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Abstract

Earth system models (ESMs) and mesoscale models have come to employ increasingly complex parameterization schemes for

the atmospheric boundary layer (ABL), requiring surface boundary conditions for numerous higher order turbulence statistics.

Of particular interest is the potential temperature variance (PTV), which is used not only as a boundary condition itself but

also to close boundary conditions of other statistics. The existing schemes in ESMs largely rely on the assumptions of Monin-

Obukhov similarity theory (MOST), and are not necessarily applicable over complex and heterogeneous surfaces where large

scale circulations and roughness sub-layer effects may cause deviations from MOST. The National Ecological Network (NEON)

is used here to evaluate existing parameterizations for the surface boundary of PTV, note key deficiencies, and explore possible

remedies. The results indicate that existing schemes are acceptable over a variety of surface conditions provided the analysis of

a priori filters out low frequency variability not associated with turbulent time scales. There was, however, significant inter-site

variability in observed similarity constants and a significant bias when compared to the textbook values of these parameters.

Existing models displayed the poorest performance over heterogeneous sites, and rough landscapes. Attempts to use canopy

structure and surface roughness characteristics to improve the results confirmed a relation between these variables and PTV,

but failed to significantly improve the predictive power of the models. The results did not find strong evidence indicating that

large scale circulations caused substantial deviations from textbook models, although additional analysis is required to assess

their full impacts.
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Key Points:7

• Models of potential temperature variance in the surface layer based on similar-8

ity theory were evaluated using data from 39 varied sites9

• Existing schemes perform well across most surfaces, although the data shows a10

significant bias in the values of the similarity constants11

• Canopy structure and surface heterogeneity drive a large portion of inter-site vari-12
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Abstract14

Earth system models (ESMs) and mesoscale models have come to employ increas-15

ingly complex parameterization schemes for the atmospheric boundary layer (ABL), re-16

quiring surface boundary conditions for numerous higher order turbulence statistics. Of17

particular interest is the potential temperature variance (PTV), which is used not only18

as a boundary condition itself but also to close boundary conditions of other statistics.19

The existing schemes in ESMs largely rely on the assumptions of Monin-Obukhov sim-20

ilarity theory (MOST), and are not necessarily applicable over complex and heteroge-21

neous surfaces where large scale circulations and roughness sub-layer effects may cause22

deviations from MOST. The National Ecological Network (NEON) is used here to eval-23

uate existing parameterizations for the surface boundary of PTV, note key deficiencies,24

and explore possible remedies. The results indicate that existing schemes are acceptable25

over a variety of surface conditions provided the analysis of a priori filters out low fre-26

quency variability not associated with turbulent time scales. There was, however, sig-27

nificant inter-site variability in observed similarity constants and a significant bias when28

compared to the textbook values of these parameters. Existing models displayed the poor-29

est performance over heterogeneous sites, and rough landscapes. Attempts to use canopy30

structure and surface roughness characteristics to improve the results confirmed a rela-31

tion between these variables and PTV, but failed to significantly improve the predictive32

power of the models. The results did not find strong evidence indicating that large scale33

circulations caused substantial deviations from textbook models, although additional anal-34

ysis is required to assess their full impacts.35

Plain Language Summary36

Modern models of the lower atmosphere, which are used to analyze climate change37

and weather, resolve increasingly complex characteristics of the turbulence in the atmo-38

sphere. An estimate for the value of many of these characteristics at the land surface is39

required to set boundary conditions for these models. An important boundary condi-40

tion is the variance of very small temperature fluctuations that occur in the atmosphere41

due to turbulence. Currently, model estimates for these values assume the surface is flat42

and its characteristics do not change in space, which doesn’t represent many of the con-43

ditions we wish to model over the earth. In addition, existing studies tend to only an-44

alyze data from a small number of locations. We analyzed data from a network of 39 sites45

and found that the current estimates work fairly well across a large variety of conditions,46

but that there is a bias in the constants often used and there are notable differences over47

forests, complex surfaces, and heterogeneous terrain. There is a clear relationship be-48

tween surface characteristics such as tree canopy height and performance of the model,49

however it was not clear enough to improve our ability to predict the surface boundary50

condition.51

1 Introduction52

The atmospheric boundary layer (ABL) plays a fundamental role in the climate53

system due to its significance in bridging land surface fluxes of heat and water vapor to54

convection and cloud formation (Siqueira et al., 2009; Huang & Margulis, 2010; Garratt,55

1992). The ABL is characterized by the coexistence of mechanically and thermally gen-56

erated turbulence, which regulate mixing and transport properties and exchanges between57

the land surface and the lower atmosphere. The variances of turbulent quantities are of58

particular interest due to their emerging role in state-of-the-science Earth System Mod-59

els (ESMs) and numerical weather prediction. They have accordingly received attention60

in the literature, although most of these studies have focused on the velocity variances.61

Comparatively few examine the potential temperature variance (PTV) and those that62

do often focus on flat homogeneous terrain (Albertson et al., 1995; Asanuma & Brut-63
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saert, 1999; G. G. Katul & Hsieh, 1999; Mironov & Sullivan, 2016; van de Boer et al.,64

2014; Maronga & Reuder, 2017; Otić et al., 2005; Antonia et al., 1981; D. Li et al., 2016;65

Monji, 1973; Champagne et al., 1977; Kiely et al., 1996). Traditional boundary layer schemes66

in ESMs employed first-order or 1.5-order closure schemes (Cohen et al., 2015; Lock et67

al., 2000), although increasingly many higher order schemes that resolve PTV prognos-68

tically throughout the ABL are now in use, such as the Cloud Layers Unified by Bino-69

mials (CLUBB) scheme in the Community Earth System Model (CESM) and the En-70

ergy Exascale Earth System Model (E3SM) (Larson, 2017), the Mellor-Yamada-Nakanishi-71

Niino model (MYNN) implemented in the meso-scale Weather Research and Forecast-72

ing model and the Model for Interdisciplinary Research on Climate (MIROC) (Nakanishi73

& Niino, 2009), and the intermediately prognostic higher-order turbulencce closure (IPHOC)74

implemented in the Community Atmosphere Model, version 5 (Cheng & Xu, 2015). How-75

ever, less attention has been placed on the surface boundary condition of PTV of these76

schemes despite their use in the aforementioned models and the fact that many higher77

order terms are closed based this temperature variance.78

The specification of the lower boundary conditions in such schemes utilize Monin-79

Obukhov Similarity Theory (MOST) that rests on the assumptions of stationary and pla-80

nar homogeneous, high Reynolds number flow in the absence of subsidence (Monin &81

Obukhov, 1954). For these idealized conditions, the turbulent fluxes are assumed to be82

invariant with distance from the boundary and all flow statistics can be reduced to a set83

of universal curves that vary with the atmospheric stability parameter (Foken, 2006).84

Currently, one of two parameterization schemes, both consistent with MOST (Tillman,85

1972; J. Wyngaard & Coté, 1971) for unstable atmospheric conditions are used in ESMs86

and are given by87

θ′2

T 2
∗

= a(1− bζ)−2/3, (1)88

and89

θ′2

T 2
∗

= C1(−ζ)−2/3, (2)90

where θ′ is the fluctuating potential temperature, overline indicates time-averaging over91

a period that is sufficiently long to reliably capture the ensemble statistics of turbulence92

but short enough relative to variations in the mean state of the ABL, a, b, and C1 are93

similarity constants, ζ is the atmospheric stability parameter defined as94

ζ =
z − zd
L

, (3)95

with zd being the zero-plane displacement height, z is the measurement height and L is96

the Obukhov length (Obukhov, 1946) given by97

L = − u3∗θv

kgw′θ′
, (4)98

where k = 0.4 is the von Kármán constant, g is the gravitational acceleration, u∗ is the99

friction velocity, θv is the mean virtual potential temperature, w′θ′ is the kinematic tur-100

bulent sensible heat flux, and w′ is the turbulent vertical velocity. Unstable atmospheric101

stability conditions is defined by ζ < 0 whereas near-neutral atmospheric stability con-102

ditions occurs when |ζ| < 0.05. The T∗ is the non-dimensional temperature scale de-103

fined as104

T∗ =
w′θ′

u∗
. (5)105

Equations (1) and (2) converge as near-convective conditions (−ζ � 1) are ap-106

proached resulting in ab−2/3 = C1. For these conditions, the turbulent heat flux can107
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be linked to σT =
√
θ′2 through the well known flux-variance expression (Tillman, 1972)108

w′θ′ = C−31 [kg(z − zd)]1/2θv
−1/2

σ
3/2
T . (6)109

This expression suggests that sensible heat only depends on σT and (z − zd) in-110

dependent of u∗ as expected when convective conditions are approached. For near neu-111

tral conditions with u∗ > 0 and ζ → 0, equation (1) ensures σT
T∗
→
√
a whereas equa-112

tion (2) suggests that σT is indeterminate by MOST. The two-third scaling is fixed for113

the purposes of this study - a reasonable assumption as it matches the logical, dimen-114

sional limits of free convection.115

The ‘textbook’ similarity constants estimated in the literature are a = 4, b = 8.3,116

and C1 = 0.95. These values were initially derived from experiments over flat, homo-117

geneous wheat stubble in Kansas and confirmed by other studies over similarly homo-118

geneous and largely flat terrain (Tillman, 1972; J. Wyngaard & Coté, 1971; J. C. Wyn-119

gaard & Coté, 1974; Andre et al., 1978; Albertson et al., 1995; Haugen et al., 1971; Monji,120

1973). This lends some support to their supposed universal character. However, MOST121

is not readily generalizable for application in ESMs over more realistic landscapes, tall122

forests and a variety of atmospheric conditions such as those associated with significant123

entrainment and mesoscale phenomenon (Kroon & de Bruin, 1995; Asanuma & Brut-124

saert, 1999; Lloyd et al., 1991; Hang et al., 2018; Mcnaughton, 2006; van de Boer et al.,125

2014; Wilson, 2008; Harman, 2012; Brunet, 2020; Q. Li et al., 2018). Previous literature126

examining the scaling relation between ζ and non-dimensional flow statistics has focused127

on conditions that satisfy the assumptions of flat uniform surfaces so that the univer-128

sal character suggested by MOST can be readily tested (Kader & Yaglom, 1990). How-129

ever, comparatively less research has been carried out over non-idealized terrain. These130

few studies have found that MOST derived functions may not hold over surfaces such131

as sparse and open canopies and heterogenous surfaces (Lee, 2009; Kroon & de Bruin,132

1995; van de Boer et al., 2014; Hang et al., 2018; Detto et al., 2008). Few studies have133

consistently examined PTV across a wide variety of land cover types (G. Katul et al.,134

1995). The latter study suggested that local similarity may still hold (i.e. a local T∗ and135

L can explain the mathematical form of PTV) provided the similarity coefficients (e.g.136

C1) are allowed to vary with land cover type. Despite these issues raised, the use of MOST137

scaling over various landscapes is widespread in ESMs that require it (Nakanishi & Ni-138

ino, 2009; Larson, 2017; Zhao et al., 2018; Golaz et al., 2019, 2002; Cheng & Xu, 2015).139

To explore PTV in the atmospheric surface layer across differing landscapes and a wide140

range of atmospheric conditions, observations covering many ecosystems and canopy struc-141

tures with appropriate parameterizations are becoming necessary and motivates the present142

work.143

Since these parameterizations were developed, there has been a significant growth144

in the availability of data across differing surfaces that can be used to re-examine MOST145

parameterizations. One example is the National Ecological Observation Network (NEON).146

NEON is a continent-scale network where high frequency (20 Hz) velocity and air tem-147

perature fluctuations are sampled in a consistent manner (i.e. same instrumentation, rel-148

ative heights, pre- and post-processing algorithms, etc..) over 39 sites that vary in cli-149

mate and land-cover across the United States. Hence, the NEON high frequency data150

set offers a unique opportunity to explore these similarity relations over many land cover151

types (ideal and non-ideal) and ζ conditions. Using this information, it is possible to ex-152

plore validity and modifications to the traditional MOST PTV parameterizations. The153

initial focus spans near-neutral to unstable stratification (ζ < 0), where the turbulence154

is fully developed. Stably stratified conditions are characterized by a shallow boundary155

layer depth and are infected with numerous non-turbulent phenomena that will require156

a separate investigation that is better kept for a future study.157

With this large data set, the time is ripe to revisit and reevaluate traditional schemes158

for PTV in light of these contemporary needs of ESM. In doing so, the focus is on two159

–4–



manuscript submitted to JGR: Atmospheres

deviations from the assumptions of MOST. The first is mesoscale phenomenon and outer-160

layer eddies that impinge onto the atmospheric surface layer, potentially introducing ad-161

ditional length scales not captured by ζ. The second is roughness sublayer effects, es-162

pecially over forests or other forms of structured heterogeneity, which is not included as163

part of MOST. This study seeks to quantify the significance of the distortions from both164

mesoscale and roughness sublayer effects on equations (1) and (2), and examine if such165

distortions can be partly absorbed in the parameters a and b (or C1). The approach that166

follows takes advantage of the wealth of data provided by NEON as well as remotely sensed167

sources, and the Random Forest (RF) method, which is a machine learning method able168

to classify the significance of surrogate terms such as boundary layer height, land cover169

type, canopy height, and other ancillary variables on θ′2/T 2
∗ .170

2 Data171

The core turbulence data are publicly available from NEON and includes the tur-172

bulence statistics (w′θ′, θ′, u∗), meteorological variables (mean temperature, humidity173

and wind speed), as well as site specific information (hc, tower characteristics). Addi-174

tional information from remotely sensed datasets and reanalysis data (see Table 1) colo-175

cated with the NEON site data are used in predictive models that seek to link environ-176

mental variables and land surface features to PTV.177

2.1 National Ecological Observation Network178

The NEON sites are located within the continental United States (CONUS), Alaska,179

Hawaii and Puerto Rico. Sites are centrally managed and designed, which means that180

sampling and post-processing high frequency data are consistent, and differences can be181

attributed to site characteristics rather than differences in management, methods and182

instrumentation as is the case for other locally managed flux tower networks such as FLUXNET183

or AmeriFlux (Novick et al., 2018). Moreover, the high frequency time series spanning184

several years are publicly available thus enabling the determination of variances and heat185

fluxes in a coherent manner when post-processed. Sites are also spread across different186

ecological domains to ensure coverage of the different landscapes and ecosystems in North187

America.188

Each site includes a full suite of meteorological instrumentation, eddy covariance189

measurements from a CSAT-3 sonic anemometer recording a 20 Hz and time averaged190

to 30 min, and mean wind profiles throughout the canopy and above it, compiled into191

one dataset (National Ecological Observatory Network (NEON), 2021). Data is exam-192

ined from first availability at each site, which varies by tower but is generally in mid 2017,193

to May 2020. Towers at sites with a canopy less than three meters are designed to be194

8m tall, whereas towers at sites with a canopy greater than three meters are designed195

to have a height corresponding to zd+4(hc−zd), with canopy height hc, to ensure that196

the turbulence exchange assembly samples largely above the momentum roughness layer197

(Metzger et al., 2019). In addition, detailed canopy structure at each site is acquired through198

near-annual airborne remote sensing surveys with discrete and full waveform LiDAR. Soil,199

vegetative and meteorological characteristics are described and continuously collected200

when appropriate at each site. Only the 39 CONUS sites are included in this analysis.201

For illustrative purposes, eight representative sites were selected as examples of site202

level differences throughout the study. Wind River Experimental Forest (WREF) - a tall203

evergreen forest in the Pacific Northwest, Northern Great Plains Research Laboratory204

(NOGP) - a flat grassland site in North Dakota, Bartlett Experimental Forest (BART)205

- a mixed deciduous evergreen forest in New England, Soaproot Saddle (SOAP) - a conifer206

forest with complex terrain in the Sierra Nevada mountains, Oak Ridge National Lab207

(ORNL) - a deciduous forest with some pine in Appalachia, Santa Rita Experimental208

Range (SRER) - a semiarid scrub environment site in the Sonoran Desert, Konza Prairie209
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Table 1. Summary table of the remotely sensed data and reanalysis products used in this

project with their native spatial and temporal resolution as well as the source of the data

Variable Spatial Resolution Temporal Resolution Source

LAI 250 m 8 days MODIS
fveg 250 m 1 year MODIS
ftree 250 m 1 year MODIS
fbare 250 m 1 year MODIS

Land Cover 30 m N/A NLCD (Landsat)
BLH 30 km 1 hour ERA 5 Reanalysis
fcloud 30 km 1 hour ERA 5 Reanalysis
CAPE 30 km 1 hour ERA 5 Reanalysis

Biological Station (KONZ) - a pristine prairie site in Kansas, and Disney Wilderness Pre-210

serve (DSNY) - a wetland site in the headwaters of the everglades.211

2.2 Remotely Sensed Data212

Three satellite remote sensing datasets are collocated with the NEON site data to213

complete a full coverage of vegetation and land cover at each site. This data, as well as214

reanalysis data discussed in section 2.3, are summarized in Table 1.215

Two MODIS derived satellite products are used including MODIS Leaf Area In-216

dex (LAI) (Myneni et al., 2015), which is reported at about 250m resolution every 8 days.217

The site is assigned the LAI of the grid cell in which the tower is contained, and linear218

interpolation is used to determine LAI for days in which MODIS LAI is unavailable. MODIS219

Vegetative Continuous Fields (VCF)(DiMiceli et al., 2015) includes measurements of veg-220

etation cover at about 250m resolution on a yearly basis, with linear interpolation used221

to fill in gaps. Similar to MODIS LAI, MODIS VCF at each site for each point is assigned222

based on the VCF of the grid cell in which the tower is contained. The VCF product de-223

tails low lying vegetation cover (fveg), tree cover (ftree), and bare soil coverage (fbare)224

percentages around each site. These products provide basic information about the veg-225

etation structure.226

The National Land Cover Dataset (NLCD), a Landsat derived product defining the227

land cover at 30m pixels over CONUS (Jin et al., 2019), is the third remote dataset em-228

ployed. Fractional coverage of each landcover type within a 250m radius from the tower229

location is computed for each site, as well as the dominant NLCD land cover type.230

2.3 Reanalysis Data231

ERA5 (Hersbach et al., 2018) is a reanalysis dataset that combines historical ob-232

servations and modelling results to generate hourly data of a variety of land surface and233

atmospheric characteristics. For this analysis, the boundary layer height (BLH), total234

cloud cover (fcloud) and Convective Available Potential Energy (CAPE) are used to in-235

clude the impacts on mesoscale phenomenon using commonly reported variables in the236

meteorological community. BLH is selected as the depth of the boundary layer is closely237

related to thermal convection strength and the size of some circulations are closely re-238

lated to this value. fcloud is used as it may also serve as a proxy for deep convection and239

identification of cloudy conditions that could impact temperature statistics. CAPE is240

chosen as it is related to updraft and general convection strength in the atmosphere.241
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3 Methods242

Turbulence statistics as directly acquired from NEON includes variance informa-243

tion from non-turbulence sources whereas models such as CLUBB focus on variances pro-244

duced by turbulent eddies. A filtering process is required to remove non-turbulent events245

(and lack of stationarity) before they can be used for analysis. In addition, computed246

zd is required for the tower area, as values reported by NEON are suspect and represent247

the physical characteristics of the entire ecological site rather than the local tower foot-248

print. These values are needed to assess the influence of surface roughness on the devel-249

opment of turbulence. One method of analysis to be used is the Random Forest (RF)250

method, which is employed to determine what physical and environmental characteris-251

tics are most significant for the development of variance without constraints imposed by252

similarity theory and concomitant dimensional analysis.253

3.1 Filtering254

One of the key assumptions for MOST parameterizations is the stationarity of the255

temperature time series. The data for the majority of atmospheric conditions at each256

site are not strictly stationary. Any computed temperature variance value captures vari-257

ance associated with turbulent eddies and meso-scale disturbances as well as non-stationarity258

found at transitions from night to day and vice-a-versa. To fulfill the requirement of solely259

including PTV caused by turbulence as required by ESMs, a high pass filter with a cut-260

off time scale of 5 min is applied to the high frequency air temperature time series in the261

Fourier domain. An example application of the high pass filter is featured in figure 1.262

Time scales exceeding 5 minutes in the air temperature spectra are assumed to be not263

associated with turbulent eddies produced by mechanical or buoyant production near264

the surface. In fact, the choice of 5 minutes exceeds by at least one to two orders of mag-265

nitude measured peaks in the co-spectra of w′ and θ′ or the shear time scale k(z−zd)/u∗266

linked with MOST. These events do not significantly impact turbulent sensible heat flux267

but contribute appreciably to temperature variance. For some points the filtering resulted268

in reductions of variance of up to 50%, however for the majority of the points the change269

in variance was near negligible. Alternative filter cutoffs greater and less than 5 minutes270

were examined and the variances were found to have only a very small sensitivity to the271

exact cutoff value. The remainder of the analysis presented herein uses the filtered tem-272

perature variance.273

3.2 Canopy Structure Determination274

While NEON does report site level hc and zd, which is directly estimated from hc275

and required for the analysis, these values appear to be reported as averages for the whole276

ecological site and not the direct tower area, windshed, or source weight function. Re-277

ported zd in particular appear to deviate significantly from experimentally derived val-278

ues at a number of sites, and since they are constant they do not reflect seasonal changes279

in canopy, in particular over deciduous forest. zd also is estimated simply as zd = (2/3)hc,280

which while a good rule of thumb is not always accurate. As such, the zd is estimated281

here from measured mean wind profile data (u(z)) assuming a log wind profile and that282

u∗ is approximately constant with z (as required by MOST). We apply the following us-283

ing the top three points in the mean wind profile under near-neutral conditions so that284

the stability correction terms can be ignored (Oke, 1987)285

du

dz
=

u∗
k(z − zd)

. (7)286

The resulting heights are seasonally averaged at each site and then interpolated for use287

in the computation of ζ via (3). The resulting zd, seen in figure 2, approximately follow288

the 2/3 relation reported in the literature (Garratt, 1992) over most sites. This relation,289

however, is less clear at a number of sites with short vegetation. This deviation may not290
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Figure 1. Illustration of filtering to reduce the effects of non-stationarity. Top row shows the

raw unfiltered time series for one 30-minute run (left) and the same data after the high pass filter

was employed where the nonlinear trend is removed (right). The second row shows the raw unfil-

tered data for another 30-minute run (left) and the same data after the high pass filter where the

approximate linear trend is removed (right). Dotted lines are the actual data, and the solid line is

the 1 minute average value. The bottom plot illustrates the change in over a one-month period at

the ABBY site from the unfiltered NEON product and the filtered data
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Figure 2. Comparison of NEON reported canopy height (hc) and mean calculated zero plane

displacement height from equation (7) (zd). Colored according to the dominant land cover type

at each site. Dotted line represents zd = (2/3)hc relations.

be surprising. A basis for the zd = (2/3)hc relation stems from an exponential mean291

velocity profile characterized by an extinction coefficient ac > 1 inside the canopy as292

derived from a constant mixing length hypothesis for the turbulent eddy diffusivity (Raupach293

& Thom, 1981). These arguments, when combined with the drag-force centroid method294

to estimate zd for (i) constant drag coefficient and leaf area density and (ii) rigid, tall295

and dense canopy yield296

zd
hc

= 1− 1

2ac
= 1− 1

2

Ls
hc
, (8)297

where Ls = u/(du/dz) evaluated at z = hc is known as the canopy shear length scale.298

For the flow near the canopy top to behave as ’mixing layers’ requires an inflection point299

in the mean velocity profile at z/hc = 1 (Raupach et al., 1996). This condition leads300

to a constraint on 1/2 < Ls/hc < 1 thereby bounding zd/hc to be between 1/2 and301

3/4. All these assumptions (i.e. rigid, tall and dense canopy, constant mixing length within302

the canopy, etc..) break down for short and sparse canopies (Poggi, Porporato, et al.,303

2004) as evidenced by the near independence between zd and hc in Figure 2 for short304

hc.305

3.3 Quality Assurance and Quality Control306

To ensure that the data are both of high quality and readily applicable, a number307

of quality assurance steps are applied: (1) All points that fail NEON quality assurance308

for air temperature are removed, (2) data where the reported energy balance has a resid-309

ual greater than 20% are removed, as large residuals indicate high likelihood of signif-310

icant advective fluxes and thus complicate the analysis (Mauder et al., 2020). The 20%311

threshold was selected to preserve as much data as possible for site-by-site analysis, and312
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no significant difference in data quality or observed trends was noted when tightening313

this threshold further. (3) All data points with ζ > 0 are removed as uncertainties in314

this range are high, data availability is relatively low, and this is not the intended focus315

of the study. (4) Periods with non-negligible precipitation are removed. (5) Any site which,316

after all previous quality control is applied, retains less than 100 half-hourly runs are re-317

moved. Quality control retained just over 32,000 half-hourly runs across 39 NEON sites,318

roughly equivalent to about 2 site-years at 30-min averaging.319

3.4 Random Forest (RF) Method320

The RF method is used to generate an initial data-driven alternative model to equa-321

tions 1 and 2 with no regards to dimensional constraints as required by similarity the-322

ory. This allows us to examine empirically impacts that various environmental predic-323

tors not present in current MOST based formulations might have on the development324

of PTV. The RF is a machine learning method that uses ensemble decision trees for pro-325

ducing a regression, with each decision tree run using a random subsample of the data326

to generate the model (Breiman, 2001). Data are randomly split into testing (10%) and327

training (90%) datasets for RF as well as other fitting analysis. Accuracy is evaluated328

primarily using normalized root mean squared error (nRMSE). From the results of the329

model, we extract feature importance, a measure of which predictors play the largest role330

in the model fit. In this case, high feature importance indicates that the value of a given331

predictor is essential for describing and predicting PTV using the RF method. We have332

elected to use sensible heat, ζ, and u∗ due to their role in MOST. Tree cover fraction,333

bare soil fraction, vegetative fraction, LAI, and effective drag Cd = [u∗/u(z)]2 are used334

to potentially represent canopy structure and roughness effects. BLH, CAPE, and cloud335

cover fraction are selected due to their relation with mesoscale phenomenon and large336

scale eddies.337

4 Results338

The analysis begins with basic examination of the data across all sites. These are339

summarized as comparisons between σT and the environmental predictors presented in340

section 3.4, followed by analysis of the diurnal cycle of sensible heat and σT . The data341

are then compared to the curves of (1) and (2). Analysis continues focused on explor-342

ing site level differences, first with RF over the entire dataset as well as individually for343

each site. A bar plot showing the relation between predicted and observed at each site344

is then featured to illustrate differences between land cover types. The final section of345

the analysis focuses on evaluating potential model improvements leveraging the results346

in the previous sections. The observations are compared to Equations 1 and 2 with up-347

dated parameter values selected through curve fitting. This comparison is shown over348

both the overall dataset and a select few sites. Finally, select parameterizations of the349

b parameter in (1) based on a variety of metrics that represent canopy structure are pre-350

sented, evaluated, and compared to traditional formulations.351

4.1 Holistic Exploration352

The data from the remotely sensed products and NEON were merged and then qual-353

ity controlled as described in section 3.3. Figure 3 presents a comparison between σT and354

collocated environmental and meteorological data. The results show a clear relation be-355

tween PTV and sensible heat flux H = ρCpw′θ′ where ρ is the mean air density and356

Cp is the specific heat capacity of dry air at constant pressure as well as ζ and to a lesser357

extent effective drag Cd. In addition, some patterns seem apparent with LAI and BLH.358

Other environmental variables not included in figure 3 have no significant relation with359

PTV. For H, there appears to be a family of curves rather than one defined shape, im-360

plying some additional parameter is influencing that relation. Effective drag, similarly,361
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Figure 3. Relation between environmental variables and σT across all sites. The resulting

scatterplots are binned into small hexagons; the colors illustrate the concentration of points in

each hexagon where blue is low and yellow/brown is high.

has two families of curves, with the larger effective drag values arising primarily from362

forested sites.363

The diurnal cycles of PTV and H are plotted in figure 4. In the four forested sites,364

the raio of H relative to σT is higher when compared to the four low lying sites, already365

suggestive of the importance of site level difference. Figure 4 is also illustrative of the366

differences between unfiltered and filtered PTV, with the change being most significant367

in the mornings when sensible heat flux is small but rapid changes in mean air temper-368

ature would artificially inflate the apparent PTV caused by turbulence only.369

The data covers a range of stability conditions in the near neutral and unstable range,370

as indicated in figure 5a. The shape of the data generally follows expectations from MOST371

with an extensive ζ−1/3 scaling (Tillman, 1972) in figure 5b in the unstable range, al-372

though in the near neutral range this is less clear. Similarly, in figure 5a, there is some373

deviation from the established formulation in equation (1), especially as ζ increases in374

magnitude. Comparing equations (1) and (2) directly to the data show significant er-375

rors. Equation (1) has an nRMSE of 21.5% and a 1% bias, although the bias in equa-376

tion (1) is deceptive as the model has significant negative bias at low values and a pos-377

itive bias at larger values. Equation (2) performs significantly worse over that range, with378

an nRMSE of 27.6% and a bias of 15%.379
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Figure 4. The diurnal cycle of sensible heat flux (H), filtered (red-dashed) and unfiltered

(orange-dashed) σT for 8 selected sites, with their locations indicated on the central map of

CONUS.

Figure 5. a(left): Relation between the dimensionless standard deviation of potential temper-

ature σT /T∗ and the stability parameter ζ for the data with the modeled values from Equation

(1) in black and Equation (2) in red. b (right): Relation between the dimensionless standard

deviation of potential temperature and (−ζ)−1/3. The resulting scatterplots in both panels are

binned into small hexagons; the colors illustrate the number of points in each hexagon where blue

is low and yellow/brown is high.
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Figure 6. a (left): The feature importance from the random forest on the aggregate dataset

sorted by overall importance. b (right): Results of the site level random forest feature impor-

tance. Violin plot shows distribution of site level feature importance for each predictor

4.2 Site by Site Comparison380

Random Forest provides a first pass at the potential to improve upon the model381

when noting deviations from the data in figure 5. RF does perform significantly better382

than either model with nRMSE of 13.4% and a bias of less than 0.1%, although com-383

putational constraints prevent its use in ESMs. The feature importance provides dynam-384

ically interesting results as can be seen in figure 6. Sensible heat flux dominates the de-385

termination of PTV as expected from flux variance literature. The relative unimportance386

of friction velocity is also consistent with equation (2) and with equation (1) when the387

magnitude of ζ is large. The high importance of ftree may be consistent with the results388

in figure 4 as well, further indicating that tree cover has a significant impact on the re-389

lation between sensible heat flux and PTV. Somewhat surprising is the relatively low im-390

portance for ζ. Although it is notable that since ζ is a function of H and zd, which is391

related to canopy height, a significant portion of the stability effect may be captured by392

these two aforementioned variables.393

The results shown in figures 3, 4, and 6 all indicate the possibility of variable curves394

for each site in the network. RF was run again, separately, for each individual site to ex-395

amine these possible relations and remove any attempts by the algorithm to use a pre-396

dictor as a proxy for the site. The violin plot in figure 6 shows the distribution of the397

feature importance of each predictor across sites. When examined site by site,H is an398

even more dominant predictor for PTV. The stability parameter becomes the second most399

important indicator, consistent with preexisting MOST formulations, although again it400

is small when compared to sensible heat flux.401

When further exploring site level differences, key patterns begin to emerge. When402

comparing the PTV predicted by equation 1 and the PTV observed at each site, there403

is a significant variability in the slope of the best fit line of the data, which would ide-404

ally sit at 1 indicating close agreement between the observations and the model. Figure405

7 illustrates how that slope changes site to site and with land cover type. Sites with slopes406

close to 1 are generally flat, homogeneous, and dominated by low lying vegetation, which407

is the ideal landscape for MOST, and matches the landscapes where the values of the408

parameters a, b and C1 were originally derived. Forested sites however, especially those409

with significant heterogeneities, have slopes significantly higher than 1, indicating that410

the pre-existing model underpredicts PTV at low values and overpredicts PTV at high411

values. LENO, SJER and SOAP in particular are all sparsely forested sites with signif-412

icant open water at LENO, an oak savannah at SJER, and sparse evergreens with vary-413
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Figure 7. Bar plot showing the best fit slope between the observed and predicted temperature

variance at each site using equation 1. Normalized RMSE is also listed in red above each bar.

Site bars are colored by the dominant NLCD land cover

ing topography at SOAP. In addition, it is notable that ABBY is a logging site, so while414

it is classified as evergreen, the actual canopy is quite short, and the tower is located in415

a clearing. Site sensible heat and Bowen ratio were also examined, and can be seen in416

Figures S1 and S2 respectively in the supplementary material, however few trends were417

found outside of poor performance under very low Bowen ratios or sensible heat fluxes.418

4.3 Adjusting Existing Models419

The results in figure (5) show that there is good predictive value in the existing schema,420

but also imply that operational adjustments could yield improvements. An iterative fit-421

ting process was used to determine the optimal values for the constants a, b, and C1 over422

the aggregate data. This global fit resulted in small but non-trivial model improvements423

for equation (1) and equation (2) both in error and bias. Equation (1) after a global fit424

to the data nRMSE changes from 20.5% to 17% while bias remains constant and for equa-425

tion (2) the error is reduced from 27.6% to 18.4% and bias shifts from 15% to -1.4%. These426

values are compared with additional models in Table 2. Figure 8 illustrates how the newly427

fitted curves describe the entire data in two ways: dimensional and dimensionless forms.428

The dimensional form of the comparison was selected because it does not suffer from any429

self-correlation. Self correlation arises here because H impacts both T∗ (ordinate) and430

ζ (abscissa) in the stability correction function, which can lead to spurious agreement431

(especially in the exponent). In dimensional form (left panels 8), the σT is computed from432

measured u∗, H, z, and inferred zd and compared to independently measured σT obtained433

after filtering the high frequency air temperature series. Fitted equation (1) performs434

better than fitted equation (2) though in dimensional form, this difference appears mi-435

nor. This difference becomes clear when the two formulations are assessed by stability436

class and appear to diverge in the near neutral range. In this range, there is much greater437

uncertainty in the values of σT /T∗ (though the variances themselves are small). As T∗ →438

0 but σT remains finite due to entertainment of heat and due to finite signal-to-noise ra-439

tio in the measurements, σT /T∗ becomes ill-defined or suspect in equation (1). Interest-440

ingly, equation (2) suggests that both the left-hand and right-hand side becomes unbounded441

as T∗ → 0, and thus predicts rapid increase in σT /T∗ as |ζ| → 0. While this increase442

in σT /T∗ appears to be consistent with some data sets, it is simply a statement that σT /T∗443

may be ill-defined. As such, we will be focusing our analysis on equation (1) in which444

σT /T∗ is forced to approach a constant and σT maintains its scaling with local sensible445

heat flux. Last, a realizability constraint was also developed (described later) so as to446

illustrate a theoretical lower limit for the applicability of equations (1) and (2). Figure447

8 demonstrates that the majority of the observations (in dimensionless form) as well as448
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Figure 8. (upper left): Comparison between observed and predicted temperature variance

by equation (1) after a global fit (a=7.5, b=34.0) over all sites. (bottom left): Comparison be-

tween observed and predicted temperature variance by equation (2) after a global fit (=.812) over

all sites. Note the comparisons in the left panels do not suffer from self-correlation. (right): the

stability correction function for the non-dimensional temperature variance σ2
T /T

2
∗ . The original

forms of equation (1) (a=4, b=8.3) and equation (2) (=.95) are shown as well as the fitted ver-

sions of both equations. In addition, the limit imposed by the realizability constraint is featured.

The resulting scatterplots in all three are binned into small hexagons; the colors illustrate the

number of points in each bin where blue is low and yellow/brown is high.
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Figure 9. Stability correction function for the temperature variance at selected sites. In red,

the modeled results are plotted for both the original Equation 1 (a=4, b=8.3) and the global fit

Equation 1 (a=7.5, b=34) as well.

the changes in parameter values remain above the line and satisfy this realizability con-449

straint.450

The global fit does not perform universally well at each site, although most sites451

realize some improvements. Figure 9 shows the global fit and original equation (2) over452

select sites as well as scatterplots of the data, similar to the hexbin scatterplot for the453

aggregate data in figure 8c. At three of the sites, ORNL, WREF, and SOAP, the data454

lies largely below both the original equation (1) curve as well as the fitted curve. These455

sites all have significant forest cover, especially compared to the 4 sites where the data456

lies largely above the fitted curve, NOGP, SRER, KONZ and DSNY, which are all flat457

sites with only bare soil or low-lying vegetation. The performance of these site by site458

fits are presented in Table 2.459

These site level differences can also be examined more quantitatively. The fitting460

exercise was repeated, this time doing a separate fit of the b parameter for each site while461

holding a constant. The a is held constant and b is adjusted because under highly con-462

vective conditions, which are the main conditions of interest, b is the dominant param-463

eter whereas a dominates in the more uncertain near-neutral range. After comparing b464

and other environmental predictors, it became clear that there is a close relation between465

a variety of measurements of canopy structure around the tower and the best fit value466

of the b parameter. As shown in Figure 10, there is a clear linear relation between the467

cube root of b and the different measurements of vegetative structure: canopy height,468

leaf area density (LAI/hc), effective drag Cd, z/zd, LAI/zd, and h2c/[(z − zd)2LAI].469
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Figure 10. Scatterplot of the selected predictors at each site on a log scale compared to the

best fit value for the b parameter from equation (1). The points are colored according to the

dominant NLCD landcover type
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Table 2. Summary table of the results of various selections for the parameters of equations 1

and 2 as well as the random forest model. The table includes the normalized RMSEs and normal-

ized biases of the different models for PTV.

Equation 1

Model a b nRMSE nBias

Standard 4 8.3 20.5% 1.4%
Global Fit 7.5 34 17.0% -2.7%

Site by Site Fit 7.5 20-80 15.5% -3.0%

Equation 2

Model C1 nRMSE nBias

Standard 0.95 27.6% 15%
Global Fit 0.812 18.4% 1.4%

Random Forest

Global —— 13.4% < 0.1%

Table 3. Summary of a variety of possible parameterizations of the b parameter in equation (1)

following the form of equation (9)

χ α β nRMSE nBias R2

LAI/hc 0.036 0.289 16.2% -5.0% 0.55
LAI/zd 0.036 0.284 16.3% -4.8% 0.57
z/zd 0.042 0.277 16.7% -3.6% 0.54
Cd -0.047 0.228 16.8% -2.9% 0.46

h2c/[(z − zd)2LAI] -0.024 0.258 16.4% -4.7% 0.52
hc -0.025 0.323 16.5% -3.4% 0.5
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Taking advantage of this relation between b and the various proxies for canopy struc-470

ture around the tower, a linear model was developed for b based on a linear regression.471

Applying the model in Equation (6) to update the parameters in Equation (1) with the472

existing data yields only marginal improvements on the updated Equation (1) based on473

globally fit parameters, as is clear in Table 3. The relation474

b−1/3 = α log(χ) + β (9)475

does suggest that as canopy height increases, b also increases thereby amplifying the mod-476

ulations introduced by ζ that act to reduce the dimensionless temperature variance. Hence,477

it appears that tall canopies make the dimensionless temperature variance more sensi-478

tive to ζ.479

5 Discussion480

5.1 Results Summary and Synthesis481

Overall, the filtered data indicates agreement with MOST based formulations (Tillman,482

1972). While this study emphasizes that there is room for improvement, it is also im-483

portant to note that equation (1) holds even over non-idealized landscapes and atmo-484

spheric conditions despite the fact that the formulation and parameter values were de-485

rived over highly idealized flows. The evaluation of equation (1) over these wide-ranging486

landscapes offers one of the clearest pictures in the literature of its broad applicability487

for understanding PTV at the bottom of the surface layer (provided non-turbulent phe-488

nomenon are filtered). From the results of the random forest, and inspection of figure489

2, it is evident that other local physical and meteorological characteristics that were thought490

to have some influence on the development of PTV in the surface boundary are largely491

unimportant. Heat flux and local stability continue to be the driving factors and can yield492

good predictions for PTV over flat landscapes using the standard parameter values. Based493

on model error analysis, there is additional uncertainty to be captured.494

Numerous studies have shown how parameter values for various local sites can de-495

viate from the global values described in the early literature, however few have proposed496

updates to models used in ESMs as these studies often include only a very small num-497

ber of sites and therefore painted a limited picture of the variety that one can find in the498

field. Site by site fitting to the parameter values indicate that most sites have param-499

eter values larger than those defined in the literature, and only one site was found to have500

parameter values smaller. Since the best fit values of the parameters across landscapes501

do not oscillate around these ‘ideal’ values, but rather are all greater than or equal to502

them, ESMs can benefit from alternative global parameters to cover regions with var-503

ied and heterogeneous canopies. The inter-site best fit parameter variation is quite sig-504

nificant, with best fit values of b ranging from 20 to 80. This suggests that, while global505

parameter values may be useful for broad application, localized studies will benefit most506

from a local, site based empirical fit, especially if they deviate from ideal (i.e. flat, ho-507

mogeneous, short vegetation) surfaces. An important note with respect to these model508

fit values is the role of the filtering process. The filtering process described yielded closer509

agreement to MOST for all of these model fits; unfiltered data overall yields slightly more510

noise and a greater deviation from traditional MOST relations with a larger magnitude511

of bias, but maintains inter site trends with unfiltered data.512

Attempts to use environmental predictors to capture the local variation were only513

marginally successful outside of a random forest model. The RF method detailed sig-514

nificant improvement, and was able to capture most of the inter-site variability based515

on the tree cover fraction. This implies that canopy structure and surface roughness char-516

acteristics are partly responsible for a significant portion of the deviations from ideal con-517

ditions. The RF method, however, is too computationally intensive for application in ESMs.518

As such, there was an attempt to generate a compact model for the b parameter based519
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on environmental variables related to surface roughness and canopy. Of a long list of pos-520

sible predictors to model values of b, the most successful are shown in figure 10. A plau-521

sibility argument for the inclusion of some of these variables to parameterize b may be522

obtained by examining qualitatively the potential temperature variance budget (PTV).523

5.2 PTV Budget: A scaling analysis524

Using index notation, the PTV above the canopy is given by525

1

2

∂θ′2

∂t︸ ︷︷ ︸
I

+
1

2
Uj
∂θ′2

∂xj︸ ︷︷ ︸
II

= −u′jθ′
∂θ

∂xj︸ ︷︷ ︸
III

− 1

2

∂u′jθ
′2

∂xj︸ ︷︷ ︸
IV

− εθ︸︷︷︸
V

, (10)526

where i = 1, 2, 3 indicates longitudinal (x1 or x), lateral (x2 or y), and vertical (x3 or527

z) directions, respectively, repeated indicies imply summation, t is time, and u′i are ve-528

locity fluctuations along direction xi from the mean value Ui. In this budget, term I is529

the local variance storage, which as an outcome of the filtering exercise, can be neglected.530

Term II is advection of PTV by the mean flow. In the analysis here, it is assumed that531

subsidence (U3 = 0) is small and due to the choice of coordinate systems, the mean lat-532

eral velocity is zero (U2 = 0). Term III is the production due to the turbulent heat fluxes533

and mean potential temperature gradients, which we asssume to be driven by the ver-534

tical direction components. Term IV is the turbulent transport term. This term is sig-535

nificant in some cases, but the filtering process used here will remove some portion of536

the non-local heat transport effects captured by this term. Hence, for simplicity, this term537

is momentarily ignored. Term V is the molecular dissipation of PTV, which, along with538

term III, tends to comprise the largest portion of the budget (Champagne et al., 1977;539

Monji, 1973). There are additional terms, not presented here, that represent radiative540

destruction, conductive diffusion and another dissipation term. These terms are gener-541

ally considered negligible near the surface. With these simplifications,542

1

2
U
∂θ′2

∂x
= −w′θ′ ∂θ

∂z
− εθ. (11)543

To proceed further, closure schemes and scaling analyses are needed for the mean ad-544

vection and variance dissipation terms, which are given as545

εθ = Cε,θ
θ′2

τ
;

1

2
U
∂θ′2

∂x
= −Cadv,θ

θ′2

τadv
; τadv =

Lx

U
, (12)546

where Cε,θ and Cadv,θ are closure constants, τ is a relaxation time scale describing how547

long a potential temperature excursion lasts before it gets dissipated by molecular pro-548

cesses, τadv is an advection time scale formed by the local mean velocity at z and a po-549

tential temperature spatial variability integral length scale Lx. This length scale reflects550

imprints of ’near-field’ heat sources from tree crowns or vegetation upper layers not ’blended551

out’ by turbulence within the roughness sublayer above the canopy. When the spatial552

imprint of these heterogeneous heat sources is entirely blended out by turbulence mix-553

ing, Lx →∞. Inserting these closure schemes into the simplified PTV budget and af-554

ter some algebra results in555

θ′2

T 2
∗

= − u∗τ

κ(z − zd)
φh(ξ)

Cε,θ

1(
1− Cadv,θ

Cε,θ
τ

τadv

) ;φh(ξ) = −dθ
dz

κ(z − zd)
T∗

φ∗h(ξ), (13)556

where φh(ξ) is the stability correction function for temperature defined in the roughness557

sublayer defined using a surface layer representation adjusted by φ∗h(ξ), a roughness sub-558

layer modification. The φ∗h(ξ)→ 1 as |ξ| → ∞. As discussed previously, over forested559

terrain and those with high heterogeneity in canopy structure, equations (1) and (2) have560
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a tendency to over predict temperature variance unless the fit is adjusted (in the case561

of C1, a lower value). If the simplified version of the PTV budget is examined, then this562

underestimation emerges from competition between three terms: (i) the finite ratio of563

τ/τadv increasing the normalized PTV, (ii) the role of φ∗h(ξ) ⊂ [0, 1] reducing the nor-564

malized PTV, and (iii) the reduced τ relative to its surface layer value. The Lx is finite565

in the roughness sublayer and may be commensurate with crown size, crown-to-crown566

spacing, and measurement height z (i.e. more blending with increasing z), which may567

explain why z/zd emerges as an explanatory variable to b. Moreover, tree spacing and568

canopy height are indirectly captured by canopy LAI, another variable impacting b. The569

finite Lx here is shown to increase normalized PTV above its surface layer similarity value,570

not reduce it. The two processes that act to reduce the normalized PTV are φ∗h(ξ) and571

τ . The τ = TKE/ε may be smaller than predicted by its surface layer value (∝ (z −572

zd)/u∗), where TKE and ε are the turbulent kinetic energy and its dissipation rate. This573

underestimation of τ arises because of an enhancement of ε near the canopy top rela-574

tive to predictions from extrapolations of the surface layer similarity value (Poggi, Katul,575

& Albertson, 2004). Likewise, roughness layer corrections to φh(ξ) are usually smaller576

than unity, meaning that φh(ξ) in the roughness sublayer must be smaller than its sur-577

face layer counterpart (Garratt & Segal, 1988; Harman, 2012).578

In addition to possible reductions in C1 due to τ , and φh(ξ), deviations from equa-579

tion (1) due to large scale eddies was also proposed as a source of uncertainty. This ef-580

fect is primarily captured by term (IV) in the PTV budget. This term was neglected in581

the analysis here primarily because of the filtering of temperature time series employed582

to minimize the effect of term I (the storage term) and likely have filtered some of the583

very large scale inactive eddies that can contribute to PTV but not T∗. Thus, the effect584

of large-eddies in the ABL is to increase the normalized PTV, not reduce it. Using the585

5-min filtered series in PTV calculations, the RF algorithm here paints an unclear pic-586

ture that neither confirms this hypothesis nor offers a clear refute. Figure 3 shows that587

there is a weak linear relation between BLH and the temperature variance, suggesting588

that when the ABL is large, additional external sources of variance could exist, intro-589

ducing new length scales not represented in MOST for the PTV budget. The relation590

in Figure 3, however, is weak. Figure 6a and 6b also support this weak relation. The three591

predictors included in the RF to represent these effects, BLH, cloud cover fraction, and592

CAPE, all have a feature importance of less than 1%. These three predictors, however,593

do have their limitations and the weak relation shown here does not clearly refute the594

hypothesis. The data comes from a reanalysis product with relatively poor resolution,595

meaning that measurements of these values, particularly BLH are not necessarily reli-596

able. Another important note is the specific selection of time periods where the surface597

energy balance is largely closed. Previous literature indicates that sub-mesoscale circu-598

lations (usually of time scales longer than several minutes) may cause the non-closure599

of the surface energy balance (Mauder et al., 2020), which means that by virtue of con-600

straining the study to a closed energy balance we may be excluding the study periods601

where these circulations would have an impact. Likewise, the removal of time scales longer602

than 5 min may also ameliorate sub-mesoscale circulations. Examining the PTV bud-603

get equations, one could see how advection may increase PTV and the scatter of PTV604

as well if included. Upon initial examination, the data appears to support this hypoth-605

esis with greater observed scatter of PTV, although a more comprehensive analysis is606

outside the scope of this manuscript. Additional studies, with more reliable and locally607

relevant measurements of BLH such as through surface to air LIDAR as well as consid-608

eration of the surface energy balance, are required to adequately assess this hypothesis.609
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5.3 Realizability Constraint610

Equations 1 and 2 must satisfy the realizability constraint requiring that θ′ and w′611

must not be perfectly correlated resulting in the inequality612

σ2
wσ

2
T > (w′θ′)2 = (T∗u∗)

2 (14)613

and614

σ2
w

u2∗

σ2
T

T 2
∗
> 1 (15)615

Paired with the original formulation of equation (1) are equivalent MOST consistent forms616

for σ2
w/u

2
∗ (Andre et al., 1978)617

σ2
w

u2∗
= 1.75 + 2(−ζ)2/3 (16)618

Thus, combining equation (15) and equation (16) we obtain619

σ2
T

T 2
∗
>

1
σ2
w

u2
∗

=
1

(1.75 + 2(−ζ)2/3)
(17)620

Equation (17) is plotted as part of figure 8c, which clearly illustrates that the model621

adjustments proposed do not violate any realizability constraint.622

5.4 Roughness Sub-Layer Effects623

A significant source of concern when analyzing above canopy PTV and how it com-624

pares between grasslands and forested areas is the thickness of the roughness layer for625

heat. It is difficult to ensure that the towers are reporting flow statistics outside of the626

roughness layer and in the inertial layer, where MOST scaling is intended to apply. NEON627

towers are designed to lie above the roughness layer (i.e. in the surface layer), and mean628

wind profiles at the sites indicate that most sites are within the surface layer based on629

momentum considerations. In addition, past studies have indicated that the thickness630

of the momentum roughness layer and a roughness layer for scalar quantities such as po-631

tential temperature and water vapor are not necessarily the same. For scalar quantities,632

the roughness layer can be significantly thicker than those for momentum upon which633

the tower design is based (Raupach & Thom, 1981). If points are indeed interrogated634

inside the scalar roughness sublayer, this could yield significant changes in the values of635

temperature variance as the canopy and surface elements play a greater role in introduc-636

ing variable heat sources and sinks. Related to this is a concern inherent in the design;637

towers over forested sites in NEON are designed as a factor of the canopy height, but638

over low-lying vegetation it is defined as simply a constant 8m. This means that the in-639

strumentation may lie further up in a normalized profile for some of the flatter sites than640

the forested ones, potentially explaining some of the differences between these two cat-641

egories. Initial exploration does show a poor but persistent relation between the ratio642

of tower height to canopy height and the model parameter values. These challenges with643

defining where the instrumentation lies above the canopy, however, is of lesser concern644

for the primary intended application of this study in earth system models, where the rough-645

ness layer is inconsistently defined across different models.646

5.5 Future Work647

A robust evaluation of the primary models of PTV at the surface layer was under-648

taken and avenues for improvements proposed. In addition to the importance of refin-649

ing models over sparse canopies, as discussed in the previous section, exploration of these650
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models and PTV more generally in stable and, to a lesser extent, near neutral atmospheric651

regimes is needed. The model currently assumes that the non-dimensional variance re-652

mains constant with stability, although when exploring the data this became less clear.653

Previous studies have suggested high errors in the near neutral range is a consequence654

of the non-stationarity (Kroon & de Bruin, 1995; J. Wyngaard & Coté, 1971). This ef-655

fect may be partly ameliorated by spectral filtering as shown. Yet, the data scatter at656

the near neutral limit is undisputed. Significant scatter also exists in the mildly unsta-657

ble range, implying that there are issues with the application of MOST under these con-658

ditions that require more work.659

An important limitation to note is that this analysis is all based on one point within660

a tower reading from a flux footprint covering areas on the order of a few square kilo-661

meter. In ESMs, PTV is computed at the tile level which is intended to be representa-662

tive of the landscape level but, depending upon the tower height, can be on a larger scale663

and is an area rather than point measurement. This scaling issue, which to the best of664

the authors knowledge has not been examined previously, may have an impact especially665

when considered in light of circulations and advection of PTV, where tiling schemes may666

fail to be representative of the landscape.667

There are three other avenues of future research that require further exploration.668

First, while this study focused on the case where the energy balance is closed and there669

is no significant advection, unbalanced conditions where sensible heat, latent heat and670

ground heat flux fail to account for the energy balance constitute a large fraction of the671

data. Initial work shows a clear shift in the fit of the data to Equation 1 under these con-672

ditions, with lower best fit parameter values and larger scatter. Unfortunately, explor-673

ing the potential effect of significant advection require model simulations or data not avail-674

able through NEON. The second avenue of future research is examining the analogous675

models for the other primary atmospheric scalar, water vapor. The model assumes that676

temperature and moisture behave similarly, with the same parameter values. Numerous677

studies, as well as initial examination of the NEON data, illustrate that water vapor and678

temperature do not behave identically (G. G. Katul & Hsieh, 1999; Asanuma & Brut-679

saert, 1999; De Bruin et al., 1993; Liu et al., 2021) in the surface layer as previously the-680

orized, and as such an alternative model, or at the very least, alternative values for the681

a and b parameters are needed. Finally, results and previous literature have indicated682

that surface heterogeneity, especially in heating on scales large enough to induce circu-683

lations, can have a significant impact on MOST derived parameterizations such as the684

ones discussed here. A brief examination, not presented here, implies there is a complex685

relation between heterogeneity and temperature variance statistics, and as such addi-686

tional work considering different length scales of surface heterogeneity may indicate new687

directions for improvement and model analysis.688

6 Conclusion689

High frequency time series across 39 similarly instrumented sites covering varied690

landscapes across CONUS were analyzed to assess the validity of existing models for tem-691

perature variance in the surface layer, note key deficiencies and recommend avenues for692

improvement. Results indicated that conventional flux-variance similarity formulations693

are largely corroborated by data in both dynamic-convective and nearly convective cases694

provided non-turbulent features are spectrally filtered out. This filtering reduced the tem-695

perature variance by factors of up to 2 to 3 in some cases when compared to the unfil-696

tered runs. The most significant deviations from standard MOST formulations were ob-697

served over heterogeneous and forested sites. Site by site analysis also revealed bias to-698

wards similarity constants larger than the traditional parameter values used in the lit-699

erature and ESMs. A random forest model illustrated that there is variability not cap-700

tured by the traditional formulations. Results generally indicate that canopy structure,701

surface heterogeneity, and roughness characteristics drive a portion of the inter-site vari-702
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ability, although a dimensional approach was unable to illustrate superior predictive value.703

Future studies will expand this analysis to include situations with non-local energy bal-704

ance closure as well as landscapes with sparse canopies or large surface heterogeneities.705

Water vapor and carbon dioxide concentration, the other primary atmospheric scalars,706

use the same formulation in CLUBB and other models as PTV, although the literature707

shows a difference in behavior. As such, any updated parameter values for temperature708

cannot be applied to other scalars and additional work is required to make similar im-709

provements to their variance fluctuations.710

Open Research711

The ERA 5 Reanalysis data (Hersbach et al., 2018) was downloaded from the Coper-712

nicus Climate Change Service (C3S) Climate Data Store. The results contain modified713

Copernicus Climate Change Service information 2020. Neither the European Commis-714

sion nor ECMWF is responsible for any use that may be made of the Copernicus infor-715

mation or data it contains. MODIS Vegetative cover data (DiMiceli et al., 2015) and Leaf716

Area Index (Myneni et al., 2015) is available through https://lpdaac.usgs.gov/. NEON717

turbulence data (National Ecological Observatory Network (NEON), 2021) is available718

through https://data.neonscience.org/data-products/DP4.00200.001. Finally, Land Cover719

types (2016 Version) from the National Land Cover Database (Dewitz, 2019) are ava-720

ialble from the Multi-Resolution Land Characteristics Consortium database https://www.mrlc.gov/data.721

Software used to process this data (Waterman, 2021) and generate results can be found722

here: https://tinyurl.com/tswneon.723
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