The Rate of Information Transfer as a Measure of Rapid Changes in Arctic Sea Ice

David Docquier¹, Stéphane Vannitsem¹, Francesco Ragone¹, Klaus Wyser², and X. San Liang³

¹Royal Meteorological Institute of Belgium ²Rossby Centre, Swedish Meteorological and Hydrological Institute ³Fudan University

November 26, 2022

Abstract

Arctic sea ice has substantially changed over the past four decades, with a large decrease in sea-ice area and volume. The exact causes of these changes are not entirely known. In our study, we make use of the Swedish Meteorological and Hydrological Institute Large Ensemble (SMHI-LENS). This ensemble consists of 50 members realized with the EC-Earth3 global climate model and covers the period 1970-2100. We apply the Liang-Kleeman information flow method to analyze the cause-effect relationships between Arctic sea ice and its potential drivers. We show that recent and future changes in Arctic sea ice are mainly driven by air and sea-surface temperatures and ocean heat transport. Conversely, changes in Arctic sea ice also considerably impact temperature and ocean heat transport. Finally, we find a progressive decrease in the influence of sea-ice area and volume on air temperature and ocean heat transport through the twenty-first century.

The Rate of Information Transfer as a Measure of Rapid Changes in Arctic Sea Ice

David Docquier^{1*}, Stéphane Vannitsem¹, Francesco Ragone^{1 2}, Klaus Wyser³, X. San Liang⁴

¹Royal Meteorological Institute of Belgium, ²Université catholique de Louvain, ³Swedish Meteorological and Hydrological Institute, ⁴Fudan University *Correspondence: david.docquier@meteo.be

PRESENTED AT:

SUMMARY

- The Liang-Kleeman rate of information transfer (see Methodology) allows to quantify the directional dependence between Arctic sea ice and its drivers
- Recent and future changes in Arctic sea ice are mainly driven by air and sea-surface temperatures and ocean heat transport (see Results)
- The influence of Arctic sea ice on air temperature and ocean heat transport progressively decreases through the twenty-first century (see Results)

This research is supported by the JPI-Climate / JPI-Oceans ROADMAP (http://www.jpi-climate.eu/joint-activities/joint-calls/CPILoud/ROADMAP) project and has received funding from the Belgian Federal Science Policy Office (BELSPO, contract B2/20E/P1/ROADMAP).

METHODOLOGY

1. Rate of information transfer

• Causality measured by rate of information flowing from variable *Xj* to variable *Xi* (Liang, 2021 (https://www.mdpi.com/1099-4300/23/6/679)):

$$T_{j \to i} = \frac{1}{\det \mathbf{C}} \cdot \sum_{k=1}^{d} \Delta_{jk} C_{k,di} \cdot \frac{C_{ij}}{C_{ii}},$$

where **C** is the covariance matrix, *d* is the number of variables, Δ_{jk} are the cofactors of **C**, $C_{k,di}$ is the sample covariance between all X_k and dX_j / dt (Euler forward difference approximation), C_{ij} is the sample covariance between X_i and X_j , C_{ii} is the sample variance of X_i .

• Normalization:

$$\tau_{j \to i} = \frac{T_{j \to i}}{Z},$$

where Z is the normalizer, which takes into account influences from all variables on variable X_i as well as the effect of noise.

- If $|\tau_{i-i}| = 100$ %, X_i has the maximum influence on X_i
- If $|\tau_{i-i}| = 0$ %, X_i has no influence on X_i
- Statistical significance computed via bootstrap resampling (95% confidence interval)

2. Climate model data

- SMHI-LENS (Swedish Meteorological and Hydrological Institute Large Ensemble): 50 members run with the global climate model EC-Earth3 (Wyser et al., 2021 (https://gmd.copernicus.org/articles/14/4781/2021/))
- Model components: IFS cy36r4 (atmosphere; ~ 80 km), NEMO3.6/LIM3 (ocean/sea ice; ~ 1°)
- 1970-2014: CMIP6 forcing
- 2015-2100: SSP1-1.9 and SSP5-8.5 (results shown here are for SSP5-8.5)
- Variables: March / September Arctic sea-ice area (SIA), March / September Arctic sea-ice volume (SIV), Arctic near-surface air temperature (T_{2m}; annual mean), Arctic sea-surface temperature (SST; annual mean), total Arctic Ocean heat transport (OHT_A; annual mean), ocean and atmospheric heat transports at 70°N (OHT_{70N}, AHT_{70N}; annual mean), winter Arctic Oscillation Index (AOI)

More details: Docquier et al. (in review), preprint available on ESSOAr (https://doi.org/10.1002/essoar.10507846.1)

RESULTS IN FIGURES

Fig. 1: Matrices of ensemble mean relative rate of information transfer (a,c) and correlation coefficient (b,d) between March (a,b) / September (c,d) sea-ice area (SIA) and its potential drivers (T_{2m} : Arctic near-surface temperature; SST: Arctic sea-surface temperature; OHT_A: total Arctic Ocean heat transport; OHT_{70N}: ocean heat transport at 70°N; AHT_{70N}: atmospheric heat transport at 70°N; AOI: Arctic Oscillation Index).

Fig. 2: Time evolution of relative rate of information transfer (dots and error bars) and correlation coefficient (crosses), for each period of 5 years, between March sea-ice area (MSIA) and near-surface air temperature (T_{2m}) (a), and between MSIA and total Arctic Ocean heat transport (OHT_A) (b).

Fig. 3: Time evolution of relative rate of information transfer (dots and error bars) and correlation coefficient (crosses), for each period of 5 years, between March sea-ice volume (MSIV) and near-surface air temperature (T_{2m}) (a), and between MSIV and total Arctic Ocean heat transport (OHT_A) (b).

RESULTS EXPLAINED

1. Member analysis

- Rate of information transfer computed for each member separately across time and then merged together (ensemble mean) (Fig. 1)
- Winter ocean-driven influence: March Arctic sea-ice area mainly driven by Arctic sea-surface temperature (SST) and Arctic Ocean heat transport (OHT_A) (Fig. 1a)
- Summer atmospheric-led influence: September Arctic sea-ice area mainly driven by Arctic near-surface air temperature (T_{2m}) (Fig. 1c)
- Influence of sea-ice area on T_{2m}, SST and OHT_A (Fig. 1a,c)
- No influence of ocean and atmospheric heat transports at 70°N (OHT_{70N} and AHT_{70N}) and winter Arctic Oscillation Index (AOI) on sea-ice area despite significant correlations (Fig. 1) --> external driver at play

2. Time analysis

- Rate of information transfer computed for each period of 5 years separately across the member space (Figs. 2-3)
- Progressive loss of influence of sea-ice area and volume on T_{2m} and OHT_A --> weaker interactions as sea-ice area and volume decrease (Fig. 2)
- Rate of information transfer from T_{2m} to sea-ice volume remains more constant across time than from OHT to sea-ice volume --> long-lasting effect of T_{2m} (Fig. 3)

More information: Docquier et al. (in review), preprint available on ESSOAr (https://doi.org/10.1002/essoar.10507846.1)

WHY IS IT IMPORTANT?

- Arctic sea-ice area and volume have decreased by ~2 million km² and ~12,000 km³ since 1979, respectively (Onarheim et al., 2018 (https://doi.org/10.1175/JCLI-D-17-0427.1); Schweiger et al., 2019 (https://doi.org/10.1175/JCLI-D-19-0008.1))
- Model projections show a continuation of this process, which depends on the emission scenario (SIMIP, 2020 (https://doi.org/10.1029/2019GL086749); Docquier & Koenigk, 2021 (https://doi.org/10.1038/s43247-021-00214-7))
- Exact drivers of these changes are not entirely known
- Influence of one variable on another is usually quantified via correlation and regression analyses
- Causal inference frameworks allow to quantify causal links between variables, and thus go beyond classical correlation analyses
- In our study, we use the Liang-Kleeman information flow method to analyze the influence of potential climate drivers on Arctic sea-ice area and volume, as well as the reverse impact of sea-ice area and volume on these climate drivers (Liang, 2021 (https://doi.org/10.3390/e23060679))
- Our understanding of climate processes in polar regions (and at other latitudes) could greatly benefit from using the information flow method

Notice!

Your iPoster has now been unpublished and will not be displayed on the iPoster Gallery.

You need to publish it again if you want to be displayed.

AUTHOR INFORMATION

David Docquier¹*, Stéphane Vannitsem¹, Francesco Ragone^{1,2}, Klaus Wyser³, X. San Liang⁴

¹Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium

²Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium

 $^3\!Swedish$ Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden

⁴Fudan University, Shanghai, China

*Correspondence: david.docquier@meteo.be

ABSTRACT

Arctic sea ice has substantially changed over the past four decades, with a large decrease in sea-ice area and volume. The exact causes of these changes are not entirely known. In our study, we make use of the Swedish Meteorological and Hydrological Institute Large Ensemble (SMHI-LENS). This ensemble consists of 50 members realized with the EC-Earth3 global climate model and covers the period 1970-2100. We apply the Liang-Kleeman information flow method to analyze the cause-effect relationships between Arctic sea ice and its potential drivers. We show that recent and future changes in Arctic sea ice are mainly driven by air and sea-surface temperatures and ocean heat transport. Conversely, changes in Arctic sea ice also considerably impact temperature and ocean heat transport. Finally, we find a progressive decrease in the influence of sea-ice area and volume on air temperature and ocean heat transport through the twenty-first century.

REFERENCES

- Docquier, D., Vannitsem, S., Ragone, F., Wyser, K., Liang, X. S. (in review). Causal links between Arctic sea ice and its potential drivers based on the rate of information transfer. Submitted to Geophysical Research Letters, https://doi.org/10.1002/essoar.10507846.1 (https://doi.org/10.1002/essoar.10507846.1).

- Liang, X. S. (2021). Normalized multivariate time series causality analysis and causal graph reconstruction. Entropy, 23 (6), 679, https://doi.org/10.3390/e23060679 (https://doi.org/10.3390/e23060679).

- Wyser, K., Koenigk, T., Fladrich, U., Fuentes-Franco, R., Karami, M. P., & Kruschke, T. (2021). The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1. Geoscientific Model Development, 14 , 4781-4796, https://doi.org/10.5194/gmd-14-4781-2021. (https://doi.org/10.5194/gmd-14-4781-2021)