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Abstract

The Free Core Nutation (FCN) is a rotational mode related to non-alignment of the rotation axis of the core and of the mantle.

There is a big gap between the observed FCN period (about 430 Sidereal days) and the theoretically calculated period (ranging

from 450 Sd to 470 Sd). We propose a spectral element method to compute the period of FCN and obtain a good result, which

is $437$ Sd. {\bf Keywords: } FCN, Spectral Element Method
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Abstract11

The Free Core Nutation (FCN) is a rotational mode related to non-alignment of the ro-12

tation axis of the core and of the mantle. There is a big gap between the observed FCN13

period (about 430 Sidereal days) and the theoretically calculated period (ranging from14

450 Sd to 470 Sd). We propose a spectral element method to compute the period of FCN15

and obtain a good result, which is 437 Sd.16

Keywords: FCN, Spectral Element Method17

Plain Language Summary18

The Free Core Nutation (FCN) is a free oscillation of Earth. It can be observed19

by the celestial methods, and it carries the information of Earth’s deep interior. The the-20

oretical computation has a deviation greater than 4.5%. Lots of researches use different21

geophysical factors to explain the deviation, which are all factitious and unsatisfactory.22

We propose a new method to compute the period of FCN, and get a deviation about 1.4%.23

It shows the computation method is the key factor to explain the deviation.24

1 Introduction25

The Free Core Nutation (FCN) is a rotational normal mode related to non-alignment26

of the rotation axis of the core and of the mantle. FCN has a long period (about 430 Side-27

real days, Vondrák & Ron, 2020) seen from a celestial reference frame and is a retrograde28

mode; FCN is also a Nearly-Diurnal Free Wobble(NDFW) seen from a terrestrial ref-29

erence frame. It can be obtained by processing the observed VLBI data of Earth’s ro-30

tation and superconducting gravimeter data of Earth’s tides. FCN connects Earth’s deep31

interior and the celestial observation of Earth’s rotation. It depends on(therefore reflects32

on) the physics and dynamics of the core and the mantle, especially near the core-mantle33

boundary(CMB). Hence, FCN is a very important tool for people to study the earth’s34

deep interior.35

There are 3 approaches for theoretical computing FCN. The first is the angular mo-36

mentum method which was proposed by Hough (1895), who designed an earth model37

composed of a homogeneous rigid shell and an incompressible homogeneous fluid core.38

This model is transformed into an oblate by Earth’s rotation, and is called Hough-Poincaré39
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model. From angular momentum conservation law, FCN period can be written as M. Rochester40

et al. (1974).41

ν = −ecΩ(1 − Ac

A
)−1, (1)

where ec is the flattening of CMB, Ω is the rotation speed of Earth, Ac and A are the42

equatorial moments of inertia of the core and of the whole earth respectively. Hough pre-43

dicted a retrograde nearly-diurnal wobble associated with FCN. However, his prediction44

wasn’t accepted at his time, until Jeffreys (1926) proved the existence of the fluid core45

by seismology data in 1926. The angular momentum method has the virtue of simplic-46

ity, but its FCN result derivates much from the real one due to the simple model. For47

example,M. Rochester et al. (1974) obtained 350 Sd for the FCN period.48

The second approach is the linear momentum approach. Smith (1974) applied the49

method to solve normal modes to solve FCN. He extended and applied the Generalized50

Spherical Harmonics(GSH) based on previous studies, e.g. Phinney and Burridge (1973)51

(see C.-L. Huang and Liao (2003) for corrections and comment), to transform vectors52

and tensors in the governing equations for the small periodic oscillations of an oblate spheroidal53

rotating elastic isotropic earth model from an ellipsoidal domain to an equivalent spher-54

ical domain. Along this approach the resultant periods of FCN ranged from 450 Sd to55

460 Sd (Wahr, 1981; Dehant, 1990; C.-l. Huang et al., 2001; Rogister, 2001) of the Pre-56

liminary Reference Earth Model(PREM, Dziewonski & Anderson, 1981). There is still57

a gap between this and the observed.58

There are many publications trying to interpret this gap by various assumptions.59

Gwinn et al. (1986), Dehant and Defraigne (1997) explained this discrepancy by non-60

hydrostatic ellipticity of the CMB. C.-l. Huang et al. (2001) showed that the resultant61

would accord with the observed by modifying εCMB from 0.002547 to 0.002666(a 4.7%62

increase). The excess over the hydrostatic equilibrium value for εCMB estimated by Mathews63

et al. (2002) was between 3.7% and 3.9%. Buffett et al. (2002) tried to interpret this by64

the geomagnetic torque on the CMB.65

The third approach is the variational approach(Johnson & Smylie, 1977; Moon, 1982;66

Smylie et al., 1992). Jiang and Smylie (1996) got the period about 450 Sd by this ap-67

proach. The FCN mode is computed based upon a variational principle of the liquid outer68

core of the Earth. This variational principle is numerically implemented by a finite el-69
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ement approach. However, their work just focused on the fluid core. We follow this idea70

and apply a spectral element method on the whole earth model. Spectral element method71

is a spectral method working on multiple subdomains(Karniadakis & Sherwin, 2013). We72

don’t adjust the hydrostatic equilibrium figure of the Earth, and finally obtain the FCN73

eigenperiod: 437 Sd.74

2 Equations and boundary conditions75

In solid crust, mantle and inner core, we take76

ρ0ω
2−→u − 2iρ0ω

−→
Ω × −→u + ρ0∇V1 + ρ0∇(−→u ⋅ −→g0) − ρ0

−→g0(∇ ⋅ −→u) + ∇ ⋅
←→
S = 0 (2)

as the equation governing the small periodic oscillations of an oblate spheroidal rotat-77

ing elastic isotropic Earth model, disturbed from hydrostatic equilibrium(F. A. Dahlen,78

1972). In eq(2), ρ0, V1 and −→g0 are density, additional potential, and gravity in an equi-79

librium configuration respectively;
−→
Ω is Earth’s angular velocity relative to the moving80

mean vernal equinox, which we take 86164.01 seconds in this paper. And the mass el-81

ement dm in an equilibrium configuration experiences a small displacement −→u with an82

oscillation’s angular frequency ω. In eq(2) is the Lagrangian variation of the Cauchy stress83

tensor is84

←→
S = λ(∇ ⋅ u⃗)←→I + µ[∇u⃗ + (∇u⃗)T ] , (3)

where λ, µ are Lamé parameters. In fluid core,85

ρ0ω
2−→u − 2iρ0ω

−→
Ω × −→u − ∇p1 + ρ0∇V1 + ρ1

−→g0 = 0 (4)

is the equation governing the isentropic small oscillations of an inviscid liquid core given86

by the conservation laws for mass, momentum, gravitational flux and entropy(M. Rochester,87

1989). Additional density ρ1 and additional pressure p1 are defined as88

ρ1 = −∇ ⋅ (ρ0u⃗) , (5)

and89

p1 = −u⃗ ⋅ ∇p0 + α
2
ρ1 + α

2
u⃗ ⋅ ∇ρ0 , (6)

–4–
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where p0 is pressure in an equilibrium configuration, and α is compressional wave90

speed. The tensor in eq(4) is91

←→
S = −(p1 + u⃗ ⋅ ∇p0)←→I . (7)

Poisson’s equation,

∇2
V1 = 4πG∇ ⋅ (ρ0u⃗) , (8)

holds true in both fluid and solid layers.92

Continuation on the boundary between solid and fluid layers requires93

{n̂ ⋅ −→u}+− = 0 (9)

{n̂ ⋅
←→
S }+− = 0 (10)

{V1}+− = 0 (11)

{n̂ ⋅ [∇V1 − 4πGρ0
−→u]}+− = 0 . (12)

And continuation on the boundary between solid layers requires94

{−→u}+− = 0 (13)

{n̂ ⋅
←→
S }+− = 0 (14)

{V1}+− = 0 (15)

{n̂ ⋅ [∇V1 − 4πGρ0
−→u]}+− = 0 . (16)

The boundary conditions on the free surface require95

{n̂ ⋅ [∇V1 − 4πGρ0
−→u]}+− = 0 (17)

{n̂ ⋅
←→
S }+− = 0 (18)

{V1}+− = 0 . (19)

3 Multiple subdomain spectral method96

Spectral method can solve the above governing equations. Suppose that an unknown97

function u(x) satisfies a differential equation:98
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L[u(x)] = D , (20)

where L is a linear differential operator. Spectral method represents u(x) as a truncated99

series:100

u(x) ≈ uN (x) = N

∑
n=0

cnηn(x) , (21)

where ηn(x) are basis functions and cn are their coefficients. This series is then put into101

the differential equation(20):102

L[ N

∑
n=0

cnηn(x)] = D . (22)

By the Galerkin method the above equation turns into a group of equations:103

∫
V
ιj(x)L[ N

∑
n=0

cnηn(x)]dx = ∫
V
ιj(x)Ddx , (23)

where ιj(x) are trial functions. By solving eq(23) with the boundary conditions, we can104

get an approximate solution of the unknown function u(x), which is uN (x).105

For a complex earth model, only one global domain is not enough to represent some106

characteristics, such as the densities and the toroidal displacement fields between fluid107

core and solid mantle. So the whole global domain is partitioned into K disjoint sub-108

domains. In No. k subdomain an unknown function u
(k)(x) is expressed as109

u
(k)(x) ≈ N

∑
n=0

c
(k)
n η

(k)
n (x) , (24)

where η
(k)
n (x) are basis functions of No. k subdomain and c

(k)
n are their coefficients. So110

eq(23) turns into K groups of equations:111

∫
V (k) ι

(k)
j (x)L(k)[ N

∑
n=0

c
(k)
n η

(k)
n (x)]dx = ∫

V (k) D
(k)

dx , (25)

where ι
(k)
j (x) are trial functions in No. k subdomain and L

(k)
are their linear operators.112

Eq(25) will create a K(N +1)×K(N +1) matrix. Suppose that there are M boundary113

conditions:114

–6–
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Bi[ K

∑
k=1

u
(k)(x)] = Ei, i = 1⋯M . (26)

We use Tau method(Karniadakis & Sherwin, 2013) to combine these boundary con-115

ditions with eqs(25). Tau method replaces M equations in eqs(25) with M boundary con-116

ditions in eqs(26). The unknown functions u
(k)(x) in all K subdomains can be obtained117

by solving the new K(N+1)×K(N+1) matrix. The global u(x) is the union of u
(k)(x):118

∪K
i=1u

(k)(x), which is like a sheaf in category theory. This spectral method on multiple119

subdomains is a kind of spectral element method(Boyd, 2001; Karniadakis & Sherwin,120

2013), and is called stratified Galerkin method here as Galerkin’s method is chosen to121

convert the continuous operator problem to the discrete problem.122

4 Integrations in volumes123

To solve the governing equations,Smith (1974) transformed these equations into124

a group of Partial Differential Equations(PDEs), and integrated the vector of variables125

from Earth’s center to surface with some certain initial values by Runge-Kutta method.126

Compared to Smith’s numerical computation, our approach is to directly integrate these127

governing equations containing variables that have no given value, which are manipu-128

lated as symbols.129

Although the hydrostatic equilibrium figure is an ellipsoid, we still solve these equa-130

tions in spherical coordinates, which makes symbolic operations of vector spherical har-131

monics and tensors more complex and tedious. We adopt a linear operator method sim-132

ilar to Rogister and Rochester (2004). However, Kopal (1980) recommended a non-orthogonal133

coordinate system named ‘Clairaut’ coordinates for the astrophysical research. The co-134

ordinate surfaces of this non-orthogonal coordinate system consist with the equilibrium135

surfaces of an equipotential ellipsoid. Wu (1993), Seyed-Mahmoud and Moradi (2014)136

used Clairaut coordinates to study the dynamics of the fluid core. Rogister and Rochester137

(2004), M. G. Rochester et al. (2014) and Crossley and Rochester (2014) applied Clairaut138

coordinates to the linear momentum approach accurate to second order in the elliptic-139

ity.140

Smith (1974) applied ESD to deal with integration in the first-order approximated141

ellipsoid. ESD transforms an ellipsoid into a sphere, then parameters are modified with142

ellipticity. PDEs don’t have θ or φ explicitly, then the vector of variables is integrated143
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along the radius r’s direction. However, ESD approach is difficult to deal with asymmet-144

ric models, for instance, it is difficult and complex to transform a surface with a Y
0
3 com-145

ponent or a Y
2
2 component to a spherical surface. We don’t adopt the ESD, and inte-146

grate the governing equations in asymmetric shells directly. Suppose that an asymmet-147

ric shell has an inner boundary:148

r = Rin + ∑
n,m

ξ
m
n Y

m
n (θ,φ) , (27)

and an outer boundary:

r = Rout + ∑
n,m

Ξ
m
n Y

m
n (θ,φ) , (28)

where Rin, Rout, ξ
m
n , Ξ

m
n are all constants, and Y

m
n (θ,φ) are spherical harmonics. If ξ

m
n =149

0 and Ξ
m
n = 0, then this shell is a spheric shell; if only ξ

0
2 and Ξ

0
2 are not equal to 0, then150

this shell is a first-order ellipsoidal shell.151

The volume between the inner and the outer boundaries is152

∰ dV = ∫ π

θ=0
∫ 2π

φ=0
∫ Rout+∑m

n Ξ
m
n Y

m
n (θ,φ)

Rin+∑m
n ξmn Y m

n (θ,φ) r
2
sin θdrdθdφ . (29)

The integral of a vector equation
−−→
Eq in this volume with a trial function vector

−→
Λ(i,j,k)153

is154

∰ −→
Λ
∗(i,j,k) ⋅ −−→Eq dV

=∫ π

θ=0
∫ 2π

φ=0
∫ Rout+∑m

n Ξ
m
n Y

m
n (θ,φ)

Rin+∑m
n ξmn Y m

n (θ,φ)
−→
Λ
∗(i,j,k) ⋅ −−→Eq r2 sin θdrdθdφ ,

(30)

where the asterisk symbol (*) in superscript is the complex conjugate operator. For the155

governing equations eq(2) and eq(4),
−→
Λ(i,j,k) can be ηi(r)−−→Rk

j (θ,φ), ηi(r)−−→Sk
j (θ,φ), and ηi(r)−−→T k

j (θ,φ),156

which
−−→
R

k
j (θ,φ), −−→Sk

j (θ,φ) and −−→
T

k
j (θ,φ) are radial, consoidal, and toroidal vector harmon-157

ics respectively[cite dahlen tramp].158

The integral of a scalar equation Eq with a trial function σ(i,j,k) is159

∰ σ(i,j,k) ∗ EqdV

=∫ π

θ=0
∫ 2π

φ=0
∫ Rout+∑m

n Ξ
m
n Y

m
n (θ,φ)

Rin+∑m
n ξmn Y m

n (θ,φ) σ(i,j,k) ∗ Eq r
2
sin θdrdθdφ .

(31)

For Laplace’s equation, the trial function σ(i,j,k) is ηi(r)Y k
j (θ,φ).160

–8–
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5 Integrations on surfaces161

Now we will discuss how to solve boundary conditions on an asymmetric bound-162

ary. Suppose a boundary surface is described by163

r(θ,φ) = r0 + ∑
n,m

κ
m
n Y

m
n (θ,φ) , (32)

then the radius vector of a point at (r, θ,φ) in this surface is164

−→r = r(θ,φ)r̂ , (33)

and the normalized normal vector n̂ is165

n̂ =
∂−→r
∂θ

× ∂−→r
∂φ

∣∂−→r
∂θ

× ∂−→r
∂φ

∣ . (34)

The area of this boundary surface is166

∯ dS = ∫ π

θ=0
∫ 2π

φ=0
∣∂−→r
∂θ

×
∂−→r
∂φ

∣dθdφ . (35)

The surface integral of a boundary condition is167

∯ n̂ ⋅ □dS

=∫ π

θ=0
∫ 2π

φ=0
(n̂ ⋅ □)∣∂−→r

∂θ
×
∂−→r
∂φ

∣dθdφ
=∫ π

θ=0
∫ 2π

φ=0
(∂−→r
∂θ

×
∂−→r
∂φ

) ⋅ □dθdφ ,

(36)

where □ is a vector. As168

∂−→r
∂θ

×
∂−→r
∂φ

=r2 sin θr̂ − rrθ sin θθ̂ − rrφφ̂

=r2 sin θ[r̂ − 1
r (rθ θ̂ + rφ

sin θ
φ̂)]

=[r(θ,φ)]2 sin θ[r̂ − ∇r(θ,φ)] ,
(37)

so eq(36) becomes169

–9–



manuscript submitted to JGR: Solid Earth

∯ n̂ ⋅ □dS

=∫ π

θ=0
∫ 2π

φ=0
{[r̂ − ∇r(θ,φ)] ⋅ □}[r(θ,φ)]2 sin θdθdφ .

(38)

The box symbol □ is a vector continuation boundary condition: □ = ∆u⃗ = u⃗
+ −170

u⃗
−
. Then multiply a trial function σ(i,j,k):171

0 =∯ σ(i,j,k)n̂ ⋅∆u⃗dS

=∫ π

θ=0
∫ 2π

φ=0
σ(i,j,k){[r̂ − ∇r(θ,φ)] ⋅∆u⃗}[r(θ,φ)]2 sin θdθdφ ,

(39)

where σ(i,j,k) = Y
k
j (θ,φ)ηi(r).172

Now suppose □ is a tensor continuation boundary condition: □ = δ
←→
T =

←→
T

+−
←→
T

−
,173

then eq(38) turns into174

0 =∯ −→
Λ(i,j,k) ⋅ [n̂ ⋅ δ

←→
T ]dS

=∫ π

θ=0
∫ 2π

φ=0

−→
Λ(i,j,k) ⋅ {[r̂ − ∇r(θ,φ)] ⋅ δ←→T }[r(θ,φ)]2 sin θdθdφ .

(40)

For a scalar continuation condition:175

δa = a
+ − a

− = 0 , (41)

it is a little bit tricky, for it is impossible to get a linear form of its surface integral in176

explicit formula, as there is a ∣∂−→r
∂θ

×∂−→r
∂φ

∣ in the denominator in eq(34). So multiply eq(41)177

by ∣∂−→r
∂θ

× ∂−→r
∂φ

∣ sin θ:178

∣∂−→r
∂θ

×
∂−→r
∂φ

∣ sin θ ∗ δa = 0 , (42)

then the boundary condition(41) turns into179

0 =∯ σ(i,j,k)∣∂−→r∂θ ×
∂−→r
∂φ

∣ sin θ ∗ δa ∗ ∣∂−→r
∂θ

×
∂−→r
∂φ

∣dS
=∫ π

θ=0
∫ 2π

φ=0
σ(i,j,k)∣∂−→r∂θ ×

∂−→r
∂φ

∣2 ∗ δa ∗ sin θ ∗ dθdφ ,

(43)

where180

–10–
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∣∂−→r
∂θ

×
∂−→r
∂φ

∣2
=r4 sin2 θ + r

2[rθ sin θ]2 + r
2
r
2
φ

=r4(1 − cos
2
θ) + r

2[rθ sin θ]2 + r
2
r
2
φ .

(44)

6 Earth model181

PREM is adopted here excluding the ocean. We divide this model into 12 layers182

according to PREM to describe the parameters such as density and Lamé parameters;183

and 3 layers to describe the variables such as the displacement vector field and the ad-184

ditional potential scalar. The 3 layers are the inner core, the outer core, and the man-185

tle(with crust). Then the earth model is modified by one order ellipticity by rotation.186

We solve the hydrostatic equilibrium figure by a more prototypic equation instead of Clairaut’s187

equation, which is (Moritz, 1990; C. Huang et al., 2019)188

( 1
rn0

dε
m
n

dr0
+

n

rn+10

ε
m
n )∫ r0

0
ρq

2
dq

−∫ R

r0

ρ
d

dq
( ε

m
n

qn−2
)dq + 5ω

2

12πG
∣if n=2,m=0 = 0 .

(45)

This integro-differential equation is solved by our spectral element method. For a first-189

order approximated ellipsoid, an equipotential surface in the new equilibrium figure is190

rS = r0[1 + ε
0
2P2(cos θ)] , (46)

where r0 is the radius of the surface in the old equilibrium figure. The flattening f is191

f = a − b
a , (47)

where a, b are the equatorial radius and the polar radius respectively, and it can prove192

that in first-order approximation(Moritz, 1990)193

ε
0
2 = −

2

3
f . (48)

Figure(6) shows the profile of the flattening with respect to r. The flattening are 1/392.70194

and 1/299.98 at CMB and the surface respectively.195

–11–
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Figure 1. Profile of the flattening f

0 1221.5 2000 3480 4000 5000 6400
2.4e-3

2.5e-3

2.6e-3

2.7e-3

2.8e-3

2.9e-3

3.0e-3

3.1e-3

3.2e-3

3.3e-3

3.4e-3

2.546508e-3

2.42036e-3

3.33356e-3

Radius(km)

F
la

t
t
e
n
in

g
f

After deformation, the density ρ, the Lamé parameters λ and µ, and the gravita-196

tional potential ψ are decomposed into spherical parts and non-spherical parts:197

ρ(rS) = ρ0(rS) + δρ(rS) (49)

λ(rS) = λ0(rS) + δλ(rS) (50)

µ(rS) = µ0(rS) + δµ(rS) (51)

ψ(rS) = ψ0(rS) + δψ(rS) , (52)

where ρ0(rS), λ0(rS), µ0(rS), and ψ0(rS) are the parameters before deformation. Dahlen(cite198

Dahlen1968) gave the non-spherical parts as199

δρ(rS) = ε
0
2rS

∂ρ0(rS)
∂rS

P2(cos θ) (53)

δλ(rS) = ε
0
2rS

∂λ0(rS)
∂rS

P2(cos θ) (54)

δµ(rS) = ε
0
2rS

∂µ0(rS)
∂rS

P2(cos θ) (55)

δψ(rS) = ε
0
2rS

∂ψ0(rS)
∂rS

P2(cos θ) . (56)

Then the gravity g⃗ in the new equilibrium configuration is200

g⃗ = ∇{ψ +
1

3
Ω

2
r
2
S[1 − P2(cos θ)]} . (57)

–12–
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7 Boundary conditions at the center201

For this FCN computation the displacement field u⃗ is truncated as
−→
T

1
1+(−→R1

2+
−→
S
1
2)+202

−→
T

1
3. Vector spherical harmonics are expanded in power series in each subdomain, for in-203

stance,
−→
S
1
2 is expanded as204

rmax

∑
i=0

air
i −→
S
1
2 , (58)

where rmax is the max power order, and ai are unknown coefficients.
−→
S
1
2 has the same205

expansion forms in the inner core, the fluid core, and the mantle, but the coefficients are206

different, for instance, ai can be written as a
(IC)
i , a

(OC)
i and a

(MT )
i respectively. Similarly,207

we can get the expansions of
−→
T

1
1,

−→
R

1
2,

−→
T

1
3 and V1.208

The boundary condition in the center is required to be regular. This is a vague state-209

ment. For the free-oscillation equations, Crossley (1975) expanded the variables as power210

series,211

yi(r) = r
α

∞

∑
ν=0

Ai,νr
ν
, i = 1, 2,⋯, 6 , (59)

then substituted the power series into the partial differential equations, and got one in-212

dependent initial solution by picking α and a set of Ai,ν making PDEs finite in the cen-213

ter. Then 3 independent solutions combined into one general solution. Our first approach214

is similar to the Crossley’s in some sense, which is to increase the lower limit of eq(58)215

to satisfy the finitude of ( 1
r
)k in the governing equation. For example, when a term of216

the displacement field u⃗ with vector spherical harmonic basis
−→
S
1
2 is substituted into the217

equation, there are M terms with ( 1
r
)k1 , ( 1

r
)k2 , ⋯, ( 1

r
)kM , and k1, k2, ⋯, kM are all non-218

negative integers. Suppose kM is the largest, the lower limit i = 0 in eq(58) should in-219

crease to i = kM . Note that the different vector spherical harmonic bases may have the220

different kM , for instance,
−→
T

1
1 and

−→
S
1
2 have the different kM . After pre-computation, we221

take these kM : 0 for
−→
T

1
1, 2 for

−→
R

1
2, 2 for

−→
S
1
2, and 2 for

−→
T

1
3. In our previous paper(Zhang222

& Huang, 2019) we took this approach, and got FCN’s period: -431 Sd for the rmax =223

4 instance.224

Our second approach is to establish several algebraic equations of the coefficients.225

For instance, eq(2) has 4 set algebraic equations for the vector spherical harmonics:
−→
T

1
1,226

−→
R

1
2,

−→
S
1
2, and

−→
T

1
3. There are 2 algebraic equations in each set, for example, there are 2 equa-227

–13–
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tions corresponding with 1
r

−→
S
1
2 and 1

r2
−→
S
1
2 respectively in

−→
S
1
2 set. The equation for 1

r

−→
S
1
2 takes228

the form:229

zi1 + zi2 +⋯ + ziN = 0 . (60)

This equation comes from putting the expansions of the displacement field u⃗:230

rmax

∑
i=0

air
i −→
T

1
1 +

rmax

∑
i=0

bir
i −→
R

1
2 +

rmax

∑
i=0

cir
i −→
S
1
2 +

rmax

∑
i=0

dir
i −→
T

1
3 (61)

and the expansion of the additional potential V1:231

rmax

∑
i=0

eir
i
Y

1
2 (62)

into eq(2) and filtering the terms with 1
r

−→
S
1
2. We use the second approach in this paper.232

8 Matrix233

It is very complex and difficult to expand massive mathematical expressions and234

to integrate them in an asymmetric model. So we write a computer algebra system in235

Common Lisp to implement these functions. After tedious symbol computations, we can236

get a large matrix. The row represents the ordinal of a trial function, and the column237

represents the ordinal of an unknown coefficient. Finally there is still an unknown quan-238

tity: ω in the matrix. ω is a eigenfrequency so that the determinant of the matrix must239

be zero. It is difficult to compute the determinant of a large matrix, so we use Singu-240

lar Value Decomposition(SVD) algorithm to get an equivalent determinant. We use the241

reliable SVD routine of Linear Algebra PACKage(LAPACK).242

For instance, Suppose rmax = 5, we will get three 124×124 matrices M0, M1 and243

M2, then the final matrix M is244

M = M0 + ωM1 + ω
2M2 . (63)

To find a normal mode is to find an ω that satisfies the below equation:245

M0 + ωM1 + ω
2M2 = 0 . (64)

–14–
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If ω∗ is a solution, then the determinant of the matrix:246

M = M0 + ω∗M1 + ω
2
∗M2 (65)

must be zero. However, it is virtually impossible to compute the determinant of a 124×247

124 matrix. An alternative way is to compute its condition number, and find the max-248

ima. The matrix M is decomposed by SVD into249

M = USV∗
, (66)

where U and V are unitary, and S is a diagonal matrix with non-negative real numbers250

on the diagonal. Suppose smax is the largest diagonal entry and smin is the smallest, then251

define the condition number c as252

c ∶= log smax − log smin . (67)

So to find the zero points of the determinant of the M is to find the maxima of c when253

searching ω.254

Figure(8) shows this condition number c with respect to angular frequency ω rang-255

ing from 7.29e−5 to 7.31e−5 where rmax = 5. There are 2 peaks in this range, which256

means there are 2 possible zero determinants, in other words, 2 possible normal modes.257

Figure 2. Condition number c with angular frequency ω
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Table 1. Periods of TOM

rmax Angular Frequency(rad/s) Period (Sd) Deviation

3 7.29232e-5 0.99997 -0.003%

4 7.29231e-5 0.99997 -0.003%

5 7.29231e-5 0.99997 -0.003%

6 7.29232e-5 0.99997 -0.003%

7 7.29240e-5 0.99996 -0.004%

9 Result258

Tilt-over Mode(TOM) has the same period with the rigid earth, which is exact 1259

Sd. We use TOM to evaluate the accuracy of our numerical solutions. Table(1) shows260

the period of TOM with respect to rmax order. All the terms in the equations and the261

boundary conditions are accurate to (ε02)2 in our computation. When 3 ≤ rmax ≤ 7,262

the absolute value of the deviation between the calculated and the observed is less than263

0.004%. When rmax ≥ 8, we can’t find an extremum of the equivalent determinant, be-264

cause the power series has a disadvantage which is not normalized. For instance, if an265

unknown function is written as266

u(x) = N

∑
i=0

air
i
, (68)

the computation will encounter numerical overflow when i is large. If we put a factor R267

which is large than r,268

u(x) = N

∑
i=0

ai( rR )i, (69)

( r
R
)i will approach zero quickly. We try medium R, however, the result is not satisfac-269

tory. We now work on writing a new version of our computer algebra system which will270

have a new architecture, replace power series with Chebyshev’s polynomials and support271

multithreads.272
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Table 2. Periods of FCN

rmax Angular Frequency(rad/s) Period (Sd)

3 7.3098e-5 -412

4 7.3088e-5 -437

5 7.3088e-5 -437

6 7.3088e-5 -437

7 7.3088e-5 -437

Table 3. Periods of FCN with
−→
T

1
1 + (−→R1

2 +
−→
S

1
2) + −→

T
1
3 + (−→R1

4 +
−→
S

1
4) + −→

T
1
5

rmax Angular Frequency(rad/s) Period (Sd)

4 7.3088e-5 -437

5 7.3089e-5 -434

6 7.3089e-5 -434

For the deviations of TOM is about −0.003%, we take 5 significant digits in FCN.273

Table(2) shows the results of FCN. When rmax = 3, the result doesn’t seem to be good,274

because the basis functions are not enough. From rmax = 4 to rmax = 7, the angular275

frequency of FCN are 7.3088e − 5 and the corresponding period in the celestial refer-276

ence frame is -437 Sd. There is a minor difference(about 1.4%) between this result and277

our previous result: -431 Sd(Zhang & Huang, 2019), because we take the second approach278

to deal with the boundary condition in the center here, and Zhang and Huang (2019)279

took the first approach.280

If the displacement field u⃗ is truncated as
−→
T

1
1+(−→R1

2+
−→
S
1
2)+−→T 1

3+(−→R1
4+

−→
S
1
4)+−→T 1

5, and281

the second approach for the boundary condition in the center is applied, we will get the282

angular frequency of FCN: 7.3088e − 5, 7.3089e − 5, and 7.3089e − 5 Sd for rmax = 4,283

rmax = 5, and rmax = 6 respectively. Table(3) shows these results.284
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10 Discussion285

There are some possible reasons for the good computed result. First the Galerkin286

method avoids the derivatives of density and Lamé parameters. For Lamé parameters,287

their derivatives are in the term ∇⋅
−→
S in the governing equation(2), the Galerkin method288

multiplies a vector trial function
−→
X on the both sides of eq(2). It is easy to prove that(F. Dahlen289

& Tromp, 1998)290

∫
V

−→
X ⋅ (∇ ⋅

←→
S )dV =∫

V
∇ ⋅ (−→X ⋅

←→
S )dV − ∫

V
∇
−→
X ∶

←→
SdV

=∫
S
n̂ ⋅ (−→X ⋅

←→
S )dS − ∫

V
∇
−→
X ∶

←→
SdV

=∫
S
(−→X ⋅ n̂ ⋅

←→
S )dS − ∫

V
∇
−→
X ∶

←→
SdV .

(70)

From above equivalent, the integral of ∇⋅
−→
S turns into the integral of

−→
S, so the deriva-291

tives of Lamé parameters are eliminated. For density, its derivative is in the term 4πG∇⋅292

(ρ0u⃗) in Poisson’s equation(8); the Galerkin method multiplies a trial function f on the293

both sides of eq(8). It is easy to prove that294

∫
V
f ∗ 4πG∇ ⋅ (ρ0u⃗)dV = ∫

S
f ∗ 4πGρ0n̂ ⋅ u⃗dS − ∫

V
4πGρ0∇f ⋅ u⃗dV . (71)

So the derivative of the density in the term ∇⋅(ρ0u⃗) is eliminated. The boundary con-295

ditions (10) (9) can substitute the surface integrals ∫S(−→X ⋅ n̂ ⋅
←→
S )dS and ∫S f ∗4πGρ0n̂ ⋅296

u⃗dS, which become the natural boundary conditions. Seyed-Mahmoud (1994) used the297

natural boundary conditions to deal with the rotational modes in fluid core.298

These parameters were reconstructed by inversion of seismology data and normal299

modes(Dziewonski & Anderson, 1981). For PREM, the layered structure and the rude300

initial profiles of density and Lamé parameters were reconstructed from seismology data.301

Then these parameters were modified by the data of normal modes. Dziewonski and An-302

derson (1981) applied the Rayleigh’s principle and the perturbation theory on normal303

modes, and his approach was just like the Galerkin method which replaced trial func-304

tions with the original displacement field u⃗, and modified boundary conditions into nat-305

ural boundary conditions. This approach can invert the parameters as a whole, but may306

remove some details and smooth the profile curves. Our approach focuses on whole char-307

acteristics too, and can neglect some details of the derivatives, for instance, some small308

jumps in the density profile. On the other hand, some fine details may affect linear mo-309
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mentum approach. Rogister and Rochester (2004) used Clairaut coordinates, and had310

the similar advantage that the ODEs governing free oscillations of a rotating hydrostatic311

earth model contained no derivatives of material properties.312

The second reason is that we don’t adopt the ESD. The ESD transforms a first-313

order approximated ellipsoid into a sphere. For a point P⃗ (rp, θ0,φ0) in some equipoten-314

tial ellipsoidal surface, the corresponding point in ESD is r⃗(r0, θ0,φ0), which satisfies315

rp = r0 −
2

3
ε(r0)P2(cos θ) . (72)

This is actually a coordinate transformation; thus coordinates change and so do vectors,316

tensors and metric. Moreover, the governing equations should also change, and the orig-317

inal governing equations don’t usually hold true in the new coordinates. Generally speak-318

ing, the governing equations in an original coordinates should be rewritten in Hamilton319

form H(p, q), where p and q are generalized momentums and coordinates respectively.320

In the new coordinates, the new Hamilton form is K(P,Q), where P and Q are gener-321

alized momentums and coordinates respectively. It is not strict to solve H(p, q) with P ,Q,322

and a rigorous way is to use K(P,Q).323

However, the two reasons are possible, and real reasons need more research.324
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