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Abstract

The role of greenhouse gases (GHGs) in global climate change is now well recognised and there is a clear need to measure

emissions and verify the efficacy of mitigation measures. To this end, reliable estimates are needed of the GHG balance at

national scale and over long time periods, but these estimates are difficult to make accurately.

Because measurement techniques are generally restricted to relatively small spatial and temporal scales, there is a fundamental

problem in translating these into long-term estimates on a regional scale.

The key challenge lies in spatial and temporal upscaling of short-term, point observations to estimate large-scale annual totals,

and quantifying the uncertainty associated with this upscaling.

Here, we review some approaches to this problem, and synthesise the work in the recent UK Greenhouse Gas Emissions and

Feedbacks Programme, which was designed to identify and address these challenges.

Approaches to the scaling problem included:

instrumentation developments which mean that near-continuous data sets can be produced with larger spatial coverage;

geostatistical methods which address the problem of extrapolating to larger domains, using spatial information in the data;

more rigorous statistical methods which characterise the uncertainty in extrapolating to longer time scales;

analytical approaches to estimating model aggregation error; enhanced estimates of C flux measurement error;

and novel uses of remote sensing data to calibrate process models for generating probabilistic regional C flux estimates.
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Abstract16

The role of greenhouse gases (GHGs) in global climate change is now well recognised and17

there is a clear need to measure emissions and verify the efficacy of mitigation measures.18

To this end, reliable estimates are needed of the GHG balance at national scale and over19

long time periods, but these estimates are difficult to make accurately. Because measure-20

ment techniques are generally restricted to relatively small spatial and temporal scales,21

there is a fundamental problem in translating these into long-term estimates on a regional22

scale. The key challenge lies in spatial and temporal upscaling of short-term, point ob-23

servations to estimate large-scale annual totals, and quantifying the uncertainty asso-24

ciated with this upscaling. Here, we review some approaches to this problem, and syn-25

thesise the work in the recent UK Greenhouse Gas Emissions and Feedbacks Programme,26

which was designed to identify and address these challenges.27

Approaches to the scaling problem included: instrumentation developments which28

mean that near-continuous data sets can be produced with larger spatial coverage; geo-29

statistical methods which address the problem of extrapolating to larger domains, us-30

ing spatial information in the data; more rigorous statistical methods which characterise31

the uncertainty in extrapolating to longer time scales; analytical approaches to estimat-32

ing model aggregation error; enhanced estimates of C flux measurement error; and novel33

uses of remote sensing data to calibrate process models for generating probabilistic re-34

gional C flux estimates.35

Plain Language Summary36

Greenhouse gases cause climate change, and we need to know how much is emit-37

ted each year across the globe. As well as coming from burning fossil fuels, plants and38

soil also take up and emit these gases, and we need to be able to quantify this in order39

to understand how best to tackle climate change. However, we can only measure these40

emissions over very small areas, at only a few locations, and for relatively short periods41

of time. Extrapolating from these measurements to a whole country introduces several42

uncertainties which are often largely ignored. Here, we examine progress in tackling this43

problem, and focus on better statistical methods to properly identify and account for the44

errors that are introduced by the large change in scale. Another is the development of45

instrumentation which can measure the gas emissions over larger scales and run contin-46

uously. Earth observation from satellites provides a promising source of data for the fu-47

ture, but cannot yet provide direct measurements of gas emissions. The Bayesian approach48

to modelling provides us with a coherent method for combining data from different sources,49

accounting for their uncertainties, and propagating this through to the uncertainties as-50

sociated with predictions of national scale fluxes.51

1 Introduction52

The role of greenhouse gases (GHGs) in causing global climate change is now well53

recognised (IPCC, 2013). Emissions of GHGs from terrestrial ecosystems play an im-54

portant part in this, and the potential for feedbacks within the climate system which am-55

plify the emissions of GHGs from natural ecosystems is substantial. Accurate estimates56

are therefore needed of the GHG balance of the land surface at regional and national scales,57

and over long time periods, if we are to understand the key driver of global change. Be-58

cause of the large scale involved, in relation to the scale at which we can make obser-59

vations, this presents a major challenge which spans the domains of biogeochemistry, ecol-60

ogy, remote sensing, and atmospheric science.61

For directly measuring GHG fluxes, we have two approaches available, based on62

either enclosing a small area within a chamber and monitoring the change in GHG con-63

centration, or based on micrometeorological measurements of GHG concentration and64
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turbulence in the near the surface (see section below). However, both of these operate65

at scales much smaller than the spatial scale of interest - that of a region, nation or the66

whole globe. This means that we need to use a model to predict the large-scale flux. The67

fundamental upscaling issue is that we are forced to rely on predictions from a model68

which cannot be parameterised or tested at the true scale of interest. If we introduce some69

generic notation, we can consider this as three inter-related problems1. We need to pre-70

dict y, the large-scale GHG flux, based on parameters θ derived at a small scale and in-71

put variables x estimated over the large-scale domain:72

y = f(θ, x). (1)

Firstly the parameters θ are only inferred from a very small subset of the condi-73

tions prevailing over the whole domain. Because of basic sampling error, there is uncer-74

tainty in the parameter estimates. Secondly, there is also usually considerable uncertainty75

in the values of the inputs x over the large-scale domain. GHG fluxes from an ecosys-76

tem depend upon such things as incident radiation, leaf area index, soil aerobic status,77

soil microbial populations, and time elapsed since disturbance events. None of these is78

easily measured over a wide region, and we inevitably rely on some proxy or modelled79

estimate, and this introduces uncertainty in the true value of x over the whole domain.80

Thirdly, the model f is commonly non-linear, which complicates the upscaling procedure.81

The goal for science in this field is to quantify and reduce the uncertainty associated with82

parameters θ, input variables x, and model f in making the jump between the small scale83

of measurement and the large scale of prediction, which we illustrate in Figure 1. Progress84

here is necessary if we are to estimate the large-scale GHG balance accurately (Leip et85

al., 2018), and to demonstrate the efficacy of mitigation policies (Gifford, 1994; Smith86

& Smith, 2004; Smith et al., 2008).87

In this paper, we review the challenges in upscaling small-scale GHG flux measure-88

ments to produce national-scale estimates. The UK recently developed a novel, multi-89

disciplinary programme to identify and tackle some of these challenges, and our exam-90

ples come from this programme. The overall aim was to improve the quantification of91

uncertainty where it arises in the upscaling process, and to reduce this uncertainty by92

improvements to instrumentation, measurement methods or modelling procedures. Specif-93

ically we focused on five challenges which focus on components of the problem, illustrated94

in Figure 1:95

1. Quantifying uncertainty in spatial upscaling of chamber fluxes to field96

scale. Chamber measurements sample only a very small area, even in relation to97

a single agricultural field. The challenge is to quantify the mean and uncertainty98

in the estimate of the field-scale mean flux.99

2. Quantifying uncertainty in temporal upscaling of chamber fluxes to an-100

nual scale. Similarly, chamber measurements typically sample only during a very101

few hours, in relation to the total flux over a year. The challenge here is to quan-102

tify the annual cumulative emission and its uncertainty, based on a sparse and spa-103

tially variable sample set.104

3. Reducing uncertainty in spatial and temporal upscaling of chamber fluxes105

via improved instrumentation. An alternative approach to both of the above106

1 In addition to these, new phenomena may arise at the larger scale because of feedbacks in the sys-

tem, which are not apparent at the small scale. For example, evapotranspiration from an individual leaf

is strongly controlled by the stomatal conductance. However, because of the effect of regional-scale evap-

otranspiration on the vapour pressure deficit of the air in the boundary layer, regional-scale evapotranspi-

ration is more strongly controlled by radiation input. This is a serious issue with water vapour fluxes, but

less so for GHG fluxes themselves, because the magnitude of such feedbacks is much smaller.
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is to developed new measurement systems which can provide better spatial and107

temporal coverage.108

4. Quantifying uncertainty in eddy covariance measurements of field scale109

fluxes. Eddy covariance systems are expensive and complex to run, so are rarely110

operated with any replication. It is therefore usually very difficulty to estimate111

the systematic and random errors associated with these measurements. Here we112

evaluate five co-located eddy flux systems to determine the measurement error on113

net exchanges of CO2 at both instantaneous times and daily scales.114

5. Quantifying aggregation error in spatial upscaling. When non-linear mod-115

els are parameterised at a small scale, but applied at a larger scale, the results will116

generally be in error wherever small-scale heterogeneity is not accounted for. A117

further challenge is to estimate and account for this kind of error. We evaluated118

this in the context of national-scale GHG flux estimates in the UK.119

After outlining the basic approach to measuring GHG fluxes, we address each of120

these challenges in turn, with reference to specific analyses for a range of GHGs. For clar-121

ity, each section provides its own methods, results and discussion. We then conclude with122

a synthesis of the findings from the individual studies. Our synthesis allows us to assess123

advantages and limitations of current research, and to make suggestions for the devel-124

opment of new studies and approaches necessary to make better inferences about GHG125

fluxes at regional, national and global scales.126

2 Measurement Methods for GHG fluxes127

For directly observing GHG fluxes, we have two broad techniques available: chamber-128

based and micrometeorological. In the former, part of the plant or soil surface is enclosed129

in a gas-tight chamber, and the flux is inferred from measurements of the mixing ratio.130

In the case of static (non-steady-state) chambers the mixing ratio is measured on a se-131

quence of gas samples extracted from the chamber over a short time period. From mass132

balance, the mixing ratio within the chamber is predicted to follow:133

χ = χ0 +
F

hρ
dt (2)

where χ0 is the initial mixing ratio of a GHG, h is the height of the chamber, ρ is the134

molar density of dry air, and dt is the time increment since enclosure. We thus have an135

inverse problem, which can be rearranged to estimate the flux as:136

F =
dχ

dt0
hρ (3)

where dχ/dt0 is the initial rate of change in the mixing ratio. As an approximation, we137

can assume linearity in dχ/dt, and solve for dχ/dt0 using linear regression. If we account138

for the non-linearity of diffusion into the chamber, we have to apply non-linear regres-139

sion, optimisation methods, and potentially, complex 2-D diffusion models (Livingston140

et al., 2006; Pedersen et al., 2010; Sahoo & Mayya, 2010; Levy et al., 2011). Because part141

of the ecosystem has to be physically enclosed, the spatial scale of these measurements142

is necessarily restricted, typically to 0.1 m2 and rarely more than 1 m2. Similarly, the143

temporal scale of measurements is restricted because the physical enclosure changes the144

environment within - the emitted gas concentrations build up, and the effect of wind and145

rain is removed.146

Micrometeorological techniques make use of measurements in the atmosphere near147

the surface. Historically, these were based on measuring the gradients in wind and GHG148

mixing ratios and making some assumptions about the turbulent transport. With the149

advent of fast-response infra-red analysers for CO2, and more recently for CH4 and N2O150

based on QCL or CRD laser absorption spectroscopy, the eddy covariance method has151
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become the default approach (Kroon et al., 2010; Mammarella et al., 2010; Haszpra et152

al., 2018). If we can assume stationarity and horizontal homogeneity, it follows from mass153

balance that we can equate the surface flux to the eddy covariance term i.e.:154

F = w′χ′ρ (4)

where w′ and χ′ represent the instantaneous deviations from the means. To measure this155

term accurately, we need high frequency (10-20 Hz) measurements of the vertical wind-156

speed w and χ at an appropriate height above the surface. Various corrections are re-157

quired to account for the frequency response of the measurement system, non-zero ver-158

tical windspeed, deviations from stationarity, and density fluctuations (Lee et al., 2006;159

Aubinet et al., 2012). The advantage of the approach is that it measures the integrated160

surface flux over an area much larger than a chamber, typically several hundred square161

metres (of the order of a small agricultural field), and can run near-continuously.162

3 Spatial upscaling of chamber fluxes to field scale163

As described above, chambers used to measure gas fluxes typically have small di-164

mensions (< 1 m2), several orders of magnitude smaller than the domains, such as agri-165

cultural fields, that we want to make inferences about, so the potential for sampling er-166

ror is large. That is, the näıve sample mean of the chambers may deviate substantially167

from the true mean for the field. We want to improve this estimate, and quantify the168

associated uncertainty in extrapolating the field mean. This is a common problem in the169

area of geostatistics, where observations are only available at point locations, but pre-170

dictions are required over a larger spatial domain. The classical geostatistical approach171

to this problem is to represent the spatial domain as a grid of discrete cells (a ”raster”),172

and to use kriging to predict the values at all the unobserved locations in this grid. Krig-173

ing and its terminology originated in the mining industry, but is now a widespread and174

generally applicable technique for extrapolation problems. In essence, it is a form of weighted175

local averaging, where the estimates of values at unrecorded places are weighted aver-176

ages of the observations. The kriging weights are calculated on the basis of the semivar-177

iogram, which quantifies the form of the increasing variance between pairs of points as178

the distance between them increases. Graphically, this shows the scale at which values179

are highly correlated, and how this changes with spatial scale. Prediction at a new lo-180

cation is based on all the observations, each weighted according to the degree of corre-181

lation at that distance predicted by the semivariogram. Kriging has been shown to be182

optimal in the sense that it provides estimates with minimum variance and without bias183

(in the long-term statistical sense). It is also often described as providing estimates of184

known variance, but this is only true if the form of the semivariogram is known with cer-185

tainty; in real-world applications, this is never the case. Here, we use kriging to extrap-186

olate chamber fluxes to the field scale, but for the purposes of characterising the uncer-187

tainty correctly, we apply it in a Bayesian framework. In brief, this means we account188

for the uncertainty in the variogram model, and represent each of the parameters as a189

probability distribution. Rather than assuming the variance is known, we calculate the190

posterior distribution of the parameters, given the observed data, and sample many re-191

alisations of these to represent the uncertainty.192

We can attempt to test the success of this upscaling method because we can also193

measure at the field scale using eddy covariance. However, eddy covariance also does not194

directly give the field-scale domain mean, as its spatial sampling characteristics are af-195

fected by wind speed, wind direction, sensible heat flux and friction velocity: the so-called196

“flux footprint” (Schuepp et al., 1990, Schmid and Oke (1990), Leclerc and Foken (2014)).197

The footprint defines the relative contribution of each element of the surface area to the198

measured vertical flux, according to the advection-diffusion equation. This acts as a weight-199

ing function, such that some areas contribute strongly to the measured flux, and oth-200

ers not at all. If the mean flux F of a scalar over a landscape represented by a discre-201

tised gridded domain with dimensions nx by ny at time t is given by:202
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F̄t =

nx∑
x=1

ny∑
y=1

Fxyt
1

nxny
(5)

where the overbar denotes spatial averaging, eddy covariance effectively measures203

a weighted mean, where the footprint provides the set of weights, ϕ, to give:204

̂̄Ft =

nx∑
x=1

ny∑
y=1

Fxytϕxyt (6)

where we use the ĥat-symbol to indicate that this is an estimator, not F̄t itself.205

So the appropriate way to upscale chamber measurements is to use Bayesian krig-206

ing to estimate Fxyt over the whole grid, and thereby the domain mean F̄t. However, to207

compared with eddy covariance, we need to apply the footprint weighting ϕ to estimate208

the flux that we would expect eddy covariance to measure, ̂̄Ft.209

Here, we applied the method to data from an arable field of oilseed rape in Lin-210

colnshire, U.K., where fluxes of N2O were measured by chambers and eddy covariance211

in the same field (Keane et al., 2017). The Bayesian kriging method provides a way of212

scaling chamber flux to the field scale, incorporating spatial pattern and its associated213

uncertainty. This prediction is weighted by the flux footprint to produce our expecta-214

tion of the flux measured by eddy covariance. This allowed us to compare one method215

with another, accounting for the difference in spatial sampling characteristics inherent216

in the two methods as best we can, and account for the associated uncertainty properly.217

Figure 2 shows the chambers fluxes of N2O upscaled by Bayesian kriging and weighted218

by the footprint probabilities ϕ, to give a valid comparison against the eddy covariance219

data. The results show that the upscaled values can deviate substantially from the näıve220

sample mean of the chambers. More importantly, the uncertainty in the mean estimated221

by Bayesian kriging is substantially larger than the conventional 95 % CI in most cases.222

This is a source of uncertainty that is typically ignored, and this demonstrates the im-223

portance of representing spatial upscaling effects explicitly. This also indicates that we224

need to be careful in drawing conclusions from such measurements when interpreting the225

difference in means among experimental treatment plots. The magnitude of error will226

depend on the spatial pattern in the surface flux; in extreme situations, the sample mean227

could be quite poorly representative of the large-scale mean. In these cases, spatial up-228

scaling clearly needs to be considered explicitly, and the Bayesian kriging described here229

provides a rigorous method to do this.230

When comparing chambers and eddy covariance measurements, the difference in231

spatial sampling is usually ignored, and the arithmetic mean of chamber flux samples232

is compared with the value from eddy covariance for the corresponding time period. This233

ignore the fact that the flux footprint acts as moving spatial filter, whereby the location234

and extent of the area that influence the measured flux changes each half-hour, accord-235

ing to wind speed, direction etc. The method described here also provides a rigorous way236

to compare chamber measurements so that they represent the same area that is sampled237

by eddy covariance.238

4 Temporal upscaling of chamber fluxes to annual scale239

There are considerable challenges in interpolating and extrapolating cumulative N2O240

fluxes, based on relatively sparse and variable measurements from only a few time points.241

This leads to substantial uncertainty in the “emission factor” (EF or Ω, the total N2O242

released as a percentage of the fertiliser nitrogen added) which is used in the national243

–6–



manuscript submitted to JGR: Biogeosciences

inventory. This is analogous to the problem of estimating the spatial mean from mea-244

surements at a limited number of locations, but in the time domain. The method most245

commonly used in the literature to calculate cumulative N2O fluxes is to interpolate and246

integrate using trapezoidal rule integration. However, this method is very sensitive to247

noise in the data, there is no straightforward way to quantify the uncertainty introduced248

or to extrapolate beyond the sample data, and it does not account for the typically log-249

normal spatial distribution of fluxes. Here, we used two approaches to examine spatial250

and temporal upscaling: firstly using a process-based model directly, and secondly us-251

ing Bayesian emulation of this model.252

4.1 DNDC model253

DNDC is a process-based biogeochemical model, widely used to estimate agricul-254

tural soil N2O emissions. We parameterised the model using chamber measurements of255

N2O fluxes, along with data on harvest crop grain N content, soil mineral N and soil mois-256

ture, from four experimental sites between 2010 and 2012, accounting for time lags be-257

tween measured and simulated time-series (Myrgiotis et al., 2016).258

The model was applied across a 3800 km2 area of Scotland where >90 of its crop-259

lands are located. Spatial data on soil properties, crop coverage and weather, and UK-260

specific crop calendars and fertiliser-use recommendations were used to create model in-261

puts for 2011-2013 at a 1 km2 resolution (Myrgiotis et al., 2018). The distribution of Ω262

estimated from the regional simulations was compared against the site data of measurements-263

based Ω to evaluate the effect of the upscaling process.264

Measured and simulated distributions of Ω have similar range and shape (Figure265

3), but there were important differences in their distributions, e.g. their inter-quartile266

range (upper/lower dotted lines in Figure 3). The wider inter-quartile range of the mea-267

sured Ω is a result of greater variability in weather across the UK field sites and mea-268

surement period compared to the conditions over the Scottish arable region for the up-269

scaling period. There were higher temperatures and precipitation at some of the field270

sites responsible for peaks in Ω during experimental measurements. The mean of the sim-271

ulated Ω is 0.47%, 14 % less the mean measured Ω of 0.55%. The inter-quartile range272

of the simulated Ω was around half that found in the measurements. We conclude that273

upscaling causes substantive changes in Ω linked to the different range of conditions en-274

countered across the wider region.275

4.2 Meta-model of N2O fluxes276

To address this issue, we developed an emulator of the DNDC model with which277

we could apply Bayesian calibration to characterise the uncertainties in the spatial and278

temporal distribution of emissions. Following a fertilisation event, the time course of N2O279

flux is expected to rise to a peak, then decay exponentially. This pattern in time is re-280

produced by DNDC and similar models, and is well described very simply by the log-281

normal equation:282

µt =
1√
2πkt

e−(log(t)−∆)2/2k2

NinΩ (7)

where µt is the spatial mean of the N2O flux at time t, ∆ and k are analogues for283

the location and scale parameters, Nin is the nitrogen input, and Ω is the fraction of this284

nitrogen which is released as N2O. Because the lognormal function integrates to unity285

at t = ∞, Ω is implicitly based on the total cumulative emission, rather than at an ar-286

bitrarily defined time. The symbol ∆ can be interpreted as the natural logarithm of the287

delay between fertiliser application and peak flux; k is a decay rate term. This equation288

–7–



manuscript submitted to JGR: Biogeosciences

provides a simple meta-model which can be used to emulate the behaviour of DNDC (and289

similar models).290

Because µt typically has a very skewed spatial distribution, there is a high prob-291

ability of the sample means underestimating the true value; the problem increases as vari-292

ance increases and sample size decreases. Several approaches have been proposed as more293

efficient estimators of the location and scale of lognormal distributions, but none of these294

entirely solve the problem when σ is large and n is small, as is generally the case with295

flux measurements. In this study, we applied a Bayesian approach, using the Markov Chain296

Monte Carlo (MCMC) method with Gibbs sampling (Gelman et al., 2013). In this way,297

we estimated the parameters of the underlying distribution.298

So, at time t following fertilisation, the mean flux is given by Equation 7, at which299

time the N2O flux has a distribution300

F ∼ lnN (µlog,t, σ
2
log)

µlog,t = log(µt)− 0.5σ2
log (8)

To obtain the cumulative flux at time t, we use the standard lognormal cumula-301

tive distribution function302

Fcum,t = Φ

(
ln t−∆

k

)
NinΩ (9)

where Φ is the cumulative distribution function of the standard Normal distribution. The303

model was encoded in the JAGS language, and fitted to a number of data sets from across304

the UK.305

Priors for ∆ and k were specified as Normal distributions based on the temporal306

patterns produced by the DNDC model (see below). A Normal distribution was also as-307

signed to σlog, based on earlier data from various sites in the UK, mainly from Cowan308

et al. (2014, 2016). The prior distribution for σlog was truncated at zero to exclude neg-309

ative values. Ω was given a lognormal distribution, fitted to the data collation of Stehfest310

and Bouwman (2006) which included data on emission factors from all over the world.311

Figure 4 shows the posterior distribution of cumulative fluxes calculated from the312

UK data sets, expressed as the emission factor, Ω. This distribution is very narrowly de-313

fined in some cases (e.g. Dum 2012-10-16, EBS 2009-03-17), and very wide in other cases314

(e.g. EBS 2007-05-16, EBS 2008-06-18), meaning that uncertainty in the emission fac-315

tor can be very small or very large. Ω is generally in the range zero to 5 %, but some316

events have substantially higher emission factors. The value estimated by the trapezoidal317

method is generally within the posterior distribution of the lognormal model, but the318

values are usually lower. The emission factor is generally rather poorly constrained by319

flux chamber measurements, because of the difficulties of accurately estimating the mean320

of a lognormal distribution with large variance when n is small. The standard approach321

fails to capture this uncertainty. Our new approach performs well in that it appropri-322

ately quantifies the uncertainty, and removes some of the bias by accounting explicitly323

for the lognormal distribution.324

5 Reducing uncertainty in large-scale fluxes via improved instrumen-325

tation326

The direct measurement of GHG fluxes has developed in tandem with the instru-327

ment technologies that allow GHG mixing ratios to be measured. Compared with CO2,328

N2O is less amenable to measurement by infra-red absorption: it is present at lower back-329

ground concentrations; the typical fluxes are smaller relative to the background concen-330

trations; and the infra-red absorption bands are narrower, making the technicalities of331
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measurement more difficult. Until recently, N2O was only accurately measurable by gas332

chromatography. Hence, for the most part, observations of N2O fluxes are only available333

using static chamber methods (Hutchinson & Mosier, 1981; Matson & Harriss, 2009),334

which necessarily sample small areas (typically < 0.1 m2) over short time periods, based335

on few (2-4) points. However, N2O fluxes show a wide variability, ranging over orders336

of magnitudes on small spatial scales, which is not predictable. This is attributed to two337

main causes: the variety of unobserved microbial controls on gas production, including338

their physiological activity and population dynamics; and the sensitivity of physical trans-339

port in the soil, which interacts with the measurement process (enclosure) in a complex340

way (Xu et al., 2006; Sahoo & Mayya, 2010). Fast-response sensors for N2O have recently341

become available, making high-precision chamber measurements (Cowan et al., 2014) and342

the micrometeorological eddy covariance method (Kroon et al., 2010) feasible. The chal-343

lenge here is to use these new sensors to develop continuous measurement systems for344

fluxes of N2O. With continuous measurements, we overcome the need to interpolate and345

extrapolate in space and time, and thereby remove the large uncertainties this introduces.346

In the GHGEF programme, we developed and applied two systems which provide near-347

continuous measurements of N2O flux: a robotic auto-chamber system using a cavity ring-348

down spectroscopic instrument (“SkyLine”), and an eddy covariance system based on349

quantum cascade laser (QCL) spectroscopy.350

5.0.1 SkyLine351

A detailed description of the system is available in Keane et al. (2018). Briefly, the352

SkyLine2D automated chamber system used a single, cylindrical chamber (internal di-353

ameter 40 cm, height 62 cm), suspended from a motorized trolley mounted on parallel354

horizontal ropes held above the crop by 2.5-m tall aluminium trellis arches (Figure 5).355

The trolley repeatedly traversed a transect across the crop of up to 40 m, enabling mea-356

surements at high spatial resolution (< 1 m) across replicated manipulations or under-357

lying variation in the landscape. At designated locations where collars were placed in358

the soil, the chamber automatically lowered and sealed on the collar to conduct a flux359

measurement. The base of the chamber was fitted with a rubber gasket which formed360

a gas-tight seal when dropped on the flange of the landing base. Guides around the cham-361

ber bases ensured the chamber landed accurately. A vent was fitted into the chamber362

to minimize pressure differences between the chamber and the external atmosphere (af-363

ter Xu et al. 2006). The chamber operated as a non-steady state dynamic system, with364

headspace gas being circulated between the chamber and a cavity ring-down spectroscopic365

(CRDS) analyser for N2O (LGR isotopic N2O analyser, Los Gatos Research, CA, USA)366

housed in an enclosed shed at one end of the SkyLine2D apparatus (Figure 5). The CRDS367

analyser operated at 1 Hz, giving a precise measurement of the rise in mixing ratio within368

the chamber, allowing a relatively short chamber closure (ca. 5 min), thus minimising369

the time during which the underlying plants and soil are isolated from ambient condi-370

tions.371

5.0.2 QCL eddy covariance system372

The system used a continuous wave quantum cascade laser (QCL) absorption spec-373

trometer (CW-QC-TILDAS-76-CS, Aerodyne Research Inc., Billerica, MA, USA), with374

an ultra-sonic anemometer (WindMaster Pro 3-axis, Gill, Lymington, UK) to measure375

fluctuations in 3-D wind components at a frequency of 20 Hz. The QCL was fitted with376

a laser capable of measuring N2O with a precision of 0.3 ppb, together with H2O and377

either CO2 or CO, using absorption features at 12 and 22 m−1. Internal software fits the378

observed spectra to a template of known spectral line profiles from the HITRAN (HIgh-379

resolution TRANsmission) molecular spectroscopic database. Absolute gas concentra-380

tions can then be calculated from the strength of the absorption line measured, the tem-381

perature, pressure and path length. A vacuum pump (Triscroll 600, Agilent Technolo-382
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gies, US) was used to draw air through the inlet and instrument with a flow rate of ap-383

proximately 14 l min−1. Data from the sonic anemometer and QCL was logged in tan-384

dem using a custom program written in LabView (National Instruments, TX, USA).385

Fluxes were calculated over 30 minute intervals using the EddyPro software (Ver-386

sion 6.2.1, Li-COR, Lincoln, NE, U.S.A.), based on the covariance between gas concen-387

tration and vertical wind speed. For flux data taken with a low signal-to-noise ratio, time-388

lag identification by maximisation of the cross covariance introduces systematic biases389

(Langford et al., 2015). Here, we investigated methods for estimating the timelag, based390

on either maximising the timelag over a longer time window, or using the timelag estab-391

lished for CO2. Both CO2 and N2O share the same path in the sample line to the mea-392

surement cell, and would be expected to travel at the same rate. Fluxes of CO2 are an393

order of magnitude larger, so the timelag which gives the maximum covariance is usu-394

ally clearly defined within each half-hour, and should be equally applicable to N2O, and395

not subject to the systematic error described by Langford et al. (2015). Depending which396

laser was installed in the QCL, measurements of CO2 were not always available, so the397

method using N2O only was also used. After investigating options, we decided on a six-398

hour window in which we found the timelag which maximised covariance. This timelag399

was then fixed for all data within the six-hour window, and fluxes were calculated on a400

30-minute basis. Standard corrections were made in the flux calculation, following Moncrieff401

et al. (1997), Ibrom et al. (2007) and Burba (2013). Random uncertainty was estimated402

by the method of Finkelstein and Sims (2001).403

Figure 6 shows a near-continuous time series of measurements of N2O flux over a404

whole month by both automated SkyLine chamber and eddy covariance methods. Con-405

ventionally, only infrequent static chamber measurements (blue symbols) would be avail-406

able. Given the variability in the data - irregular peaks in time and spatial variability407

between chambers - the near-continuous measurements provide a much more accurate408

estimate of the cumulative emission over the period following fertiliser application, and409

thereby the emission factor. Measurement techniques such as these, with better data cov-410

erage, are clearly needed to enable appropriate temporal upscaling, so that longer-term411

means and cumulative emissions can be estimated accurately from the observations.412

6 Quantifying uncertainty in eddy covariance measurements of field413

scale fluxes414

As described above, eddy covariance (EC) is a one of the key techniques for mea-415

suring GHG fluxes, but subject to instrument noise, uncertainties in the processing steps416

and micrometeorological conditions required to meet the underlying assumptions. The417

measurement error for eddy covariance is thus challenging to quantify. Due to their ex-418

pense, EC systems are usually deployed singly, so there is a lack of replication – the most419

obvious means by which this can be estimated. By using two EC systems 800 m apart420

(Hollinger & Richardson, 2005) were able to quantify the measurement difference (er-421

ror) in flux calculations. However, the tower separation was large enough so that foot-422

print regions did not overlap, so the comparison is confounded. Hollinger and Richard-423

son proposed a time–for–space substitution to allow error calculations from a single EC424

system, the so-called successive days method, and showed it has utility.425

Here for the first time we present a comparison of NEE flux estimation from five426

co-located flux systems, all sampling the same pasture in southwest Scotland (Crichton427

Research Farm, Dumfries). The low stature of the vegetation allowed the EC systems428

to be set up within 10 m of each other, each sampling at 5 m above ground level. By429

having five systems the variance between these can be directly determined for the same430

conditions to assess instrumental and processing error. All systems used a Gill R3 sonic431

anemometer; 4 used a Vaisala GMP343 CO2 sensor and a Honeywell HIH-4000 relative432

humidity sensor, while one used a LI-COR LI-7500 (Hill et al., 2017). Fluxes were cal-433

culated for 30-min periods using EdiRe (version 1.5.0.50). There were 13 days during434
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June 2015 with almost continuous and simultaneous measurements by all sensor systems.435

The pasture was cut on 13 May, and LAI was tracked using an LAI-2000 (LiCor Inc),436

growing from 3 to 4 during the study period from 5-17 June. The deviations of the 30437

minute time series, and the daily time series from aggregated data were calculated, and438

their distributions tested for normality using a Shapiro-Wilk test (R software).439

There was broadly a good agreement between all the flux systems in their estimates440

of NEE at 30 minute and daily time steps (7). The median standard deviation of the 30441

minute data was 2 µmol m−2s−1. The 30-minute error distribution deviated significantly442

from normal (P<0.001), being clearly log-normal with a high tails (7). For the daily ag-443

gregate NEE estimates, the median value was 0.45 gC m−2d−1, and the error distribu-444

tion was not significantly different from normal (Shapiro-Wilk test p=0.93). These re-445

sults are close to the results of space-for-time error estimates at Harvard Forest, which446

reported a daily standard deviation of 0.58 gC m−2d−1 (Hill et al., 2012) for NEE.447

The value of EC error estimates like these are clear. Errors determine the capac-448

ity of EC to detect C sources and sinks, which are driven by small differences between449

large input and output fluxes. Error data are also important to set the weighting of EC450

observations in the calibration of C process models. Bayesian calibration methods weigh451

the importance of observational data constraints in model fitting on the basis of mea-452

surement error. Bayesian calibrations propagate measurement uncertainty into model453

predictions, for example by finding an ensemble of model parameters that produce es-454

timates of NEE consistent with observations and their uncertainty. Eddy covariance data455

have been used successfully across the UK to produce more robust calibration of C cy-456

cle models. The calibrated models then propagate the flux uncertainty from localised457

and incomplete data set at a few sites into complete and regional assessments of C cy-458

cling (Myrgiotis et al., 2020; Smallman et al., 2017; Revill et al., 2016).459

7 Quantifying aggregation error in spatial upscaling460

7.1 Analytical approach461

Typically, we derive a model of the GHG flux based on small-scale measurements462

as a function of input variables x, measured at the corresponding scale. We want to ap-463

ply this to a larger scale, usually using the mean value of x, averaged over a grid cell,464

region, or longer time period. However, the output of a model f at the larger scale, with465

spatially varying inputs x should be calculated as
∫ +∞
−∞ f(x) p(x) dx, where p(x) is the466

probability distribution of input values in the region. We can denote this integral more467

briefly as E[f(x)], using the expectation operator E[]. Whenever models are run with468

the averaged inputs, what is being calculated is f(E[x]) rather than E[f(x)]. If the mod-469

els are nonlinear, this results in an upscaling error δ defined as:470

∆ = f(E[x])− E[f(x)] (10)

When models are applied to large regions, the domain is typically subdivided us-471

ing a spatial grid, with each grid cell covering an area of tens or hundreds of square kilo-472

metres. In contrast, the models themselves tend to be based on observations made at473

much finer scales such as flux chambers, eddy covariance footprints, individual crop fields,474

or forest stands. The challenge here is in using a small-scale model to estimate GHG fluxes475

in a large grid cell, accounting for within-cell spatial heterogeneity, and the error this pro-476

duces.477

In the GHGEF programme, we derived a method for characterising this error, based478

on a multivariate Taylor-expansion approach, a development of earlier work in crop and479

forest modelling (Bresler & Dagan, 1988; Band et al., 1991; Rastetter et al., 1992). The480

approach is to estimate ∆ and correct for it. For functions of one variable, we can use481

the formula derived by applying the expectation operator to the second-order Taylor ex-482

pansion of f(x):483
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E[f(x)] ≈ f(E[x]) +
1

2
V ar[x]f (2)(E[x]), (11)

where f (2)(E[x]) is the second derivative of f evaluated at the mean of x, and Var[x]484

is the variance of x within the region. Combining this formula with Eq. 10 gives us an485

approximate formula for the upscaling error of models with one input variable:486

∆̂ = −1

2
V ar[x]f (2)(E[x]), (12)

where we use the ̂-symbol to indicate that the formula provides an estimator for487

∆, not ∆ itself. For functions of multiple input variables where x is a vector, multivari-488

ate Taylor expansion yields:489

∆̂ = −1

2
tr(S H), (13)

where S is the variance-covariance matrix of x, H is the Hessian matrix of second490

order partial derivatives of f(x), and tr denotes the trace (sum of diagonal elements) of491

the matrix product S H. For simple models, analysis shows that the formula is exact (i.e.492

∆̂ = ∆), allowing full correction of model upscaling errors. In other cases, the formula493

provides an approximation.494

We demonstrated the application of this approach to example models (Van Oijen495

et al., 2017) of methane flux (Levy et al., 2012), ammonia and nitrous oxide flux (Flechard496

et al., 2007). Using high-resolution data, we could calculate the true model output E[f(x)].497

After averaging the input data in 32-km grid cells, we re-evaluated the model using this,498

corresponding to f(E[x]), and by difference, we calculated the aggregation error ∆. Us-499

ing the Taylor-expansion approach described above, we then calculated our approxima-500

tion of this error ∆̂, for verification against the known values of ∆. Depending on the501

model, aggregation error could be substantial, ranging from -3 to - 48 %. The error var-502

ied spatially (Figure 8), depending on the range of the input variables, their sub-grid vari-503

ance, and the non-linearity of the model. The ∆̂ formula gave reasonable approximations504

to the true error (Figure 8, right-hand panel), correcting model output to within 2 to505

-9 % of the true values.506

For nonlinear models, the effects of spatial upscaling need to be accounted for, and507

the ∆̂ formula described here is a generally applicable means to do this. The approach508

can be applied to more complex, high-dimensional process-based models, but exploration509

of the accuracy of the approximation is needed.510

7.2 An approach using earth observation and model-data fusion511

An alternative approach to quantify aggregation error is to use earth observation512

data (and other relevant mapped products) to provide inputs at increasingly fine scales.513

We conducted four model-data fusion analyses at differing spatial resolutions of Great514

Britain’s (GB) terrestrial carbon cycle at a monthly time step for an 18 year period (2001-515

2018) using the CARbon DAta Model fraMework (CARDAMOM, Bloom et al., 2016).516

CARDAMOM uses a Bayesian approach within an Adaptive Proposal - Markov Chain517

Monte Carlo (AP-MHMCMC, Haario & Tamminen, 2001; Roberts & Rosenthal, 2009)518

to estimate location (i.e. pixel) specific ensembles of parameters for an intermediate com-519

plexity model of the terrestrial C-cycle (DALEC Bloom & Williams, 2015). The param-520

eter ensembles are consistent with observational constraints, their uncertainties, model521

structure, meteorology and disturbance (fire & forest loss). From these parameter en-522

sembles we are able directly estimate at pixel level the uncertainty of DALECs C-cycle523

simulation of terrestrial fluxes and stocks. CARDAMOM analyses were conducted at 4524

–12–



manuscript submitted to JGR: Biogeosciences

spatial resolutions, 111 x 111 km, 56 x 56 km, 28 x 28 km and 5 x 5 km, all at monthly525

temporal resolution. Observational constraints assimilated by CARDAMOM are monthly526

time series information on leaf area index (LAI), a single estimate of above ground biomass527

(AGB) and soil C stocks. LAI is extracted from the 1 x 1 km, 8 day product from the528

Copernicus Service Information (2020). A single per-pixel estimate of AGB for 2017 and529

its uncertainty is drawn from ESA’s 1 x 1 km CCI Biomass product (Santoro, 2021). From530

this AGB estimate we derive the total woody biomass (which corresponds with DALECs531

model structure) following Saatchi et al. (2011). A single per-pixel estimate of soil car-532

bon stock is extracted from the SoilGrids database (Hengl et al., 2017). Meteorological533

drivers are drawn from the ERA5 reanalysis (Hersbach et al., 2020).534

Our analyses all estimate that GB’s terrestrial ecosystems were a net sink of car-535

bon with a net biome exchange (NBE) of -6.7 to -10 TgC yr−1 (-0.32 to -0.41 MgC ha536

yr−1) between 2001 and 2017 (Table 1). Spatial resolution has a substantial impact on537

the magnitude and spatial patterning estimated by the CARDAMOM analyses (Table538

1, Figure 9). For example, at the coarsest resolution of the model grid (111 x 111 km)539

NBE is near neutral across much of GB except the far north east and south west. In con-540

trast the highest resolution (5 x 5 km) shows fine scale variation across the whole of GB.541

Moreover, the range of C flux magnitudes estimates is smaller in the coarser resolution542

analyses due to aggregation of sub-grid variability. The distributions of pixel-level mean543

annual fluxes progressively converge towards that estimated by our finest spatial reso-544

lution analysis (Figures 9, 10).545

The estimates of the gross biological fluxes (i.e. GPP and Reco) are relatively in-546

sensitive to spatial resolution between the 5 km, 28 km and 56 km analyses. The mean547

annual flux estimate of GPP and Reco in the 5 km, 28 km and 56 km resolution anal-548

yses vary by less than 0.2 MgC ha yr−1 (< 2%; Table 1). Estimation of emissions due549

to disturbance, both fire and forest cover loss, are progressively underestimated at coarser550

spatial resolutions (Table 1) and show varied time series dynamics (Figure 10). The mean551

pixel-level forest loss estimates plateaus between 5 km and 28 km (Table 1). However,552

there remains disagreement in the temporal interannual variability and magnitude of for-553

est loss estimates particularly after 2010 (Figure 10). Emissions due to fire have not con-554

verged in terms of mean annual emissions (Table 1), or temporal dynamics and magni-555

tude (Figure 10). Overall, these results suggest that there remains substantial sub-grid556

scale disturbance information missing from these analyses, even at 5 km spatial resolu-557

tion.558

8 Conclusions559

We reviewed some of the major challenges in accurately estimating net fluxes of560

GHGs at national scale. These revolve around the difficulties of extrapolating small-scale,561

short-term observations and models. Uncertainty necessarily arises if these are extrap-562

olated to larger scales because of the imperfectly known models, parameters and inputs563

used in the extrapolation. Where spatial pattern exists in the small-scale observations,564

this can be accounted for using a geostatistical approach such as kriging; applying this565

in the Bayesian framework allows the uncertainty to be propagated correctly. To tackle566

this same problem in the time dimension, process-based models can be used, which bring567

in prior knowledge of how we expect the flux to change over time. Temporal upscaling568

of N2O fluxes has been difficult because of the lack of high frequency measurements over569

whole growing seasons. Substantial random error and systematic bias can be introduced570

when extrapolating in time to estimate cumulative fluxes. Again, the Bayesian approach571

can be used to characterise the uncertainty in their application. Modelling the spatial572

and temporal pattern distribution in the observations in a Bayesian framework allows573

this uncertainty to be accounted for appropriately. Furthermore, new measurement tech-574

niques are now allowing near-continuous, long-term observations to be made of these GHG575

fluxes, which reduce the need for extrapolation. Models applied at large scales need to576
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account for sub-grid-scale heterogeneity; significant upscaling error can occur otherwise.577

This aggregation error can be approximated closely by a Taylor-expansion formulation,578

based only on the model Hessian matrix and the estimated variance-covariance matrix579

of the inputs.580

With advances in computing power, running models of GHG fluxes over large do-581

mains at relatively high resolution is increasingly feasible. For example, we can now rou-582

tinely run models over the UK at 1-km resolution (Robinson et al., 2016), requiring 240,000583

grid cells. In moving from the 1 km2 scale to national scale, the issues of model upscal-584

ing do not apply in the same way, so long as the model has been correctly scaled from585

the original observations to the 1-km2 scale. This is because the variance over the whole586

domain is represented, albeit as 1-km2 means, i.e. we evaluate E[f(x)], so ∆ = 0, so the587

total flux is simply the sum of all the grid cells. In moving between these scales, the main588

problem encountered is in estimating the input variables accurately over this domain.589

Because of the large size of the domain, our information is often incomplete or based on590

proxies (e.g. NDVI) Disney et al. (2016). This is an area where data availability is rapidly591

improving, with new and improved satellite products becoming available, as well as other592

new technologies - improved laser-based spectroscopic methods, and unmanned airborne593

vehicles.594

A key point is simply to recognise that the scaling problem exists, and that some595

attempt to explicitly deal with it, however inadequate, is better than none, and gives a596

basis for improvement upon. The field of geostatistics has dealt with similar problems597

over several decades, but the techniques are not yet widely applied in biogeochemistry598

or process-based modelling. A common theme throughout is the adoption of Bayesian599

principles for combining multiple information sources in a coherent way, which allows600

us to make better use of the available data. We expect this trend to continue and ex-601

pand into the machine learning domain. We can foresee further application of data as-602

similation methods which combine bottom-up models with atmospheric observations, that603

are thereby better constrained, potentially more powerful, and easier to interpret in terms604

of the national-scale inventories.605
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Figure 1. Diagram illustrating the spatial and temporal scales of the upscaling problem, from

measurements using chambers and eddy covariance which cover small scales, to national-scale

annual fluxes. The numbers respond to the challenges which we identify in tackling this prob-

lem. Earth observation represents a rapidly expanding source of data with wide coverage and

increasingly fine resolution.
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Figure 2. Comparison of fluxes of N2O measured by chambers and eddy covariance for 12

sampling occasions. For each occasion, symbols show (i) the näıve sample mean of the chamber

N2O fluxes, with the conventional 95 % confidence intervals representing uncertainty (blue sym-

bols, red vertical bars), and (ii) the maximum a posteriori mean flux of the chambers N2O fluxes

produced by Bayesian kriging, with the 2.5 and 97.5 percentiles of the posterior distribution

representing uncertainty (black symbols, blue vertical bars). The latter are offset fractionally for

visibility. The solid black line shows the 1:1 relationship.
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Figure 3. A comparison of distributions of emission factor Ω for N2O generated from (i) field

measurements collected across range of different management approaches, sites and seasons at

locations in the UK and (ii) from upscaling estimates based on a model calibrated using the site

level data, applied across eastern Scotland over several years. Also shown are the distributions

of soil conditions (bulk density, BD) and weather conditions during measurement periods for all

sites, and the conditions relevant to the modelled upscaling. The crops grown in the measured

and simulated sites were winter wheat, winter barley, spring barley and winter oilseed rape.
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Figure 4. Posterior distribution of emission factor for each fertilizer application obtained

by Bayesian estimation of the lognormal model. The blue vertical line shows the median of this

distribution and the red vertical line shows the value calculated by the trapezoidal method. A

lognormal distribution was used to provide the prior distribution of the emission factor.

–18–



manuscript submitted to JGR: Biogeosciences

Figure 5. Aerial and side profile schematics of the SkyLine2D system showing (a), the trellis

arch supports at either end, supporting the Kevlar ropes between. The motorized trolley is de-

picted at the mid-point of the two supports (b). Cross section of the in situ system at the OSR

field site and (c) the N2O and CH4 Los Gatos cavity ring-down analysers were housed in the

green garden box by the right-hand trellis support.
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Figure 6. Time course of N2O fluxes at the Lincolnshire field site, following fertilisation

events (dotted vertical lines) as measured by eddy covariance (EC), static chambers, or the Sky-

Line2D system.
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Figure 7. Comparison of five simultaneous eddy flux measurement systems (multiple time

series during 2015 in left panels) and their variability (density of standard deviation across all

systems for each time interval, right panels) over 30 minute (top panels) and daily (bottom pan-

els) time integrals. The five eddy systems were all installed in the same field, sown with grass,

and all within 10 m of each other. For 13 days there were continuous 30-minute time samples

available for comparison (except 9-June, only 43 samples available for comparison) or for sum-

ming to produce a daily estimate. Only five days are shown in the top left panel for clarity.

Figure 8. Left panel: The upscaling error ∆ for the methane model is calculated by subtract-

ing the correctly upscaled model results (using high-resolution input data) from the incorrect

upscaling (using aggregated (mean) input data), and is mapped. Middle panel: The upscaling

errors that were predicted by the ∆̂-formula applied to the inputs and their (co)variances. Right

panel: The quality of the error-prediction can be evaluated from the scatterplot of ∆̂ vs. ∆.
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Figure 9. Net Biome Exchange (NBE = -GPP + Reco + Fire) estimated by 4 CARDAMOM

analyses at a range of spatial resolutions. A negative value indicates a net uptake of carbon.
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Figure 10. Time series of GB wide mean Gross Primary Productivity (GPP), ecosystem res-

piration (Reco), fire and forest loss estimated by 4 CARDAMOM analyses at a range of spatial

resolutions.
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Table 1. Mean annual C-budgets for Great Britain for each target resolution. Budget terms

are presented as the mean annual flux in MgC ha−1 yr−1. Budget terms presented are gross pri-

mary productivity (GPP), ecosystem respiration (Reco), net ecosystem exchange of carbon (NEE

= Reco - GPP) C loss due to forest removal (Forest loss) and net biome exchange of carbon

(NBE = NEE + Fire loss). The 95 % confidence interval of each term is presented in parenthesis.

Fire emissions were low and so are not included in the summary.

Resolution GPP Reco NEE Forest loss NBE

5 km 13.3 (10.1 / 16.0) 12.8 (8.6 / 18.3) -0.39 (-4.1 / 4.4) 0.03 (0.01 / 0.06) -0.39 (-4.1 / 4.4)
28 km 13.2 (10.0 / 15.9) 12.7 (8.5 / 18.2) -0.37 (-4.1 / 4.5) 0.03 (0.01 / 0.06) -0.37 (-4.1 / 4.5)
56 km 13.1 (9.9 / 16.1) 12.6 (8.5 / 18.2) -0.41 (-4.1 / 4.3) 0.02 (0.01 / 0.04) -0.41 (-4.1 / 4.3)
111 km 14.3 (11.4 / 16.6) 13.8 (9.9 / 19) -0.32 (-3.7 / 4.2) 0.01 (0.005 / 0.02) -0.32 (-3.7 / 4.2)
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