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Abstract

The basaltic effusive eruption at Mt. Fagradalsfjall began on March 19, 2021, ending a 781-year hiatus on Reykjanes Peninsula,
Iceland. By late September 2021, 32 near real-time photogrammetric surveys were completed using satellite and airborne
images, usually processed within 3-6 hours. The results provide unprecedented temporal data sets of lava volume, thickness,
and effusion rate. This enabled rapid assessment of eruption evolution and hazards to populated areas, important infrastructure,
and tourist centers. The mean lava thickness exceeds 30 m, covers 4.8 km? and has a bulk volume of 150 £+ 3 x 10% m3. The
March-September mean effusion rate is 9.5 & 0.2 m3 /s, ranging between 1-8 m?3 /s in March—April and increasing to 9-13 m? /s
in May—September. This is uncommon for recent Icelandic eruptions, where the highest discharge usually occurs in the opening
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Key Points:

e Near real-time photogrammetric monitoring of the 2021 Fagradalsfjall eruption

e Acquisition of an unprecedented temporal data set including volume, effusion rate, orthomosaics, thick-
ness maps and thickness change maps

e After six months of eruption the lava covers 4.8 km?, with a bulk volume of 1.5 x 10 m? and mean
effusion rate of 9.5 m3/s

Abstract

The basaltic effusive eruption at Mt. Fagradalsfjall began on March 19, 2021, ending a 781-year hiatus on
Reykjanes Peninsula, Iceland. By late September 2021, 32 near real-time photogrammetric surveys were
completed using satellite and airborne images, usually processed within 3-6 hours. The results provide
unprecedented temporal data sets of lava volume, thickness, and effusion rate. This enabled rapid assessment
of eruption evolution and hazards to populated areas, important infrastructure, and tourist centers. The
mean lava thickness exceeds 30 m, covers 4.8 km? and has a bulk volume of 150 & 3 x 10 m3. The March-
September mean effusion rate is 9.5 4+ 0.2 m3 /s, ranging between 1-8 m? /s in March—April and increasing to
9-13 m? /s in May—September. This is uncommon for recent Icelandic eruptions, where the highest discharge
usually occurs in the opening phase.

Plain Summary

On March 19, 2021, an eruption began at Mt. Fagradalsfjall after 781-years dormancy on the Reykjanes
Peninsula, Iceland. To monitor and evaluate hazards of the eruption, satellite and airborne stereoimages
were processed and made publicly available on the same day as they were surveyed. The data were used to
create 3D models of the lava and update the lava volume and growth rate. The resulting maps were used by
disaster response teams to evaluate the risk of the lava flow to nearby infrastructure and to manage tourism
in the vicinity of the eruption. On September 30, 2021, the new lava flow-field covered 4.8 km?, was up to
124 m thick and had a mean thickness of 30 m, yielding a total bulk volume of 150 million m®. The mean
discharge during the six months of the eruption was 9.5 m?3/s, equivalent to filling one Olympic swimming
pool every four minutes.
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1. Introduction

Effusion rates and volumes of lava flows are key eruption parameters necessary for evaluation of hazards posed
by basaltic eruptions. Various methods exist to monitor and quantify near-real time effusion rate ranging from
localized channel and tube estimates of instantaneous effusion rate to time-averaged discharge rate (TADR)
based on satellite-based thermal data and synthetic aperture radar data (see Harris et al., 2007, Poland, 2014
and references therein). Photogrammetric methods are more recurrently and effectively applied in monitoring
effusive eruptions (e.g., Dietterich et al. 2021). This study presents a significant achievement in full-scale
monitoring of a lava field with photogrammetric methods that yielded daily to weekly 3-D models and
effective near real-time processing and presentation of results. We show how near real-time photogrammetric
monitoring in the Fagradalsfjall 2021 eruption provided key information necessary for evaluating hazards
and delivering data products to Civil Protection, local police, and the public.

On March 19, 2021, an eruption started at Mt. Fagradalsfjall ending a 781-year eruption hiatus on the
Reykjanes Peninsula, Iceland (Fig. 1). Fagradalsfjall is a broad hyaloclastite tuya located within an oblique
spreading zone, characterized by volcanic systems and strike-slip faults that are associated with the Mid-
Atlantic plate boundary (e.g., Klein et al., 1977; Gee, 1998; Clifton and Kattenhorn, 2006; Einarsson et al.,
2020, Seemundsson et al., 2020). Eruptions in Reykjanes occur from eruptive fissures, that may focus onto a
single vent to form lava shields. When occuring under a glacier, these eruption types form cones, tindars or
tuyas (e.g., Jones, 1969, Pedersen and Grosse, 2014). At least in the last four thousand years, volcanic activity
on the Reykjanes Peninsula has been episodic, with multiple eruptions occurring over several hundred years
followed by ~800-1000 years of quiescence. The last eruptive period ended in 1240 CE (Ssemundsson et al.,
2020).
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Figure 1 a) Thickness map of the erupted products in the Fagradalsfjall eruption by September 30, 2021.
Vents are marked with a dot and numbered chronologically after opening time. Location of topographic
profile in c) is marked as a yellow line. b) Map of the Reykjanes Peninsula. The red box indicates the
area displayed in a). Densely populated areas are marked in gray. Volcanic systems (Szmundsson and
Sigurgeirsson, 2013) are marked with orange and denoted by capital letter according to their name; R:
Reykjanes, S: Svartsengi, F: Fagradalsfjall, K: Krysuvik, B: Brennisteinsfjoll, H: Hengill. ¢) Topographic
profile along the vents from NE to SW (location see a).

2. Data and methods

The data used for near real-time monitoring of the Fagradalsfjall 2021 eruption consists mainly of aerial pho-
tographs and Pléiades stereoimages and by September 30, 2021, 32 surveys had been carried out (Supplement
S1, Table S1). The processing of the Pléiades stereoimages is described in Gouhier et al. (submitted).

The airborne photogrammetric surveys of the eruption started on the morning of March 20, 2021, 11 hours
after the eruption began. The bulk of surveys were done with the TF-BMW Partenavia P 68 Observer 11
survey aircraft operated by Garaflug Corp (Table S1) with a Hasselblad A6D 100 MP medium-format camera
with a 35 mm focal lens. Images were taken vertically at an altitude of 550-1800 m.a.s.l. with 75-90% overlap
and image resolution of 7-30 cm. Up to 24 ground control points were placed around the lava flow-field and



measured with a high-precision GNSS instrument (see Supplement S1).

The aerial photographs were processed in the software MicMac (Pierrot Deseilligny et al., 2011, Rupnik et
al., 2017), following the semi-automated workflow of Belart et al. (2019), as well as in Agisoft Metashape
(version 1.7.3) and Pix4D mapper (version 4.6.4) yielding the DEMs and orthomosaics. Each DEM was
compared with a pre-eruption DEM and with the previous survey done, obtaining a thickness map and a
thickness change map (Fig. 2 and 3).

Lava outlines were manually digitized from the orthomosaics. Volumes were calculated using the mean
thickness of the erupted deposit multiplied by its area. The uncertainties of the volume were obtained using
the Normalized Mean Absolute Deviation (Hohle and Hohle, 2009) of the stable areas surrounding the
lavas, as proxy for the uncertainties of the thickness maps. The uncertainties of the TADR are described in
Supplement S1.

3. Results

After each survey the data products: DEMs (2 X 2 m), orthomosaics (0.2 X 0.2 m to 0.5
X 0.5 m), thickness maps (2 X 2 m), and lava outlines were completed and made available,
usually 3-6 hours after acquisition. A low-resolution 3D model was also released to the public
(https://www.ni.is/midlun/utgafa/thrividdarlikon/eldgos-vid-fagradalsfjall) within 1-3 hours for visualiza-
tion purposes. Thanks to the short latency of data delivery the data products became important for the
civil protection authorities. The orthomosaics and lava outlines were made available through an interactive
maphttp://atlas.lmi.is/mapview/?application=umbrotasjaand for geographic information systems through a
Web Map Service (https://gis.lmi.is/mapcache/reykjaneseldar/web-mercator/wms) . Figure S1 provides an
example of data products delivered from each survey and table S2 provides results from each survey.

Here, we describe the evolution of the eruption, the erupted volume and TADR, as well as the lava flow-field
development. Short-term fluctuations (minutes to hours) are not resolved by these measurements.

3.1. Fagradalsfjall eruption: Volume, discharge and lava field evolution
The eruption from March 19, 2021 to September 18, 2021 can be divided into five phases.

Phase 1 of the eruption (March 19 to April 5) began when a 180 m long fissure opened on March 19 around
20:30 in the Geldingadalir valley, which is located east of Mt. Fagradalsfjall (Fig. 1). Soon the eruption
concentrated on two neighboring vents and the lava started infilling the valley (Fig. 2a). During this phase,
the TADR ranged from 7.9 to 0.7 m?/s with a mean for the entire phase of 4.940.1 m®/s (Fig. 2b). The
lava area increased to 0.33 km?, while the mean thickness increased to 22 m reaching a lava volume of 7.1 x
10%m3 before phase 2 started.

In phase 2 (April 5 to April 28) the active vent migrated (Fig. 1). Multiple eruption segments opened, starting
on April 5, when two new fissure-segments opened 800 m northeast of the first fissure segments. Another
fissure opened at midnight on April 7, another one on April 10 at and then again on April 13 when two new
fissure segments opened. Each fissure segment concentrated into 1-2 circular vents, which over the following
10 days became inactive, except for southern the vents that developed from the April 13 fissure segments.
Phase 2 had similar TADR as in phase 1 in the range 4.6-7.5 m3/s with the highest TADR observed just
after new vent openings. The mean TADR in this period was 6.34£0.4 m3/s and the volume increased to
19.4 x 10% m?. With the migration of active vent locations, lava started to flow into the valleys of Meradalir
(April 5), Geldingadalir and Syri-Meradalur (April 14) covering an area of 1.1 km? with a mean thickness
of 16 m.

In phase 3 (April 28 to June 28) the vent activity stabilized at one location. Most of the time (May 2 to
June 12) it exhibited cycles of short-term (ca. 8-9 minutes) pulsations. The TADR increased from 8.8 to a
maximum of 13.0 m?3 /s with a phase mean of 11.44-0.5 m?3/s. The “fill and spill” from one valley into another
increased the area stepwise to 3.82 km? with mean thickness of 20.8 m yielding a volume of 79.8 x 10 m3.



The lava migrated to Nétthagi valley through Syri-Meradalir (May 22) and through southern Geldingadalir
(June 13).

Phase 4 (June 28 to September 2) was characterized by episodic activity with intense lava emplacement (ca.
12-24 hours) followed by inactive periods of similar length. Despite the episodic activity this period had only
slightly lower TADR to phase 3 with a mean TADR for the whole phase of 11.04-0.4 m? /s ranging from 8.5
to 11.1 m?/s and the volume increased to 142.5 x 105 m3. The lava thickened to around 50 m northeast of
the active crater due to episodic overflows and in Meradalir the lava thickened by 725 m due to stacking and
inflation.

The eruption’s rhythm changed again in the phase 5 (September 2 to 18), when a week-long pause from
September 2—11, was followed by week-long period of activity from September 11-18. The measured TADR
was 12.2 m?/s for September 9-17. The mean TADR for phase 5 is 5.640.6 m?/s and the volume increased
to 150.8 x 10% m3. Most of the deposition was in Geldingadalir, where a 10-15 m thick lava pond was
established north-northwest of the active crater between September 11 to 15, that partly drained through an
upwelling zone towards south and into Natthagi from September 15 to 18. At the time of writing (November
18), no eruptive activity has been observed since September 18.
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Figure 2 a) The thickness of erupted material by the end of phase 1 (April 5), end of phase 2 (April 26)
and phase 4 (August 8, 2021). Purple line denotes initial fissure segment b—f) Eruption parameters of the
Fagradalsfjall 2021 eruption showing the evolution of time-average discharge rate (TADR), volume, area,
area change (dArea), and mean thickness. Orange boxes denote uncertainty in measurement. Blue crosses
denote supporting TADR measurements (Supplement S2).

3.2. Lava transport systems and emplacement

Processes related to lava transport and emplacement could be studied through thickness change maps (Fig.
3a—c) such as breakouts, inflation, lava stacking, pond formation, channel changes, deflation, cooling and
contraction as well as vent changes. Especially, monitoring of inflation within valleys that were likely to
spill into lower lying terrain was important since some sections of popular hiking trails were located below
lava-filled valleys.

Despite the relatively stable effusion rate in phase 3 and 4 (Fig. 2), the braided lava pathways and the lava
advancement were complex and variable as the lava filled and spilled from one valley into another. Short-
term prediction of the timing of overflow from one valley to another provided challenges and thus monitoring
the changes in the lava transport system and lava deposition in different valleys became important. The
lava pathways were strongly controlled by the topography and mainly confined to the valleys and the steep
slopes connecting them. However, since the valley systems consisted of multiple valleys east and south of
the active vents the lava pathways were not uniformly filling up the valleys but switching from one valley
to another. One way to monitor these changes and estimate the variability was to investigate the volume
changes in different zones and vent distances (at 100 m interval) based on the thickness change maps. For
each zone we could calculate the AV /At reflecting the volume deposited for a given period at a specific vent
distance. This allows us to display the changes in lava transport and deposition in between these zones and
distances over time (Fig. 3d).
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Figure 3 Thickness change map from a) June 2-11 b) July 2-27 and ¢) September 9-17 showing observable
emplacement processes. d) AV /At as a function of vent distance for each phase in five zones (see inset for
location); G: Geldingadalir, M: Meradalir, SM: Syri-Meradalur, N: Ndtthagi and NE: the plateau northeast
of the vent. The black line is the total AV /At for all five zones as a function of vent distance. In phase 1
all lava was deposited in Geldingadalir and thus the total AV/At is equal to the AV /At for Geldingadalir.
The lower panel shows the total deposition from March to September between zones as a function of vent
distance.

The lava deposition as a function of vent distance changed markedly over time. In phase 1 all lava was
emplaced within Geldingadalir; and, in phase 2, as new vents opened on the northeast plateau, lava migrated
into Meradalir and Syri-Meradalur. In phase 3, the lava field expanded to its current maximum extent,
reaching 3.3 km from the vent by having lava ponds acting as reservoirs for the transport system (Fig.
3d). This lava transport system closed during phase 4, when the continuous lava effusion was replaced by
episodic activity responsible for large overflows and significant stacking in the vent region. Stacking and
inflation was continued in Meradalir, where the lava reached a distance of 2.8 km from the vent. Thus,
despite the long-term TADR in phases 3 and 4 was similar (Fig. 2), the difference between continuous and



episodic activity at the vent had a major impact on the lava transport system and the ability of the lava field
to expand. In phase 5, most lava emplacement was within a 1 km radius of the active vent but reached 2.7
km in mid-September after the drainage of a pond northwest of the crater (Fig. 3c). Between surveys this
variation of lava deposition between zones amounted to as much as 10 m?/s for Geldingadalir and Meradalir,
5 m? /s for Syri-Meradalur and the Northeast plateau and 3 m? /s for Natthagi. Thus, despite a stable TADR,
the local effusion into individual valleys varied significantly between surveys providing a great challenge for
forecasting the timing of lava spilling from one valley to another.

4. Discussion

Satellite and airborne photogrammetry provided flexible methods for near real-time monitoring of volume
and TADR on a daily to weekly basis for Icelandic conditions, where low vegetation and very changeable
weather prevails. Airplane surveys were possible for cloud cover down to 550 m.a.s.l and could be deployed
quickly since the flight to the eruption only takes 10 minutes from Reykjavik Airport (RVK). The acquisitions
were mainly limited by the low cloud, and occasionally by lack of available aircraft.

The data products (orthomosaics, DEM, lava outline, thickness maps, thickness change maps and volume
and TADR estimates) provided critical information for disaster response and for the scientific community.
The volume and TADR were used to evaluate the status of the eruption and as input parameters together
with the thickness maps for lava flow simulation. The orthomosaics and lava outlines were important to
responders providing base maps for infrastructure, planning, rescue missions, and for tourists visiting the
eruption.

The effusion rate evolution for basaltic eruptions provides important insights to increase understanding of
the source of the magma and the conduit properties. Different trends in effusion rate evolution have been
classified into types and linked to specific plumbing system dynamics (Harris et al., 2000, 2011, Araveno et
al., 2020). Type I is characterized by a phase of high initial effusion followed by an extended phase of waning
effusion, which has been interpreted as a tapping of a pressurized reservoir (Wadge et al., 1981) and efficient
magma ascent in early stages (Araveno et al., 2020). Type II has a low, near-constant effusion rate and has
been related to low values of overpressure (5-10 MPa), consistent with overflow in a non-pressurized system
(Harris et al. 2000, Araveno et al., 2020). In type III eruptions, the effusion rate increases with time and
has been suggested to be linked with ascent of a magma batch, pushing a volume of degassed magma ahead
(Harris et al., 2011). However, this trend has also been linked to conduit erosion caused by high erosion
coefficients, high initial overpressures, and/or large magma reservoirs, that in its extreme case may lead to
a sudden overpressure drop and eruption shutdown caused by high effusion rate and magma withdrawal
(Araveno et al., 2020). The last type is type IV, which shows highly pulsating effusion rate and has been
related to ascent of multiple batches of magma (Harris et al., 2011).

The Fagradalsfjall 2021 eruption started with low and stable effusion rate between 4-8 m?/s in phase 1-2
(Fig. 2) and initially had the characteristics of a type II eruption. However, in phase 3—4 the effusion rate
increased to 8-13 m?/s changing the characteristics to resemble a type III eruption, whilst in phase 5 the
TADR had pulsating characteristics similar to type IV but lasted only for a month. The low initial effusion
rate at Fagradalsfjall is between 30 and 2500 times smaller than other recorded Icelandic eruptions in the
last 75 years (Gudmundsson et al., 2004, 2012, Jude-Eton et al., 2012, Hreinsddttir et al., 2014, Pedersen et
al., 2017, 2018, Thorarinsson, 1964, 1967). When normalizing the initial effusion rate to the mean output
rate (Harris et al. 2007) of each eruption, it becomes clear that it is not only a low initial effusion rate that
is unusual, but the evolution of the effusion rate at Fagradalsfjall, which is unlike any observations from
previous recent Icelandic eruptions (Fig. 4).
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Figure 4 Fagradalsfjall effusion characteristics described by the ratio of initial effusion rate Effusionipitial
divided by the Mean Output Rate, MOR (Harris et al., 2007) compared to other recent Icelandic eruptions
(Gudmundsson et al., 2004, 2012, Jude-Eton et al., 2012, Hreinsd6ttir et al., 2014, Pedersen et al., 2017,
2018, Thorarinsson, 1964,1967). Note the y-axis is logarithmic. Fagradalsfjall 2021 is clearly an outlier with
a ratio below 1, while all other eruptions plot above 1. The effusion rate evolution of types I and III from
Harris et al (2000, 2011) has been indicated in red and blue. Type II should ideally plot along the dashed
line, while the pulsating nature of type IV could plot everywhere in the plot.

For the first time we observe an eruption that primarily has characteristics of a type III eruption, while
recent Icelandic eruptions show characteristics that resemble type I eruptions. Based on the interpretation
of type I eruptions, it makes sense that eruptions in Hekla, Grimsvétn and Bérarbunga (Holuhraun 2014—
2015) all show effusion rate evolution controlled by pressurized reservoirs, since these volcanic systems show
evidence of having magma chambers (e.g., Ofeigsson et al., 2011, Geirsson et al., 2012, Hreinsdéttir et al.,
2014, Gudmundsson et al., 2016). Less information exists for the Vestmannaeyjar volcanic system responsible
for the Surtsey 1963-1967 eruption, but based on the available data (Thorarinsson, 1964), the effusion rate
evolution suggests that Fagradalsfjall is unlike this eruption as well.

The evolution of the effusion rate of type III eruptions has been linked to the ascent of a single magma
batch, pushing a volume of degassed magma ahead (Harris et al., 2011, Steffke et al., 2011). Interestingly,
geochemical evidence suggests that in phase 1-2 the magma plumbing system gradually changed from being
fed from a depleted shallow mantle source to being fed by more enriched discrete melts from greater depth
(Marshall et al., 2021). Nevertheless, this gradual geochemical change happened during the first 40 days of
the eruption, where the TADR is stable and the increase in TADR happen around day 50. However, during
phase 2, new vents opened at locations which were 60 m above the initial vents in Geldingadalir (Fig. 1)
suggesting an increase in pressure during this time (in the order of 1-1.5 MPa based on higher lithostatic load
corresponding to 60 m increase in elevation of vents). By the end of phase 2, the vents at the higher elevations
had shut off and the effusion from vent 5, which is located in similar elevation as vent la,b increased from 7
to 13 m3/s in phase 3, while displaying fire fountain activity.

The delay between the geochemical change and the increased effusion is intriguing. In the 2018 Kilauea
eruption the increase in effusion started within a day of an observed change to more mafic magma increasing
the effusion from 6.5 m3/s to 110 m3/s (Gansecki et al., 2019, Dietterich et al., 2021). Furthermore, this
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change was associated with observed deformation and earthquake activity. Thus, there was a clear link
between a change in geochemistry and a substantial increase in effusion.

If the effusion increase in Fagradalsfjall is related to ascent of a magma batch pushing a degassed magma
ahead (which would be 20 x 10° m® based on the erupted bulk volume estimates at day 40), then it is
clear that it is a more subtle process compared to the 2018 Kilauea eruption, potentially involving lower
overpressure and slower increase in effusion.

Another possible model used to explain increase in effusion with thermal erosion. The eruption in phase 1-2
displayed type II characteristics consistent with overflow in a non-pressurized system. The effusion rate and
the successive vent openings suggest that the system was not highly pressurized. Over time the heating of the
conduit walls enabled sufficient thermal erosion to increase the effusion rate, which for a cylindrical conduit
is proportional to %, where 1 is radius (e.g., Turcotte and Schubert, 2002). This process may have been
enhanced by the increased temperature of the magma due to an increase in MgO from 8.8-9.7% (Marshall et
al., 2021). We consider this conduit-controlled flow a plausible model for Fagradalsfjall because it explains
the sharp contrast with the behavior to other Icelandic eruptions (e.g., Hekla, Grimsvétn and Bararbunga)
where pressure in a magma chamber is considered the main control of flow (e.g., Hreinsdéttir et al., 2014).

5. Conclusions

Near real-time photogrammetric monitoring of the eruption at Fagradalsfjall 2021 was performed using a
combination of satellite and airborne stereoimages as a part of the response to the event. This provided
essential eruption parameters such as volume and effusion rate, as well as the maps distributed to the public,
the Civil Protection, rescue teams, and the tourism industry.

By September 30, 2021, 32 surveys have been performed. Currently, the lava flow-field covers 4.8 km? and
the estimated bulk volume (including vesicles and macroscale porosity) is 150 x 10 m3, yielding a mean
effusion rate (from the beginning of the eruption start) of 9.5 & 0.2 m?/s.

The lava pathways and lava advancement were very complex and changeable as the lava filled and spilled
from one valley into another and short-term prediction of the timing of overflow from one valley to another
proved challenging. Analysis of thickness maps and thickness change maps show that the lava transport into
different valleys varied up to 10 m®/s between surveys as lava transport rapidly switched between one valley
to another.

Compared to recent Icelandic eruptions, the evolution of the effusion rate is very unusual, having a very low
and stable effusion in phase 1-2 and increasing effusion in phase 3. This behavior may be due to widening
of the conduit by thermal erosion with time, and not controlled by magma chamber pressure as is most
common in the volcanic zones of Iceland.
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Key Points:

e Near real-time photogrammetric monitoring of the 2021 Fagradalsfjall
eruption

e Acquisition of an unprecedented temporal data set including volume, ef-
fusion rate, orthomosaics, thickness maps and thickness change maps

« After six months of eruption the lava covers 4.8 km?, with a bulk volume
of ~1.5 x 108 m? and mean effusion rate of ~9.5 m?/s

Abstract



The basaltic effusive eruption at Mt. Fagradalsfjall began on March 19, 2021,
ending a 781-year hiatus on Reykjanes Peninsula, Iceland. By late September
2021, 32 near real-time photogrammetric surveys were completed using satellite
and airborne images, usually processed within 3-6 hours. The results provide
unprecedented temporal data sets of lava volume, thickness, and effusion rate.
This enabled rapid assessment of eruption evolution and hazards to populated
areas, important infrastructure, and tourist centers. The mean lava thickness
exceeds 30 m, covers 4.8 km? and has a bulk volume of 150 + 3 x 10% m3. The
March-September mean effusion rate is 9.5 4 0.2 m?/s, ranging between 1-8
m? /s in March-April and increasing to 9-13 m?3/s in May-September. This is
uncommon for recent Icelandic eruptions, where the highest discharge usually
occurs in the opening phase.

Plain Summary

On March 19, 2021, an eruption began at Mt. Fagradalsfjall after 781-years dor-
mancy on the Reykjanes Peninsula, Iceland. To monitor and evaluate hazards
of the eruption, satellite and airborne stereoimages were processed and made
publicly available on the same day as they were surveyed. The data were used
to create 3D models of the lava and update the lava volume and growth rate.
The resulting maps were used by disaster response teams to evaluate the risk of
the lava flow to nearby infrastructure and to manage tourism in the vicinity of
the eruption. On September 30, 2021, the new lava flow-field covered 4.8 km?,
was up to 124 m thick and had a mean thickness of 30 m, yielding a total bulk
volume of 150 million m®. The mean discharge during the six months of the
eruption was 9.5 m?3/s, equivalent to filling one Olympic swimming pool every
four minutes.

Key Words:

Effusive eruption, lava flows, near real-time monitoring, Fagradalsfjall, pho-
togrammetry

1. Introduction

Effusion rates and volumes of lava flows are key eruption parameters necessary
for evaluation of hazards posed by basaltic eruptions. Various methods exist to
monitor and quantify near-real time effusion rate ranging from localized channel
and tube estimates of instantaneous effusion rate to time-averaged discharge rate
(TADR) based on satellite-based thermal data and synthetic aperture radar data
(see Harris et al., 2007, Poland, 2014 and references therein). Photogrammet-
ric methods are more recurrently and effectively applied in monitoring effusive
eruptions (e.g., Dietterich et al. 2021). This study presents a significant achieve-
ment in full-scale monitoring of a lava field with photogrammetric methods that
yielded daily to weekly 3-D models and effective near real-time processing and
presentation of results. We show how near real-time photogrammetric moni-
toring in the Fagradalsfjall 2021 eruption provided key information necessary
for evaluating hazards and delivering data products to Civil Protection, local
police, and the public.



On March 19, 2021, an eruption started at Mt. Fagradalsfjall ending a 781-year
eruption hiatus on the Reykjanes Peninsula, Iceland (Fig. 1). Fagradalsfjall
is a broad hyaloclastite tuya located within an oblique spreading zone, charac-
terized by volcanic systems and strike-slip faults that are associated with the
Mid-Atlantic plate boundary (e.g., Klein et al., 1977; Gee, 1998; Clifton and
Kattenhorn, 2006; Einarsson et al., 2020, Seemundsson et al., 2020). Eruptions
in Reykjanes occur from eruptive fissures, that may focus onto a single vent to
form lava shields. When occuring under a glacier, these eruption types form
cones, tindars or tuyas (e.g., Jones, 1969, Pedersen and Grosse, 2014). At least
in the last four thousand years, volcanic activity on the Reykjanes Peninsula
has been episodic, with multiple eruptions occurring over several hundred years
followed by ~800-1000 years of quiescence. The last eruptive period ended in
1240 CE (Seemundsson et al., 2020).
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Figure 1 a) Thickness map of the erupted products in the Fagradalsfjall eruption
by September 30, 2021. Vents are marked with a dot and numbered chronolog-
ically after opening time. Location of topographic profile in ¢) is marked as
a yellow line. b) Map of the Reykjanes Peninsula. The red box indicates the
area displayed in a). Densely populated areas are marked in gray. Volcanic
systems (Ssemundsson and Sigurgeirsson, 2013) are marked with orange and
denoted by capital letter according to their name; R: Reykjanes, S: Svartsengi,
F: Fagradalsfjall, K: Krysuvik, B: Brennisteinsfjoll, H: Hengill. ¢) Topographic
profile along the vents from NE to SW (location see a).

2. Data and methods

The data used for near real-time monitoring of the Fagradalsfjall 2021 erup-
tion consists mainly of aerial photographs and Pléiades stereoimages and by
September 30, 2021, 32 surveys had been carried out (Supplement S1, Table
S1). The processing of the Pléiades stereoimages is described in Gouhier et al.
(submitted).

The airborne photogrammetric surveys of the eruption started on the morning
of March 20, 2021, 11 hours after the eruption began. The bulk of surveys were
done with the TF-BMW Partenavia P 68 Observer II survey aircraft operated
by Garoaflug Corp (Table S1) with a Hasselblad A6D 100 MP medium-format
camera with a 35 mm focal lens. Images were taken vertically at an altitude of
550-1800 m.a.s.]. with 75-90% overlap and image resolution of 7-30 ¢cm. Up to
24 ground control points were placed around the lava flow-field and measured
with a high-precision GNSS instrument (see Supplement S1).

The aerial photographs were processed in the software MicMac (Pierrot Deseil-
ligny et al., 2011, Rupnik et al., 2017), following the semi-automated workflow of
Belart et al. (2019), as well as in Agisoft Metashape (version 1.7.3) and Pix4D
mapper (version 4.6.4) yielding the DEMs and orthomosaics. Each DEM was
compared with a pre-eruption DEM and with the previous survey done, obtain-
ing a thickness map and a thickness change map (Fig. 2 and 3).

Lava outlines were manually digitized from the orthomosaics. Volumes were
calculated using the mean thickness of the erupted deposit multiplied by its
area. The uncertainties of the volume were obtained using the Normalized Mean
Absolute Deviation (Hohle and Hohle, 2009) of the stable areas surrounding the
lavas, as proxy for the uncertainties of the thickness maps. The uncertainties of
the TADR are described in Supplement S1.

3. Results

After each survey the data products: DEMs (2 X 2 m), orthomosaics
(02 X 02 m to 0.5 X 0.5 m), thickness maps (2 X 2 m), and lava
outlines were completed and made available, usually 3-6 hours after ac-
quisition. A low-resolution 3D model was also released to the public
(https://www.ni.is/midlun/utgafa/thrividdarlikon/eldgos-vid-fagradalsfjall)

within 1-3 hours for visualization purposes. Thanks to the short latency of



data delivery the data products became important for the civil protection
authorities. The orthomosaics and lava outlines were made available through
an interactive map http://atlas.lmi.is/mapview/?application=umbrotasja
and for geographic information systems through a Web Map Service
(https://gis.lmi.is/mapcache/reykjaneseldar /web-mercator/wms). Figure
S1 provides an example of data products delivered from each survey and table
S2 provides results from each survey.

Here, we describe the evolution of the eruption, the erupted volume and TADR,
as well as the lava flow-field development. Short-term fluctuations (minutes to
hours) are not resolved by these measurements.

3.1. Fagradalsfjall eruption: Volume, discharge and lava field evolution

The eruption from March 19, 2021 to September 18, 2021 can be divided into
five phases.

Phase 1 of the eruption (March 19 to April 5) began when a 180 m long fissure
opened on March 19 around 20:30 in the Geldingadalir valley, which is located
east of Mt. Fagradalsfjall (Fig. 1). Soon the eruption concentrated on two
neighboring vents and the lava started infilling the valley (Fig. 2a). During this
phase, the TADR ranged from 7.9 to 0.7 m®/s with a mean for the entire phase
of 4.940.1 m3/s (Fig. 2b). The lava area increased to 0.33 km?, while the mean
thickness increased to 22 m reaching a lava volume of 7.1 x 10% m? before phase
2 started.

In phase 2 (April 5 to April 28) the active vent migrated (Fig. 1). Multiple
eruption segments opened, starting on April 5, when two new fissure-segments
opened 800 m northeast of the first fissure segments. Another fissure opened
at midnight on April 7, another one on April 10 at and then again on April 13
when two new fissure segments opened. Each fissure segment concentrated into
1-2 circular vents, which over the following 10 days became inactive, except for
southern the vents that developed from the April 13 fissure segments. Phase
2 had similar TADR as in phase 1 in the range 4.6-7.5 m®/s with the highest
TADR observed just after new vent openings. The mean TADR in this period
was 6.3+£0.4 m3 /s and the volume increased to 19.4 x 10° m®. With the migra-
tion of active vent locations, lava started to flow into the valleys of Meradalir
(April 5), Geldingadalir and Syori-Meradalur (April 14) covering an area of 1.1
km? with a mean thickness of 16 m.

In phase 3 (April 28 to June 28) the vent activity stabilized at one location.
Most of the time (May 2 to June 12) it exhibited cycles of short-term (ca. 89
minutes) pulsations. The TADR increased from 8.8 to a maximum of 13.0 m?/s
with a phase mean of 11.44:0.5 m3/s. The “fill and spill” from one valley into
another increased the area stepwise to 3.82 km? with mean thickness of 20.8
m yielding a volume of 79.8 x 10 m?. The lava migrated to Natthagi valley
through Sydri-Meradalir (May 22) and through southern Geldingadalir (June
13).


http://atlas.lmi.is/mapview/?application=umbrotasja
https://gis.lmi.is/mapcache/reykjaneseldar/web-mercator/wms

Phase 4 (June 28 to September 2) was characterized by episodic activity with
intense lava emplacement (ca. 12-24 hours) followed by inactive periods of
similar length. Despite the episodic activity this period had only slightly lower
TADR to phase 3 with a mean TADR for the whole phase of 11.04:0.4 m3/s
ranging from 8.5 to 11.1 m?® /s and the volume increased to 142.5 x 10° m®. The
lava thickened to around 50 m northeast of the active crater due to episodic
overflows and in Meradalir the lava thickened by ~25 m due to stacking and
inflation.

The eruption’s rhythm changed again in the phase 5 (September 2 to 18), when
a week-long pause from September 2-11, was followed by week-long period of
activity from September 11-18. The measured TADR was 12.2 m? /s for Septem-
ber 9-17. The mean TADR for phase 5 is 5.640.6 m3 /s and the volume increased
to 150.8 x 10° m3. Most of the deposition was in Geldingadalir, where a 10-15
m thick lava pond was established north-northwest of the active crater between
September 11 to 15, that partly drained through an upwelling zone towards
south and into Natthagi from September 15 to 18. At the time of writing
(November 18), no eruptive activity has been observed since September 18.
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Figure 2 a) The thickness of erupted material by the end of phase 1 (April
5), end of phase 2 (April 26) and phase 4 (August 8, 2021). Purple line de-
notes initial fissure segment b—f) Eruption parameters of the Fagradalsfjall 2021
eruption showing the evolution of time-average discharge rate (TADR), volume,
area, area change (dArea), and mean thickness. Orange boxes denote uncer-
tainty in measurement. Blue crosses denote supporting TADR measurements
(Supplement S2).

3.2. Lava transport systems and emplacement

Processes related to lava transport and emplacement could be studied through
thickness change maps (Fig. 3a—c) such as breakouts, inflation, lava stacking,
pond formation, channel changes, deflation, cooling and contraction as well as
vent changes. Especially, monitoring of inflation within valleys that were likely
to spill into lower lying terrain was important since some sections of popular
hiking trails were located below lava-filled valleys.

Despite the relatively stable effusion rate in phase 3 and 4 (Fig. 2), the braided
lava pathways and the lava advancement were complex and variable as the lava
filled and spilled from one valley into another. Short-term prediction of the
timing of overflow from one valley to another provided challenges and thus
monitoring the changes in the lava transport system and lava deposition in
different valleys became important. The lava pathways were strongly controlled
by the topography and mainly confined to the valleys and the steep slopes
connecting them. However, since the valley systems consisted of multiple valleys
east and south of the active vents the lava pathways were not uniformly filling
up the valleys but switching from one valley to another. One way to monitor
these changes and estimate the variability was to investigate the volume changes
in different zones and vent distances (at 100 m interval) based on the thickness
change maps. For each zone we could calculate the V/ t reflecting the volume
deposited for a given period at a specific vent distance. This allows us to
display the changes in lava transport and deposition in between these zones and
distances over time (Fig. 3d).
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Figure 3 Thickness change map from a) June 2-11 b) July 2-27 and ¢) September
9-17 showing observable emplacement processes. d) V/ t as a function of vent
distance for each phase in five zones (see inset for location); G: Geldingadalir,
M: Meradalir, SM: Sydri-Meradalur, N: Natthagi and NE: the plateau northeast
of the vent. The black line is the total V/t for all five zones as a function of
vent distance. In phase 1 all lava was deposited in Geldingadalir and thus the
total V/t is equal to the V/t for Geldingadalir. The lower panel shows the
total deposition from March to September between zones as a function of vent
distance.

The lava deposition as a function of vent distance changed markedly over time.
In phase 1 all lava was emplaced within Geldingadalir; and, in phase 2, as new
vents opened on the northeast plateau, lava migrated into Meradalir and Syori-
Meradalur. In phase 3, the lava field expanded to its current maximum extent,
reaching 3.3 km from the vent by having lava ponds acting as reservoirs for the
transport system (Fig. 3d). This lava transport system closed during phase 4,
when the continuous lava effusion was replaced by episodic activity responsible
for large overflows and significant stacking in the vent region. Stacking and
inflation was continued in Meradalir, where the lava reached a distance of 2.8
km from the vent. Thus, despite the long-term TADR in phases 3 and 4 was
similar (Fig. 2), the difference between continuous and episodic activity at the
vent had a major impact on the lava transport system and the ability of the lava
field to expand. In phase 5, most lava emplacement was within a 1 km radius
of the active vent but reached 2.7 km in mid-September after the drainage of a
pond northwest of the crater (Fig. 3c). Between surveys this variation of lava
deposition between zones amounted to as much as 10 m? /s for Geldingadalir and
Meradalir, 5 m? /s for Syori-Meradalur and the Northeast plateau and 3 m3 /s for
Natthagi. Thus, despite a stable TADR, the local effusion into individual valleys
varied significantly between surveys providing a great challenge for forecasting
the timing of lava spilling from one valley to another.

4. Discussion

Satellite and airborne photogrammetry provided flexible methods for near real-
time monitoring of volume and TADR on a daily to weekly basis for Icelandic
conditions, where low vegetation and very changeable weather prevails. Airplane
surveys were possible for cloud cover down to 550 m.a.s.l and could be deployed
quickly since the flight to the eruption only takes 10 minutes from Reykjavik
Airport (RVK). The acquisitions were mainly limited by the low cloud, and
occasionally by lack of available aircraft.

The data products (orthomosaics, DEM, lava outline, thickness maps, thickness
change maps and volume and TADR estimates) provided critical information for
disaster response and for the scientific community. The volume and TADR were
used to evaluate the status of the eruption and as input parameters together
with the thickness maps for lava flow simulation. The orthomosaics and lava
outlines were important to responders providing base maps for infrastructure,
planning, rescue missions, and for tourists visiting the eruption.
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The effusion rate evolution for basaltic eruptions provides important insights to
increase understanding of the source of the magma and the conduit properties.
Different trends in effusion rate evolution have been classified into types and
linked to specific plumbing system dynamics (Harris et al., 2000, 2011, Araveno
et al., 2020). Type I is characterized by a phase of high initial effusion followed
by an extended phase of waning effusion, which has been interpreted as a tapping
of a pressurized reservoir (Wadge et al., 1981) and efficient magma ascent in
early stages (Araveno et al., 2020). Type II has a low, near-constant effusion
rate and has been related to low values of overpressure (5-10 MPa), consistent
with overflow in a non-pressurized system (Harris et al. 2000, Araveno et al.,
2020). In type III eruptions, the effusion rate increases with time and has
been suggested to be linked with ascent of a magma batch, pushing a volume
of degassed magma ahead (Harris et al., 2011). However, this trend has also
been linked to conduit erosion caused by high erosion coefficients, high initial
overpressures, and/or large magma reservoirs, that in its extreme case may lead
to a sudden overpressure drop and eruption shutdown caused by high effusion
rate and magma withdrawal (Araveno et al., 2020). The last type is type IV,
which shows highly pulsating effusion rate and has been related to ascent of
multiple batches of magma (Harris et al., 2011).

The Fagradalsfjall 2021 eruption started with low and stable effusion rate be-
tween 4-8 m3/s in phase 1-2 (Fig. 2) and initially had the characteristics of
a type II eruption. However, in phase 3—4 the effusion rate increased to 8-13
m?/s changing the characteristics to resemble a type III eruption, whilst in
phase 5 the TADR had pulsating characteristics similar to type IV but lasted
only for a month. The low initial effusion rate at Fagradalsfjall is between 30
and 2500 times smaller than other recorded Icelandic eruptions in the last 75
years (Gudmundsson et al., 2004, 2012, Jude-Eton et al., 2012, Hreinsddttir et
al., 2014, Pedersen et al., 2017, 2018, Thorarinsson, 1964, 1967). When nor-
malizing the initial effusion rate to the mean output rate (Harris et al. 2007)
of each eruption, it becomes clear that it is not only a low initial effusion rate
that is unusual, but the evolution of the effusion rate at Fagradalsfjall, which is
unlike any observations from previous recent Icelandic eruptions (Fig. 4).
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Figure 4 Fagradalsfjall effusion characteristics described by the ratio of initial
effusion rate Effusion,;;,; divided by the Mean Output Rate, MOR (Harris et
al., 2007) compared to other recent Icelandic eruptions (Gudmundsson et al.,
2004, 2012, Jude-Eton et al., 2012, Hreinsdéttir et al., 2014, Pedersen et al., 2017,
2018, Thorarinsson, 1964,1967). Note the y-axis is logarithmic. Fagradalsfjall
2021 is clearly an outlier with a ratio below 1, while all other eruptions plot
above 1. The effusion rate evolution of types I and III from Harris et al (2000,
2011) has been indicated in red and blue. Type II should ideally plot along the
dashed line, while the pulsating nature of type IV could plot everywhere in the
plot.

For the first time we observe an eruption that primarily has characteristics of
a type III eruption, while recent Icelandic eruptions show characteristics that
resemble type I eruptions. Based on the interpretation of type I eruptions, it
makes sense that eruptions in Hekla, Grimsvotn and Bardarbunga (Holuhraun
2014-2015) all show effusion rate evolution controlled by pressurized reservoirs,
since these volcanic systems show evidence of having magma chambers (e.g.,
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Ofeigsson et al., 2011, Geirsson et al., 2012, Hreinsdéttir et al., 2014, Gud-
mundsson et al., 2016). Less information exists for the Vestmannaeyjar vol-
canic system responsible for the Surtsey 1963-1967 eruption, but based on the
available data (Thorarinsson, 1964), the effusion rate evolution suggests that
Fagradalsfjall is unlike this eruption as well.

The evolution of the effusion rate of type III eruptions has been linked to the
ascent of a single magma batch, pushing a volume of degassed magma ahead
(Harris et al., 2011, Steffke et al., 2011). Interestingly, geochemical evidence
suggests that in phase 1-2 the magma plumbing system gradually changed from
being fed from a depleted shallow mantle source to being fed by more enriched
discrete melts from greater depth (Marshall et al., 2021). Nevertheless, this
gradual geochemical change happened during the first 40 days of the eruption,
where the TADR is stable and the increase in TADR happen around day 50.
However, during phase 2, new vents opened at locations which were 60 m above
the initial vents in Geldingadalir (Fig. 1) suggesting an increase in pressure
during this time (in the order of 1-1.5 MPa based on higher lithostatic load
corresponding to 60 m increase in elevation of vents). By the end of phase 2,
the vents at the higher elevations had shut off and the effusion from vent 5,
which is located in similar elevation as vent 1a,b increased from 7 to 13 m3/s in
phase 3, while displaying fire fountain activity.

The delay between the geochemical change and the increased effusion is intrigu-
ing. In the 2018 Kilauea eruption the increase in effusion started within a day
of an observed change to more mafic magma increasing the effusion from 6.5
m?/s to 110 m3/s (Gansecki et al., 2019, Dietterich et al., 2021). Furthermore,
this change was associated with observed deformation and earthquake activity.
Thus, there was a clear link between a change in geochemistry and a substantial
increase in effusion.

If the effusion increase in Fagradalsfjall is related to ascent of a magma batch
pushing a degassed magma ahead (which would be 20 x 10° m?® based on the
erupted bulk volume estimates at day 40), then it is clear that it is a more
subtle process compared to the 2018 Kilauea eruption, potentially involving
lower overpressure and slower increase in effusion.

Another possible model used to explain increase in effusion with thermal ero-
sion. The eruption in phase 1-2 displayed type II characteristics consistent with
overflow in a non-pressurized system. The effusion rate and the successive vent
openings suggest that the system was not highly pressurized. Over time the
heating of the conduit walls enabled sufficient thermal erosion to increase the
effusion rate, which for a cylindrical conduit is proportional to r#, where r is ra-
dius (e.g., Turcotte and Schubert, 2002). This process may have been enhanced
by the increased temperature of the magma due to an increase in MgO from
8.8-9.7% (Marshall et al., 2021). We consider this conduit-controlled flow a
plausible model for Fagradalsfjall because it explains the sharp contrast with
the behavior to other Icelandic eruptions (e.g., Hekla, Grimsvotn and Bérdar-
bunga) where pressure in a magma chamber is considered the main control of
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flow (e.g., Hreinsdéttir et al., 2014).
5. Conclusions

Near real-time photogrammetric monitoring of the eruption at Fagradalsfjall
2021 was performed using a combination of satellite and airborne stereoimages as
a part of the response to the event. This provided essential eruption parameters
such as volume and effusion rate, as well as the maps distributed to the public,
the Civil Protection, rescue teams, and the tourism industry.

By September 30, 2021, 32 surveys have been performed. Currently, the lava
flow-field covers 4.8 km? and the estimated bulk volume (including vesicles and
macroscale porosity) is 150 x 10 m3, yielding a mean effusion rate (from the
beginning of the eruption start) of 9.5 + 0.2 m?/s.

The lava pathways and lava advancement were very complex and changeable as
the lava filled and spilled from one valley into another and short-term prediction
of the timing of overflow from one valley to another proved challenging. Analysis
of thickness maps and thickness change maps show that the lava transport into
different valleys varied up to 10 m3/s between surveys as lava transport rapidly
switched between one valley to another.

Compared to recent Icelandic eruptions, the evolution of the effusion rate is
very unusual, having a very low and stable effusion in phase 1-2 and increasing
effusion in phase 3. This behavior may be due to widening of the conduit by
thermal erosion with time, and not controlled by magma chamber pressure as
is most common in the volcanic zones of Iceland.
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