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Abstract

Precise modeling of surface water quality requires transport theory consistent with observed data. Efforts to achieve model

fits to river tracer test breakthrough curves (BTCs) have led to different approaches to the one-dimensional modeling of river

corridor transport at the macroscale. The memory function model form practically generalizes most current approaches including

the transient storage (TSM), multirate mass transfer, decoupled continuous time random walk, and time-fractional advection

dispersion models. An alternative formulation of the memory function approach is the phase exposure-dependent exchange

(PhEDEx) model, which is the TSM model that includes residence-time dependence of the rate coefficient for mass exchange

from the hyporheic zone to the river. Using temporal moment analysis and numerical simulations, we explore the general

consistency of the PhEDEx model with observed BTC data. With this approach the moments of the memory function can

be estimated without requiring any prior information about the memory function form. We also examine means of estimating

river/transport process parameters using the results of temporal moments analysis. The results show the failure of the PhEDEx

model, and therefore the memory function approach, in capturing in particular the observed constancy of the BTC coefficient of

skewness (CSK). The temporal moments equations can be applied as a useful tool to estimate some river/tracer test parameters

such as the ratio of HZ cross-sectional area to the main flow cross-sectional area, which are time/cost consuming to measure.

The applications of the analyses are demonstrated with some case studies.
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Consistency of Modeled vs. Observed Scaling of Temporal Moments of River Tracer Test Breakthrough Curves.
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Is residence time in the hyporheic zone a good 

representative variable for river corridor transport 

that can give a constant CSK?
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Moments Analysis:
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Numerical Solutions:

Explicit Finite Difference 
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Motivation:
All previous 1-D river corridor models 

predict a CSK that drops with transport 

distance (~x-1/2) while the data all show a 

constant CSK1. Therefore, there is a need to 

revise the theory of solute transport to be 

consistent with the data set.

Plain Language Schematic
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Numerical Solutions Results:

a)
b)

c)

Fig 4. Numerical simulation plots: a) the comparison of Schmid 

(2003)4 figure 1 curves with the simulations of TSM and Gamma 

memory function form, b) the comparison of Sturt river data of 

McCallum et al., (2020)5 with the simulations of TSM and Gamma 

memory function form, c) the comparison of TSM analytical 

solutions of Lassey (1988), TSM numerical simulations, and 

numerical simulation for Gamma memory function form for 

concentration profiles at two different times

Following the path of Luo et al., (2008)3:

• All models deliver temporal moments of BTCs such 

that

But data show CSK ~ constant!

• Like all previous models, PhEDEx/Memory 

function cannot give a constant or adjustable CSK

• The moments' analysis gives the capability of 

getting moments of memory function without 

requiring information about its form.
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Like all previous 1-D river corridor models, 

PhEDEx/Memory function deliver temporal moments

of BTCs such that

But data show CSK ~ constant!
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