
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
9
16
7.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

How credible are earthquake predictions that are based on TEC

variation?

Ryoya Ikuta1 and Ryoto Oba1

1Faculty of Science, Shizuoka University

November 24, 2022

Abstract

We conduct numerical experiments to examine two studies that reported preseismic anomalies in the ionospheric total electron

content (TEC) and argued for the significance of their respective analyses based on statistical evaluations. The first study is Liu

et al. (2018), who statistically studied the relationship between 62 M[?]6 earthquakes in the Chinese interior over an 18-year

period and the TEC, which was deduced from the Global Ionospheric Map. The TEC showed anomalies with specific polarities

at set times during certain days that preceded the earthquakes. They defined alarms based on this and drew receiver operating

characteristic curves, which yielded a significantly better performance (higher area under the curve (AUC) and lower p-value)

than random alarms. We conduct this analysis using random synthetic earthquakes. The resulting AUC and p-values are very

similar to those for real earthquakes, indicating that the high performance of the Liu et al. (2018) alarm is an artifact. The

second study is Le et al. (2011), who classified the TEC time series into anomalous and non-anomalous days based on the TEC

perturbation. They found that the anomalous day rate increased as the nucleation time of the earthquakes was approached,

especially for larger and shallower earthquakes. We conduct the same analysis using random synthetic earthquakes. The

anomalous day rate that is comparable to their result occurs in ˜40 % of the 1,000 random trials, thereby suggesting that their

result may also be an artifact.
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Key Points: 5 

 Pre-seismic ionospheric electron anomalies detected based on GNSS and Global 6 

Ionospheric Map are tested from a statistical point of view. 7 

 Numerical experiments based on randomly generated earthquakes reproduced the 8 

statistical features of the “significant precursor.” 9 

 The statistical significance inferred by previous studies may yield false predictions 10 

due to arbitrarily defined “precursor” conditions. 11 

 12 

Abstract 13 

We conduct numerical experiments to examine two studies that reported preseismic anomalies in 14 

the ionospheric total electron content (TEC) and argued for the significance of their respective 15 

analyses based on statistical evaluations. The first study is Liu et al. (2018), who statistically studied 16 

the relationship between 62 M≥6 earthquakes in the Chinese interior over an 18-year period and the 17 

TEC, which was deduced from the Global Ionospheric Map. The TEC showed anomalies with 18 
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specific polarities at set times during certain days that preceded the earthquakes. They defined 19 

alarms based on this and drew receiver operating characteristic curves, which yielded a significantly 20 

better performance (higher area under the curve (AUC) and lower p-value) than random alarms. We 21 

conduct this analysis using random synthetic earthquakes. The resulting AUC and p-values are very 22 

similar to those for real earthquakes, indicating that the high performance of the Liu et al. (2018) 23 

alarm is an artifact. The second study is Le et al. (2011), who classified the TEC time series into 24 

anomalous and non-anomalous days based on the TEC perturbation. They found that the anomalous 25 

day rate increased as the nucleation time of the earthquakes was approached, especially for larger 26 

and shallower earthquakes. We conduct the same analysis using random synthetic earthquakes. The 27 

anomalous day rate that is comparable to their result occurs in ~40 % of the 1,000 random trials, 28 

thereby suggesting that their result may also be an artifact. 29 

 30 

1. Introduction 31 

Numerous studies have reported that pre-earthquake processes can induce ionospheric fluctuations. 32 

Heki (2011) reported an increase in the ionospheric total electron content (TEC) above the epicenter 33 

of the 2011 Tohoku-Oki mainshock ~40 minutes before the earthquake based on the phase delays in 34 

the global navigation satellite system (GNSS) signals. GNSS TEC observations have since been 35 

employed to characterize the three-dimensional distribution of the increase in ionospheric electron 36 
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density preceding the 2010 Chilean earthquakes (He & Heki, 2016) and the 2015 Illapel earthquake 37 

(He & Heki, 2018), as well as the TEC increase preceding global M7-8 earthquakes (He & Heki, 38 

2017). However, it has been suggested that the observed variations in Heki (2011) may be due to 39 

space weather (Utada & Shimizu, 2014), such that the method adopted in He & Heki (2016, 2017, 40 

2018) may have produced artifacts that were influenced by post-earthquake ionospheric disturbances 41 

(Kamogawa & Kakinami, 2013; Masci et al., 2015; Eisenbeis&Occhipinti, 2021). A number of 42 

recent studies have claimed to overcome these artifacts by not including post-earthquake data in their 43 

respective analyses (Heki & Enomoto, 2013, 2015; Iwata & Umeno, 2017, 2018; Goto et al., 2019). 44 

However, the statistical significance of these papers has also been questioned and it has been 45 

suggested that the observed variability may be due to space weather (Ikuta et al., 2020; Tozzi et al., 46 

2020). Furthermore, Ikuta et al. (2021) have pointed out that the precursor criteria in Iwata & Umeno 47 

(2017, 2018) and Goto et al. (2019) contradict each other, and that the reported precursors are not 48 

statistically significant. 49 

Liu et al. (2000) and subsequent studies from this research group have also reported ionospheric 50 

TEC anomalies prior to a number of earthquakes across East Asia. Ionospheric TEC anomalies 51 

preceding the 1999 Chi-Chi earthquake in Taiwan (Liu et al., 2001), the 2004 Sumatra earthquake 52 

(Liu et al., 2010a), and the 2010 Heiti earthquake (Liu et al., 2011) have been detected. Statistical 53 

studies of the relationship between the long-term electron content time series and earthquakes 54 
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include the relationship between a six-year time series of M ≥ 6 earthquakes in Taiwan and the 55 

corresponding F2-layer critical frequency (foF2) that was measured by an ionosonde (Liu et al., 56 

2000), the relationship between a two-year M≥5 earthquakes in Taiwan and GNSS TEC/foF2 (Liu et 57 

al., 2004), and the relationship between two-year time series of M ≥ 5 earthquakes in Taiwan and the 58 

GNSS-TEC (Liu et al., 2010b). The above mentioned studies reported that the earthquakes were 59 

associated with a decrease in the critical frequency (decrease in electron density), a decrease in the 60 

TEC values, and a north–south shift in the TEC peak, respectively. The Global Ionospheric Map 61 

(GIM) that is provided by the Center for Orbit Determination in Europe (CODE), instead of 62 

ionosonde and GNSS phase data, has been used to study the relationship between TEC and 63 

earthquakes that have occurred outside Taiwan, with targeted analyses around Japan (Liu et al., 64 

2013a) and China (Liu et al., 2009, 2013b; Chen et al., 2015). However, the polarity of the increase 65 

or decrease in ionospheric TEC and the preceding time of the precursor differ according to the 66 

locations and earthquake magnitudes. These ionospheric TEC trends do not appear to follow a 67 

consistent law for the same physical phenomena. Furthermore, the statistical significance of the 68 

results has not been sufficiently evaluated. 69 

Liu et al. (2018) introduced receiver operating characteristic (ROC) curves to assess the 70 

earthquake prediction performance of the TEC variations in a statistical sense. They calculated ROC 71 

curves for various precursor thresholds of the TEC variations for 62 M ≥ 6.0 earthquakes across 72 
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China over an 18-year period. The ROC curves for the real earthquakes, which differ significantly 73 

from those based on random synthetic earthquakes, suggested a good prediction performance of their 74 

criteria. Liu et al. (2018) dealt only with earthquakes in China; however, Le et al. (2011) extracted 75 

the common properties of the TEC variations for global earthquakes via a comparison of the GIM 76 

TEC for 736 M ≥ 6.0 earthquakes that occurred during the 2002–2010 period. Le et al. (2011) 77 

statistically showed that the M ≥ 7 earthquakes with hypocenters above 20 km depth are associated 78 

with an increase/decrease in TEC (regardless of polarity) above/below a given threshold that peaks 79 

within one day of earthquake nucleation. 80 

Here we conduct a follow-up test on the Liu et al. (2018) assessment to test the statistical 81 

significance of the “precursors.” We then conduct a follow up test on the Le et al. (2011) assessment 82 

to investigate whether the TEC fluctuations identified by Le et al. (2011) in the days preceding the 83 

analyzed earthquakes are also statistically significant. 84 

 85 

2. Z-test and ROC curve assessments 86 

We tested the Liu et al. (2018) results to assess the validity of the GIM TEC fluctuations being 87 

concentrated before the analyzed earthquakes. Specifically, Liu et al. (2018) searched for the 88 

common preceding day and time of day when a TEC increase/decrease occurred for multiple 89 

earthquakes and defined the preceding day, time of day, and polarity of the TEC increase/decrease as 90 
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the earthquake precursors, which were determined significant via a z-test. They then reanalyzed the 91 

TEC records; if an anomaly with the defined time of day and polarity was detected, then it was 92 

declared positive for an earthquake after the defined preceding day. They finally constructed an ROC 93 

curve using the true positive rate (TPR) and false positive rate (FPR) of the alarm with varying 94 

anomaly thresholds and demonstrated that the alarm was significant based on the large area under 95 

the curve (AUC). We first replicated the Liu et al. (2018) procedure, then investigated their 96 

significance validation using z-tests and ROC curves via a series of numerical experiments that 97 

assumed a random occurrence of earthquakes that were independent of the TEC variations.  98 

 99 

Figure 1. Reproduction of part of fig. 3 in Liu et al. (2018). Upper: TEC time series from 27 April to 100 

7 May 2008 that was deduced from GIM. The red line is the observed TEC at 32.5°N, 95°E. Blue 101 

and black lines show the median (MO) and upper/lower bounds (UB/LB). Red and blue shaded areas 102 

show the positive and negative anomalies, respectively. Bottom: TEC time series, which is the 103 

difference between the observed TEC and MO normalized by MO.  104 

 105 
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2-1. Reproducing the Liu et al. (2018) results 106 

We first reproduced the Liu et al. (2018) results using the same data. Liu et al. (2018) obtained an 107 

interpolated TEC time series (15-min interval) at 32.5°N, 95°E from the 2-h GIM time series (28 108 

March 1998–31 December 2015 period), with the TEC anomalies for all dates and times of interest 109 

defined on the basis of TEC values at the same time of day during the preceding 15 days. Liu et al. 110 

(2018) defined the upper boundary (UB) and lower boundary (LB) based on the lower quartile (LQ), 111 

upper quartile (UQ), and median (MO) during the same time of day over the 15-day period as 112 

follows, and defined a TEC anomaly as a value above/below the UB/LB. UB and LB are defined as 113 

UB = MO + k(UQ − MO) and LB = MO − k(MO − LQ), respectively, where k is a threshold 114 

coefficient, which controls the frequency of the anomalies. Figure 1 shows the time series of the 115 

TEC anomalies when k = 1.5, following Liu et al. (2018). They also defined δTEC = (TEC − 116 

MO)/MO, which is the normalized deviation of the TEC from the median, arranged it into a time 117 

series with time 0 denoting the earthquake nucleation time, and calculated the median for each 118 

earthquake group (6.0 ≤ M < 6.5, 6.5 ≤ M < 7.0, and M ≥ 7.0). The median of the 15-day-long δTEC 119 

is shown in Figure 2, which is identical to the Liu et al. (2018) result, thereby demonstrating that we 120 

reproduced their calculation exactly. 121 

  122 
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 123 

Figure 2. Reproduction of fig. 5 in Liu et al. (2018) using the same data. Median δTEC values at 124 

32.5°N, 95°E over a 60-day period: 30 days before and after (a) 37 6.0 ≤ M < 6.5, (b) 18 6.5 ≤ M < 125 

7.0, and (c) 7 M ≥ 7.0 earthquakes. Contours denote significant z-test results at a significance level 126 

of 0.05. Zones A, B, and C are the TEC values with negative polarity anomalies during the 18:00–127 

22:00 UTC timeframe and 4–5 days before the group (a) earthquakes; during the 01:00–04:00 UTC 128 

timeframe and 3–6 days before the group (b) earthquakes; and during the 04:00–10:00 UTC 129 

timeframe and 3–5 days before the group (c) earthquakes. Zone D is the TEC with positive polarity 130 

anomalies during the 08:00–12:00 UTC timeframe and 18–20 days before the group (c) earthquakes.  131 

 132 

Liu et al. (2018) evaluated the statistical significance of the earthquake-related TEC anomalies for 133 

the obtained TEC time series by applying the z-test using the following equation:  134 



p. 9 
 

  z =
𝜋−𝜋0

√𝜋0(1−𝜋0)/𝑛
,   (1) 135 

where 𝜋 is the observed fraction of the earthquake-related anomalies with k = 1.5 in a particular 136 

time of day and preceding day with respect to the analyzed earthquakes; 𝜋0 is the background 137 

fraction of the anomalies observed at the same time of day over an 18-year period (6473 days); and 138 

𝑛 is the number of earthquakes. The positive and negative polarities are evaluated separately. The z 139 

= 1.96 threshold corresponds to a significance level of 0.05, whereby a z-value above 1.96 means 140 

that the observed fraction of the anomalies will realize by chance on less than 5% of the day based 141 

on the time of day matrix. The contours for z = 1.96 are shown in Figure 2. They defined the time of 142 

day and preceding date where the z-values that are larger than 1.96 are clustered (zones A, B, C, and 143 

D in Figure 2) as earthquake precursors. They issued an earthquake alarm when more than a third of 144 

the defined time range was occupied by TEC anomalies, which was based on this definition of 145 

precursors by the time of day and polarity. For example, if one third of the 18:00–22:00 UTC time 146 

range, which corresponds to zone A, is occupied by negative anomalies, then the period 4–5 days 147 

after these anomalies are considered earthquake alarm days. If an earthquake of the specified 148 

magnitude range occurs within the alarm days, then the alarm is considered true positive; otherwise, 149 

the alarm is considered false positive. They also conducted ROC tests by varying the threshold 150 

coefficient k from 0 to 10. The tests evaluated the balance between the TPR, where TPR = (true 151 

positive days)/(all earthquakes), and FPR, where FPR = (false positive days)/(all non-alarmed or 152 
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false positive days). 153 

We applied the same method and obtained results that were almost identical to those in Liu et al. 154 

(2018) (Figure 3). The gray lines in the figure show the results of 1,000 simulations that employ the 155 

same criteria but with random earthquake nucleation times. There is an upward shift in the ROC 156 

curve for the alarms for real earthquakes, which indicates a higher TPR (= sensitivity) and/or lower 157 

FPR (= 1 − specificity) than the alarms for random earthquakes. The significance of the alarm is 158 

expressed as the AUC, which is the ratio of the area under the ROC curve to the total area. An AUC 159 

of 0.5 is expected for the alarms generated from random earthquakes, whereas the AUC is 1 for an 160 

ideal alarm system. Note that the ROC curve in Figure 3, which is drawn in the same way as in Liu 161 

et al. (2018), does not equal 0.5 for the random prediction case. The deviation from 0.5 arises 162 

because the graph is staircase shaped and the corners of the staircase are added above the true value, 163 

resulting in a slight overestimation (~0.05) of the true AUC. 164 

Liu et al. (2018) defined the p-value as the fraction of the AUC for the random cases that exceeds 165 

the AUC for the real earthquake case. Although their p-values were 0% for all of the cases, our 166 

calculations yield p-values of 2.4%, 1.8%, 5.0%, and 0.4% for zones A, B, C, and D, respectively. 167 

The differences between our results and those in Liu et al. (2018) are shown in Table 1. Our random 168 

simulation generates larger maximum AUC values, ranging from 0.10 (zone A) to 0.27 (zone D), 169 

than Liu et al. (2018) for all of the criteria zones. Although we cannot speculate on the reason for 170 
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this difference, our definition of the AUC is consistent between the actual and simulated earthquakes, 171 

as shown above, so we adopt these values as our criteria for the alarm. 172 

 173 

Table 1.  174 

Zone Polarity 
Appearance 

(UTC) 
Alarm day (–) AUC AUCmax1* 

AUCmax2* 

(Liu) 

p-value 

[%] 

Youden index 

k value TPR FPR 

A negative 18:00–22:00 4 – 5 0.6196 0.6617 0.5590 2.4 1.8 0.5676 0.3578 

B negative 01:00–04:00 3 – 6 0.6494 0.7182 0.5581 1.8 2.4 0.7222 0.3527 

C negative 04:00–10:00 3 – 5 0.6919 0.8547 0.5978 5 2.1 0.7143 0.3476 

D positive 08:00–12:00 18 – 20 0.8080 0.8363 0.5624 0.4 2.1 1.0000 0.4209 

Note: AUCmax1* and AUCmax2* denote the maximum AUC values of the 1,000 random simulations that were conducted in this study 175 

and Liu et al. (2018), respectively. 176 
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 177 

Figure 3. Reproduction of Fig. 7 in Liu et al. (2018). The ROC curves are deduced from the same 178 

data set used in Liu et al. (2018), with the same vertical TEC and earthquakes analyzed. Red, gray, 179 

and blue curves are the ROC curves for the real observations and 1,000 random simulations, and the 180 

95% line for the simulations, respectively. The blue triangle in each plot denotes the point that yields 181 

the maximum R score (= TPR − FPR) for 1 ≤ k ≤ 10.  182 

 183 
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2-2. Liu et al. (2018) analysis with random synthetic earthquakes 184 

Liu et al. (2018) evaluated the significance of the relationship between TEC anomalies and 185 

earthquakes via a z-test, defined the alarm criteria based on this significance, and then issued alarms 186 

and evaluated the significance of these alarms using ROC curves. However, if the criteria, which are 187 

based on actual earthquakes, are re-applied to predict the occurrence of the same earthquakes, it 188 

would therefore seem natural that the predictive ability of the Liu et al. (2018) analysis would be 189 

high, even if the TEC anomalies are not related to earthquakes. Here we apply the same method to 190 

randomly generated earthquakes that are independent of the TEC, starting from the construction of 191 

the criteria for the alarm, to determine reliability of the Liu et al. (2018) approach. The synthesized 192 

earthquakes are of the same magnitude as real ones; only the nucleation times are randomly varied. 193 

Figure 4 shows the median δTEC for each randomly generated earthquake group (6.0 ≤ M < 6.5, 6.5 194 

≤ M < 7.0, M ≥ 7.0). The contours for z = 1.96 are also shown, which is very similar to the real 195 

earthquake scenario in Figure 2, including the spatial scale of the texture. Similar to Liu et al. (2018), 196 

we define the TEC variations for the range of dates and times when the z-value exceeds 1.96 197 

consecutively (regions A, B, and C in Figure 4) as earthquake precursors. 198 

The resultant date and time of day values indicate the following. If positive anomalies occupy more 199 

than one-third of the time of day range corresponding to zone A (2:00–6:00 UTC), then the alarm 200 

occurs 2–4 days later for 6.0 ≤ M < 6.5 earthquakes. Similarly, the alarm occurs 10–12 days later for 201 
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positive anomalies within the 19:00–24:00 UTC timeframe and 6.5 ≤ M < 7.0 earthquakes, and 24–202 

25 days later for negative anomalies within the 4:00–9:00 UTC timeframe and M ≥ 7.0 earthquakes.  203 

ROC curves are drawn based on whether the predicted earthquakes occurred within the alarm 204 

timeframes (Figure 5). The ROC curve (red curve) is shifted upward relative to the ROC curves 205 

drawn for a set of 1,000 randomly generated earthquakes that did not depend on the definition of the 206 

alarm, with AUCs of 0.603, 0.662, and 0.684 and with p-values of 3.6%, 1.5%, and 6.4% obtained 207 

for alarm zones A, B, and C, respectively. These values are comparable to those calculated for the 208 

actual earthquakes, despite the fact that this experience has been carried out on random synthetic 209 

earthquakes. 210 

 211 

Figure 4. Median δTEC values that were calculated at 32.5°N, 95°E for the 60-day period 212 

surrounding each randomly synthesized earthquake. The median values are calculated for (a) 37 213 
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earthquakes assuming 6.0 ≤ M < 6.5, (b) 18 earthquakes assuming 6.5 ≤ M < 7.0, and (c) 7 214 

earthquakes assuming M ≥ 7.0. Zones A and B are positive TEC anomalies that occurred during the 215 

02:00–06:00 UTC timeframe and 2–4 days before the group (a) earthquakes, and during the 19:00–216 

24:00 UTC timeframe and 10–12 days before the group (b) earthquakes, respectively. Zone C is a 217 

negative TEC anomaly that occurred during the 04:00–09:00 UTC timeframe and 24–25 days before 218 

the group (c) earthquakes.  219 

 220 

 221 

Figure 5. Same with Figure 3, except that the ROC curves are calculated for random synthetic 222 

earthquakes instead of actual earthquakes; the ROC curves are based on the precursor criteria 223 

defined by zones A, B, and C in Figure 4.  224 

 225 

3. Testing the TEC anomaly concentration a few days before earthquakes 226 

We next test the validity of the Le et al. (2011) assessment. We first review the Le et al. (2011) 227 

methodology, and then test their method via numerical experiments, which employ random synthetic 228 
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earthquakes that are unrelated to the TEC variations. 229 

3.1. Anomalous day rate in Le et al. (2011) 230 

Le et al. (2011) compared 736 global M ≥ 6.0 earthquakes that occurred during the 2002–2010 231 

period with the TEC time series that was deduced from the GIM directly above the epicenters via the 232 

following procedure. The 2-h sampling TEC time series was interpolated to a grid (2.5° × 5°; 233 

latitude × longitude) at 1-h sampling interval. Anomalies can be defined for any given date and grid 234 

point based on the distribution of the TEC values at the same time of day over the preceding 15 days. 235 

Specifically, UB and LB are defined as UB = m + σ and LB = m – σ, respectively, with these two 236 

boundaries based on the median m and standard deviation σ of the same 15-day period. Le et al. 237 

(2011) defined an anomaly as a TEC value either above UB or below LB. If anomaly occurs for 238 

more than six consecutive samples (hours) on a given day and the largest deviation from the median 239 

is larger than (1 + R) σ in which R is a deviation level such as 60%, 80%, or 100%, this day would 240 

be considered as an anomalous day with the level R. Note that a TEC anomaly is less likely to occur 241 

as R increases. 242 

Le et al. (2011) then calculated the anomalous day rates (anomalous days/total period) over 243 

various total periods that range from 1 to 21 days before the earthquake at the grid point closest to 244 

the epicenter of a given earthquake. The average of the anomalous day rates for all of the 245 

earthquakes of interest 𝑃𝐸(𝑇, 𝑅) is calculated as: 246 
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𝑃𝐸(𝑇, 𝑅) =
1

𝐾
∑

𝑁𝑅,𝑇
𝑛

𝑇−∆S
× 100%𝐾

𝑛=1 ,  (2) 247 

where 𝑁𝑅,𝑇
𝑛  is the anomalous day number within 𝑇  days before 𝑛 -th earthquake when the 248 

deviation level is set to 𝑅; and 𝐾 is the number of earthquakes that have occurred at the size and 249 

depth range of interest. Note that a given day with large magnetic storm disturbances and the 250 

following couple of days are removed from the calculation based on the 𝐷𝑠𝑡 index. We quote the 251 

calculated 𝑃𝐸𝑠 values from Le et al. (2011) for each three different 𝑅 values (60%, 80%, and 252 

100%) and depths (shallower than 20, 30, and 40 km depth; Figure 2 from Le et al. (2011)) in Figure 253 

6. The horizontal axis is 𝑇 and the vertical axis is the lower limit of the interested earthquake 254 

magnitude range. For example, the grid point at M = 6.0 and 𝑇 = 10 represents the average of the 255 

anomalous day rates during 10 days before all M ≥ 6.0 earthquakes. Higher anomalous day rates are 256 

observed for the larger and shallower earthquake groups (Le et al., 2011). Higher anomalous day 257 

rates are also observed as the earthquake days are approached. 258 
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 259 

Figure 6. Adapted from Le et al. (2011). 𝑃𝐸 for real earthquakes. The anomalous day rates when R 260 

> 60%, 80%, and 100% within T days before the earthquakes (𝑃𝐸) that occur at ≤ 20, ≤ 30, and ≤ 40 261 

km depth are shown. 262 

 263 

3.2. Le et al. (2011) with random synthetic earthquakes 264 

Le et al. (2011) defined the anomalies from the TEC time series at the grid point closest to the 265 

epicenter of each earthquake and calculated the anomalous day rate 𝑃𝐸. They then assessed the 266 

significance of 𝑃𝐸 by estimating the background anomalous day rate 𝑃𝑁 of the TEC time series 267 

over a 240-day period that ranged from 60 to 300 days before each earthquake for comparison with 268 
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𝑃𝐸𝑠: 269 

 𝑃𝑁(𝑅) =
1

𝐾×240−∆𝑊
∑ 𝑁𝑅

𝑛 × 100%𝐾
𝑛=1 ,  (3) 270 

where 𝑁 is the number of anomalous days, excluding the magnetic disturbance days, as in Equation 271 

2; and ∆𝑊 is the total number of excluded days. However, 𝑃𝑁(𝑅) is a function that is independent 272 

of 𝑇 and the denominator is constant at 240, whereas the denominator in the 𝑃𝐸(𝑅, 𝑇) calculation 273 

for each earthquake varies between 1 and 20 and is dependent on 𝑇. It is expected that the small 274 

denominator in 𝑃𝐸(𝑅, 𝑇) magnifies the stochastic fluctuations of 𝑁𝑅
𝑛 and makes the result unstable. 275 

We also apply the same method to randomly generated earthquakes that are independent of the TEC 276 

to investigate whether the results of Le et al. (2011) also appear when there is no correlation between 277 

the TEC anomalies and earthquakes. We ignore the spatial distribution of the TEC anomalies and 278 

earthquakes, for simplicity, and focus only on the number of earthquakes and the TEC anomalous 279 

day rate in our simulation. We first assume the background average anomalous day rates for the R ≥ 280 

60%, R ≥ 80%, and R ≥ 100% deviation levels as 15%, 8%, and 4%, respectively, based on Figure 3 281 

in Le et al. (2011), and apply these anomalous day rates to the 8-year TEC time series. We then 282 

generate earthquakes for each depth and magnitude group after synthesizing the time series of the 283 

anomalous days. We generate all 736 M ≥ 6 earthquakes with hypocenters at ≤ 40 km depth at 284 

random times based on the earthquake magnitude and depth distribution in table 1 of Le et al. (2011). 285 

Then we select 602 earthquakes as of hypocenters at ≤ 30 km depth, of which 490 are at ≤ 20 km 286 
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depth. In terms of size, out of the total 736 events, we randomly select 573 events as M ≥ 6.1, of 287 

which 454 as M ≥ 6.2, of which 362 as M ≥ 6.3, of which 273 as M ≥ 6.4, of which 221 as M ≥ 6.5, 288 

of which 176 as M ≥ 6.6, of which 130 as M ≥ 6.7, of which 104 as M ≥ 6.8, of which 79 as M ≥ 6.9, 289 

of which 66 as M ≥ 7.0, and of which 53 as M ≥ 7.1. This approach effectively reproduces the 290 

earthquakes used in Le et al. (2011). Figure 7 shows an example where 𝑃𝐸 is calculated using the 291 

same method as in Le et al. (2011), but from our random earthquake sequence. The results are very 292 

similar to those in Figure 6, even though the earthquakes are randomly generated and independent of 293 

the TEC. 294 

 295 

Figure 7. Calculated 𝑃𝐸 from both the synthetic TEC anomaly days and earthquake catalog. The 296 

occurrence rate of the TEC anomaly days and the number for each earthquake magnitude range are 297 
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the same as those used in Le et al. (2011), with the contours plotted at constant 5% intervals.  298 

 299 

4. Discussion 300 

We find that the same results in Le et al. (2011) and Liu et al. (2018) can be obtained for 301 

randomly generated earthquakes that are independent of the TEC. We discuss the probability that the 302 

Le et al. (2011) and Liu et al. (2018) results occurred by chance, even for earthquakes that exhibited 303 

no relationship to the TEC. 304 

Liu et al. (2018) first used the z-test to assess whether the TEC anomalies that occurred before the 305 

earthquakes were significantly related to the earthquakes. However, their choice of z = 1.96 is a 306 

statistical criterion that is inevitably exceeded by 5% of the samples by chance. It is not possible to 307 

say that exceeding this value has anything to do with the earthquake. Therefore, the probability that a 308 

“precursor” is defined for a specific number of preceding days and time of day for each selected 309 

earthquake group is almost 100%.  310 

We then repeat the random earthquake prediction test performed in section 2-2 100 times to test 311 

the probability of the large AUCs and small p-values in Liu et al. (2018). The “precursor” day and 312 

time ranges for each simulation are defined by choosing the largest area (day × hour) that is enclosed 313 

by the z = 1.96 contour in the z-map, as shown in Figure 4. A rectangular zone that includes the 314 

“precursor” area is extracted. Figure 8 shows the distribution of the p-values and AUCs that are 315 
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obtained by the repeated simulations. AUC is the difference between the obtained AUC from that 316 

expected for random earthquakes, which is estimated as the median of the 100 random experiments 317 

for each simulation. The obtained AUCs and p-values are similar to those obtained for the real 318 

earthquakes. The AUCs for real earthquakes were 0.082, 0.132, 0.164, and 0.282 for alarm zones A 319 

(37 earthquakes), B (18 earthquakes), C (7 earthquakes), and D (7 earthquakes), respectively 320 

whereas the median AUCs for 100 simulation experiments are 0.082, 0.114, and 0.175 for alarm 321 

zones for 37, 18, and 7 random earthquakes, respectively. These values for real earthquakes are very 322 

similar to the median of random earthquakes except for zone D, which assigns the same earthquake 323 

group in zone C. The p-values were 2.4%, 1.8%, 5.0%, and 0.4% of the real earthquakes in alarm 324 

zones A, B, C, and D, respectively. These p-values, although very small, are larger than the 96%, 325 

98%, 99%, and 69% values for all of the simulations, respectively. These results suggest that the 326 

p-values that were obtained for the real earthquake groups can be obtained with a probability of 327 

almost 100%, even if the TECs and earthquakes are not correlated with each other. The large ∆AUCs 328 

and small p-values for real earthquakes in Liu et al. (2018) do not support the claim that TEC 329 

variations precede earthquakes. Their results could therefore be typical artifacts that are caused by 330 

the misapplication of the employed statistical tests. 331 

We also assess the probability of the Le et al. (2011) results. We repeated the simulations in Section 332 

3-2 by creating 1,000 different random combinations of the anomalous days and earthquakes. There 333 
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are many individual 𝑃𝐸 distributions, which differ from those in Figure 7. Therefore, we plot the 334 

top 150th value of the 𝑃𝐸 distribution in the 1,000 simulations in Figure 9. The 𝑃𝐸 distribution 335 

pattern is still very similar to the Le et al. (2011) results, with this distribution showing that even 336 

when there is no correlation between the actual spatiotemporal distributions of the TECs and 337 

earthquakes, the probability of obtaining a result similar to that in Le et al. (2011) is about 15%. A 338 

probability of 15% may seem small, such that one could argue that the Le et al. (2011) results 339 

occurred by chance. However, we obtained 396 trials out of 1,000 simulations where the maximum 340 

𝑃𝐸 is greater than 20 for all magnitude and depth ranges (Figure 10a). Therefore, the probability that 341 

an artifact will cause the TEC to appear to fluctuate abnormally within a specific preceding time for 342 

a given earthquake of a specific size and depth range is about 40%. The larger anomalous day rates 343 

for the larger and shallower earthquakes in the Le et al. (2011) results should be due to the same 344 

principle as the larger anomalous day rates for shorter preceding time 𝑇, whereby the fluctuations 345 

increase as the denominators decrease. In fact, the calculated standard deviations of 𝑃𝐸 for each 𝑇 346 

and M range for the 1,000 simulations (Figure 10) indicate that the 𝑃𝐸 perturbation increases as the 347 

number of included earthquakes decreases (Figure 10b). 348 

The correlations between the TEC variations and earthquakes shown in Liu et al. (2018) and Le et 349 

al. (2011) are considered methodological artifacts of their analyses, with probabilities of almost 350 

100% and 40%, respectively. Therefore, the statistical analyses in Liu et al. (2018) and Le et al. 351 
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(2011) do not provide a valid reason for concluding that the observed TEC variations are influenced 352 

by pre-earthquake processes.  353 

 354 

 355 

Figure 8. Histograms of AUCs and p-values that were obtained by 100 simulation experiments. 356 

AUCs for (a) 37, (b) 18, and (c) 7 random earthquake groups. The bin width is 0.02 AUC. 357 

p-values for (d) 37, (e) 18, and (f) 7 random earthquake groups. Arrows show the values for the real 358 

earthquake groups that were predicted based on zones A, B, C, and D, which are shown in Figures 2 359 

and 3.  360 
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 361 

Figure 9. The top 15% 𝑃𝐸(𝑅, 𝑇) for the 1,000 numerical simulations.  362 

 363 

 364 

Figure 10. Relationship between the 𝑃𝐸 values and different data sets. (a) Histogram of the peak 𝑃𝐸  365 
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for 1,000 different simulations, whereby a deviation level R of 60% was assumed for 490 synthetic 366 

earthquakes with a ≤20 km hypocenter depth. Colors correspond to the magnitude ranges that yield 367 

the largest 𝑃𝐸 value in each experience. (b) Standard deviation of the 𝑃𝐸 values among 1,000 368 

experiments, whereby each 𝑇 and M range was based on an assumed deviation level R of 60% and 369 

≤ 20 km hypocenter depth.  370 

 371 

5. Conclusion 372 

We tested the applicability of ionospheric TEC variations as earthquake precursors that were 373 

reported in Liu et al. (2018) and Le et al. (2011) via random earthquake simulations. We found that 374 

their respective analyses reach the conclusion that there is a causal link between earthquakes and 375 

ionospheric TEC variations, even for random earthquakes, with probabilities of almost 100% and 376 

about 40% for the Liu et al. (2018) Le et al. (2011) assessments, respectively. 377 

However, the Liu et al. (2018) and Le et al. (2011) studies both possessed key issues that hindered 378 

proper statistical assessments. The problem with the Liu et al. (2018) statistical analysis, which 379 

employs the ROC curve, is that the alarm criteria were first derived from actual earthquakes and then 380 

reapplied to predict the same earthquakes. The problem with the Le et al. (2011) statistical 381 

evaluation, which assessed the TEC anomalous day rates in the periods preceding the analyzed 382 

earthquakes, is that the assessment did not consider the fact that the variations in the anomalous day 383 
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rate increase as both the period and total number of earthquakes evaluated become smaller. 384 

Therefore, the statistical significance proposed by Liu et al. (2018) and Le et al. (2011) cannot be 385 

considered conclusive evidence that the observed TEC variations are influenced by pre-earthquake 386 

processes.  387 
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