physics, before comparing our 406 DoDs with already published results. 407

- 408
- 409 410

3.1 Case studies areas

3.1.1Case study 1 : Hispar and surrounding glaciers, Karakoram range, Pakistan

The Karakoram mountain range is widely known for its high abundance of surge-411 type glaciers. More specifically, glaciers in the Central Karakoram have been actively surg-412 ing in the past 25 years. This intense surging activity yields complex surface elevation 413 change patterns with a well-known co-existence of strong thinning and thickening rates, 414 testifying for recent unstable glacier dynamics. Among the glaciers present in this case 415 study, Hispar and Khurdopin glaciers (see Figure 3 a) recently (2015-17) displayed surge-416 type behavior (Paul, Strozzi, et al., 2017; Rashid et al., 2018; Guo et al., 2020). 417

In this validation case, we compare the surface elevation changes obtained by our 418 method with the results of Bolch et al. (2017). We compute the 1999-2009 glacier sur-419 face elevation changes from the co-registered DEMs used in Bolch et al. (2017). We then 420 illustrate goodness-of-fit by studying the residuals between the two DoDs. We first fo-421 cus on glacier surface elevation changes over the whole study area, before emphasizing 422 on the 2000-08 surge of Kunyang Glacier. 423

3.1.2 Case study 2 : Langtang Glacier, Central Himalaya, Nepal

Langtang Glacier is located in the eponymous valley in the central part of the Himalaya, approximately 70 km North of Kathmandu, Nepal. Ranging from 7119 to 4380 m a.s.l., Langtang Glacier displays an average slope of 18°(32%). Close to 35% of the glacier's area is covered with debris, most of them found in the ablation area below 5200 m a.s.l. (Figure 3 b)

In this validation case, we compare the surface elevation changes obtained by our method with the results published by Ragettli et al. (2016). Similarly to Case Study 1, we compute glacier elevation changes from co-registered DEMs generated by the authors and provided to us. Goodness-of-fit is then evaluated by studying the residuals between the generated DoD, and the one published by Ragettli et al. (2016), focusing on glacierscale surface elevation differences.

3.2 Data

424

436

450

460

For both case studies we use DEMs that were provided to us by the authors. This allows us to cover DEMs generated from different acquisition protocols and instruments such as radar and satellite imagery. For any complementary information on the input datasets, we refer the reader to the specific publications.

441 3.2.1 SRTM

The Shuttle Radar Topography Mission (SRTM) was an 11-day mission carried out 442 in February 2000 on board the space shuttle Endeavor. Near-global coverage was achieved 443 between latitudes 56 °S to 60 °N (Farr et al., 2007). The C-band of the SRTM DEM presents 444 a resolution of about 1 arc second ($\simeq 30$ m grid) and is available via the U.S. Geolog-445 ical Survey (NASA, 2013). We here use the C-band SRTM DEM in two distinct steps. 446 In the likelihood, the roughness map is computed from the C-band SRTM DEM. Sim-447 ilarly to D. Wang and Kääb (2015), we use the SRTM DEM as reference for the elevation-448 dependent surface elevation change law (Equation 11) in our prior. 449

3.2.2 ASTER

The 1999-2009 Hispar Glacier surface elevation changes (Case Study 1) originate 451 from the difference of the C-Band SRTM DEM with various DEMs processed from im-452 ages acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiome-453 ter (ASTER) (Bolch et al., 2017). On-board the Terra satellite, ASTER creates clouds 454 and land surface images from three different subsystems: the visible and near infrared 455 (VNIR, 15 m resolution), the shortwave infrared (SWIR, 60 m resolution), and the ther-456 mal infrared (TIR, 90 m resolution). The 10 DEMs used by Bolch et al. (2017) are stan-457 dard AST14DEM, computed using the SilcAst software from stereo-pairs acquired by 458 the VNIR subsystem between 2008 and 2010. 459

3.2.3 Hexagon-KH9

Hexagon KeyHole-9 were a series of reconnaissance satellites operated between 1971
and 1986 at an altitude close to 171 km (Burnett, 2012). Images originating from the
Hexagon KH-9 mission were declassified by the United States Geological Survey in 2002.
The mapping camera system on-board Hexagon satellites (missions 1205-5 to 1216-5)
acquired around 29000 images of 9 to 6 m of resolution on a global scale. In the present
study, we do not generate digital elevation datasets from Hexagon-KH9 imagery and rather
use the 1974 KH-9 DEM generated by Ragettli et al. (2016) (Case Study 2).

Ca	se study 1:	Hispar	Case	e Study 2: Langtar	ng
$\delta h_{front}[m]$	$\delta h_{acc}[m]$	$ z_{ELA}$ (m a.s.l.)	$ \delta h_{front} / \delta t [m.a^{-1}]$	$ \delta h_{acc} / \delta t [m.a^{-1}]$	z_{ELA} (m a.s.l.)
200	4.5	5300	4	0.6	5400

Table 1: Summary of the priors used for the two case studies

468 3.2.4 Cartosat-1

The 1974-2006 Langtang Glacier surface elevation changes (Case Study 2) originate the difference of the KH-9 DEM with a DEM computed from a pair of images acquired by Cartosat-1 in November 2006. Cartosat-1 is a remote-sensing satellite developed and operated by the Indian Space Research Organization (ISRO) with a spatial resolution of 2.5 m (Ahmed et al., 2007). The DEM used in Ragettli et al. (2016) has been generated by the authors from radiometrically corrected along-track stereo imagery.

3.2.5 Glacier outlines

We used the openly available Randolph Glacier Inventory (RGI, version 6.0, Consortium et al. (2017)) glacier outlines to spatially constrain the computation of Δh estimates and for glacier-scale results visualization. As the terminus of Hispar (Case Study 1) and Langtang (Case Study 2) glaciers have shown limited changes over the past 120 years(Paul, Strozzi, et al., 2017; Wijngaard et al., 2019), we consider glaciers outlines to be constant over the studied intervals.

3.2.6 Priors

3.2.6.1 Case Study 1 - Hispar and Kunyang glaciers The parameters used to com pute the prior probability in Case study 1 are summarized in Table 1.

While the considered period is rather short, previous surge events in the Karako-485 ram have shown large magnitudes (Quincey & Luckman, 2014). We typically constrain 486 $|\Delta_{h_{front}}| \leq 300m$ for altitudes under the glacier's equilibrium line as it is the higher-487 end of the spectrum of surging-induced surface elevation changes (Cuffey & Paterson, 488 2010). For δh_{acc} , we follow D. Wang and Kääb (2015) and define the maximum accu-489 mulation cannot exceed the average precipitation over the considered time period. Here 490 we used a yearly mean precipitation of $0.5m.a^{-1}$ as estimated by Immerzeel et al. (2012). 491 Finally, we take $z_{ELA} = 5300$ m a.s.l., as defined by Mukhopadhyay and Khan (2016), 492 and assume it constant over the 1999-2008 time period as the glaciers exhibited balanced 493 mass budgets in this region during the last decades (Gardelle et al., 2013; Bolch et al., 494 2017). 495

496

475

482

3.2.6.2 Case Study 2 - Langtang and surrounding glaciers Similarly to Case Study
 1, the parameters used to compute the prior probability in Case study 2 are summarized
 in Table 1.

As no surges have been documented in the Langtang basin, we use a narrower prior for frontal elevation changes. Based on modeled and remotely sensed Δh in the study region, we consider $|\delta h_{front}| = 4m.a^{-1}$ to be admissible (Wijngaard et al., 2019). We stress that, while mass gain at the front of a non-surge type glacier is unphysical, this value captures the spread of the distribution of admissible Δh at the front of the glacier and thus affects similar probabilities to positive and negative values. Ice cores studies in the Langtang region have documented accumulation rates close to $\delta h_{acc} = 0.6m.a^{-1}$. Finally, we take $z_{ELA} = 5400$ m a.s.l., as defined by Ragettli et al. (2016), and assume it constant over the 1974-2006 time period.

509

3.3 Surface elevation changes validation

In the following sections, surface elevation change DEMs represent the best Δh estimate computed by their respective authors. Regardless of the method used to computed them, these surface elevation change datasets will be labeled Δ_{hXXX} , where XXX is a dataset-specific suffix. For DoDs generated in the present study, XXX indicates the represented quantile of the posterior probability distribution on Δh ; Δh_{50} is, for example, the DoD of the median surface elevation change.

For the sake of clarity and readability, the presented DoDs are neither reprojected nor presented onto any basemap or other digital elevation dataset.

518

3.3.1 The surge of Kunyang Glacier : 2000-2008

We here present surface elevation changes as different DoDs, shown in Figure 4. 519 The first DoD is formed from the median of the posterior probability distribution for each 520 pixel, while subsequent DEMs represent the associated 68 and 90% credible intervals re-521 spectively. The accumulation zones of the studied glaciers appear to be regions of high 522 uncertainty, with the 90% CI of pixel distributions reaching close to 75m. The broader 523 posterior on Δ_h in the higher altitudes regions is due to a combination of effects : the 524 increased roughness in high-relief north faces, the presence of clouds and lower contrast 525 on the ASTER DEM. 526

We further compare our results to the 1999-2009 DEM published in Bolch et al. 527 (2017) (Δh_{B17}) in Figure 5. We find that Δh_{50} and Δh_{B17} are in good agreement throughout the study area. From the map of residuals (Figure 5), we see that both the surge of 529 Kunyang Glacier (the westernmost tributary of Hispar Glacier, Figure 3 a) and Khurod-530 pin Glacier's heavily contrasted Δh signal are particularly well represented, with sim-531 ilar orders of magnitude. Noticeable differences can however be observed, mainly in the 532 accumulation zone of Kunyang Glacier. The Δh_{B17} DoD indeed presents pixels indicat-533 ing extreme accumulation values (up to 154 m of elevation gain) along the ridge between 534 Trivor Sar (7577 m a.s.l) and Disteghil Sar (7885 m a.s.l.). Similarly, we observe strong 535 mass gain (up to 147m) in the nearby accumulation zones of the western and eastern branches 536 of Kunyang Glacier. Such mass gain being very unlikely given the site topography, we 537 believe these accumulation values to be the consequence of low contrast and clouds on 538 the ASTER DEM. These outliers appear to have been filtered on Δh_{50} , where highest 539 estimated mass gain is around 30 m. 540

Over the whole study area, the distributions of pixel values are very similar Δh_{B17} and 541 Δh_{50} (Figure 6). Both display heavy tails and are non-Gaussian. The two distributions 542 however present sensitively different medians (Δh_{B17} : 0.0 m, Δh_{50} : 2.7 m) and Inter-543 Quartile Range (IQR, Δh_{B17} : 7 m, Δh_{50} : 13 m). While we observe a mainly linear re-544 lationship of equation y = x between the pixel values of the different DoDs, we further 545 note the presence of an important cluster of 0-valued pixels in Δh_{B17} , altering the lin-546 ear relationship between the two DoDs for values ranging from -100 m to around 150 m 547 (Figure 7). Zero-valued pixels in Δh_{B17} mainly appear at high altitude, in the accumu-548 lation zone of the studied glaciers (Figure 8) and correspond to regions of highest un-549 certainty in Figure 4. We here interpret such a prominent clustering as an artifact gen-550 erated by the filtering and gap filling method used by the authors. Bolch et al. (2017) 551 indeed used the method described in Pieczonka and Bolch (2015) (see section 2.2.1) to 552 filter outliers and OK to fill data voids in the DoD. 553

Figure 4: Δh_{B17} (left) and Δh_{50} (right). Bottom represents the residuals computed by subtracting Δh_{B17} and Δh_{50} . Note the overall similarity in the two DoDs computed with different methods.

Figure 5: Comparison between Δh_{B17} (left) and Δh_{50} (center), with plotted residuals obtained by differencing Δh_{B17} and Δh_{50} (right). (a) covers Hispar, Kunyang, and Khurdopin glaciers in their entirety. (b) is a closeup of the accumulation zone of Kunyang Glacier. Non-filtered outliers are clearly visible, resulting from poorly contrasted terrain.

Figure 6: Distribution of raster values for the two Case study 1 glaciers DoDs.

Figure 7: Bivariate scatter density histogram of the relationship between Δh_{B17} and Δh_{50} . Note the substantial cluster of O-valued pixels in Δh_{B17} . Dashed line represents y = x.

Figure 8: Comparison between Δh_{B17} and Δh_{50} , similar to Figure 5. Pixel with values of 0.00 are represented in black on both DoDs. 10% of Δh_{B17} is covered with artificial zero-valued pixels.

3.3.2 Langtang and surrounding glaciers : 1974-2006

554

Accumulation zones appear to be regions of high uncertainty with the 90% credible interval reaching 2 $m.a^{-1}$ (Figure 9). Highly uncertain Δh estimates are mainly clustered in the accumulation zone of Langtang Glacier and its tributaries. These are the direct consequence of obscured regions on the Cartosat-1 image affecting the DEM. We finally note that the overall uncertainty on $\Delta h/\Delta t$ increases in regions of the ablation zone displaying higher ice cliffs concentration (Ragettli et al., 2016), as a result of our error model formulation.

Similarly to Case Study 1, we find that the two DoDs are in good agreement (Fig-562 ure 10). Values in Δh_{R16} reach $+0.5m.a^{-1}$, with extrema close to $+4.0m.a^{-1}$ in the ac-563 cumulation zone of the southernmost tributary of Langtang Glacier. At similar locations 564 in Δh_{50} , Δ_h estimates are typically close to $+0.2m.a^{-1}$ with extreme values reaching 565 $+2.3m.a^{-1}$ (Figure 10). The distributions of raster values are consistent, with similar 566 medians $(\Delta h_{50}: -0.31m.a^{-1}, \Delta h_{R16}: -0.27m.a^{-1})$ and IQR $(\Delta h_{50}: 0.59m.a^{-1}, \Delta h_{R16}:$ 567 $0.62m.a^{-1}$) (Figure 11). The distribution of raster values for Δh_{50} however does not dis-568 play as heavy tails as that of Δh_{R16} . This can be explained by the use of stricter pri-569 ors for this particular case study, resulting in more pixel values being classified as out-570 liers. 571

The scatter density histogram (Figure 12) shows identical patterns to those iden-572 tified in Case Study 1, with clustering of near-0 values on Δh_{B16} . We here observe dis-573 tinct clusters of values between 0.0 and -0.2, spanning over the entire raster value space 574 in Δh_{50} . Figure 12 further highlights a minor cluster of 0-valued pixels in Δh_{50} . While 575 we interpret the latter to be an artifact of the polygon clipping algorithm (Figure 13) 576 (Sutherland & Hodgman, 1974; Horowitz & Papa, 1992), the former likely result from 577 the gap filling method used in Ragettli et al. (2016). Figure 13 indeed highlights that 578 artificial clusters of near-0 valued pixels primarily appear in high uncertainty regions in 579 the accumulation zone (obscured by clouds on Cartosat-1), with scarce occurrences in 580 the ablation zone of Langtang Glacier (high ice cliff concentration). Finally, patterns gen-581 erated by the elevation-band gap filling methodology used in Ragettli et al. (2016) are 582 clearly identifiable on the western tributaries of Langtang Glacier (Figure 13, x : [0, 100]) 583 y : [200, 300]).584

Figure 9: Δh_{50} for the Langtang case study and the associated credible region Δh_{68} and Δh_{90} . Note that the zones of higher uncertainty on glacier tongues are zones with the highest percentage of ice cliffs. Yellow zones in the accumulation zones on Δh_{68} result from obscuring on the Cartosat-1 image affecting the DEM.

585 4 Discussion

586

4.1 Probabilistic formulation of DEM differencing and Δh estimates

In Section 3, we designed two case studies to compare our Δh estimates to that of 587 already published studies. In both cases, the DEMs produced with the proposed methodologies appeared consistent with the validation datasets and are accurate to the level of 589 our input data. We however highlighted the existence of clusters of 0 or near-0 valued 590 pixels in both case studies (Δh_{B17} and Δh_{R16}). We further argue that these clusters 591 are artifacts resulting from the outlier filtering and linear interpolation methodologies 592 used in Ragettli et al. (2016) and Bolch et al. (2017). The developed method allows to 593 avoid artificial clustering of anomalous values by unifying outlier filtering and gap fill-594 ing within a statistically coherent framework. Formulating the DEM differentiation as 595 a Bayesian inference problem together with probabilistic uncertainty models further al-596 lows quantify and propagate associated uncertainties. 597

We finally demonstrated that none of the studied glacier surface elevation change 598 distribution is Gaussian. Yet, glacier surface elevation change estimates are often reported 599 in the literature as a mean and the associated standard deviation. While the assump-600 tion of normally distributed surface elevation changes might hold at global scales (Cen-601 tral Limit Theorem), our study shows that regional glacier thickness variations commonly 602 follow skewed or heavy-tailed distribution, especially in contexts of dynamic instabili-603 ties or extensive debris cover (Kargel et al., 2014; Nilsson et al., 2015; Guillet et al., 2021). 604 We here recommend to report further glacier surface elevation changes as a median as-605 sociated to confidence intervals (as done here or in Dehecq et al. (2020) for example), 606 typically a 68 and 90% CI. By doing so, one indeed provides the community with a quan-607 tification of the uncertainty associated with the elevation change over the whole glacier. 608 Furthermore, the use of two credible intervals conveys a clearer view of the potential skew-609 ness, tails, and overall shape of the surface elevation changes distribution. Global error 610 metrics cannot however capture the heteroskedastic behavior of the uncertainty associ-611

Figure 10: Comparison between Δh_{R16} (left) and Δh_{50} (center), with plotted residuals obtained by differencing Δh_{R16} and Δh_{50} (right). (a) covers Langtang Glaciers in their entirety. (b) is a closeup of the accumulation zone of a tributary of Langtang Glacier. Non-filtered outliers are clearly visible and data gaps are clearly visible on Δh_{R16} , resulting from poorly contrasted terrain.

Figure 11: Distribution of raster values for the two Langtang Glacier DoDs.

Figure 12: Bivariate scatter density histogram of the relationship between Δh_{R16} and Δh_{50} . Note the different cluster of near-0 valued p ixels in Δh_{R16} . A similar cluster of 0-valued pixels can be observed in Δh_{50} .

Figure 13: Comparison between Δh_{R16} and Δh_{50} . The data presented is the same as as Figure 10. Pixels with value within the [-0.2, -0.045] interval are represented in black on Δh_{R16} . 0-valued pixels are similarly represented on Δh_{50} .

ated to surface elevation change estimates. While less practical than global error met rics, uncertainty maps like presented here appear to be the most accurate way of rep resenting the level of certainty available over the proposed glacier surface elevation change
 estimates.

616 617

4.2 The use of the median of the posterior distribution in Bayesian inference

In the present paper, we decided to describe the posterior distribution on Δh us-618 ing the median and the 90% credible interval. Another estimator commonly used in Bayesian 619 inference problems is the Maximum A Posteriori (MAP) which corresponds to the mode 620 of the posterior distribution. While no estimator can be defined as superior to the other, 621 we have chosen to use the median and the associated credible interval for several rea-622 sons (Gelman et al., 2013, 2020). First, the MAP is a point estimate. Providing a sin-623 gle point estimate of the unknown quantity is not representative of Bayesian methods, 624 which use distributions to infer unknown quantities from data. Second, the posterior prob-625 ability density is multi-modal. Identifying the highest mode can thus be impossible as, 626 in some cases, the different modes are equal (Lehmann & Casella, 2006; Casella & Berger, 627 2021). Finally, even if the highest mode can be identified, it is unlikely representative 628 of the posterior distribution. While the mean of the posterior probability density is not 629 always the most probable value, it allows, alongside the credible interval, to better char-630 acterize the posterior PDF in its entirety and thus provide a clearer picture of the un-631 certainty associated to each surface elevation change estimate. 632

4.3 Spatial correlation of DEM uncertainties

The present method is based on a probabilistic modeling of elevation data uncertainties, where terrain roughness is used as the main uncertainty descriptor. By computing glacier surface elevation differences pixel by pixel, we implicitly assume that neighboring pixels are independent and that uncertainties are uncorrelated. Many authors have however demonstrated, modeled and discussed the heteroskedastic behavior of uncertainties in elevation data (Monckton, 1994; Kyriakidis et al., 1999; Bretherton et al., 1999; Liu & Jezek, 1999; Wechsler & Kroll, 2006; Dehecq et al., 2020).

Following Hunter and Goodchild (1997), Guillet et al. (2020) proposed a method 641 for modeling heteroskedasticity in DEM uncertainties within a probabilistic framework. 642 They showed that correlated discrete random DEM perturbations can be generated from 643 a Gaussian random field with a well-defined autocorrelation scale. The computational 644 load of this operation is however prohibitive for large scale applications. Considering a 645 N * M pixels DEM, the method proposed by Guillet et al. (2020) requires inverting a 646 covariance matrix of size (N*M)*(N*M). Inverting such a matrix is a quadratically 647 time-complex operation that cannot be done efficiently by general algorithms and requires 648 problem-specific solutions (Sang & Huang, 2012; Zhang et al., 2018) such as covariance 649 localization (see Hamill et al. (2001) and Ruggiero et al. (2016) for example). 650

The aim of the method proposed here is to be used for both glacier- and region-651 wide production of DoDs while maintaining a reasonable computing time. Numerical sim-652 ulations have shown that, while often seen as a worst-case-scenario, assuming uncorre-653 lated DEM error does not generate maximum variability in DEM derivatives (Oksanen 654 & Sarjakoski, 2005; Dehecq et al., 2020). We thus argue that not accounting for heteroskedas-655 ticity in DEM error is unlikely to alter the presented results significantly enough, while 656 requesting prohibitive computational time and power. Spatial correlation of DEM error however remains an important source of uncertainty in DEM-based geoscientific an-658 alyzes (see Dehecq et al. (2020) for more) and further work is thus needed to find an ad-659 equate formulation of this problem within probabilistic frameworks. 660

661

4.4 Physics-based probabilistic framework

In this paper, we have presented a method aiming to unify simple glacier elevation 662 change and uncertainty modeling within a statistically consistent framework. The glacier surface elevation change model however relies on knowledge of the ELA. The equilibrium 664 line altitude is defined up to a certain level of certainty and varies over annual and multi-665 decadal time scales. The uncertainty over the ELA itself depends on the estimation meth-666 ods (see Braithwaite and Raper (2009) or Pandey et al. (2013) for example). We thus 667 tested the impact of ± 150 m variations in the ELA for each case study (data not shown) 668 and did not observe significant changes in the computed glacier surface elevation change 669 estimates. 670

While the present methods focused on glacier surface elevation changes, it can be extended to other remotely-sensed glacier observations such as surface velocity or gravitational field for example. The models depicted in the present paper are very general and can be extended to other types of measurements and uncertainties, provided that they can be modeled satisfactorily (See Altena and Kääb (2017); Altena et al. (2021) for example).

677 678

4.5 Towards a fully probabilistic formulation of the geodetic mass balance

From Δh results, one can easily compute the total volume change (Δ_V) by integrating $\tilde{\Delta h}$ over the entire grid considered in the study area. Δ_V (or sometimes the rate of volume change, \dot{V}) is then used to compute the total mass change Δ_M (rate of mass change, \dot{M}). Volume is converted to mass using a constant mass conversion factor ($f_{\Delta_V} = 850 \pm 60 kgm^{-3}$) defined by Sapiano et al. (1998) and Huss (2013).

Huss (2013) however demonstrated the high variability of f_{Δ_V} as well as the short-684 comings of assuming a constant mass conversion factor. The $f_{\Delta_V} = 850 \pm 60 kgm^{-3}$ 685 approximation is described as conditional on heavy assumptions (study period longer 686 than five years, stable mass balance gradients, presence of firm area and $\Delta_V \neq 0$) and 687 is likely to be a predominant, yet underestimated, source of uncertainty in geodetic mass 688 balances. Given the widespread use of glacier geodetic mass balance as input in, for ex-689 ample, hydrological and runoff models, we want to restate the necessity of better uncer-690 tainty quantification in geodetically determined glacier mass balance. 691

⁶⁹² A logical continuation of the method presented here is be to propose a probabilis-⁶⁹³ tic formulation of f_{Δ_V} . Introducing a spatially variable model for f_{Δ_V} , similarly to our ⁶⁹⁴ prior (Section 2.3.2), and expressing it as a probability distribution rather than a sin-⁶⁹⁵ gle value estimate would indeed lead to further constrain the uncertainty associated to ⁶⁹⁶ f_{Δ_V} .

⁶⁹⁷ 5 Conclusions

In this paper, we presented a novel method for estimating glacier surface elevation 698 changes from different DEMs. Driven by the goal of characterizing uncertainties on the 699 surface elevation variations generated from DEM differentiation, we introduced models 700 for admissible surface elevation change based on glacier physics as well as for character-701 izing uncertainties in co-registered digital elevation models. We integrated these ingre-702 dients into a statistically coherent Bayesian framework, which can readily be extended 703 to other remotely-sensed glacier observations. We applied and validated the method for 704 outlier filtering and void filling, before estimating glacier surface elevation variations. Our 705 method produced surface elevation DoDs which are consistent with previously published 706 results, while avoiding caveats such as artificial clustering of aberrant values. Combin-707 ing Bayesian outlier filtering and gap filling with probabilistic uncertainty models, the 708 method consistently estimates surface elevation variation for different glacial contexts, 709 while also propagating the associated uncertainties. Applied to our particular problem. 710 our study showed the potential importance of accounting for unstable and non-standard 711 glacier dynamics, as it can otherwise result in significant biases. 712

713 **References**

714	Aguilar, F. J., Agüera, F.,	Aguilar, M. A., & Carvajal	, F. (2005, July).	Effects of
715	Terrain Morphology,	Sampling Density, and Inte	rpolation Methods of	on Grid
716	DEM Accuracy.	Photogrammetric Engine	ering & Remote Sen	$sing, \ 71(7),$
717	805–816. doi: 10.143	58/PERS.71.7.805		

- Ahmed, N., Mahtab, A., Agrawal, R., Jayaprasad, P., Pathan, S. K., Ajai, ... Singh,
 A. K. (2007, June). Extraction and validation of cartosat-1 DEM. Journal of
 the Indian Society of Remote Sensing, 35(2), 121. doi: 10.1007/BF02990776
- Aizen, V. B., Kuzmichenok, V. A., Surazakov, A. B., & Aizen, E. M. (2006). Glacier
 changes in the central and northern Tien Shan during the last 140 years based
 on surface and remote-sensing data. Annals of Glaciology, 43, 202–213. doi:
 10.3189/172756406781812465
- Altena, B., & Kääb, A. (2017, March). Elevation Change and Improved Velocity Re trieval Using Orthorectified Optical Satellite Data from Different Orbits. *Re- mote Sensing*, 9(3), 300. doi: 10.3390/rs9030300
- Altena, B., Kääb, A., & Wouters, B. (2021, September). Correlation dispersion as a measure to better estimate uncertainty of remotely sensed glacier displacements (Preprint). Glaciers/Remote Sensing. doi: 10.5194/tc-2021-202

731	Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I.,
732	Wiseman, S. (2012, August). Response of debris-covered glaciers in the Mount
733	Everest region to recent warming, and implications for outburst flood hazards.
734	Earth-Science Reviews, 114(1), 156–174. doi: 10.1016/j.earscirev.2012.03.008
735	Benn, D. I., Fowler, A. C., Hewitt, I., & Sevestre, H. (2019, October). A general the-
736	ory of glacier surges. Journal of Glaciology, 65(253), 701–716. doi: 10.1017/jog
737	.2019.62
738	Beyer, R. A., Alexandrov, O., & McMichael, S. (2018). The Ames Stereo Pipeline:
739	NASA's Open Source Software for Deriving and Processing Terrain Data.
740	Earth and Space Science, 5(9), 537-548. doi: 10.1029/2018EA000409
741	Bhambri, R., Hewitt, K., Kawishwar, P., & Pratap, B. (2017, November). Surge-
742	type and surge-modified glaciers in the Karakoram. Scientific Reports, $7(1)$,
743	15391. doi: 10.1038/s41598-017-15473-8
744	Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa, V.,
745	Yao, T. (2021, July). High Mountain Asian glacier response to climate
746	revealed by multi-temporal satellite observations since the 1960s. Nature
747	<i>Communications</i> , 12(1), 4133. doi: 10.1038/s41467-021-24180-y
748	Bhushan, S., Shean, D., Alexandrov, O., & Henderson, S. (2021, March). Automated
749	digital elevation model (DEM) generation from very-high-resolution Planet
750	SkySat triplet stereo and video imagery. ISPRS Journal of Photogrammetry
751	and Remote Sensing, 173, 151–165. doi: 10.1016/j.isprsjprs.2020.12.012
752	Bingham, A. W., & Rees, W. G. (1999, January). Construction of a high-resolution
753	DEM of an Arctic ice cap using shape-from-shading. International Journal of
754	Remote Sensing, $20(15-16)$, $3231-3242$, doi: $10.1080/014311699211723$
755	Bolch, T., Buchroithner, M., Pieczonka, T., & Kunert, A. (2008). Planimetric
756	and volumetric glacier changes in the Khumbu Himal. Nepal. since 1962 us-
757	ing Corona, Landsat TM and ASTER data. Journal of Glaciology, 54(187).
750	502-600 doi: 10.3180/002214308786570782
758	332-000, u01, 10.3103/002214300100310102
758	Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for
758 759 760	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić
759 760 761	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias: Kamp, Ulrich: Olsenholler, Jeffrey (2005). Using ASTER
759 760 761 762	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high moun-
759 760 761 762 763	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing.
759 760 761 762 763 764	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi:
759 760 761 762 763 764 765	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249
759 760 761 762 763 764 765 766	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of
759 760 761 762 763 764 765 766 766	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The
758 759 760 761 762 763 764 765 766 766 767 768	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tcc-5-349-2011
758 759 760 761 762 763 764 765 766 766 766 768 769	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief
758 759 760 761 762 763 764 765 766 766 766 768 769 770	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been
758 759 760 761 762 763 764 765 766 766 767 768 769 770 771	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi:
758 759 760 761 762 763 764 765 766 766 766 768 769 770 771 772	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017
758 759 760 761 762 763 764 765 766 766 768 769 770 771 771 772 773	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude
758 759 760 761 762 763 764 765 766 766 766 768 769 770 771 772 773 774	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127–132. doi:
758 759 760 761 762 763 764 765 766 766 766 767 768 769 770 771 771 772 773 774	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127–132. doi: 10.3189/172756410790595930
758 759 760 761 762 763 764 765 766 766 767 768 769 770 771 772 773 774 775 776	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127–132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé,
758 759 760 761 762 763 764 765 766 766 767 768 770 771 772 773 774 775 776 777	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127–132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999, July). The Effective Number of Spatial Degrees of Freedom
758 759 760 761 762 763 764 765 766 767 768 770 771 772 773 774 775 776 777 778	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127–132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999, July). The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), 1990–2009. doi:
758 759 760 761 762 763 764 765 766 766 767 768 769 770 771 772 773 774 775 776 777 778 779	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127–132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999, July). The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), 1990–2009. doi: 10.1175/1520-0442(1999)012(1990:TENOSD)2.0.CO;2
758 759 760 761 762 763 764 765 766 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119-127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349-358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531-539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127-132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999, July). The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), 1990-2009. doi: 10.1175/1520-0442(1999)012(1990:TENOSD)2.0.CO;2 Bris, R. L., & Paul, F. (2015). Glacier-specific elevation changes in parts of western
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119-127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349-358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531-539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127-132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999, July). The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), 1990-2009. doi: 10.1175/1520-0442(1999)012(1990:TENOSD)2.0.CO;2 Bris, R. L., & Paul, F. (2015). Glacier-specific elevation changes in parts of western Alaska. Annals of Glaciology, 56(70), 184-192. doi: 10.3189/2015AoG70A227
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 779 780 781 782	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127–132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999, July). The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), 1990–2009. doi: 10.1175/1520-0442(1999)012(1990:TENOSD)2.0.CO;2 Bris, R. L., & Paul, F. (2015). Glacier-specific elevation changes in parts of western Alaska. Annals of Glaciology, 56(70), 184–192. doi: 10.3189/2015AoG70A227 Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017, September). A
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119–127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531–539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127–132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999, July). The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), 1990–2009. doi: 10.1175/1520-0442(1999)012(1990:TENOSD)2.0.CO;2 Bris, R. L., & Paul, F. (2015). Glacier-specific elevation changes in parts of western Alaska. Annals of Glaciology, 56(70), 184–192. doi: 10.3189/2015AoG70A227 Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017, September). A spatially resolved estimate of High Mountain Asia glacier mass balances from
758 759 760 761 762 763 764 765 766 766 767 768 769 770 771 772 773 774 775 776 777 778 777 778 779 780 781 782 783 784	 Bolch, T., Kamp, U., & Olsenholler, J. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In M. Oluić (Ed.), Bolch, Tobias; Kamp, Ulrich; Olsenholler, Jeffrey (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluić, Marinko. New Strategies for European Remote Sensing. Rotterdam: Millpress, 119-127. (pp. 119-127). Rotterdam: Millpress. doi: 10.5167/uzh-137249 Bolch, T., Pieczonka, T., & Benn, D. I. (2011, April). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349-358. doi: 10.5194/tc-5-349-2011 Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017, February). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. The Cryosphere, 11(1), 531-539. doi: 10.5194/tc-11-531-2017 Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127-132. doi: 10.3189/172756410790595930 Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999, July). The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), 1990-2009. doi: 10.1175/1520-0442(1999)012(1990:TENOSD)2.0.CO;2 Bris, R. L., & Paul, F. (2015). Glacier-specific elevation changes in parts of western Alaska. Annals of Glaciology, 56(70), 184-192. doi: 10.3189/2015AoG70A227 Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017, September). A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10(9), 668-673. doi: 10.1038/ngeo2999

786	F. (2016, August). Quantifying volume loss from ice cliffs on debris-covered
787	glaciers using high-resolution terrestrial and aerial photogrammetry. Journal of
788	Glaciology, 62(234), 684–695. doi: 10.1017/jog.2016.54
789	Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink,
790	P. D. A., Arnaud, Y. (2018, March). Can ice-cliffs explain the debris-cover
791	anomaly? new insightsfrom Changri Nup Glacier, Nepal, Central Himalaya
792	(Preprint). Glaciers/Glaciers. doi: 10.5194/tc-2018-38
793	Burnett, M. G. (2012). Hexagon (KH-9) mapping camera program and evolution.
794	Center for the Study of National Reconnaissance.
795	Carlisle, B. H. (2005). Modelling the Spatial Distribution of DEM Error. Transac-
796	tions in GIS, 9(4), 521–540. doi: 10.1111/j.1467-9671.2005.00233.x
797	Casella, G., & Berger, R. L. (2021). Statistical Inference. Cengage Learning.
798	Consortium, R., et al. (2017). Randolph glacier inventory-a dataset of global glacier
799	outlines: Version 6.0. Global Land Ice Measurements from Space, Colorado,
800	USA, Tech. Rep.
801	Cuffey, K. M., & Paterson, W. S. B. (2010). The Physics of Glaciers. Academic
802	Press.
803	Darnell, A. R., Tate, N. J., & Brunsdon, C. (2008, July). Improving user assessment
804	of error implications in digital elevation models. Computers. Environment and
805	Urban Sustems, 32(4), 268–277. doi: 10.1016/j.compenvurbsys.2008.02.003
806	Davis, C., & Ferguson, A. (2004, November). Elevation change of the Antarctic ice
807	sheet, 1995-2000, from ERS-2 satellite radar altimetry. <i>IEEE Transactions on</i>
808	Geoscience and Remote Sensing, $42(11)$, $2437-2445$, doi: 10.1109/TGRS.2004
809	.836789
810	Dehecq, A., Gardner, A. S., Alexandrov, O., McMichael, S., Hugonnet, R., Shean,
811	D., & Marty, M. (2020). Automated Processing of Declassified KH-9 Hexagon
812	Satellite Images for Global Elevation Change Analysis Since the 1970s. Fron-
813	tiers in Earth Science, 8, 516. doi: 10.3389/feart.2020.566802
814	Duethmann, D., Bolch, T., Farinotti, D., Kriegel, D., Vorogushyn, S., Merz, B.,
815	Güntner, A. (2015). Attribution of streamflow trends in snow and glacier
816	melt-dominated catchments of the Tarim River, Central Asia. Water Resources
817	Research, 51(6), 4727–4750. doi: 10.1002/2014WR016716
818	Erdoğan, S. (2010, January). Modelling the spatial distribution of DEM error with
819	geographically weighted regression: An experimental study. Computers & Geo-
820	sciences, 36(1), 34–43. doi: 10.1016/j.cageo.2009.06.005
821	Falaschi, D., Lenzano, M. G., Villalba, R., Bolch, T., Rivera, A., & Lo Vecchio, A.
822	(2019). Six Decades (1958–2018) of Geodetic Glacier Mass Balance in Monte
823	San Lorenzo, Patagonian Andes. Frontiers in Earth Science, 7, 326. doi:
824	10.3389/feart.2019.00326
825	Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Als-
826	dorf, D. (2007, June). The Shuttle Radar Topography Mission. Reviews of
827	Geophysics, 45(2). doi: 10.1029/2005RG000183
828	Futamura, N., Takaku, J., Suzuki, H., Iijima, T., Tadono, T., Matsuoka, M.,
829	Shibasaki, R. (2002, June). High resolution DEM generation from ALOS
830	PRISM data -algorithm development and evaluation. In <i>IEEE International</i>
831	Geoscience and Remote Sensing Symposium (Vol. 1, p. 405-407 vol.1). doi:
832	10.1109/IGARSS.2002.1025054
833	Gardelle, J., Berthier, E., & Arnaud, Y. (2012). Impact of resolution and radar pen-
834	etration on glacier elevation changes computed from DEM differencing. Jour-
835	nal of Glaciology, 58(208), 419–422. doi: 10.3189/2012JoG11J175
836	Gardelle, J., Berthier, E., Arnaud, Y., & Kääb, A. (2013, August). Region-
837	wide glacier mass balances over the Pamir-Karakoram-Himalaya during
838	1999–2011. The Cryosphere, 7(4), 1263–1286. doi: 10.5194/
839	tc-7-1263-2013
840	Gardner, A., Moholdt, G., Arendt, A., & Wouters, B. (2012, October). Accel-

841	erated contributions of Canada's Baffin and Bylot Island glaciers to sea
842	level rise over the past half century. The Cryosphere, $6(5)$, 1103–1125. doi:
843	10.5194/tc-6-1103-2012
844	GDAL/OGR contributors. (2021). GDAL/OGR geospatial data abstraction software
845	library [Manual].
846	Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B.
847	(2013). Bayesian Data Analysis. CRC Press.
848	Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y.,
849	Modrák, M. (2020, November). Bayesian Workflow. arXiv:2011.01808 [stat].
850	Girod, L., Nuth, C., Kääb, A., McNabb, R., & Galland, O. (2017, July). MMAS-
851	TER: Improved ASTER DEMs for Elevation Change Monitoring. Remote
852	Sensing, 9(7), 704. doi: 10.3390/rs9070704
853	González-Moradas, M. d. R., & Viveen, W. (2020, February). Evaluation of
854	ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for
855	the Peruvian Andes against highly accurate GNSS ground control points and
856	geomorphological-hydrological metrics. <i>Remote Sensing of Environment</i> , 237,
857	111509. doi: 10.1016/j.rse.2019.111509
858	Guillet, G., Guillet, T., & Ravanel, L. (2020, January). Camera orientation, calibra-
859	tion and inverse perspective with uncertainties: A Bayesian method applied to
860	area estimation from diverse photographs. ISPRS Journal of Photogrammetry
861	Chillet C. King O. Ly M. Chuffen S. Benn D. Ovinger D. & Belch T. (2021)
862	Outobar) A regionally regelized inventory of High Mountain Agia gunga tung
863	glacioral derived from a multi factor remote sensing approach. The Crucenhere
864	Discussione 1–31 doi: 10.5104/tc.2021.303
865	Cuo I I I I I 7 w Wu I v I V Hu I I I 7 a (2020) The Surge
866	of the Hisper Cleater Central Kerekoram: SAR 3-D Flow Velocity Time Series
007 969	and Thickness Changes Journal of Geophysical Research: Solid Earth 125(7)
869	e2019.IB018945 doi: 10.1029/2019.IB018945
870	Hamill T M Whitaker J S & Snyder C (2001 November) Distance-
871	Dependent Filtering of Background Error Covariance Estimates in an En-
872	semble Kalman Filter. Monthly Weather Review, 129(11), 2776–2790. doi:
873	10.1175/1520-0493(2001)129(2776:DDFOBE)2.0.CO;2
874	Holmes, K. W., Chadwick, O. A., & Kyriakidis, P. C. (2000, June). Error in a
875	USGS 30-meter digital elevation model and its impact on terrain modeling.
876	Journal of Hydrology, 233(1), 154–173. doi: 10.1016/S0022-1694(00)00229-8
877	Horowitz, E., & Papa, M. (1992, January). Polygon Clipping: Analysis and Expe-
878	riences. In J. D. Ullman (Ed.), Theoretical Studies in Computer Science (pp.
879	315–339). Academic Press. doi: 10.1016/B978-0-12-708240-0.50016-2
880	Hubacek, M., Kovarik, V., & Kratochvil, V. (2016, June). Analysis of Influences of
881	Terrain Relief Roughness on DEM accuracy Generated fom Lida in the Czech
882	Republic Territory. In The International Archives of the Photogrammetry,
883	Remote Sensing and Spatial Information Sciences (Vol. XLI-B4, pp. 25–30).
884	Copernicus GmbH. doi: 10.5194/isprs-archives-XLI-B4-25-2016
885	Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
886	Kääb, A. (2021, April). Accelerated global glacier mass loss in the
887	early twenty-first century. Nature, $592(7856)$, $726-731$. doi: $10.1038/$
888	s41586-021-03436-z
889	Hunter, G. J., & Goodchild, M. F. (1997). Modeling the Uncertainty of Slope and
890	Aspect Estimates Derived from Spatial Databases. Geographical Analysis,
891	<i>29</i> (1), 35–49. doi: 10.1111/j.1538-4632.1997.tb00944.x
892	Huss, M. (2013, May). Density assumptions for converting geodetic glacier volume
893	change to mass change. The Cryosphere, $7(3)$, $877-887$. doi: $10.5194/tc-7-877$
894	
895	Immerzeel, W. W., Pellicciotti, F., & Shrestha, A. B. (2012, February). Glaciers

896	as a Proxy to Quantify the Spatial Distribution of Precipitation in the
897	Hunza Basin. Mountain Research and Development, 32(1), 30–38. doi:
898	10.1659/MRD-JOURNAL-D-11-00097.1
899	Jacobsen, K. (2016, June). Analysis and Correction of Systematic Height Model
900	Erros. ISPRS - International Archives of the Photogrammetry, Remote Sensing
901	and Spatial Information Sciences, XLI-B1, 333–339. doi: 10.5194/isprsarchives
902	-XLI-B1-333-2016
903	Jakob, L., Gourmelen, N., Ewart, M., & Plummer, S. (2021, April). Spatially and
904	temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska ob-
905	served by CryoSat-2 swath altimetry between 2010 and 2019. The Cryosphere, $15(4)$ 1945 1969 1: 105104/4 15 1945 2021
906	$I_{2}(4), 1845-1802.$ doi: 10.5194/tc-15-1845-2021
907	Janowski, L., Tylmann, K., Irzeinska, K., Rudowski, S., & Tegowski, J. (2021). Ex-
908	Parameters of Digital Elevation Model <i>LEEE Transactions on Conscience and</i>
909	Remote Sensing 1–17 doi: 10.1109/TGRS 2021 3001771
910	Iskoot H (2011) Glacier surging Encyclopedia of Snow Ice and Glaciers 415-
911	428.
913	Kaab, A. (2008, October). Glacier Volume Changes Using ASTER Satellite Stereo
914	and ICES GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Sval-
915	bard. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 2823–
916	2830. doi: 10.1109/TGRS.2008.2000627
917	Kargel, J. S., Leonard, G. J., Wheate, R. D., & Edwards, B. (2014). ASTER
918	and DEM Change Assessment of Glaciers Near Hoodoo Mountain, British
919	Columbia, Canada. In J. S. Kargel, G. J. Leonard, M. P. Bishop, A. Kääb, &
920	B. H. Raup (Eds.), Global Land Ice Measurements from Space (pp. 353–373).
921	Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-79818-7_15
922	Kim, K., Jezek, K. C., & Liu, H. (2007, December). Orthorectified image mosaic
923	of Antarctica from 1963 Argon satellite photography: Image processing and
924	glaciological applications. International Journal of Remote Sensing, 28(23),
925	5357-5373. doi: 10.1080/01431160601105850
926	King, O., Bhattacharya, A., & Bolch, T. (2021, June). The presence and influ-
927	ence of glacier surging around the Geladandong ice caps, North East 11- betan Platacy Advances in Climate Change Personal $10(2)$ 200 212 doi:
928	betain Flateau. Auvances in Cumute Change Research, $12(5)$, 299–512. doi: 10.1016/j.pccro.2021.05.001
929	King O Bhattacharva A Chuffar S Tait A Chilford S Elmore A C k
930	Bolch T (2020 November) Six Decades of Glacier Mass Changes around Mt
932	Everest Are Revealed by Historical and Contemporary Images. One Earth.
933	3(5), 608-620, doi: 10.1016/i.oneear.2020.10.019
934	Kyriakidis, P. C., Shortridge, A. M., & Goodchild, M. F. (1999, October). Geo-
935	statistics for conflation and accuracy assessment of digital elevation models.
936	International Journal of Geographical Information Science, 13(7), 677–707.
937	doi: $10.1080/136588199241067$
938	Lehmann, E. L., & Casella, G. (2006). Theory of Point Estimation. Springer Science
939	& Business Media.
940	Leinss, S., & Bernhard, P. (2021). TanDEM-X:deriving InSAR Height Changes and
941	Velocity Dynamics of Great Aletsch Glacier. IEEE Journal of Selected Top-
942	ics in Applied Earth Observations and Remote Sensing, 14, 4798–4815. doi:
943	10.1109/JSTARS.2021.3078084
944	Li, J., & Heap, A. D. (2014, March). Spatial interpolation methods applied in the
945	environmental sciences: A review. Environmental Modelling & Software, 53, 172–180, doi: 10.1016/j.enviroft.2012.12.008
946	173-109. doi: 10.1010/J.envsoit.2013.12.008
947	Variograms and Fourier Analysis Congramhical Analysis 21(2) 240 266 doi:
948	101111/i1538-46321000tb00081s
949	Mayr E. Hagg W. Mayer C. & Braun L. (2013 January) Calibrating a spa
900	mayi, E., mage, W., Mayor, C., & Draun, E. (2015, January). Cambrading a spa-

951 952	tially distributed conceptual hydrological model using runoff, annual mass balance and winter mass balance. <i>Journal of Hydrology</i> , 478, 40–49. doi:
953	10.1016/j.jhydrol.2012.11.035
954	McNabb, R., Nuth, C., Kääb, A., & Girod, L. (2019, March). Sensitivity of glacier
955	volume change estimation to DEM void interpolation. The Cryosphere, $13(3)$,
956	895-910. doi: $10.5194/tc-13-895-2019$
957	Mertes, J. R., Gulley, J. D., Benn, D. I., Thompson, S. S., & Nicholson, L. I. (2017).
958	Using structure-from-motion to create glacier DEMs and orthoimagery from
959	historical terrestrial and oblique aerial imagery. Earth Surface Processes and
960	Landforms, $42(14)$, 2350–2364. doi: 10.1002/esp.4188
961	Moholdt, G., & Kääb, A. (2012, January). A new DEM of the Austfonna ice cap
962	by combining differential SAR interferometry with ICESat laser altimetry. Po-
963	lar Research, $31(1)$, 18460. doi: 10.3402/polar.v31i0.18460
964	Mölg, N., & Bolch, T. (2017, October). Structure-from-Motion Using Historical
965	Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sens-
966	ing, $9(10)$, 1021. doi: 10.3390/rs9101021
967	Monckton, C. (1994). An Investigation into the spatial structure of error in digital
968	elevation data. In Innovations In GIS. CRC Press.
969	Mukherjee, S., Mukherjee, S., Garg, R. D., Bhardwaj, A., & Raju, P. L. N. (2013,
970	June). Evaluation of topographic index in relation to terrain roughness and
971	DEM grid spacing. Journal of Earth System Science, 122(3), 869–886. doi:
972	10.1007/s12040-013-0292-0
973	Mukhopadhyay, B., & Khan, A. (2016, February). Altitudinal variations of temper-
974	ature, equilibrium line altitude, and accumulation-area ratio in Upper Indus
975	Basin. Hydrology Research, $48(1)$, 214–230. doi: 10.2166/nh.2016.144
976	Muskett, R. R., Lingle, C. S., Sauber, J. M., Post, A. S., Tangborn, W. V., Rabus,
977	B. T., & Echelmeyer, K. A. (2009). Airborne and spaceborne DEM- and laser
978	altimetry-derived surface elevation and volume changes of the Bering Glacier
979	system, Alaska, USA, and Yukon, Canada, 1972–2006. Journal of Glaciology,
980	55(190), 316-326. doi: $10.3189/002214309788608750$
981	Nakawo, M., & Young, G. J. (1981). Field Experiments to Determine the Effect of a
982	Debris Layer on Ablation of Glacier Ice. Annals of Glaciology, 2, 85–91. doi:
983	10.3189/172756481794352432
984	NASA, L. D. (2013). NASA shuttle radar topography mission (SRTM) version 3.0
985	(SRTM plus) product release. Land process distributed active archive center.
986	National Aeronautics and Space Administration.
987	Neckel, N., Kropacek, J., Bolch, I., & Hochschild, V. (2014, January). Glacier
988	mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser
989	attimetry measurements. Environmental Research Letters, $9(1)$, 014009. doi: 10.1088/1748.0296/0/1/014000
990	10.1080/1/40-9520/9/1/014009 Nicholson I is Ropp D I (2006) Colculating iss malt beneath a debuig laws
991	Nicholson, L., & Denn, D. I. (2000). Calculating ice ment beneath a debris layer using meteorological data. Learnal of Classiclass. $50(178)$, $462, 470$, doi: 10
992	using ineteorological data. <i>Journal of Gluciology</i> , $J_{2}(176)$, $405-470$. doi: 10 2120/172756506721222524
993	112750500761626564
994	and comparison to ALOS PRISM DSM croated with classical photogrammet
995	ric tochniquos European Journal of Remote Sensing 52(sup2) 30-52 doi:
990	10 1080/22707254 2020 1774424
997	Nilsson I Sandhorg Sgronson I Barlotta V B & Forsborg B (2015 January)
998	Mass changes in Arctic ice caps and glaciers: Implications of regionalizing ele-
1000	vation changes The Cruosnhere $Q(1)$ 139–150 doi: 10.5194/tc-9-139-2015
1001	Noh M - J & Howat I M (2015 March) Automated stereo-photogrammetric
1002	DEM generation at high latitudes: Surface Extraction with TIN-based
1003	Search-space Minimization (SETSM) validation and demonstration over
1004	glaciated regions. $GIScience & Remote Sensing. 52(2). 198-217.$ doi:
1005	10.1080/15481603.2015.1008621

- Nuth, C., & Kääb, A. (2011, March). Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1), 271–290. doi: 10.5194/tc-5-271-2011
- 1009Oksanen, J., & Sarjakoski, T.(2005, October). Error propagation of DEM-based1010surface derivatives. Computers & Geosciences, 31(8), 1015–1027. doi: 10.1016/1011j.cageo.2005.02.014
- Pandey, P., Kulkarni, A. V., & Venkataraman, G. (2013, July). Remote sensing
 study of snowline altitude at the end of melting season, Chandra-Bhaga basin,
 Himachal Pradesh, 1980–2007. *Geocarto International*, 28(4), 311–322. doi:
 10.1080/10106049.2012.705336
- Papasodoro, C., Berthier, E., Royer, A., Zdanowicz, C., & Langlois, A. (2015, August). Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014. The Cryosphere, 9(4), 1535–1550. doi: 10.5194/tc-9-1535-2015

1020

1021

1022

1023

1024

1036

1037

1038

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

- Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M., McNabb, R., ... Wuite,
 J. (2017, December). Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sensing of Environment, 203, 256–275. doi: 10.1016/j.rse.2017.08.038
- Paul, F., Strozzi, T., Schellenberger, T., & Kääb, A. (2017, September). The 2015
 Surge of Hispar Glacier in the Karakoram. *Remote Sensing*, 9(9), 888. doi: 10
 .3390/rs9090888
- Pieczonka, T., & Bolch, T. (2015, May). Region-wide glacier mass budgets
 and area changes for the Central Tien Shan between ~1975 and 1999 us ing Hexagon KH-9 imagery. *Global and Planetary Change*, 128, 1–13. doi:
 10.1016/j.gloplacha.2014.11.014
- Pieczonka, T., Bolch, T., Junfeng, W., & Shiyin, L. (2013, March). Heterogeneous
 mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) re vealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. *Remote Sensing of Environment*, 130, 233–244. doi: 10.1016/j.rse.2012.11.020
 - Podgórski, J., Kinnard, C., Petlicki, M., & Urrutia, R. (2019, January). Performance Assessment of TanDEM-X DEM for Mountain Glacier Elevation Change Detection. *Remote Sensing*, 11(2), 187. doi: 10.3390/rs11020187
- Pratap, B., Dobhal, D. P., Mehta, M., & Bhambri, R. (2015). Influence of debris cover and altitude on glacier surface melting: A case study on Dokriani
 Glacier, central Himalaya, India. Annals of Glaciology, 56(70), 9–16. doi:
 10.3189/2015AoG70A971
 - Quincey, D. J., & Luckman, A. (2014, April). Brief Communication: On the magnitude and frequency of Khurdopin glacier surge events. *The Cryosphere*, 8(2), 571–574. doi: 10.5194/tc-8-571-2014
 - Ragettli, S., Bolch, T., & Pellicciotti, F. (2016, September). Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal. The Cryosphere, 10(5), 2075–2097. doi: 10.5194/tc-10-2075-2016
 - Rankl, M., & Braun, M. (2016, March). Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models. Annals of Glaciology, 57(71), 273–281. doi: 10.3189/2016AoG71A024
- Rashid, I., Abdullah, T., Glasser, N. F., Naz, H., & Romshoo, S. A. (2018, February). Surge of Hispar Glacier, Pakistan, between 2013 and 2017 detected from remote sensing observations. *Geomorphology*, 303, 410–416. doi: 10.1016/j
 .geomorph.2017.12.018
- Raup, B. H., Andreassen, L. M., Bolch, T., & Bevan, S. (2015). Remote sensing of glaciers. *Remote Sensing of the Cryosphere*, 123–56.
- Ruggiero, G. A., Cosme, E., Brankart, J.-M., Sommer, J. L., & Ubelmann, C. (2016,
 December). An Efficient Way to Account for Observation Error Correlations

1061 1062 1063	in the Assimilation of Data from the Future SWOT High-Resolution Altimeter Mission. Journal of Atmospheric and Oceanic Technology, 33(12), 2755–2768. doi: 10.1175/JTECH-D-16-0048.1
1064	Sang, H., & Huang, J. Z. (2012). A full scale approximation of covariance func-
1065	tions for large spatial data sets. Journal of the Royal Statistical Society: Se-
1066	ries B (Statistical Methodology), 74(1), 111–132. doi: 10.1111/j.1467-9868.2011
1067	.01007.x
1068	Sapiano, J. J., Harrison, W. D., & Echelmever, K. A. (1998). Elevation, volume
1069	and terminus changes of nine glaciers in North America. Journal of Glaciology,
1070	44(146), 119–135. doi: 10.3189/S0022143000002410
1071	Schwitter, M. P., & Raymond, C. F. (1993). Changes in the longitudinal profiles of
1072	glaciers during advance and retreat. Journal of Glaciology, 39(133), 582–590.
1073	doi: 10.3189/S0022143000016476
1074	Shangguan, D. H., Bolch, T., Ding, Y. J., Kröhnert, M., Pieczonka, T., Wetzel,
1075	H. U., & Liu, S. Y. (2015, April). Mass changes of Southern and North-
1076	ern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during & sim;1975 and
1077	2007 derived from remote sensing data. The Cryosphere, $9(2)$, 703–717. doi:
1078	10.5194/tc-9-703-2015
1079	Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., & Berthier, E. (2019, Octo-
1080	ber). Ice shelf basal melt rates from a high-resolution digital elevation model
1081	(DEM) record for Pine Island Glacier, Antarctica. The Cryosphere, 13(10),
1082	2633–2656. doi: 10.5194/tc-13-2633-2019
1083	Simonsen, S. B., Barletta, V. R., Colgan, W. T., & Sørensen, L. S. (2021).
1084	Greenland Ice Sheet Mass Balance (1992–2020) From Calibrated Radar
1085	Altimetry. <i>Geophysical Research Letters</i> , 48(3), e2020GL091216. doi:
1086	10.1029/2020GL091216
1087	Sutherland, I. E., & Hodgman, G. W. (1974, January). Reentrant polygon clipping.
1088	Communications of the ACM, 17(1), 32-42. doi: 10.1145/360767.360802
1089	Toutin, T. (2008, April). ASTER DEMs for geomatic and geoscientific applications:
1090	A review. International Journal of Remote Sensing, 29(7), 1855–1875. doi: 10
1091	.1080/01431160701408477
1092	Truffer, M., Kääb, A., Harrison, W. D., Osipova, G. B., Nosenko, G. A., Es-
1093	pizua, L., Lai, A. W. (2021, January). Chapter 13 - Glacier surges.
1094	
1005	In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards,
1095	In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi:
1095	In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2
1095 1096 1097	In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva-
1095 1096 1097 1098	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global
1096 1097 1098 1099	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014
1095 1096 1097 1098 1099 1100	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P.,
1095 1096 1097 1098 1099 1100 1101	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris-
1095 1096 1097 1098 1099 1100 1101 1102	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The
1095 1096 1097 1098 1099 1100 1101 1102 1103	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117–10142. doi:
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117–10142. doi: 10.3390/rs70810117
1093 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117–10142. doi: 10.3390/rs70810117 Wang, K., & Zhang, T. (2015, December). Gauss-Newton method for DEM co-
1093 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117–10142. doi: 10.3390/rs70810117 Wang, K., & Zhang, T. (2015, December). Gauss-Newton method for DEM co- registration. In International Conference on Intelligent Earth Observing and A. Vin Context of Context
1093 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117–10142. doi: 10.3390/rs70810117 Wang, K., & Zhang, T. (2015, December). Gauss-Newton method for DEM co- registration. In International Conference on Intelligent Earth Observing and Applications 2015 (Vol. 9808, p. 98080M). International Society for Optics and Distributed 10.1117/112 (Vol. 92057).
1093 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117–10142. doi: 10.3390/rs70810117 Wang, K., & Zhang, T. (2015, December). Gauss-Newton method for DEM co- registration. In International Conference on Intelligent Earth Observing and Applications 2015 (Vol. 9808, p. 98080M). International Society for Optics and Photonics. doi: 10.1117/12.2207244
1093 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117–10142. doi: 10.3390/rs70810117 Wang, K., & Zhang, T. (2015, December). Gauss-Newton method for DEM co- registration. In International Conference on Intelligent Earth Observing and Applications 2015 (Vol. 9808, p. 98080M). International Society for Optics and Photonics. doi: 10.1117/12.2207244 Wechsler, S. P., & Kroll, C. N. (2006, September). Quantifying DEM Uncertainty
1093 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417–466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165, 137–146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845–1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117–10142. doi: 10.3390/rs70810117 Wang, K., & Zhang, T. (2015, December). Gauss-Newton method for DEM co- registration. In International Conference on Intelligent Earth Observing and Applications 2015 (Vol. 9808, p. 98080M). International Society for Optics and Photonics. doi: 10.1117/12.2207244 Wechsler, S. P., & Kroll, C. N. (2006, September). Quantifying DEM Uncertainty and its Effect on Topographic Parameters. Photogrammetric Engineering & Demote Conving Co(0), 1081, 1081, 1081, 4081
1093 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417-466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165, 137-146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845-1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117-10142. doi: 10.3390/rs70810117 Wang, K., & Zhang, T. (2015, December). Gauss-Newton method for DEM co- registration. In International Conference on Intelligent Earth Observing and Applications 2015 (Vol. 9808, p. 98080M). International Society for Optics and Photonics. doi: 10.1117/12.2207244 Wechsler, S. P., & Kroll, C. N. (2006, September). Quantifying DEM Uncertainty and its Effect on Topographic Parameters. Photogrammetric Engineering & Remote Sensing, 72(9), 1081-1090. doi: 10.14358/PERS.72.9.1081
1093 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113	 In W. Haeberli & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition) (pp. 417-466). Elsevier. doi: 10.1016/B978-0-12-817129-5.00003-2 Vijay, S., & Braun, M. (2018, June). Early 21st century spatially detailed eleva- tion changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165, 137-146. doi: 10.1016/j.gloplacha.2018.03.014 Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Sherpa, S. F. (2016, August). Reduced melt on debris- covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845-1858. doi: 10.5194/tc-10-1845-2016 Wang, D., & Kääb, A. (2015, August). Modeling Glacier Elevation Change from DEM Time Series. Remote Sensing, 7(8), 10117-10142. doi: 10.3390/rs70810117 Wang, K., & Zhang, T. (2015, December). Gauss-Newton method for DEM co- registration. In International Conference on Intelligent Earth Observing and Applications 2015 (Vol. 9808, p. 98080M). International Society for Optics and Photonics. doi: 10.1117/12.2207244 Wechsler, S. P., & Kroll, C. N. (2006, September). Quantifying DEM Uncertainty and its Effect on Topographic Parameters. Photogrammetric Engineering & Remote Sensing, 72(9), 1081-1090. doi: 10.14358/PERS.72.9.1081 Weng, Q. (2006). An Evaluation of Spatial Interpolation Accuracy of Elevation Deta. In A. Birdl W. Keing, C. A. Elwas (Tell), P.

1116	Handling: 12th International Symposium on Spatial Data Handling (pp. 805–
1117	824). Berlin, Heidelberg: Springer. doi: 10.1007/3-540-35589-8_50
1118	Wheate, R. D., Berthier, E., Bolch, T., Menounos, B. P., Shea, J. M., Clague, J. J.,
1119	& Schiefer, E. (2014). Remote Sensing of Glaciers in the Canadian Cordillera,
1120	Western Canada. In J. S. Kargel, G. J. Leonard, M. P. Bishop, A. Kääb, &
1121	B. H. Raup (Eds.), Global Land Ice Measurements from Space (pp. 333–352).
1122	Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-79818-7_14
1123	Whitehead, K., Moorman, B. J., & Hugenholtz, C. H. (2013, December). Brief
1124	Communication: Low-cost, on-demand aerial photogrammetry for glaciological
1125	measurement. The Cryosphere, $7(6)$, 1879–1884. doi: $10.5194/tc-7-1879-2013$
1126	Wijngaard, R. R., Steiner, J. F., Kraaijenbrink, P. D. A., Klug, C., Adhikari, S.,
1127	Banerjee, A., Immerzeel, W. W. (2019). Modeling the Response of the
1128	Langtang Glacier and the Hintereisferner to a Changing Climate Since the
1129	Little Ice Age. Frontiers in Earth Science, 0 . doi: 10.3389/feart.2019.00143
1130	Wise, S. (2011, August). Cross-validation as a means of investigating DEM interpo-
1131	lation error. Computers & Geosciences, 37(8), 978–991. doi: 10.1016/j.cageo
1132	.2010.12.002
1133	Zhang, R., Fattahi, S., & Sojoudi, S. (2018, July). Large-Scale Sparse Inverse Co-
1134	variance Estimation via Thresholding and Max-Det Matrix Completion. In In-
1135	ternational Conference on Machine Learning (pp. 5766–5775). PMLR.

1136 Acknowledgments

¹¹³⁷ We thank Dr. Owen King for his constructive comments during the writing of this manuscript.

¹¹³⁸ This study was supported by the Strategic Priority Research Program of Chinese Academy

of Sciences (XDA20100300) and the Swiss National Science Foundation $(200021E_{-}177652/1)$

within the within the framework of the Research Unit GlobalCDA funded by DeutscheForschngsgemeinschaft (grant no. FOR2630).