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Abstract

The well-known Manning formula is usually used for the calculation of the volumetric flow rate (discharge) in a river or open
canal. The discharge depends on the geometry of the channel, i.e. the water area, the wetted perimeter and the slope, as well
as on the roughness coefficients. All these quantities are determined with some uncertainty. If these uncertainties are taken
into consideration in the process of discharge calculation, then, as has been demonstrated for a hypothetical river channel, the
ratio of the uncertainty to the calculated value of the discharge will change from several dozen percent in case of small flows to
about ten percent in case of big, flood flows
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Key Points

• The article presents a method of calculating the uncertainty of
the flow rate in an open channel.

• The formulas necessary to calculate the uncertainty of the flow
rate have been given.

• The uncertainty of flow rate decreases with its increase.

Abstract

The well-known Manning formula is usually used for the calculation of the vol-
umetric flow rate (discharge) in a river or open canal. The discharge depends
on the geometry of the channel, i.e. the water area, the wetted perimeter and
the slope, as well as on the roughness coefficients. All these quantities are deter-
mined with some uncertainty. If these uncertainties are taken into consideration
in the process of discharge calculation, then, as has been demonstrated for a hy-
pothetical river channel, the ratio of the uncertainty to the calculated value of
the discharge will change from several dozen percent in case of small flows to
about ten percent in case of big, flood flows.

Index Terms and Keywords

Uncertainty assessment, Streamflow, River channels

1. Introduction

The issue of discharge uncertainty is increasingly broadly discussed in hydrology.
The developed methods focus mainly on expressing the measurement uncertainty
of the discharge value, e.g. Kyutae L., Hao-Che H., Muste M., Chun-Hung W.
(2014). A review of the applied methods of uncertainty calculation was pro-
vided by Muste M., Lee K. and Krajewski J-L. (2012). Expressing discharge
measurement uncertainty has also been included in the ISO 1088 (2007) stan-
dard. However, in engineering practice, for example during the designing of
levees, an element which plays an important role are not only measurements,
but also the calculation of the value of the discharge in a river or open canal.
The issue of the uncertainty of the calculated discharge value has not been dis-
cussed in scientific and technical literature until now. The present article has
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been devoted to the methodology of calculating the calculative uncertainty of
the discharge value.

1. Theoretical methods

(a) The basic formulas in the theory of uncertainty

The notion of uncertainty is associated with a measured quantity, whereas the is-
sue discussed in this article refers to a calculated quantity. Therefore, metrolog-
ical notions referring to uncertainty require some clarification. The definitions
presented below are based on the expressions included in GUM 1993:

• uncertainty – a parameter associated with the result of a calculation; it
characterizes the dispersion of the calculated value;

• standard uncertainty – uncertainty expressed in the form of standard de-
viation;

• expanded uncertainty – the interval around the result of a calculation,
which is expected to encompass a large fraction of the distribution of the
calculated value;

• expansion coefficient – a numerical coefficient used as a multiplier of com-
bined standard uncertainty in order to obtain expanded uncertainty;

• combined uncertainty – standard uncertainty of the calculated result, de-
termined when that result is obtained from the values of a certain number
of other quantities, equal to the square root of the sum of terms which
are the variances or covariances of these other quantities with weights de-
pending on how the measurement result varies together with changes in
these quantities. Combined uncertainty is calculated in the following way:
if quantity y depends on xi quantities whose uncertainties are known and
are u(xi), then the uncertainty u(y) is calculated according to the formula:

𝑢(𝑦) =
√√√
⎷

𝑛
∑
𝑖=1

( 𝜕𝑦
𝜕𝑥𝑖

)
2

𝑢 (𝑥𝑖)
2 (1)

In the further part of the article, standard uncertainty is going to be, for short,
referred to as uncertainty.

1. Uncertainty of discharge

In order to calculate the value of discharge, the empirical Manning formula is
commonly used. It is a modification of the Chézy formula (Manning R.1895)

𝑄 = 1
𝑛 • 𝐴 • 𝑅 2

3 •
√

𝑆 (2)

where:

Q – discharge
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n – roughness coefficient

A – water area

R – hydraulic radius

P – wetted perimeter

S – slope

Taking into consideration that

𝑅 = 𝐴
𝑃 (3)

we receive:

𝑄 = 1
𝑛 • 𝐴 5

3

𝑃 2
3

•
√

𝑆 (4)

𝑄 =
𝑘

∑
𝑖=1

𝑄𝑖 (5)

where k is the number of the channels of the watercourse.

Using the dependence (1), the uncertainty of the discharge u(Q) will
be expressed with the help of the following formula:

𝑢(𝑄) = √(𝜕𝑄
𝜕𝑛 )

2
• 𝑢2(𝑛) + (𝜕𝑄

𝜕𝐴 )
2

• 𝑢2(𝐴) + (𝜕𝑄
𝜕𝑃 )

2
• 𝑢2(𝑃 ) + (𝜕𝑄

𝜕𝑆 )
2

• 𝑢2(𝑆) (6)

where

u(Q) – uncertainty of the discharge

u(n) – uncertainty of roughness

u(A) – uncertainty of the water area

u(P) – uncertainty of the wetted perimeter

u(S) – uncertainty of the slope

By differentiating formula (2) we receive:

𝜕𝑄
𝜕𝑛 = 𝜕

𝜕𝑛 ( 1
𝑛 • 𝐴 5

3

𝑃 2
3

•
√

𝑆) = −1
𝑛2 • 𝐴 5

3

𝑃 2
3

•
√

𝑆 = −1
𝑛2 • 𝐴 • 𝑅 2

3 •
√

𝑆
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𝜕𝑄
𝜕𝐴 = 𝜕

𝜕𝐴 ( 1
𝑛 • 𝐴 5

3

𝑃 2
3

•
√

𝑆) = 5
3 • 1

𝑛 • 𝐴 2
3

𝑃 2
3

√
𝑆 = 5

3 • 1
𝑛 • 𝑅 2

3 •
√

𝑆

𝜕𝑄
𝜕𝑃 = 𝜕

𝜕𝑃 ( 1
𝑛 • 𝐴 5

3

𝑃 2
3

•
√

𝑆) = −2
3 • 𝐴 5

3

𝑃 5
3

• 1
𝑛 •

√
𝑆 = − 2

3𝑛•𝑅 5
3 •

√
𝑆

𝜕𝑄
𝜕𝑆 = 𝜕

𝜕𝑆 ( 1
𝑛 • 𝐴 5

3

𝑃 2
3

•
√

𝑆) = 1
2 • 1

𝑛 • 𝐴 5
3

𝑃 2
3

• 𝑆− 1
2 = 1

2𝑛 • 𝐴 • 𝑅 2
3 • 1√

𝑆

After substituting the obtained results into formula (5) we receive:

𝑢(𝑄) =
√√√√
⎷

( −1
𝑛2 • 𝐴 • 𝑅 2

3 •
√

𝑆)2 • 𝑢2(𝑛) + ( 5
3 • 1

𝑛 • 𝑅 2
3 •

√
𝑆)2 • 𝑢2(𝐴) + (− 2

3𝑛 •𝑅 5
3 •

√
𝑆)

2
• 𝑢2(𝑃 )+

( 1
2𝑛 • 𝐴 • 𝑅 2

3 • 1√
𝑆 )2 • 𝑢2(𝑆)

𝑢(𝑄) = √𝐴2 • 𝑅 4
3 • 𝑆 • 𝑢2(𝑛)

𝑛4 + 25 • 𝑅 4
3 • 𝑆 • 𝑢2(𝐴)

9𝑛2 + 4 • 𝑅 10
3 • 𝑆 • 𝑢2(𝑃 )

9𝑛2 + 𝐴2 • 𝑅 4
3 • 𝑢2(𝑆)

4𝑛2 • 𝑆

𝑢(𝑄) = 𝑅 2
3

6𝑛2 •
√

𝑆
√9𝐴2 (4𝑆2 • 𝑢2(𝑛) + 𝑛2 • 𝑢2(𝑆)) + 4𝑛2 • 𝑆2 (25 • 𝑢2(𝐴) + 4𝑅2𝑢2(𝑃 )) (7)

If the channel is a main channel with two floodplains, then the Q
uncertainty will be expressed by the following formula:

𝑢(𝑄) =
√√√
⎷

𝑘
∑
𝑖=1

(𝑢(𝑄𝑖)
2 (8)

1. Uncertainty of roughness

The roughness coefficients have been collected and published by Ven Te Chow
(1959) who provided mean, maximum and minimum values for appropriate types
of watercourses and canals. Due to the fact that the statistical distributions of
the values of these roughness coefficients are not known, it should be assumed
that they are subject to uniform distribution, limited by the minimum and
maximum value, i.e. distribution with probability density

𝑓(𝑥) = 1
𝑛max − 𝑛min

.

4



The variance of which is (James F., 2006):

𝜎2 = (𝑛max − 𝑛min)2

12

Standard uncertainty u(n) is equal to the standard deviation � and is equal:

𝑢(𝑛) =
√

3𝑛max − 𝑛min
6 (9)

1. Uncertainty of distance

For engineering purposes, the distance l is calculated on the basis of the differ-
ence between the x (horizontal) and y (vertical) coordinates. If a segment is
vertical, then:

𝑙𝑥 = |𝑥2 − 𝑥1|

𝑙𝑦 = |𝑦2 − 𝑦1|

Taking into consideration formula (1), the uncertainties of distance u(lx) and
u(ly) will be expressed by the following formulas:

𝑢 (𝑙𝑥) = √( 𝜕𝑙𝑥
𝜕𝑥1

)
2

𝑢2 (𝑥1) + ( 𝜕𝑙𝑥
𝜕𝑥2

)
2

𝑢2 (𝑥2)

𝑢 (𝑙𝑦) = √( 𝜕𝑙𝑦
𝜕𝑦1

)
2

𝑢2 (𝑦1) + ( 𝜕𝑙𝑦
𝜕𝑦2

)
2

𝑢2 (𝑦2) (10)

We will also assume that the uncertainties of determining all horizontal coordi-
nates x and vertical coordinates y are equal to one another and are equal u(x),
i.e. that:

𝑢(𝑥) = 𝑢 (𝑥1) = 𝑢 (𝑥2) = 𝑢(𝑦1) = 𝑢(𝑦2)

Then the formulas (10) determining the uncertainty of the length of a horizontal
segment and a vertical segment take the following form:

𝑢 (𝑙𝑥) = 𝑢 (𝑙𝑦) = √𝑢2(𝑥) + 𝑢2(𝑥) =
√

2 • 𝑢(𝑥) (11)
If a segment is oblique, then its length lo is calculated using the Pythagorean
theorem:

𝑙 = √𝑙𝑥2 + 𝑙𝑦2

5



Taking into consideration formulas (1) and (11), the uncertainty of length of the
oblique segment u(lo):

𝑢 (𝑙𝑜) =

√√√√
⎷

⎛⎜⎜
⎝

𝜕√𝑙𝑥2 + 𝑙𝑦2

𝜕𝑙𝑥
⎞⎟⎟
⎠

2

𝑢2 (𝑙𝑥) + ⎛⎜⎜
⎝

𝜕√𝑙𝑥2 + 𝑙𝑦2

𝜕𝑙𝑦
⎞⎟⎟
⎠

2

𝑢2 (𝑙𝑦)

By calculating the derivative and taking into consideration (11) we receive:

𝑢 (𝑙𝑜) =
√√√√
⎷

⎛⎜⎜
⎝

2𝑙𝑥
2√𝑙𝑥2 + 𝑙𝑦2

⎞⎟⎟
⎠

2

𝑢2 (𝑙𝑥) + ⎛⎜⎜
⎝

2𝑙𝑦
2√𝑙𝑥2 + 𝑙𝑦2

⎞⎟⎟
⎠

2

𝑢2 (𝑙𝑦) =
√√√
⎷

𝑙𝑥2 + 𝑙𝑦2

𝑙𝑥2 + 𝑙𝑦2 •
√

2•𝑢(𝑥) =
√

2•𝑢(𝑥) (12)

1. Uncertainty of the water area

In engineering practice, the water area in a river is approximated using a rect-
angle, triangle or trapezium. The particular areas and uncertainties calculated
with the help of formula (3) are expressed by the formulas:

• the area of the rectangle Ar is:

𝐴𝑟 = 𝑎 • ℎ

therefore, the uncertainty of the area of the rectangle u(Ar) is provided by the
formula:

𝑢 (𝐴𝑟) = √(𝜕𝑎 • ℎ
𝜕𝑎 )

2
• 𝑢2(𝑎) + (𝜕𝑎 • ℎ

𝜕ℎ )
2

• 𝑢2(ℎ) =√ℎ2 • 𝑢2(𝑎) + 𝑎2 • 𝑢2(ℎ)

Due to the fact that the base a is a horizontal segment and the altitude h is a
vertical segment, after taking into consideration formula (11) we receive:

𝑢 (𝐴𝑟) = √(
√

2 • ℎ • 𝑢(𝑥))2 + (
√

2 • 𝑎 • 𝑢(𝑥))2 =
√

2•𝑢(𝑥)√𝑎2 + ℎ2 (13)

• the area of the trapezium Atz is:

𝐴tz = 𝑎 + 𝑏
2 • ℎ

The uncertainty of the area of the trapezium u(Atz) is equal:
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u (𝐴tz) =
√√√
⎷

(𝜕 1
2 (𝑎 + 𝑏)ℎ

𝜕𝑎 )
2

• 𝑢2(𝑎) + (𝜕 1
2 (𝑎 + 𝑏)ℎ

𝜕𝑏 )
2

• 𝑢2(𝑏) + (𝜕 1
2 (𝑎 + 𝑏)ℎ

𝜕ℎ )
2

• 𝑢2(ℎ) = √(ℎ
2 )

2
• 𝑢2(𝑎) + (ℎ

2 )
2

• 𝑢2(𝑏) + (𝑎 + 𝑏
2 )

2
• 𝑢2(ℎ) (14)

𝑢 (𝐴tz) = √ℎ2

4 • 2 • 𝑢2(𝑥) + ℎ2

4 • 2 • 𝑢2(𝑥) + (𝑎 + 𝑏)2

4 • 2 • 𝑢2(𝑥) = √ℎ2 + (𝑎 + 𝑏)2

2 •𝑢(𝑥) (15)

• the area of the triangle Atg is:

𝐴tg = 𝑎
2 • ℎ

Therefore, the uncertainty of the area of the triangle u(Atg) is calculated using
the formula:

𝑢 (𝐴tg) =
√√√
⎷

(𝜕 1
2 𝑎 • ℎ
𝜕𝑎 )

2

• 𝑢2(𝑎) + (𝜕 1
2 𝑎 • ℎ
𝜕ℎ )

2

• 𝑢2(ℎ) = √(𝑎
2)

2
𝑢2(𝑎) + (ℎ

2 )
2

𝑢2(ℎ) (16)

we take into consideration formula (11):

𝑢 (𝐴tg) = √ℎ2

4 • 2𝑢2(𝑥) + 𝑎2

4 • 2𝑢
2
(𝑥) = √ℎ2 + 𝑎2

2 • 𝑢(𝑥) (17)

• an area composed of two figures

In the case when the water area A is composed of two figures, A1 and A2, the
uncertainty of the area A is calculated using the formula:

𝑢(𝐴) = √𝑢2 (𝐴2
1) + 𝑢2 (𝐴2

2)

For example, if area A is composed of a rectangle and a trapezium, then:

𝑢(𝐴) = √𝑢2(𝐴𝑟) + 𝑢2(𝐴tz) (18)
1. Uncertainty of the wetted perimeter

The wetted perimeter P is a broken line composed of j segments. This includes
k vertical segments, m horizontal segments and n oblique segments. The length
of the broken line lbl is calculated as the sum of the lengths of the particular
segments. Let us mark the length of the ith vertical segment as ly(i), the length

7



of the ith horizontal segment as lx(i), and the length of the ith oblique segment
as lo(i). Then the length of the wetted perimeter may be written down as:

𝑃 =
𝑘

∑
𝑖=1

𝑙𝑦(𝑖) +
𝑚

∑
𝑖=1

𝑙𝑥(𝑖) +
𝑛

∑
𝑖=1

𝑙𝑜(𝑖) (19)

If any of the types of segments is not present, then the appropriate element of
the sum disappears. In accordance with the dependence (1), the uncertainty of
the length of the wetted perimeter u(P) will be expressed using the formula:

𝑢(𝑃) =
√√√
⎷

𝑘
∑
𝑖=1

⎛⎜
⎝

𝜕
𝜕𝑙𝑦(𝑖)

𝑙
𝑦(𝑖)

⎞⎟
⎠

2

𝑢2 (𝑙𝑦) + ⎛⎜
⎝

𝑚
∑
𝑖=1

𝜕
𝜕𝑙𝑥(𝑖)

𝑙
𝑥(𝑖)

⎞⎟
⎠

2

𝑢2 (𝑙𝑦) + ⎛⎜
⎝

𝑛
∑
𝑖=1

𝜕
𝜕𝑙𝑜(𝑖)

𝑙
𝑜(𝑖)

⎞⎟
⎠

2

= √𝑘 • 𝑢2 (𝑙𝑦) + 𝑚 • 𝑢2 (𝑙𝑥) + 𝑛 • 𝑢2 (𝑙𝑜)

We take into consideration formulas (11) and (12) and we receive:

𝑢(𝑃) = √𝑘 • 2𝑢2(𝑥)2 + 𝑚 • 2𝑢2(𝑥) + 𝑛 • 2𝑢2(𝑥) =
√

2 • 𝑢(𝑥)
√

𝑘 + 𝑚 + 𝑛

𝑢(𝑃) =
√

2 • 𝑗 • 𝑢(𝑥) (20)
1. Uncertainty of the slope

Hydraulic gradient S (slope) is the ratio of the water table slope �y to the
distance L on which this slope occurred

𝑆 = �𝑦
𝐿 (21)

The uncertainty of the hydraulic gradient (slope) u(S) is calculated using for-
mula (1):

𝑢(𝑆) = √( 𝜕
𝜕𝐿

�𝑦
𝐿 )

2
𝑢2(𝐿) + ( 𝜕

�𝑦
�𝑦
𝐿 )

2
𝑢2(�𝑦) = √( 1

𝐿)
2

𝑢2(�𝑦) + (−�𝑦
𝐿2 )

2
𝑢2(𝐿)

Due to the fact that we assumed that all the distances are measured with the
same uncertainty u(x), therefore, taking into consideration the dependence (11)
we receive:

𝑢(𝑆) = 1
𝐿 • 𝑢(𝑥)√1 + (−�𝑦

𝐿 )
2

= 1
𝐿

√1 + 𝑆2 • 𝑢(𝑥) (22)
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1. Material and methods

(a) Assumptions for the calculations

Let us assume that we are designing the channel of a lowland river (fig. 1)
together with levees. The dimensions of the designed canal are:

• the width at the bottom: 5.0 m

• the slope of the river banks: 1:2

• the depth of the river channel: 1.0 m

• the width of the floodplain: 10.0 m

• the height of the levee: 2.0 m

• the slope of the levee: 1:3

uncertainty of vertical and horizontal coordinates u(x) = 0.01 m

1. Calculations

Exemplary calculations will be carried out for the designed river channel pre-
sented in fig. 1 for the depth H of from 0 to 2.00 m with an increment of 0.1
m. The calculations were carried out using a spreadsheet. An example of the
calculations for the depth H = 1.5 m has been included in Appendix A.

The discharge in the river channel as well as in the floodplain was calculated
according to formula (2), and their uncertainties were calculated on the basis of
formula (7). The total discharge, which is the sum of the flows in the channel
and in the floodplains, was calculated in accordance with formula (5), and its
uncertainty – in accordance with formula (8).

1. Results

As a result of the performed calculations, the following was obtained:

• the rating curve Q(H) as a function of filling the river channel H together
with the confidence interval (fig. 2). The values of the calculations have
been presented in tab. 1a graph of the percentage dependence of the
u(Q)/Q ratio (fig. 3)

• the value of the percentage change of the discharge uncertainty depending
on the value of the percentage change of the uncertainty of roughness
coefficients and of the location uncertainty (fig. 4)

Fig. 4. The dependence of the influence of the percentage change of the un-
certainty of roughness coefficients of the channel, of the floodplain, and of the
uncertainty of the geometric dimensions of the river channel water area on the
uncertainty of the discharge

1. Discussion
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From the rating curve presented in fig. 2 we can see that together with the
increase of the discharge, there is an increase of the interval of its expanded
uncertainty. At the same time, relative uncertainty calculated as the ratio of
the uncertainty of discharge to the discharge u(Q)/Q expressed as a percentage,
decreases together with the increase of the discharge and it asymptotically heads
to the value of 7.1% (fig. 3).

As has been demonstrated in theoretical calculations, the uncertainty of the
calculative value of the discharge in an open canal is impacted by two factors.
The first factor is the determination of the dimensions of the channel water area.
Due to the fact that the channel dimensions, adopted for the calculations of the
discharge, are dimensions that are designed, this means that the uncertainty
of the transverse diameter of the channel should be identical with the assumed
accuracy of creation of the channel of the canal or river. In exemplary calcula-
tions it was taken into consideration that the uncertainty of distance is 1 cm. In
practice, such accuracy of channel creation is impossible to achieve. However, as
has been presented in fig. 4, this accuracy has the smallest influence out of the
remaining factors. Nevertheless, if we even assume u(x) = 5 cm, then the total
discharge, for the depth of 2 m Q(H=2m) will only increase by 5%. The second
factor is the selection of the roughness coefficients of both, the channel as well
as of the floodplain. As has been demonstrated in fig. 4, even a 10% change of
the uncertainty of the roughness coefficient causes an about 5% change of the
uncertainty of the total discharge.

It is obvious that the obtained value depends on the adopted geometry of the
channel and on the flow conditions, i.e. the roughness coefficients and the
hydraulic gradient (slope). The way these factors influence the u(Q)/Q ratio
requires further research.

The presented line of reasoning does not take into consideration the uncertainty
with which human chooses the values of roughness coefficients. And the uncer-
tainty of the roughness coefficients is the main factor influencing the value of
discharge uncertainty. Fig. 4 presents the influence of the percentage change
of the uncertainty of roughness coefficients of the channel and of the floodplain
and of the uncertainty of the geometrical dimensions of the river water area
on the value of the discharge uncertainty. One can notice that the percentage
change of the roughness coefficients has got an about 3.5 times bigger influence
than the percentage change of the accuracy of the measurement of the channel
geometry.

1. Data availability

All data is contained in the text of the article and may be used by other authors.
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Appendix A - exemplary calculations for depth H= 1.50 m.

The calculations were carried out for a river, the water area of which has been
demonstrated in fig. no. 1. Due to the fact that floodplains are congruent,
the discharge and its uncertainty were calculated for a single floodplain. The
discharge in the whole river is the sum of the flows in its particular parts. For
the purpose of the transparency of the calculations, units were taken into con-
sideration only in case of the final result.

1. Distance

The component distances, both, the vertical one and the horizontal one, are
calculated as a difference of coordinates. Their uncertainties u(lx) and u(ly) are
expressed by formula (11)

𝑢 (𝑙𝑥) = 𝑢 (𝑙𝑦) =
√

2 • 0.01 𝑚 = 1.14 • 10−2 m.
1. The hydraulic gradient (slope) S and its uncertainty u(S), formulas (21)

and (22)

𝑆 = 0.5 𝑚
250 𝑚 = 0.002

𝑢(𝑆) = 1
250

√1 + 0.0022 • 0.01 = 4 • 10−5

1. The river channel
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• Roughness coefficient

The width of the river channel at the top is 9 m = (5 m + 2 m ·
2 m). It is a value which is lower than 100 ft (32.8 m), so (Chow,
1959) the value of the roughness coefficients is:

𝑛minimum = 0.025; 𝑛normal = 0.030; 𝑛maximum = 0.033
therefore

𝑛 = 0.03 𝑚− 1
3 • 𝑠

and uncertainty u(n) calculated in accordance with formula (9) is:

𝑢(𝑛) =
√

30.033 − 0.025
6 = 2.31 • 10−3 𝑚− 1

3 •𝑠

• The water area of the main channel

The water area of the main channel Amc is the sum of the areas:

• of the rectangle Ar of the following dimensions: ar = 9.0 m and hr = 0.5
m

• of the trapezium Atz with the following bases: atz = 5.0 m and btz = 9.0
m, and the altitude htz = 1.0 m

The Amc area is:

𝐴mc = 𝐴𝑟 + 𝐴tz = 9.0 • 0.5 + 1
2(5.0 + 9.0 ) ∗ 0.5 = 9.0 𝑚2

The uncertainty of the area of the rectangle u(Ar), formula (13) is:

𝑢 (𝐴𝑟) =
√

2 • 10−2 • √92 + 0.52 = 0.127 𝑚
The uncertainty of the area of the trapezium u(Atz), formula (14) is:

u (𝐴tz) = √12 + (5 + 9)2

2 • 0.01 𝑚 = 0.099 𝑚2

Using formula (18) let us calculate the uncertainty of the Amc area.

𝑢 (𝐴mc) = √0.1272 + 0.0992 = 0.161 𝑚
• Wetted perimeter
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In the discussed case, the wetted perimeter is the sum of three segments. Two
of them are oblique segments and one is horizontal. Therefore, in accordance
with formulas (19) and (20), the length and the uncertainty of the length of the
wetted perimeter is:

𝑃 = 5 + 2 • √12 + 22 = 9.47 𝑚

𝑢(𝑃) =
√

2 • 3 • 0.01 = 4.24 • 10−2𝑚
• Volumetric flow rate (discharge)

The value and the uncertainty of the discharge is calculated based
on formulas (2) and (7). It is:

𝑅 = 9.0
9.47 = 0.95 𝑚; 𝑄 = 1

0.030•9.0 • 0.95 2
3 •

√
0.002 = 12.97 𝑚3

𝑠

𝑢(𝑄) = 0.95 2
3

6 • 0.032 •
√

0.002

√√√
⎷

9•92 • (4•0.0022 • 0.00232 + 0.032 • 0.000042) +
4 • 0.032 • 0.0022 • (25 • 0.1612 + 4•0.952 • 0.04242) = 1.08 𝑚3

𝑠

1. Floodplain

• The roughness coefficient for the floodplain covered with high grass is:

𝑛minimum = 0.03; 𝑛normal = 0.035; 𝑛maximum = 0.05
therefore

𝑛 = 0.035 𝑚− 1
3 • 𝑠

and uncertainty u(n) calculated in accordance with formula (9) is:

𝑢(𝑛) =
√

30.05 − 0.03
6 = 5.78 • 10−3 𝑚− 1

3 • 𝑠

• The water area of the floodplain

The water area of the floodplain Afp is a trapezium of the following
dimensions:

𝑎 = 10 𝑚; 𝑏 = 10 𝑚 + 0.5 𝑚 • 3 = 11.5 𝑚; ℎ = 0.5 𝑚
The uncertainty of the trapezium area is calculated in accordance
with formula (15), therefore:
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𝐴 = 10 + 11.5
2 • 0.5 = 5.375 𝑚2

𝑢(𝐴) = √0.52 + (10 + 11.5)2

2 • 0.01 = 0.152 𝑚2

• Wetted perimeter

The wetted perimeter is a broken line composed of two segments. In
accordance with formulas (19) and (20):

𝑃 = 10.0 + √0.52 + (3 • 0.5)2 = 11.58 𝑚

𝑢(𝑃) =
√

2 • 0.01 = 1.41 • 10−2𝑚
• The discharge in the floodplain was calculated in accordance with formula

(2), and its uncertainty – according to formula (7).

𝑅 = 5.375
11.58 = 0.464 𝑚; 𝑄 = 1

0.035•5.375 • 0.464 2
3 •

√
0.002 = 4.12 𝑚3

𝑠

𝑢(𝑄) = 0.464 2
3

6 • 0.0352 •
√

0.002

√√√
⎷

9•5.3752 • (4•0.0022 • 0.005782 + 0.0352 • 0.000042) +
4 • 0.0352 • 0.0022 • (25 • 0.1522 + 4•0.4642 • 0.01412) = 0.71𝑚3

𝑠

1. Total volumetric flow rate (discharge)

The total discharge and its uncertainty are calculated based on formulas (5) and
(8).

𝑄 = 12.97 + 2 • 4.12 = 21.21 𝑚3

𝑠

𝑢(𝑄) = √1.08 2 + 2 • 0.712 = 1.47𝑚3

𝑠

If we assume that the expansion coefficient k = 2, then expanded uncertainty
is an interval [18.27; 24.15]. If additionally we assume that uncertainty u(Q) is
subject to Gauss distribution, then the probability P that the total calculative
discharge fits within the indicated interval is 0.98.

Appendix B - list of formulas
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The basic value is the uncertainty of coordinates u(x). We assume that the
uncertainties of vertical and horizontal coordinates are equal. The formulas
necessary for the calculation of the uncertainty of the volumetric flow rate (dis-
charge) have been listed in tab. 2
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