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Abstract

Various interdisciplinary studies have shown substantial discrepancies between modeled and remotely sensed glacier surface

elevation change.

It is therefore crucial to better understand and quantify uncertainties associated to both methods.

We design a probabilistic framework with the aim to filter outliers, fill data voids and estimate uncertainties in glacier surface

elevation changes computed from Digital Elevation Model (DEM) differentiation.

The technique is based on a Bayesian formulation of the DEM difference problem and specifically targets surging and debris-

covered glaciers, both at glacier and regional scales.

We first define a set of physically admissible surface elevation changes as an elevation-dependent probability density function.

In a second step, terrain roughness is defined as the main descriptor for DEM uncertainty. Each surface elevation change pixel

is a probability distribution. We present validation experiments in High Mountain Asia and show that the model produces

results consistent with conventional DEM differencing, while avoiding the caveats of already existing methods.

We further demonstrate that accounting for unstable glacier dynamics is crucial for accurate outlier filtering and robust uncer-

tainty estimation. The technique can be applied to other types of remotely sensed glacier quantities (surface velocity

etc.) and so would help to improve the characterization of uncertainty associated with changes in glacier mass and dynamics.
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Abstract15

Various interdisciplinary studies have shown substantial discrepancies between modeled16

and remotely sensed glacier surface elevation change. It is therefore crucial to better un-17

derstand and quantify uncertainties associated to both methods. We design a probabilis-18

tic framework with the aim to filter outliers, fill data voids and estimate uncertainties19

in glacier surface elevation changes computed from Digital Elevation Model (DEM) dif-20

ferentiation. The technique is based on a Bayesian formulation of the DEM difference21

problem and specifically targets surging and debris-covered glaciers, both at glacier and22

regional scales. We first define a set of physically admissible surface elevation changes23

as an elevation-dependent probability density function. In a second step, terrain rough-24

ness is defined as the main descriptor for DEM uncertainty. Each surface elevation change25

pixel is a probability distribution. We present validation experiments in High Mountain26

Asia and show that the model produces results consistent with conventional DEM dif-27

ferencing, while avoiding the caveats of already existing methods. We further demon-28

strate that accounting for unstable glacier dynamics is crucial for accurate outlier filter-29

ing and robust uncertainty estimation. The technique can be applied to other types of30

remotely sensed glacier quantities (surface velocity etc.) and so would help to improve31

the characterization of uncertainty associated with changes in glacier mass and dynam-32

ics.33

Plain Language Summary34

Glacier volume changes are traditionally studied by subtracting datasets represent-35

ing the elevation of a glacier’s surface at different time periods. These datasets, called36

digital elevation models, are generated by various algorithms from images acquired by37

air- and space-borne sensors. Digital elevation models are thus inherently erroneous rep-38

resentations of the true and unknown ground surface elevation. Errors in elevation will39

ultimately generate incorrect values of glacier volume change that need to be filtered out.40

Most methods used to filter incorrect signal in glacier surface elevation changes rely on41

statistical thresholds, without using available knowledge on glacier physics. In this pa-42

per, we present a novel method to filter incorrect values and provide a measurement of43

the uncertainty associated with glacier volume changes. This is done by evaluating how44

likely the observed volume changes are, given what is already known about glacier physics.45

More specifically we compare the computed glacier volume change with a set of admis-46

sible values defined by the glacier’s parameters and flow regime. We test the proposed47

methodology against already published results and find that existing caveats are elim-48

inated from our results. We further demonstrate the need to account for a glacier’s flow49

regime when dealing with volume change datasets.50

1 Introduction51

The increasing collection of surface elevation datasets has created a vast archive52

of snapshots for the study of land ice. Digital elevation datasets have now become ubiq-53

uitous in the study of glaciers (Wheate et al., 2014; Falaschi et al., 2019; King et al., 2021),54

ice caps (Bingham & Rees, 1999; Moholdt & Kääb, 2012; Papasodoro et al., 2015) and55

ice sheets (Davis & Ferguson, 2004; Whitehead et al., 2013; Shean et al., 2019; Simon-56

sen et al., 2021) and present a large potential to further our understanding of ice dynam-57

ics, cryosphere/climate relationships and future sea level rise (Gardner et al., 2012). Lately,58

efforts have primarily focused on producing new, more accurate digital elevation mod-59

els (DEMs) from air- and space-borne optical or radar sensors (Muskett et al., 2009; Neckel60

et al., 2014; Moholdt & Kääb, 2012; Leinss & Bernhard, 2021), declassified imagery (Kim61

et al., 2007; Dehecq et al., 2020) and state-of-the-art processing techniques (Noh & Howat,62

2015; Mertes et al., 2017; Mölg & Bolch, 2017; Bhushan et al., 2021; Janowski et al., 2021).63

In parallel, studies have used the generated elevation datasets to quantify glacier changes64
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over longer timescales (Bolch et al., 2011; Bhattacharya et al., 2021; King et al., 2020),65

broader spatial scales (Hugonnet et al., 2021) and with higher temporal and spatial res-66

olution (Aizen et al., 2006; Brun et al., 2016, 2017; Jakob et al., 2021).67

The various DEMs used to compute glacier surface elevation changes are often of68

uneven quality as many originate from different sensors (Toutin, 2008; González-Moradas69

& Viveen, 2020), are processed using different algorithms (Futamura et al., 2002; Beyer70

et al., 2018; Bhushan et al., 2021), have inconsistent spatial resolutions (Bolch et al., 2008;71

Bhattacharya et al., 2021) or are affected by clouds (Bolch et al., 2005), among others.72

These limitations can introduce substantial bias and uncertainties in the information de-73

rived from glacier surface elevation changes compute by differencing two or more DEMs74

(Paul, Bolch, et al., 2017; Podgórski et al., 2019). Example of typical biases are erroneous75

elevation measurements resulting from radar penetration in radar DEMs (Gardelle et76

al., 2012), and data voids (or anomalous values) resulting from weather or illumination77

conditions (Kaab, 2008; Bris & Paul, 2015; Paul, Bolch, et al., 2017) as well as tilts or78

along/cross track biases in DEMs derived from optical sensors (Girod et al., 2017), among79

others.80

Mitigating biases on the information derived from DEM differences has been the81

focus of substantial efforts in the past decades. While the state-of-the-art co-registration82

method proposed by Nuth and Kääb (2011) has now become standard for eliminating83

DEM shifts, elevation biases and higher-order sensor specific biases, a wide variety of out-84

lier filtering, gap filling and uncertainty estimation methods are used in individual stud-85

ies (Gardelle et al., 2013; Pieczonka et al., 2013; Pieczonka & Bolch, 2015; Shangguan86

et al., 2015). More often than not, such methods rely on the implicit assumption that87

glacier surface elevation changes are normally distributed over the study area. While rea-88

sonable at a global scale, this assumption is likely to be invalid at regional and glacier89

scales, especially in regions where a substantial part of the glacierized area is affected90

by surges or debris-covered.91

Unstable glacier dynamics (glaciers surges) and extensive debris cover can indeed92

heavily alter the mass balance signal, both at glacier and regional scales (Vincent et al.,93

2016; Vijay & Braun, 2018). In regions where surge-type or debris-covered glaciers are94

numerous, such as High Mountain Asia where surge-type glaciers represent ≈ 20% of95

the glacierized area (≈ 50% in the Karakoram, see Bhambri et al. (2017); Guillet et al.96

(2021) for more), the assumption of normality for surface elevation changes is thus un-97

likely to be valid, making standard outlier filtering methods unreliable. Accounting for98

potential unstable dynamics or debris cover in the DEM differencing process and pro-99

viding a quantification of the uncertainties on the surface elevation changes is crucial.100

Furthermore, given the widespread use of surface elevation changes, and by extension101

geodetic mass balance, in different operations (Mayr et al., 2013; Duethmann et al., 2015),102

keeping track of uncertainties and how they propagate through the chain of operations103

is primordial.104

In this paper, we present a method aiming at addressing both the outlier filtering/gap105

filling and uncertainty estimation problems. We here aim to define a unified framework106

to derive glacier surface elevation changes, based on a probabilistic formulation of DEM107

differentiation. The method is specifically designed for contexts where the presence of108

surge-type or debris-covered glaciers might alter the surface elevation signal. The out-109

lier filtering and gap filling problems are here seen as a Bayesian inference problem, where110

we aim at providing the probability distribution of glacier surface elevation change, given111

previous knowledge on glacier dynamics and error modeling. By unifying the DEM dif-112

ferencing problem with simple glacier elevation changes modeling within a statistically113

consistent framework we further aim to provide estimation of the uncertainty on glacier114

surface elevation changes.115
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2 The DEM differentiation problem: uncertainties and Bayesian for-116

mulation117

2.1 Errors and uncertainties in elevation data118

Digital elevation models are inherently imperfect representations of the true ground119

surface. Errors, or deviations of the data from the true ground surface elevation, are tra-120

ditionally defined as either gross, systematic or random. While gross errors, or blunders,121

originate from equipment failure and are thus unlikely in commercial elevation data sets,122

many systematic errors have been documented in state-of-the-art commercial datasets123

(Jacobsen, 2016; Nikolakopoulos, 2020). Examples include both planimetric (XY) and124

vertical (Z) spurious pixel, line and edge effects as well as pits and spikes; all resulting125

from the DEM production process. Random errors typically also arise from the editing126

and processing steps, and represent random variations around the true ground surface127

elevation.128

More formally, the relationship between a DEM (Z̃) and the true surface elevation
map it represents can be described as follows :

Z̃ = Z + ϵ (1)

where Z̃ is the imperfect representation of the true and unknown elevation Z and ϵ quan-129

tifies all the errors associated to each elevation measurement.130

Deviations between Z̃ and Z are often described using simple metrics, the most com-
mon descriptor being the root mean squared error (RMSE), for which estimates are usu-
ally provided in the DEM documentation:

RMSE :=

√
1

n
Σn

i=1

(
Z̃i − Zi

)2

(2)

Global error metrics however fail to fully characterize DEM errors (Liu & Jezek, 1999;131

Carlisle, 2005; Erdoğan, 2010). DEM errors have been shown to vary spatially, and to132

correlate with various local terrain properties, most notably terrain ruggedness (Kyriakidis133

et al., 1999), slope and local elevation (Liu & Jezek, 1999; Aguilar et al., 2005). Further-134

more, as the true real-world ground surface elevation (Z) is inaccessible, DEM errors them-135

selves are thus known up to a certain level of certainty. Considering that neither the true136

ground surface elevation map Z, nor the true error map ϵ can be derived from realiza-137

tions of Z̃, we here propose to formulate Z̃ as a range of values within which one can ex-138

pect Z to lie, with a certain level of certainty rather than a single value estimate affected139

by errors.140

2.2 DEM differencing and uncertainty quantification in glaciology141

Among change detection methods, DEM differencing to produce DEMs of differ-142

ence (DoDs) is the most widespread in glaciology. Prior to being subtracted, two DEMs143

of the same study area are traditionally co-registered. Co-registration is a widespread144

processing step aiming at spatially aligning two (or more) elevation datasets. Features145

present on both datasets should overlap as well as possible after co-registration. Perfect146

match between the co-registered datasets is however unlikely. In glaciological applica-147

tions, misalignment of data sets may result in erroneous interpretation of surface eleva-148

tion changes leading to false identification of surge-type dynamics or incorrect estima-149

tions of glacier volume changes, for example. Further details on the co-registration pro-150

cedure can be found for example in Nuth and Kääb (2011); K. Wang and Zhang (2015).151
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From Eq. 1, one can formulate the difference between two co-registered elevation
data sets acquired at different times (with t > t0) as follows:

∆̃h = Z̃t − Z̃t0

= Z2 − Z1 + (ϵt − ϵt0)

∆̃h = ∆h+ ϵ∆h (3)

where ∆̃h is the inexact representation of the elevation difference between the data sets,152

∆h is the true and unknown elevation difference and ϵ∆h is the associated ill-constrained153

error. ∆h conveys the geophysical signal of surface elevation change. As surface eleva-154

tion changes in glaciers can be the consequence of a wide spectrum of phenomena, pro-155

viding a robust estimate of ∆h (i.e. ∆̃h) is crucial. Common approaches to estimating156

∆h require filtering outliers from the computed DoD before filling potential gaps and157

estimating ϵ∆h.158

2.2.1 Filtering of outliers and gap filling159

Outlier filtering refers to the process of identifying and removing pixels with non-160

physical ∆h values. Outliers in DoDs originate, for example, from the presence of clouds161

on one of the DEMs or in zones shadowed by adjacent topography.162

A widespread method for outlier filtering consists in assuming that ∆̃h follows a163

Gaussian distribution centered around a mean µ∆̃h with standard deviation σ∆̃h. Any164

∆̃h satisfying |∆̃h| ≥ 3∗σ∆̃h is considered an outlier and filtered (Gardelle et al., 2013).165

While the normality assumption is often reasonable, the distribution of ∆̃h is likely to166

be skewed or present heavy tails (Kargel et al., 2014; Nilsson et al., 2015), if, for exam-167

ple, a substantial numbers of glaciers in the study area display surge-type behavior or168

an extensive debris cover (see section 2.3.2 for further details). Furthermore, both µ∆̃h169

and σ∆̃h are corrupted by outliers.170

As a substitution to standard statistics-based outlier filtering methods, D. Wang171

and Kääb (2015) proposed to bound admissible elevation change values between user-172

defined extrema. They typically assume ∆h to lie within a non-symmetrical interval ([−30, 10]m∗173

a−1 for example), as glacier thickening is not believed to exceed maximum precipitation174

and is likely to be outbalanced by thinning. While bounding admissible ∆h values pro-175

duced reliable results within the tDEM framework proposed by D. Wang and Kääb (2015),176

it is however restricted to the study of glaciers displaying stable dynamics. The more177

complex surface elevation change patterns encountered, for example, in the presence of178

surging glaciers (see Section 2.3.2 for more) requires different filtering approaches.179

To account for potentially extreme |∆̃h| values originating from unstable glacier180

dynamics, Pieczonka and Bolch (2015) proposed a non-linear elevation-dependent filter.181

Their method relies on weighting the standard deviation of ∆̃h (σ∆̃h) by a rectangular182

function computed in few steps. The major shortcoming of this filter originates from the183

normalization process depicted by the authors in Equation E1. The computed w is not184

a normalized value bounded between [0, 1] and rather w ∈ [0,∞] and thus shows high185

variability with glacier size. This leads to saturate the hyperbolic (tangent) function used186

in Equation E2, and thus to an increase in the number of ∆h values close to 0, for glaciers187

with low elevation difference. Furthermore, as pointed out by the authors, the standard188

deviation σ∆̃h, used to test whether a given ∆̃h is an outlier, is corrupted by anomalous189

values and therefore not robust to outliers.190

Gap filling here refers to the process of imputing values to missing DoD pixels us-191

ing mathematical interpolation techniques. In the following, we briefly describe the most192

commonly used methods in GIS-based applications: inverse distance weighting (IDW)193

and kriging. For a more in-depth review of void interpolation methods and their appli-194

cability in glaciology, we refer the reader to the works of McNabb et al. (2019).195
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2.2.1.1 Inverse Distance Weighting (IWD) IWD is a deterministic interpolation196

method that computes the weighted average of observed values within the neighborhood197

of a given target point. The pixels in the vicinity of the target pixel carry heavier weights198

than more distant ones, with rate of weight decay being controlled by a power param-199

eter. Considering the unknown ∆h value at pixel p, one can compute ∆̃hp as:200

∆̃hp =

n∑
i=1

(
∆̃hi

dβ
i

)
n∑

i=1

(
1

dβ
i

) (4)

where n represents the number of pixels in the vicinity of the target pixel p, di is201

the distance between pixel i and the target pixel and β is the power parameter. Typ-202

ical values of β range from 1 to 4, with β = 2 being the most common and providing203

the inverse distance-squared interpolator.204

While IWD is an intuitive and computationally inexpensive method, it suffers from205

a number of drawbacks (Li & Heap, 2014). The choice of the power parameter β and the206

number of neighboring points n is often arbitrary even if methods such as cross-validation207

can provide insight on these parameters. IWD is deterministic as the algorithm relies208

on distances and thus does not provide any estimation of the uncertainty associated to209

the prediction. Finally, predictions provided by IWD are sensitive to outliers as well as210

observation sampling.211

2.2.1.2 Kriging Kriging is a spatial interpolation technique similar to IWD as212

it is a linear estimator aiming at predicting an unknown function value (in this partic-213

ular case, surface elevation change on a DEM) at a target point as the weighted aver-214

age of neighboring known values. Many variants of Kriging have been developed over215

the years (Weng, 2006; Li & Heap, 2014). In the present case we will only discuss Or-216

dinary Kriging (OK), as it is the most widely used variant in geoscientific applications.217

The main difference between OK and IDW lies in the process of weight estimation, as218

OK ensures minimum estimation variance given a specified spatial autocorrelation (var-219

iogram or other characterization of the spatial covariance or correlation).220

OK is a more sophisticated linear estimator than IWD. It however presents sim-221

ilar drawbacks as it does not allow for prediction uncertainty quantification and is af-222

fected by potential skewness of the data (Li & Heap, 2014). Indeed, in cases involving223

spatially concentrated extreme values (surge-type glaciers actively surging for example),224

a crude estimation of the mean using a linear estimator will lead to instability in esti-225

mated values. Furthermore, as the data distribution is likely skewed, the mean is not an226

appropriate descriptor of an average value of the distribution.227

2.2.2 Estimation of glacier surface elevation change uncertainties228

Once outliers have been removed and gaps filled, a common strategy to estimate229

∆h from realizations of ∆̃h is to evaluate the associated error ϵ∆h. While there is no best230

method to do so, error analysis frameworks have been proposed to provide the best pos-231

sible estimate of ϵ∆h in glaciological applications. The standard deviation of ∆̃h over232

stable non-glacierized terrain is often used as first estimate. More recently, Gardelle et233

al. (2013) assumed that the ϵ∆hi associated to each elevation change pixel ∆̃hi within234

an elevation band equals the standard deviation of the band’s ∆̃h (σ∆̃h) up to a coef-235

ficient depending on the spatial autocorrelation (see Equation 2 in Gardelle et al. (2013)).236

As discussed by the authors, σ∆̃h not only captures the uncertainty associated to ∆̃h but237

also conveys the natural variability of surface elevation change in the corresponding el-238

evation band. Furthemore, this formulation only accounts for one-dimensional (band-239
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wise, see Bretherton et al. (1999)) uncertainty and is not suited for 2-dimensional datasets240

(Dehecq et al., 2020).241

In the present paper, we propose a different uncertainty estimation strategy. We242

rely on a probabilistic formulation of the DEM differencing operation to unify the out-243

lier filtering, gap filling and uncertainty modeling problems in a statistically coherent frame-244

work. We here aim to infer a distribution of values of ∆h, compatible with a set of given245

∆̃h and knowledge on glacier dynamics. Instead of producing a single point estimate for246

∆h, we obtain a probability density function for each pixel of any considered DoD. The247

probability density function is conditional on the observed surface elevation change (See248

Section 2.3.1), and any prior information on probable values of ∆h (See Section 2.3.2).249

2.3 Bayesian formulation250

Let us consider the DEM differentiation problem for two co-registered DEMs for251

which we compute ∆̃h (as described in Equation 3). We note I any information avail-252

able about ∆h known before considering ∆̃h, called prior information. I here mainly in-253

cludes assumptions about glacier dynamics (stable or unstable). The Bayesian DEM dif-254

ferentiation problem amounts to finding P (∆h|∆̃h, I) which is the probability density255

of ∆h conditional to knowing both ∆̃h and I also known as the posterior probability den-256

sity function (PDF) of ∆h. More formally, applying Bayes’ theorem to our problem, we257

can write:258

P (∆h|∆̃h, I) =
P (∆̃h|∆h, I)P (∆h|I)

P (∆̃h|I)
(5)

The right hand side of Equation 5 is composed of three terms, playing distinct roles259

in the inference process. P (∆̃h|∆h, I) is called the likelihood. It represents the proba-260

bility density of observing the glacier surface elevation changes as described by ∆̃h and261

a defined error model (see section 2.3.1) if we assume the true elevation map ∆h and I262

to be known. This term captures all the uncertainties related to different topographic263

parameters (terrain roughness, elevation etc.) and cloud cover (see section 2.3.1).264

P (∆h|I) is called the prior and encodes all a priori information assumed about ∆h,265

gathered from knowledge on the physics of glaciers and glacier dynamics. We discuss the266

prior term in greater details in section (see section 2.3.2).267

Finally, P (∆̃h|I) is a normalizing constant independent ∆h and ensuring
∫
P (∆h|∆̃h, I)d∆h =268

1. Its value is of no practical significance for this work. We shall thus neglect it and re-269

member that the posterior PDF (Eq. 5) is defined up to a normalizing constant.270

2.3.1 Likelihood: elevation data-related uncertainties271

The first ingredient of Bayesian inference is the likelihood, which here captures the272

DEM-related errors by describing the probability of observing ∆̃h under a given an er-273

ror model and prior information I: P (∆̃h|∆h, I).274

Terrain morphology and sample density have been documented as first-order con-275

trols of DEM accuracy and uncertainty (Aguilar et al., 2005; Wise, 2011; Mukherjee et276

al., 2013; Hubacek et al., 2016). When differencing stereo DEMs (ASTER for example),277

the DoD is likely to present aberrant ∆̃h values in areas with high terrain roughness such278

as steep rockwalls or clouded/low contrast zones, among others. Here, we use terrain rough-279

ness, hereafter denoted r, as the main descriptor for DEM errors and the main param-280

eter for the error model.281

Obscured regions in the input DEMs represent another major source of aberrant282

elevation change signal in DoDs (Paul, Bolch, et al., 2017), and will typically not dis-283
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play high roughness. Obscuring results from cloud cover or lack of contrast, mainly in284

DEMS processed from 8-Bit sensors (ALOS-PRISM, ASTER or, declassified KeyHole285

(KH) datasets such as Corona (KH4) or Hexagon (KH9), see Raup et al. (2015) for more)286

and is usually mitigated by masking obscured regions. In the present framework, we pro-287

pose to capture obscuring within the likelihood and aim to evaluate how likely a specific288

∆̃hi is to result from obscured regions on DEM1 or DEM2. We typically expect aber-289

rant elevation change signal to be either positive or negative, depending on whether the290

obscured regions are located on DEM1 or DEM2 and with greater absolute value than291

the geophysical signal. We however assume aberrant signal resulting from low-contrast292

area to be the same order of magnitude to that generated by the presence of clouds.293

Given a pixel i, we consider three possible cases: either the pixel i of only DEM1294

is obscured (event C1), or pixel i of only DEM2 is obscured (event C2), or the pixel is295

obscured in neither DEM (event C0). We neglect the case where a same pixel is obscured296

on both DEMs at the same time. Marginalizing over all three cases, our likelihood writes297

as a mixture of conditional likelihoods:298

∆h̃|∆h, I =
∑

k=0,1,2

P (∆h̃|∆h,Ck, I)P (Ck|I) (6)

The probabilities P (C1|I) and P (C2|I) are taken from the DEM’s metadata (cloud299

cover extent provided by LPDACC for ASTER scenes for example) as well as the user’s300

knowledge regarding each DEM’s obscured extent, and we set P (C0|I) = 1−P (C1|I)−301

P (C2|I).302

We first consider the conditional likelihoods for the simpler cases C1 and C2. As-
suming the pixel i is obscured on DEM1 and not on DEM2 (case C1), then DEM1 mea-
sures h̃1 = zcloud and therefore ∆h̃ = h̃2 − zcloud. With only prior information I, we
assume zcloud ∼ Uniform(zSRTM(i), zceil), where zSRTM(i) is the local ground elevation
for pixel i read from an SRTM DEM (which is immune to cloud artifacts). zcloud is a
ceiling value for possible cloud altitudes, which we set to zcloud = 9000m. Assuming
that most of the error comes from DEM1 in this case and approximating h̃2 ≈ h2 ≈
zSRTM, we find:

∆h̃|∆h,C1, I ∼ Uniform(zSRTM − zceil,∆h). (7)

Now assuming the pixel i is obscured on DEM2 and not on DEM1 (case C2), then
DEM2 registers h̃2 = zcloud and therefore ∆h̃ = zcloud − h̃1. With a similar reasoning
to the C1 case, we obtain:

∆h̃|∆h,C2, I ∼ Uniform(∆h, zceil − zSRTM). (8)

We now turn to the case when neither pixel is obscured (case C0), in which we have303

to account for uncertainties caused by DEM errors. A typical approach to defining the304

likelihood would be to state that given any r one can expect ∆̃h to follow a Gaussian305

distribution centered on 0 (as we assume ∆̃h ̸= 0 is only due to the presence of geo-306

physical signal) and with a standard deviation proportional to r (the higher r, the higher307

the statistical spread of the Gaussian distribution). This can however be a problematic308

in some cases, as Gaussian distributions are not robust to outliers. In this work, we pre-309

fer to follow the well-established practice of replacing Gaussian distributions with Student-310

t distributions, which present similar properties but feature heavier tails and are thus311

more robust to potential outliers. We therefore define our likelihood as following a Student-312

t distribution:313

∆h̃|∆h,C0, I ∼ Student(0, g(r), k = 5) (9)
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Figure 1: Distribution of ∆̃h per roughness bin. (a) computed from the difference be-
tween the SRTM C-Band DEM and ASTER DEMs (see Section 3 for more) over the
Hunza Basin, Karakoram datasets. b) generated from g(z) as fitted using data presented
on panel a).

where g(r) is a scale parameter controlling the statistical spread of the distribution and314

k is the number of degrees of freedom of the Student-t distribution. In practice, values315

of 3 ≤ k ≤ 10 are recommended for inference problems (Gelman et al., 2013); we here316

use k = 5.317

Considering that errors on ∆h do not scale linearly with elevation (Holmes et al.,318

2000; Darnell et al., 2008), it is reasonable to assume similar non-linearity with rough-319

ness. We here use a data-driven approach to further describe the relationship between320

∆h̃ and r. Given a specific study zone (throughout the present example we use data from321

our first validation test case, see Section 3.1.1 for more), we first consider the computed322

∆h̃ DoD and a reference DEM from which roughness is computed. In practice we here323

use the SRTM C-Band DEM (see 3.2.1) and calculate terrain roughness using the Geospa-324

tial Data Abstraction Library (GDAL) roughness algorithm (largest inter-cell difference325

for a central pixel and it’s surrounding cell see GDAL/OGR contributors (2021)). The326

histogram of ∆h̃ per r bin gives further insight on g(r) (Figure 1).327

The spread of ∆̃h at low (i.e. relatively close to 0) roughness values on Figure 1
(a) is a consequence of the geophysical signal of glacier surface elevation change. The
model g(r) thus aims to replicate the spread of ∆̃h distributions for each r, as showed
on Figure 1 (a). In the present case, we fit the generative model g(r) to 1 standard de-
viation of the ∆̃h distribution per roughness bin. More formally, we thus define:

g(r) = | tanh
(r
s

)
| ∗ (σrmax − σr0) + σr0 (10)

where s is the resolution of the DEM used to compute the roughness, σ∆̃h(r0) and σ∆̃hrmax328

are the standard deviations of the distribution ∆̃h for r = 0 and the maximum r value329

over the whole roughness map respectively. In practice, we find σ∆̃h(r0) = 4 m and σ∆̃hrmax330

= 30 m to work best, and to be in the same order of magnitude as σ∆̃h values described331

by Gardelle et al. (2013). An example of σ∆̃h simulated using g(r) is shown on Figure332

1 B.333

2.3.2 Priors: glacier dynamics334

Now that we have detailed the likelihood P (∆̃h|∆h, I), we turn to the description335

of the prior term in Eq. 5: P (∆h|I).336
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The prior captures all information about ∆h that is known regardless of ∆̃h. In337

the present case, this comes from human expertise on glacier physics and previous mea-338

surements of glacier surface elevation changes in the studied contexts.339

Surface elevation changes with altitude are mainly governed by the glacier’s response340

to climate and the dynamics of glacier flow as these parameters have the most impact341

on the glacier’s mass balance rate. Let us consider glacier-wide ∆h for a glacier with neg-342

ative mass budget. It is reasonable to assume that maximum reduction in surface ele-343

vation will occur at the tongue of the glacier. Following Schwitter and Raymond (1993),344

we can further assume than surface elevation lowering rates will non-linearly decrease345

with increasing altitude, possibly reaching positive ∆h in the accumulation zone. The346

altitude, if it exists, at which ∆h ≃ 0 is called the Equilibrium Line Altitude (ELA).347

This typical ∆h pattern can however be strongly altered when studying surge-type glaciers,348

or glaciers presenting an substantial debris cover.349

2.3.2.1 Surge-type glaciers Surge-type glaciers are characterized by a complex350

flow pattern, alternating between rapid unstable glacier flow (surge phase) and periods351

of stagnation or slow flow (quiescent phase) (Jiskoot, 2011; Benn et al., 2019; Truffer et352

al., 2021).353

Surges initiate from an ice buildup in a reservoir zone, and propagate to a receiv-354

ing zone, typically the glacier terminus. As a consequence of rapid downward mass trans-355

fer during surges, the glacier terminus usually advances and the glacier’s surface eleva-356

tion increases in the lowermost parts of the ablation zone (Rankl & Braun, 2016; Guil-357

let et al., 2021).358

Surging glaciers thus exhibit complex and contradictory ∆h patterns. During the359

surge phase, surface elevation lowering in high altitude (in the reservoir zone, usually in360

the vicinity of the ELA) is associated to considerable surface elevation increase at com-361

paratively low altitudes. During the quiescent phase a positive ∆h signal is observed in362

high altitudes as the ice builds-up in the reservoir zone, while, in the ablation zone, the363

melting of stagnant or slow flowing ice leads to strongly negative ∆h.364

2.3.2.2 Debris-covered glaciers Supraglacial debris cover in the ablation zone will365

strongly influence the glacier’s mass balance by directly affecting surface melt rates (Benn366

et al., 2012; Brun et al., 2018). A scattered, thin debris cover will typically lead to a lo-367

cal decrease in albedo, and thus, to an increase in melt rate while dense and thick de-368

bris covers usually provide insulation to the underlying ice Nakawo and Young (1981);369

Nicholson and Benn (2006); Pratap et al. (2015). Debris cover thus entails higher ∆h370

variability in the ablation zone compared to what is usually observed for clean-ice glaciers371

(Brun et al., 2016).372

We now come back to the formulation of our prior probability taking into account373

the above considerations. The aim here is to define, for each pixel of the DoD, a set of374

admissible ∆h values considering glacier dynamics.375

First, we define an elevation-dependent function to model glacier surface elevation
variations:

∆hi
(zi) = e−(

zi−zmin
Z ) ∗ (δhfront

− δhacc
) + δhacc

(11)

with

Z =
zELA − zmin

2
(12)

where zi is the elevation of i-th pixel on the elevation map, zmin is the minimum glacier376

elevation and zELA is the elevation of the equilibrium line. While zELA must be provided377

by the user and relies, for example, on previous publications from the same study zone,378

zi and zmin are read directly from a DEM (SRTM-C DEM in the present cases, see Sec-379

tion 3 for more). ∆hfront
and ∆hacc respectively represent the maximum admissible ac-380

cumulation at the terminus and in the accumulation zone of the glacier. For pixels at381
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Figure 2: Example of prior distribution on ∆h for a synthetic surge-type glacier span-
ning between 6000 and 3000 m a.s.l. of elevation. Priors are calculated at the front (red,
3000m a.s.l.) and the ELA (blue, 5400 m a.s.l.) of the glacier. The prior distribution at
the front of the glacier (red) allows for both surging and rapid thinning related-extreme
∆h values. Stricter priors at higher altitudes narrow admissible surface elevation changes.

higher elevations than the ELA, we define a stricter prior on ∆h to rule out any unphys-382

ical surface elevation change. We formulate |δhacc
| = p∗ny where p captures the knowl-383

edge over the glacier’s accumulation and ny is the date range covered by the DoD. p can384

thus be the yearly mean precipitation in the study zone, or the direct accumulation rate385

derived from ice-core studies; both are typically derived from previous published results.386

Other mass gain process occurring in the accumulation zone such as avalanching and snow387

transportation by wind are not accounted for.388

Similarly as in Section 2.3.1, we define P (∆h|I) a Student-t distribution with k =
5 degrees of freedom and use ∆hi

(zi) as scaling parameter to control the statistical spread
of the distribution:

∆h|I = Student(0, s, k = 5) (13)

with:

s =
∆hi

(zi)

δu
(14)

where δu is the inverse cumulative distribution function of the Student-T distribution.389

Figure 2 shows an example of priors for two pixels of a synthetic glacier extend-390

ing from 6000 to 3000 m a.s.l. with chosen ELA of 5400 m. We defined the average yearly391

precipitation to be 0.5m ∗ a−1 and ny = 10. The weaker prior allows for greater vari-392

ability in ∆hi(zi) at the front of the glacier with values ranging between -300 and 300393

(99% credible interval). Above the ELA, stricter constraints narrow the range of admis-394

sible ∆hi
(zi) values to [-40, 40](99% credible interval).395

We have now specified the full prior (Equation 13, with terms discussed in Section396

2.3.2) and likelihood using the error model (Equations 6, 9, 7, 8). We can therefore eval-397

uate the posterior probability density using 5 for any value of ∆h̃. The filtered value is398

finally computed by numerical integration as the median of the univariate posterior prob-399

ability density function.400
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Figure 3: (a) : Location of Case Study 1 area in the Karakoram region (black square
in Google Earth inset). The main investigated glaciers are represented by their outlines
(white solid line) from the RGI V6.0. Baseline image is a natural color Landsat 8 OLI
acquired on August 25 2020. b): Location of Case Study 2 area in the Central Himalaya
(black square in Google Earth inset). The main investigated glaciers are represented by
their outlines (white solid line) from the RGI V6.0. Baseline image is a natural color
Landsat 8 OLI acquired on November 11 2020

3 Validation401

In this section, we setup validation test cases to demonstrate the technique pre-402

sented throughout the paper. Using a combination of DEMs of different origins (SRTM,403

ASTER, Hexagon KH-9 and Cartosat 1), we assess key aspects of our method, with an404

emphasis on surge-type and debris-covered glaciers. We consider the problem of estimat-405

ing ∆h from realizations of ∆̃h and knowledge on glacier physics, before comparing our406

DoDs with already published results.407

3.1 Case studies areas408

3.1.1 Case study 1 : Hispar and surrounding glaciers, Karakoram range,409

Pakistan410

The Karakoram mountain range is widely known for its high abundance of surge-411

type glaciers. More specifically, glaciers in the Central Karakoram have been actively surg-412

ing in the past 25 years. This intense surging activity yields complex surface elevation413

change patterns with a well-known co-existence of strong thinning and thickening rates,414

testifying for recent unstable glacier dynamics. Among the glaciers present in this case415

study, Hispar and Khurdopin glaciers (see Figure 3 a) recently (2015-17) displayed surge-416

type behavior (Paul, Strozzi, et al., 2017; Rashid et al., 2018; Guo et al., 2020).417

In this validation case, we compare the surface elevation changes obtained by our418

method with the results of Bolch et al. (2017). We compute the 1999-2009 glacier sur-419

face elevation changes from the co-registered DEMs used in Bolch et al. (2017). We then420

illustrate goodness-of-fit by studying the residuals between the two DoDs. We first fo-421

cus on glacier surface elevation changes over the whole study area, before emphasizing422

on the 2000-08 surge of Kunyang Glacier.423
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3.1.2 Case study 2 : Langtang Glacier, Central Himalaya, Nepal424

Langtang Glacier is located in the eponymous valley in the central part of the Hi-425

malaya, approximately 70 km North of Kathmandu, Nepal. Ranging from 7119 to 4380426

m a.s.l., Langtang Glacier displays an average slope of 18◦(32%). Close to 35% of the427

glacier’s area is covered with debris, most of them found in the ablation area below 5200428

m a.s.l. (Figure 3 b)429

In this validation case, we compare the surface elevation changes obtained by our430

method with the results published by Ragettli et al. (2016). Similarly to Case Study 1,431

we compute glacier elevation changes from co-registered DEMs generated by the authors432

and provided to us. Goodness-of-fit is then evaluated by studying the residuals between433

the generated DoD, and the one published by Ragettli et al. (2016), focusing on glacier-434

scale surface elevation differences.435

3.2 Data436

For both case studies we use DEMs that were provided to us by the authors. This437

allows us to cover DEMs generated from different acquisition protocols and instruments438

such as radar and satellite imagery. For any complementary information on the input439

datasets, we refer the reader to the specific publications.440

3.2.1 SRTM441

The Shuttle Radar Topography Mission (SRTM) was an 11-day mission carried out442

in February 2000 on board the space shuttle Endeavor. Near-global coverage was achieved443

between latitudes 56 ◦S to 60 ◦N (Farr et al., 2007). The C-band of the SRTM DEM presents444

a resolution of about 1 arc second (≃ 30 m grid) and is available via the U.S. Geolog-445

ical Survey (NASA, 2013). We here use the C-band SRTM DEM in two distinct steps.446

In the likelihood, the roughness map is computed from the C-band SRTM DEM. Sim-447

ilarly to D. Wang and Kääb (2015), we use the SRTM DEM as reference for the elevation-448

dependent surface elevation change law (Equation 11) in our prior.449

3.2.2 ASTER450

The 1999-2009 Hispar Glacier surface elevation changes (Case Study 1) originate451

from the difference of the C-Band SRTM DEM with various DEMs processed from im-452

ages acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiome-453

ter (ASTER)(Bolch et al., 2017). On-board the Terra satellite, ASTER creates clouds454

and land surface images from three different subsystems: the visible and near infrared455

(VNIR, 15 m resolution), the shortwave infrared (SWIR, 60 m resolution), and the ther-456

mal infrared (TIR, 90 m resolution). The 10 DEMs used by Bolch et al. (2017) are stan-457

dard AST14DEM, computed using the SilcAst software from stereo-pairs acquired by458

the VNIR subsystem between 2008 and 2010.459

3.2.3 Hexagon-KH9460

Hexagon KeyHole-9 were a series of reconnaissance satellites operated between 1971461

and 1986 at an altitude close to 171 km (Burnett, 2012). Images originating from the462

Hexagon KH-9 mission were declassified by the United States Geological Survey in 2002.463

The mapping camera system on-board Hexagon satellites (missions 1205-5 to 1216-5)464

acquired around 29000 images of 9 to 6 m of resolution on a global scale. In the present465

study, we do not generate digital elevation datasets from Hexagon-KH9 imagery and rather466

use the 1974 KH-9 DEM generated by Ragettli et al. (2016) (Case Study 2).467

–13–



manuscript submitted to JGR: Earth Surface

Case study 1: Hispar Case Study 2: Langtang

δhfront[m] δhacc[m] zELA(m a.s.l.) δhfront/δt[m.a−1] δhacc/δt[m.a−1 zELA (m a.s.l.)

200 4.5 5300 4 0.6 5400

Table 1: Summary of the priors used for the two case studies

3.2.4 Cartosat-1468

The 1974-2006 Langtang Glacier surface elevation changes (Case Study 2) origi-469

nate the difference of the KH-9 DEM with a DEM computed from a pair of images ac-470

quired by Cartosat-1 in November 2006. Cartosat-1 is a remote-sensing satellite devel-471

oped and operated by the Indian Space Research Organization (ISRO) with a spatial res-472

olution of 2.5 m (Ahmed et al., 2007). The DEM used in Ragettli et al. (2016) has been473

generated by the authors from radiometrically corrected along-track stereo imagery.474

3.2.5 Glacier outlines475

We used the openly available Randolph Glacier Inventory (RGI, version 6.0, Consortium476

et al. (2017)) glacier outlines to spatially constrain the computation of ∆h estimates and477

for glacier-scale results visualization. As the terminus of Hispar (Case Study 1) and Lang-478

tang (Case Study 2) glaciers have shown limited changes over the past 120 years(Paul,479

Strozzi, et al., 2017; Wijngaard et al., 2019), we consider glaciers outlines to be constant480

over the studied intervals.481

3.2.6 Priors482

3.2.6.1 Case Study 1 - Hispar and Kunyang glaciers The parameters used to com-483

pute the prior probability in Case study 1 are summarized in Table 1.484

While the considered period is rather short, previous surge events in the Karako-485

ram have shown large magnitudes (Quincey & Luckman, 2014). We typically constrain486

|∆hfront
| ≤ 300m for altitudes under the glacier’s equilibrium line as it is the higher-487

end of the spectrum of surging-induced surface elevation changes (Cuffey & Paterson,488

2010). For δhacc, we follow D. Wang and Kääb (2015) and define the maximum accu-489

mulation cannot exceed the average precipitation over the considered time period. Here490

we used a yearly mean precipitation of 0.5m.a−1 as estimated by Immerzeel et al. (2012).491

Finally, we take zELA = 5300 m a.s.l., as defined by Mukhopadhyay and Khan (2016),492

and assume it constant over the 1999-2008 time period as the glaciers exhibited balanced493

mass budgets in this region during the last decades (Gardelle et al., 2013; Bolch et al.,494

2017).495

496

3.2.6.2 Case Study 2 - Langtang and surrounding glaciers Similarly to Case Study497

1, the parameters used to compute the prior probability in Case study 2 are summarized498

in Table 1.499

As no surges have been documented in the Langtang basin, we use a narrower prior500

for frontal elevation changes. Based on modeled and remotely sensed ∆h in the study501

region, we consider |δhfront| = 4m.a−1 to be admissible (Wijngaard et al., 2019). We502

stress that, while mass gain at the front of a non-surge type glacier is unphysical, this503

value captures the spread of the distribution of admissible ∆h at the front of the glacier504
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and thus affects similar probabilities to positive and negative values. Ice cores studies505

in the Langtang region have documented accumulation rates close to δhacc = 0.6m.a−1.506

Finally, we take zELA = 5400 m a.s.l., as defined by Ragettli et al. (2016), and assume507

it constant over the 1974-2006 time period.508

3.3 Surface elevation changes validation509

In the following sections, surface elevation change DEMs represent the best ∆h es-510

timate computed by their respective authors. Regardless of the method used to computed511

them, these surface elevation change datasets will be labeled ∆hXXX , where XXX is512

a dataset-specific suffix. For DoDs generated in the present study, XXX indicates the513

represented quantile of the posterior probability distribution on ∆h; ∆h50 is, for exam-514

ple, the DoD of the median surface elevation change.515

For the sake of clarity and readability, the presented DoDs are neither reprojected516

nor presented onto any basemap or other digital elevation dataset.517

3.3.1 The surge of Kunyang Glacier : 2000-2008518

We here present surface elevation changes as different DoDs, shown in Figure 4.519

The first DoD is formed from the median of the posterior probability distribution for each520

pixel, while subsequent DEMs represent the associated 68 and 90% credible intervals re-521

spectively. The accumulation zones of the studied glaciers appear to be regions of high522

uncertainty, with the 90% CI of pixel distributions reaching close to 75m. The broader523

posterior on ∆h in the higher altitudes regions is due to a combination of effects : the524

increased roughness in high-relief north faces, the presence of clouds and lower contrast525

on the ASTER DEM.526

We further compare our results to the 1999-2009 DEM published in Bolch et al.527

(2017) (∆hB17 ) in Figure 5. We find that ∆h50 and ∆hB17 are in good agreement through-528

out the study area. From the map of residuals (Figure 5), we see that both the surge of529

Kunyang Glacier (the westernmost tributary of Hispar Glacier, Figure 3 a) and Khurod-530

pin Glacier’s heavily contrasted ∆h signal are particularly well represented, with sim-531

ilar orders of magnitude. Noticeable differences can however be observed, mainly in the532

accumulation zone of Kunyang Glacier. The ∆hB17 DoD indeed presents pixels indicat-533

ing extreme accumulation values (up to 154 m of elevation gain) along the ridge between534

Trivor Sar (7577 m a.s.l) and Disteghil Sar (7885 m a.s.l.). Similarly, we observe strong535

mass gain (up to 147m) in the nearby accumulation zones of the western and eastern branches536

of Kunyang Glacier. Such mass gain being very unlikely given the site topography, we537

believe these accumulation values to be the consequence of low contrast and clouds on538

the ASTER DEM. These outliers appear to have been filtered on ∆h50 , where highest539

estimated mass gain is around 30 m.540

Over the whole study area, the distributions of pixel values are very similar ∆hB17 and541

∆h50 (Figure 6). Both display heavy tails and are non-Gaussian. The two distributions542

however present sensitively different medians (∆hB17 : 0.0 m, ∆h50 : 2.7 m) and Inter-543

Quartile Range (IQR, ∆hB17 : 7 m, ∆h50 : 13 m). While we observe a mainly linear re-544

lationship of equation y = x between the pixel values of the different DoDs, we further545

note the presence of an important cluster of 0-valued pixels in ∆hB17 , altering the lin-546

ear relationship between the two DoDs for values ranging from -100 m to around 150 m547

(Figure 7). Zero-valued pixels in ∆hB17 mainly appear at high altitude, in the accumu-548

lation zone of the studied glaciers (Figure 8) and correspond to regions of highest un-549

certainty in Figure 4. We here interpret such a prominent clustering as an artifact gen-550

erated by the filtering and gap filling method used by the authors. Bolch et al. (2017)551

indeed used the method described in Pieczonka and Bolch (2015) (see section 2.2.1) to552

filter outliers and OK to fill data voids in the DoD.553
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Figure 4: ∆hB17 (left) and ∆h50 (right). Bottom represents the residuals computed by
subtracting ∆hB17 and ∆h50 . Note the overall similarity in the two DoDs computed with
different methods.

Figure 5: Comparison between ∆hB17 (left) and ∆h50 (center), with plotted residuals
obtained by differencing ∆hB17 and ∆h50 (right). (a) covers Hispar, Kunyang, and Khur-
dopin glaciers in their entirety. (b) is a closeup of the accumulation zone of Kunyang
Glacier. Non-filtered outliers are clearly visible, resulting from poorly contrasted terrain.
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Figure 6: Distribution of raster values for the two Case study 1 glaciers DoDs.
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Figure 7: Bivariate scatter density histogram of the relationship between ∆hB17 and
∆h50 . Note the substantial cluster of O-valued pixels in ∆hB17 . Dashed line represents
y = x.
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Figure 8: Comparison between ∆hB17 and ∆h50 , similar to Figure 5. Pixel with values
of 0.00 are represented in black on both DoDs. 10% of ∆hB17 is covered with artificial
zero-valued pixels.

3.3.2 Langtang and surrounding glaciers : 1974-2006554

Accumulation zones appear to be regions of high uncertainty with the 90% cred-555

ible interval reaching 2 m.a−1 (Figure 9). Highly uncertain ∆h estimates are mainly clus-556

tered in the accumulation zone of Langtang Glacier and its tributaries. These are the557

direct consequence of obscured regions on the Cartosat-1 image affecting the DEM. We558

finally note that the overall uncertainty on ∆h/∆t increases in regions of the ablation559

zone displaying higher ice cliffs concentration (Ragettli et al., 2016), as a result of our560

error model formulation.561

Similarly to Case Study 1, we find that the two DoDs are in good agreement (Fig-562

ure 10). Values in ∆hR16 reach +0.5m.a−1, with extrema close to +4.0m.a−1 in the ac-563

cumulation zone of the southernmost tributary of Langtang Glacier. At similar locations564

in ∆h50 , ∆h estimates are typically close to +0.2m.a−1 with extreme values reaching565

+2.3m.a−1 (Figure 10). The distributions of raster values are consistent, with similar566

medians (∆h50 : −0.31m.a−1, ∆hR16 : −0.27m.a−1) and IQR (∆h50 : 0.59m.a−1, ∆hR16 :567

0.62m.a−1) (Figure 11). The distribution of raster values for ∆h50 however does not dis-568

play as heavy tails as that of ∆hR16 . This can be explained by the use of stricter pri-569

ors for this particular case study, resulting in more pixel values being classified as out-570

liers.571

The scatter density histogram (Figure 12) shows identical patterns to those iden-572

tified in Case Study 1, with clustering of near-0 values on ∆hR16 . We here observe dis-573

tinct clusters of values between 0.0 and −0.2, spanning over the entire raster value space574

in ∆h50 . Figure 12 further highlights a minor cluster of 0-valued pixels in ∆h50 . While575

we interpret the latter to be an artifact of the polygon clipping algorithm (Figure 13)576

(Sutherland & Hodgman, 1974; Horowitz & Papa, 1992), the former likely result from577

the gap filling method used in Ragettli et al. (2016). Figure 13 indeed highlights that578

artificial clusters of near-0 valued pixels primarily appear in high uncertainty regions in579

the accumulation zone (obscured by clouds on Cartosat-1), with scarce occurrences in580

the ablation zone of Langtang Glacier (high ice cliff concentration). Finally, patterns gen-581

erated by the elevation-band gap filling methodology used in Ragettli et al. (2016) are582

clearly identifiable on the western tributaries of Langtang Glacier (Figure 13, x : [0, 100],583

y : [200, 300]).584
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Figure 9: ∆h50 for the Langtang case study and the associated credible region ∆h68 and
∆h90 . Note that the zones of higher uncertainty on glacier tongues are zones with the
highest percentage of ice cliffs. Yellow zones in the accumulation zones on ∆h68 result
from obscuring on the Cartosat-1 image affecting the DEM.

4 Discussion585

4.1 Probabilistic formulation of DEM differencing and ∆h estimates586

In Section 3, we designed two case studies to compare our ∆h estimates to that of587

already published studies. In both cases, the DEMs produced with the proposed method-588

ologies appeared consistent with the validation datasets and are accurate to the level of589

our input data. We however highlighted the existence of clusters of 0 or near-0 valued590

pixels in both case studies (∆hB17 and ∆hR16 ). We further argue that these clusters591

are artifacts resulting from the outlier filtering and linear interpolation methodologies592

used in Ragettli et al. (2016) and Bolch et al. (2017). The developed method allows to593

avoid artificial clustering of anomalous values by unifying outlier filtering and gap fill-594

ing within a statistically coherent framework. Formulating the DEM differentiation as595

a Bayesian inference problem together with probabilistic uncertainty models further al-596

lows quantify and propagate associated uncertainties.597

We finally demonstrated that none of the studied glacier surface elevation change598

distribution is Gaussian. Yet, glacier surface elevation change estimates are often reported599

in the literature as a mean and the associated standard deviation. While the assump-600

tion of normally distributed surface elevation changes might hold at global scales (Cen-601

tral Limit Theorem), our study shows that regional glacier thickness variations commonly602

follow skewed or heavy-tailed distribution, especially in contexts of dynamic instabili-603

ties or extensive debris cover (Kargel et al., 2014; Nilsson et al., 2015; Guillet et al., 2021).604

We here recommend to report further glacier surface elevation changes as a median as-605

sociated to confidence intervals (as done here or in Dehecq et al. (2020) for example),606

typically a 68 and 90% CI. By doing so, one indeed provides the community with a quan-607

tification of the uncertainty associated with the elevation change over the whole glacier.608

Furthermore, the use of two credible intervals conveys a clearer view of the potential skew-609

ness, tails, and overall shape of the surface elevation changes distribution. Global error610

metrics cannot however capture the heteroskedastic behavior of the uncertainty associ-611
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Figure 10: Comparison between ∆hR16 (left) and ∆h50 (center), with plotted residuals
obtained by differencing ∆hR16 and ∆h50 (right). (a) covers Langtang Glaciers in their
entirety. (b) is a closeup of the accumulation zone of a tributary of Langtang Glacier.
Non-filtered outliers are clearly visible and data gaps are clearly visible on ∆hR16 , result-
ing from poorly contrasted terrain.
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Figure 11: Distribution of raster values for the two Langtang Glacier DoDs.
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Figure 12: Bivariate scatter density histogram of the relationship between ∆hR16 and
∆h50 . Note the different cluster of near-0 valued p ixels in ∆hR16 . A similar cluster of
0-valued pixels can be observed in ∆h50 .
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Figure 13: Comparison between ∆hR16 and ∆h50 . The data presented is the same as as
Figure 10. Pixels with value within the [−0.2,−0.045] interval are represented in black on
∆hR16 . 0-valued pixels are similarly represented on ∆h50 .

ated to surface elevation change estimates. While less practical than global error met-612

rics, uncertainty maps like presented here appear to be the most accurate way of rep-613

resenting the level of certainty available over the proposed glacier surface elevation change614

estimates.615

4.2 The use of the median of the posterior distribution in Bayesian in-616

ference617

In the present paper, we decided to describe the posterior distribution on ∆h us-618

ing the median and the 90% credible interval. Another estimator commonly used in Bayesian619

inference problems is the Maximum A Posteriori (MAP) which corresponds to the mode620

of the posterior distribution. While no estimator can be defined as superior to the other,621

we have chosen to use the median and the associated credible interval for several rea-622

sons (Gelman et al., 2013, 2020). First, the MAP is a point estimate. Providing a sin-623

gle point estimate of the unknown quantity is not representative of Bayesian methods,624

which use distributions to infer unknown quantities from data. Second, the posterior prob-625

ability density is multi-modal. Identifying the highest mode can thus be impossible as,626

in some cases, the different modes are equal (Lehmann & Casella, 2006; Casella & Berger,627

2021). Finally, even if the highest mode can be identified, it is unlikely representative628

of the posterior distribution. While the mean of the posterior probability density is not629

always the most probable value, it allows, alongside the credible interval, to better char-630

acterize the posterior PDF in its entirety and thus provide a clearer picture of the un-631

certainty associated to each surface elevation change estimate.632
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4.3 Spatial correlation of DEM uncertainties633

The present method is based on a probabilistic modeling of elevation data uncer-634

tainties, where terrain roughness is used as the main uncertainty descriptor. By com-635

puting glacier surface elevation differences pixel by pixel, we implicitly assume that neigh-636

boring pixels are independent and that uncertainties are uncorrelated. Many authors have637

however demonstrated, modeled and discussed the heteroskedastic behavior of uncertain-638

ties in elevation data (Monckton, 1994; Kyriakidis et al., 1999; Bretherton et al., 1999;639

Liu & Jezek, 1999; Wechsler & Kroll, 2006; Dehecq et al., 2020).640

Following Hunter and Goodchild (1997), Guillet et al. (2020) proposed a method641

for modeling heteroskedasticity in DEM uncertainties within a probabilistic framework.642

They showed that correlated discrete random DEM perturbations can be generated from643

a Gaussian random field with a well-defined autocorrelation scale. The computational644

load of this operation is however prohibitive for large scale applications. Considering a645

N ∗M pixels DEM, the method proposed by Guillet et al. (2020) requires inverting a646

covariance matrix of size (N ∗M)∗(N ∗M). Inverting such a matrix is a quadratically647

time-complex operation that cannot be done efficiently by general algorithms and requires648

problem-specific solutions (Sang & Huang, 2012; Zhang et al., 2018) such as covariance649

localization (see Hamill et al. (2001) and Ruggiero et al. (2016) for example).650

The aim of the method proposed here is to be used for both glacier- and region-651

wide production of DoDs while maintaining a reasonable computing time. Numerical sim-652

ulations have shown that, while often seen as a worst-case-scenario, assuming uncorre-653

lated DEM error does not generate maximum variability in DEM derivatives (Oksanen654

& Sarjakoski, 2005; Dehecq et al., 2020). We thus argue that not accounting for heteroskedas-655

ticity in DEM error is unlikely to alter the presented results significantly enough, while656

requesting prohibitive computational time and power. Spatial correlation of DEM er-657

ror however remains an important source of uncertainty in DEM-based geoscientific an-658

alyzes (see Dehecq et al. (2020) for more) and further work is thus needed to find an ad-659

equate formulation of this problem within probabilistic frameworks.660

4.4 Physics-based probabilistic framework661

In this paper, we have presented a method aiming to unify simple glacier elevation662

change and uncertainty modeling within a statistically consistent framework. The glacier663

surface elevation change model however relies on knowledge of the ELA. The equilibrium664

line altitude is defined up to a certain level of certainty and varies over annual and multi-665

decadal time scales. The uncertainty over the ELA itself depends on the estimation meth-666

ods (see Braithwaite and Raper (2009) or Pandey et al. (2013) for example). We thus667

tested the impact of ±150 m variations in the ELA for each case study (data not shown)668

and did not observe significant changes in the computed glacier surface elevation change669

estimates.670

While the present methods focused on glacier surface elevation changes, it can be671

extended to other remotely-sensed glacier observations such as surface velocity or grav-672

itational field for example. The models depicted in the present paper are very general673

and can be extended to other types of measurements and uncertainties, provided that674

they can be modeled satisfactorily (See Altena and Kääb (2017); Altena et al. (2021) for675

example).676

4.5 Towards a fully probabilistic formulation of the geodetic mass bal-677

ance678

From ∆h results, one can easily compute the total volume change (∆V ) by inte-679

grating ∆̃h over the entire grid considered in the study area. ∆V (or sometimes the rate680

of volume change, V̇ ) is then used to compute the total mass change ∆M (rate of mass681
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change, Ṁ). Volume is converted to mass using a constant mass conversion factor (f∆V
=682

850± 60kgm−3) defined by Sapiano et al. (1998) and Huss (2013).683

Huss (2013) however demonstrated the high variability of f∆V
as well as the short-684

comings of assuming a constant mass conversion factor. The f∆V
= 850 ± 60kgm−3

685

approximation is described as conditional on heavy assumptions (study period longer686

than five years, stable mass balance gradients, presence of firn area and ∆V ̸= 0) and687

is likely to be a predominant, yet underestimated, source of uncertainty in geodetic mass688

balances. Given the widespread use of glacier geodetic mass balance as input in, for ex-689

ample, hydrological and runoff models, we want to restate the necessity of better uncer-690

tainty quantification in geodetically determined glacier mass balance.691

A logical continuation of the method presented here is be to propose a probabilis-692

tic formulation of f∆V
. Introducing a spatially variable model for f∆V

, similarly to our693

prior (Section 2.3.2), and expressing it as a probability distribution rather than a sin-694

gle value estimate would indeed lead to further constrain the uncertainty associated to695

f∆V
.696

5 Conclusions697

In this paper, we presented a novel method for estimating glacier surface elevation698

changes from different DEMs. Driven by the goal of characterizing uncertainties on the699

surface elevation variations generated from DEM differentiation, we introduced models700

for admissible surface elevation change based on glacier physics as well as for character-701

izing uncertainties in co-registered digital elevation models. We integrated these ingre-702

dients into a statistically coherent Bayesian framework, which can readily be extended703

to other remotely-sensed glacier observations. We applied and validated the method for704

outlier filtering and void filling, before estimating glacier surface elevation variations. Our705

method produced surface elevation DoDs which are consistent with previously published706

results, while avoiding caveats such as artificial clustering of aberrant values. Combin-707

ing Bayesian outlier filtering and gap filling with probabilistic uncertainty models, the708

method consistently estimates surface elevation variation for different glacial contexts,709

while also propagating the associated uncertainties. Applied to our particular problem,710

our study showed the potential importance of accounting for unstable and non-standard711

glacier dynamics, as it can otherwise result in significant biases.712
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McNabb, R., Nuth, C., Kääb, A., & Girod, L. (2019, March). Sensitivity of glacier954

volume change estimation to DEM void interpolation. The Cryosphere, 13 (3),955

895–910. doi: 10.5194/tc-13-895-2019956

Mertes, J. R., Gulley, J. D., Benn, D. I., Thompson, S. S., & Nicholson, L. I. (2017).957

Using structure-from-motion to create glacier DEMs and orthoimagery from958

historical terrestrial and oblique aerial imagery. Earth Surface Processes and959

Landforms, 42 (14), 2350–2364. doi: 10.1002/esp.4188960
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Mölg, N., & Bolch, T. (2017, October). Structure-from-Motion Using Historical964

Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sens-965

ing , 9 (10), 1021. doi: 10.3390/rs9101021966

Monckton, C. (1994). An Investigation into the spatial structure of error in digital967

elevation data. In Innovations In GIS. CRC Press.968

Mukherjee, S., Mukherjee, S., Garg, R. D., Bhardwaj, A., & Raju, P. L. N. (2013,969

June). Evaluation of topographic index in relation to terrain roughness and970

DEM grid spacing. Journal of Earth System Science, 122 (3), 869–886. doi:971

10.1007/s12040-013-0292-0972

Mukhopadhyay, B., & Khan, A. (2016, February). Altitudinal variations of temper-973

ature, equilibrium line altitude, and accumulation-area ratio in Upper Indus974

Basin. Hydrology Research, 48 (1), 214–230. doi: 10.2166/nh.2016.144975

Muskett, R. R., Lingle, C. S., Sauber, J. M., Post, A. S., Tangborn, W. V., Rabus,976

B. T., & Echelmeyer, K. A. (2009). Airborne and spaceborne DEM- and laser977

altimetry-derived surface elevation and volume changes of the Bering Glacier978

system, Alaska, USA, and Yukon, Canada, 1972–2006. Journal of Glaciology ,979

55 (190), 316–326. doi: 10.3189/002214309788608750980

Nakawo, M., & Young, G. J. (1981). Field Experiments to Determine the Effect of a981

Debris Layer on Ablation of Glacier Ice. Annals of Glaciology , 2 , 85–91. doi:982

10.3189/172756481794352432983

NASA, L. D. (2013). NASA shuttle radar topography mission (SRTM) version 3.0984

(SRTM plus) product release. Land process distributed active archive center.985

National Aeronautics and Space Administration.986
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