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Abstract

Unlike embankments, earth dams, and other man-made structures, most landslide dams are formed by rapid accumulation of

rock or debris rather than mechanical compaction; thus, they are loose and pose a great risk of seepage failure. Landslide

materials usually have complex pore structures with randomly distributed pores of various sizes, making the flow and transport

processes very complex. Aiming at these challenges, we have studied the influences of pore structure on the micro-and macro-

scale flow characteristics of landslide materials. First, landslide materials are simplified as spherical granular packings with wide

grain size distributions. Then, we use finite difference method (FDM) and lattice Boltzmann method (LBM) to simulate the fluid

flow through granular packings and calculate their permeability. We find that both the correlation between pore-scale velocity

and throat diameters and the correlation between macroscopic permeability and average throat diameters follow a power-law

scaling with an exponent close to 2, in agreement with the Hagen–Poiseuille equation for laminar flow in pipes, suggesting

that the relationships in complex pore structures are conformed with the simple theory. Moreover, we propose a new method

by combining pore networks and complex networks to characterize the pore structure. The network analysis illustrates that

granular packings with different permeability display distinctive distributions of pore throat size and pore connectivity and their

correlations. Compared with disassortative pore networks, assortative ones generally have higher permeability. Furthermore,

pores with larger closeness centrality have higher flow efficiency that results in higher macroscopic permeability.
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Key Points: 11 

• Conventional topological measures except tortuosity fail to explain the influence of pore 12 

structure on flow characters in low permeability.  13 

• The relationship between permeability and throat diameter spanning nine orders of 14 

magnitude is consistent with the Hagen–Poiseuille theory.  15 

• Complex network theory is proven useful to unveil the topological characteristics of pore 16 

networks.  17 
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Abstract 19 

Unlike embankments, earth dams, and other man-made structures, most landslide dams are 20 

formed by rapid accumulation of rock or debris rather than mechanical compaction; thus, they 21 

are loose and pose a great risk of seepage failure. Landslide materials usually have complex pore 22 

structures with randomly distributed pores of various sizes, making the flow and transport 23 

processes very complex. Aiming at these challenges, we have studied the influences of pore 24 

structure on the micro-and macro-scale flow characteristics of landslide materials. First, 25 

landslide materials are simplified as spherical granular packings with wide grain size 26 

distributions. Then, we use finite difference method (FDM) and lattice Boltzmann method 27 

(LBM) to simulate the fluid flow through granular packings and calculate their permeability. We 28 

find that both the correlation between pore-scale velocity and throat diameters and the 29 

correlation between macroscopic permeability and average throat diameters follow a power-law 30 

scaling with an exponent close to 2, in agreement with the Hagen–Poiseuille equation for laminar 31 

flow in pipes, suggesting that the relationships in complex pore structures are conformed with 32 

the simple theory. Moreover, we propose a new method by combining pore networks and 33 

complex networks to characterize the pore structure. The network analysis illustrates that 34 

granular packings with different permeability display distinctive distributions of pore throat size 35 

and pore connectivity and their correlations. Compared with disassortative pore networks, 36 

assortative ones generally have higher permeability. Furthermore, pores with larger closeness 37 

centrality have higher flow efficiency that results in higher macroscopic permeability. 38 

1 Introduction 39 

Landslide dams are common worldwide, especially in tectonically active mountain regions, 40 

which are usually caused by natural hazards, such as mountain collapse, earthquakes, and 41 

mudslides. Landslide dams are mainly composed of loose soil and fragmented rocks with grain 42 

size spanning several orders of magnitude (Sun et al., 2016). The blockage of river channels by 43 

landslide dam results in raising water in upstream areas. With the increase of water level in 44 

dammed lake, the loose dam body will collapse catastrophically, causing anomalous destructive 45 

flood waves and posing a significant threat to downstream life and properties (Peng & Zhang, 46 

2012). Therefore, the study of landslide dams and their consequences has acquired significant 47 

relevance in scientific research to predict and prevent landslide dam collapse. Many factors 48 

influencing the stability of landslide dam have been studied comprehensively, such as dam 49 
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geometry (Chen et al., 2015), grains composition (Okeke & Wang, 2016), the angle of dam 50 

downstream face (Gregoretti et al., 2010) and permeability, which is considered as one of the 51 

critical factors affecting the stability of landslide dam (Costa & Schuster 1988).  52 

Previous studies on the hydraulic properties of landslide materials through experimental 53 

and field tests (Okeke & Wang, 2016) and numerical simulations (Zhu et al., 2020) have revealed 54 

that the grain size distribution of the dam accumulation has significant impacts on the seepage 55 

stability of landslide dams. However, the relationship between pore structure and hydraulic 56 

properties of landslide materials has not been fully understood, mainly due to the difficulties of 57 

characterizing the pore structure of landslide materials. The complex pore structure is originated 58 

from the quick deposits of landslide materials composed of poorly graded soils and fragmented 59 

rocks. The existing test results have shown 1~2 orders of magnitude permeability variation for 60 

approximately the same porosity. This variation has been attributed to the complex pore structure 61 

of landslide materials (Miller et al., 2015; Thomson et al., 2018).  62 

Characterization of the pore structure is of great interest in many scientific and 63 

technological areas. Many techniques have been developed to examine the pore space of porous 64 

medium, such as scanning electron microscopy (SEM) (Peters, 2009), mercury injection capillary 65 

pressure (MICP) (Xiao et al., 2016), nuclear magnetic resonance (NMR) (Li et al., 2021), and X-66 

ray (Zambrano et al., 2019). By the aid of the nondestructive and quantitative methods, the 67 

inhomogeneity coefficient, curvature coefficient, critical pore radius (Nishiyama & Yokoyama, 68 

2017), tortuosity (Ahmadian et al., 2019) have been used to characterize the microscopic pore 69 

structure and link to macroscopic permeability. On the numerical modeling side, several pore-scale 70 

methods have been widely used, such as the pore network model (PNM) (Dong & Blunt, 2009; 71 

Fatt, 1956). The PNM and its variants have been extensively used in characterization of pore space 72 

geometry and topology as well as simulation of multiphase and single-phase flows in porous media 73 

(An et al., 2016; Esmaeilpour et al., 2021; Steinwinder & Beckingham, 2019; Zhang et al., 2019).  74 

Besides the pore throat size distribution, the pore connectivity and pore spatial distribution 75 

have been found to play important roles in fluid flow through porous media (Cai et al., 2019). Pore 76 

connectivity can be quantified by either coordination number (Thomson et al., 2018) or 77 

connectivity factor (Cai et al., 2019; Hunt, 2004). Coordination number can be evaluated by medial 78 

axis analysis, which reduces the macropore space to a medial axis and calculates the average 79 
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number of branches at a junction (Hormann et al., 2016). Recently, Zhang et al. (2021) extracted 80 

the pore networks from samples slices and proposed two connectivity indexes based on generated 81 

pseudo MICP curves to evaluate the connectivity of 2D pore networks quantitatively. Bernabé et 82 

al. (2010) proposed a new model based on network simulations and percolation theory and 83 

highlighted the importance of pore connectivity and pore size heterogeneity on fluid flow in porous 84 

media (Bernabé et al., 2011).  85 

Despite the advances in previous studies, there is a lack of detailed analysis on robust 86 

multiscale descriptors of pore connectivity and their relationship to fluid flow characteristics 87 

(Bernabé et al., 2010; Cai et al., 2019). Complex network analysis provides a new perspective to 88 

study pore connectivity and the multiscale characterization of pore network. For example, Van 89 

Der Linden et al. (2016) developed a framework to characterize the internal pore structure and 90 

fluid transmission efficiency of porous media using complex network theory; by combining the 91 

particle’s complex network and its pore network, Russell et al. (2016) proposed a framework to 92 

characterize the coupled evolution for planar deformation considering the geometry and 93 

connectivity of pores; Jimenez-Martinez and Negre (2017) proposed an measure called 94 

eigenvector centrality based on complex network theory to characterize the geometric and 95 

topological characterization of porous media; Valera et al. (2018) developed an approach to 96 

describe transport in fractured rock based on node centrality of complex network. 97 

This study aims to develop a framework to investigate the effect of pore structure on 98 

microscale flow characteristics and macroscopic hydraulic properties of landslide materials. 99 

Because the landslide materials are very complex and the grain size exceeds the limitation of 100 

current experimental techniques, we simplify the landslide materials as granular packings and 101 

perform a large set of numerical simulations. The workflow of this study is shown in Figure 1. 102 

We firstly generate granular packings with different grain size distributions to represent typical 103 

landslide materials. Then, the pore space of the granular packing is extracted, and the fluid flow 104 

through granular packing is numerically simulated. Finally, the pore space topology, pore network 105 

model, and complex network analysis are used to link the pore structure and micro- and 106 

macroscopic flow characteristics of landslide materials.  107 
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 108 

Figure 1 Workflow of this study. 109 

 110 

2 Permeability evaluation of landslide deposits 111 

2.1 Typical samples of landslide deposits 112 

We collected grain size distributions (GSDs) of 32 landslide dams located all over the 113 

world. As shown in Figure 2a, the GSD of natural landslide deposits varies significantly. With the 114 

increase of fine grains, the grain gradation curve gradually changes from a convex shape to a 115 

concave one. In this study, we select seven GSDs to represent the typical landslide deposits. 116 

Samples 1 and 2 have more fine grains; Samples 4~7 have more coarse grains; Sample 3 is 117 

characterized by a relatively uniform size distribution. 118 

The discrete element method (DEM) was used to generate the widely graded granular 119 

packings shown in Figure 2b. The grain diameter ranges from 2 mm (dmin) to 80 mm (dmax) 120 

following the distributions illustrated in Figure 2a. Firstly, loose assemblies of nonoverlapping 121 

grains with a dimension of 0.4×0.4×0.4 m were generated randomly. Then, the grain assemblies 122 

were triaxially compressed to an equilibrium state under the confining pressure of 1MPa (Ma et 123 

al., 2016). The input parameters for the DEM simulations of granular packing are summarized in 124 

Table 1.  125 

 126 
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 127 

Figure 2 (a) Grain size distributions collected from 32 landslide dams (grey color) and seven 128 

GSDs used in this study (colored lines); (b) Granular packings with different GSDs and particles 129 

are colored by their diameter. 130 

 131 

Table 1 Input parameters for DEM simulation of granular packing 132 

Parameters Symbol Units Values 

Grain density   kg/m3 2600 

Young’s module E  GPa 65 

Timestep t  s 1e-7 

Initial size of samples H m 0.4 

Target confining pressure P MPa 1 

Poisson ratio   - 0.2 

Friction   - 0.1 

Contact model  - Hertz-Mindlin 

 133 

 134 

2.2 Fluid flow simulation using FDMSS 135 

Take one granular packing as an example, the granular packing was divided into 136 

1000×1000×1000 voxels, as shown in Figure 3a. The voxel size is approximately 0.3 mm, about 137 

1/7 of the smallest grain. To extract the pore space, we converted 1000×1000×1000 voxels into a 138 

three-dimensional matrix according to grain position and grain size, in which each element has a 139 
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value of either 0 (void voxel) or 1 (solid voxel). Figure 3b and Figure 3c show the pore space 140 

extracted from the granular packing and several fluid streamlines for illustration. The finite-141 

difference method Stokes solver (FDMSS) is used to simulate the fluid flow (Gerke et al., 2018). 142 

The FDMSS uses the finite difference method to directly solve the Navier-Stokes equation, which 143 

has been verified and proven to be efficient and accurate. Compared with other methods, such as 144 

classic FDM (Shabro et al., 2012) and LBM (Khirevich et al., 2015), FDMSS has higher accuracy 145 

and convergence speed and lower computational cost. The interested readers may refer to Gerke 146 

et al. (2018) for the details of FDMSS.  147 

 148 

 149 

Figure 3 (a) Granular packing; (b) Extraction of pore space; (c) Illustration of the fluid flow 150 

paths. 151 

 152 

Flow velocity fields are modeled by applying pressure gradients across three principal 153 

directions while treating all other sides of the granular packing as impermeable walls (see Figure 154 

4a). The permeability along flow direction can be calculated using Darcy’s equation 155 

( )K LQ pS=  , where   is fluid viscosity, L  is the distance of fluid flow, Q  is flow rate, p  156 

is pressure difference between inlet and outlet boundaries, and S  is the cross-sectional area. To 157 

eliminate the boundary effects on fluid flow simulation, a subset of manually binarized images 158 

was cropped from the original stack for simulations resulting in 3D modeling domains containing 159 

3003~8003 voxels. The representative volume element (RVE) is obtained when the measured or 160 

calculated permeability plotted versus increasing sample size reaches a plateau (Figure 4b). 161 

Meanwhile, grid sensitivity analysis is also performed (Figure 5). It can be seen that the 162 

permeability becomes stable when the resolution is less than 0.35 mm/voxel. Thus, the resolution 163 
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we choose is accurate enough for the flow simulations. The granular packing porosity  , mean 164 

grain size 50d , permeability calculated by FDMSS FDMSSK  are summarized in Table 2.  165 

 166 

 167 

 168 

Figure 4 (a) Simulation domain and boundary conditions of the fluid flow simulation; (b) RVE 169 

size effect on the permeability of granular packing. 170 

 171 

 172 

Figure 5 Grid sensitivity analysis (The lattice number is 2003 ~10003 corresponding to the 173 

resolution of 1.4~0.28 mm/voxel). 174 

 175 

 176 

 177 

 178 

 179 

 180 
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Table 2 Basic information of the granular packings and their permeability 181 

 Porosity    
50d  (mm) Permeability FDMSSK  (×10-9 m2)  Range 

Sample 1 0.29 5.33 5.15  

Sample 2 0.24 7.81 4.73 1< K <10 

Sample 3 0.19 14.84 3.65  

Sample 4 0.19 30.80 16.49  

Sample 5 0.22 37.28 39.70 10< K <100 

Sample 6 0.26 43.73 76.77  

Sample 7 0.31 51.13 306.27 K >100 

 182 

The permeability of the seven granular packings covers nearly two orders of magnitude. 183 

We can divide the granular packings into three categories according to their permeability to 184 

facilitate the following analysis. Sample 2, Sample 5 and Sample 6 have the similar porosity, but 185 

they show an order of magnitude difference in permeability. Sample 3 and Sample 4 have the same 186 

porosity, but display a distinct difference in permeability. This means that the porosity alone 187 

cannot reflect the effect of pore structure on permeability. Therefore, a more thorough 188 

investigation of the effect of pore structure on flow characteristics of landslide materials is 189 

necessary. Besides FDMSS, we also use LBM to simulate the fluid flow through the porous space. 190 

The LBM simulation with the D3Q19 lattice model achieves a good balance between stability and 191 

efficiency. The permeabilities calculated by FDMSS and LBM are nearly the same. However, the 192 

computational efficiency of FDMSS is much higher than that of LBM. 193 

2.3 Construction of pore-throat structure and complex network 194 

The pore space topology of the granular packing is analyzed by the pore network model 195 

(PNM) and complex network approach, respectively. The pore network of the granular packing is 196 

extracted using the maximal sphere method developed by Dong & Blunt (2009). According to the 197 

maximal sphere algorithm, the pore space is divided into pore bodies and throats. Then the PNM 198 

consisting of the network of pores and throats is constructed, in which throats are the local 199 

constrictions that connect the adjacent pores. The pore network model provides an effective way 200 

of analyzing the geometry and topology of the pore space. The topology and geometry information 201 
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about the pore structures of granular packings are summarized in Table 3. Using Sample 3, Sample 202 

5 and Sample 7 as examples, we show the pore space and pore network model of these three 203 

granular packings in Figure 6. It is clear that the pore network of Sample 3 is relatively 204 

concentrated, while Sample 5 and Sample 7 are relatively loose, indicating the pore distribution is 205 

scattered and coarse.  206 

 207 

Table 3 Parameters of different samples simulated by the pore network modeling 208 

 Sample

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample

5 

Sample

6 

Sample

7 

Size (mm) 283 278 272 273 278 282 293 

Pores number 79396 59739 40226 10718 6615 3846 1692 

Throats number 428315 297364 184380 45815 28075 16079 6765 

Average pore connection 

number 
10 10 9 8 8 8 8 

Max pore connection number 45 39 35 25 21 20 21 

Average pore diameter (mm) 1.77 1.81 1.82 2.78 3.75 5.17 8.21 

Max pore diameter (mm) 4.00 3.90 3.91 6.00 8.84 10.53 14.39 

Average pore volume (mm3) 10.12 11.42 12.42 48.88 98.06 208.90 647.27 

Max pore volume (mm3) 115.00 103.61 154.79 497.49 944.09 1866.88 4516.30 

Average throat diameter 

(mm) 
0.94 0.97 0.99 1.52 2.04 2.84 4.54 

Max throat diameter (mm) 3.20 3.31 3.36 5.44 7.31 8.21 13.41 

Average throat volume (mm3) 5.89 6.78 7.62 31.29 62.73 136.19 424.52 

Max throat volume (mm3) 110.33 124.44 166.62 434.58 851.76 2018.39 5514.10 

Average throat length (mm) 7.30 7.42 7.48 10.69 12.87 15.57 21.39 

Max throat length (mm) 24.51 24.30 27.40 30.63 37.28 45.78 58.60 

 209 
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 210 

Figure 6 (a) Pore space and (b) Pore throat network of three typical granular packings. 211 

3 Topological characteristics of pore structure 212 

Landslide materials are highly complex systems characterized by significant variability of 213 

grains and pore sizes. Although landslide materials have been idealized as spherical granular 214 

packing with different GSDs, their internal structures are significantly different due to the 215 

significant differences in the GSD of the granular packings. It has been well recognized that the 216 

fluid flow in porous media is affected by its internal structure (Alim et al., 2017). In this section, 217 

we use several measures to characterize the topological properties of the pore structure. 218 

3.1 Conventional topological measures 219 

Tortuosity is an intrinsic property of a porous material usually defined as the ratio of actual 220 

flow path length to the straight distance between the ends of the flow path (Ghanbarian et al., 2013). 221 

It has been reported that tortuosity is an important factor affecting flow and transport in porous 222 

media (Cai et al., 2019). As the tortuosity   becomes larger, the flow path will be more tortuous 223 

and longer. We first show how tortuosity affects the permeability of landslide materials. Instead 224 

of using its geometric definition, we calculate the tortuosity using the velocity vector of the flow 225 

field. The tortuosity along the flow direction (x-direction) is defined as: 226 
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


                                                              (1) 227 

Where x  is the tortuosity in the x-direction; the subscript i  denotes the i -th node in the flow 228 

field; N  is the total number of nodes in the flow field; xiv , yiv , and ziv  are the x, y, and z 229 

components of the velocity vector. The local tortuosity at each node can be calculated analogically 230 

as 2 2 2

xi xi yi zi xiv v v v = + + . 231 

The relationship between tortuosity and permeability is plotted in Figure 7. Although the 232 

permeability spans eight orders of magnitude, these data points collapse to a master curve with a 233 

determination coefficient of 0.99. The permeability demonstrates a decreasing trend with the 234 

increase of tortuosity, which is consistent with previous studies (Nishiyama & Yokoyama, 2017; 235 

Zambrano et al., 2019). We then analyze the influencing mechanism of tortuosity on permeability. 236 

As shown in Figure 8a, the curvature of the streamlines gradually decreases due to the increase of 237 

coarse grains in the granular packing. Take Sample 7 as an example, coarse grains take up most of 238 

the space, and large pore space is generated without the filling of fine grains. Therefore, there is 239 

no obstruction of fine grains when the fluid flows, leading to straight flow path and high flow 240 

velocity between large pores (Figure 8b). With the increase of fine grains, local blocking 241 

structures are formed by the filling of fine grains. Thus, due to the more tortuous flow paths, the 242 

fluid flow through the porous media becomes difficult and results in lower permeability. Figure 243 

8c shows the local tortuosity at the cross-section of the three granular packings. As shown, the 244 

front and rear regions of pores show higher tortuosity. Therefore, the porous media consisting of 245 

more pores display a higher tortuosity, which explains the relationship between permeability and 246 

tortuosity. 247 

 248 
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 249 

Figure 7 The relationship between tortuosity and permeability. The right panel (b) is an enlarged 250 

view of the dotted box shown in (a). 251 

 252 
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 253 

Figure 8 The distributions of (a) Streamline, (b) Flow velocity, and (c) Tortuosity of each node at 254 

the cross-section of the three typical granular packings. 255 

       256 

Disorder is another intrinsic property of porous media, which profoundly influences the 257 

stress transmission and failure (Huang et al., 2021; Zaiser, 2017), flow and transport characteristics 258 

(Zami-Pierre et al., 2018). The disorder of porous media can be manifested as the heterogeneity of 259 

pore size distribution or local porosity distribution. Porous media with non-uniformly distributed 260 

pore size and local porosity generally have a higher degree of disorder. As suggested by Laubie 261 

(2017), the domain containing the granular packing is divided into several subdomains to facilitate 262 
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the calculation of local porosity (see Figure 9a). A heterogeneity index can be defined as the 263 

standard deviation of the local porosity of each subdomain (Laubie, Radjai, et al., 2017; Wang et 264 

al., 2016). 265 

 2 2

d iI  = −                                                                    (2) 266 

where dI  is the heterogeneity index,   is the global porosity of the granular packing, and i  is the 267 

local porosity of the i-th subdomain. 268 

The relationship between pore heterogeneity and permeability is plotted in Figure 9b. The 269 

permeability shows an overall increasing trend with dI  in samples 4~7, suggesting that granular 270 

packings with the increasing of coarse grains showing more obvious pore aggregation have higher 271 

permeabilities. However, the heterogeneity does not display an obvious trend when the proportion 272 

of fine grains is large (as in Samples 1~3). This means that dI  is determined by the GSD when 273 

there are more coarse grains in samples, but it is not applicable to the samples composed of more 274 

fine grains. 275 

 276 

 277 

Figure 9 (a) Illustration of the pore heterogeneity calculation; (b) The relationship between 278 

heterogeneity and permeability. 279 

 280 

Besides tortuosity and heterogeneity, we further use fractal dimension to characterize the 281 

pore space topology. Many studies have shown that the pore space of porous media has a typical 282 

fractal structure (Yu & Cheng, 2002; Yun et al., 2009). The fractal dimension of the pore space is 283 

calculated using the box-counting method (see Figure 10a). The overall tendency is that the fractal 284 
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dimension increases with the increasing proportion of fine grains in porous media with low 285 

permeability (Figure 10b). The fractal dimension does not appear to be a robust metric to describe 286 

the pore structure for characterization of hydraulic properties; e.g., samples 1~3, having a similar 287 

permeability, display quite different fractal dimensions. Therefore, we propose a new method 288 

based on microscopic analysis with pore networks and complex networks in Section 4 and 5. 289 

 290 

 291 

Figure 10 (a) Illustration of the calculation of fractal dimension of pore space; (b) The 292 

relationship between fractal dimension and permeability. 293 

3.2 Characterization of the complex pore network 294 

This section focus on analyzing the topological characteristics of pore structure using the 295 

complex network theory (Papadopoulos et al., 2018). A complex network is a graph, which can 296 

help to simplify the pore structure and give insights into the flow and transport properties in porous 297 

media (Jimenez-Martinez & Negre, 2017; Van Der Linden et al., 2016, 2019). As shown in Figure 298 

11, a complex network is constructed to represent the pore throat network, in which the nodes 299 

represent pores (centroid of the pore) and edges represents throats determined by the medial axis 300 

method. In order to relate the complex network features to the flow characteristics of porous media, 301 

some studies constructed weighted complex network to represent the pore throat structure. 302 

Different choices of edge weight have been proposed, such as conductance (Van Der Linden et al., 303 

2016) and throat cross-section area (Jimenez-Martinez & Negre, 2017).  304 
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 305 

Figure 11 Complex network representation of the pore structure of three typical granular 306 

packings. r is the degree correlation coefficient. complex networks tend to be assortative with the 307 

increase of r.  308 

 309 

The complex network constructed in this way is physically representative and can be 310 

viewed as a “fingerprint” of the porous media. The complex pore network is denoted as a graph 311 

G=(V, E), where  1, ,V N=  is the set of nodes (pores) and E V V   is the set of edges that 312 

represents throats. We use several overall network features to characterize the transport efficiency 313 

and flowing capacity in the network, such as global efficiency, entropy, and transitivity. The global 314 

efficiency represents the average of the reciprocal path lengths of all nodes in the complex network 315 

and can be interpreted as a measure of how well the flow is transmitted through a network. The 316 

global efficiency 
globE  is defined as: 317 

 
,

1 1

( 1)
glob

i j ij

E
N N d

=
−
                                                           (3) 318 

where N  is the number of nodes; ijd  is the shortest path length between node i and j, representing 319 

the shortest number of steps necessary to get from node i to j. The flow transmission rate is 320 

dependent upon ijd , and lower ijd  corresponds to higher transmission efficiency.  321 

The entropy of degree distribution is an important concept that measures the node 322 

connection inhomogeneity in the complex network (Reichl & Luscombe, 1999). It is defined as: 323 
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( ) log ( )
k

H P k P k= −                                                         (4) 324 

Where k is the degree that represents the number of edges connected to a node; P(k) is the fraction 325 

of nodes in a network with degree k. The entropy achieves the maximum value when the degree 326 

distribution is uniform (wide), and the minimum value of entropy is 0 when the nodes have the 327 

same degree.  328 

The transitivity is defined by the fraction of all possible triangles present in the graph 329 

(Zlatić et al., 2012). Possible triangles are identified by the number of triads composed of two 330 

edges with a shared node. Suppose that a node i has ki neighbors. The maximum number of edges 331 

are ( 1) / 2i ik k − . The transitivity can be calculated as: 332 

3 ( )

( 1)

2
i i

i V

t G
T

k k



=
−


                                                               (5) 333 

Where ( )t G  is the number of triangles in G; ik  is the degree of node i. The transitivity reflects the 334 

probability that two random neighbors of one node are neighbors with each other and can be used 335 

to measure how well nodes tend to be clustered. 336 

As shown in Figure 12a, the network with higher global efficiency has better flow 337 

transmission efficiency, thus, demonstrating larger permeability. Specifically, in Samples 1~3, the 338 

nodes that are not close to one another are separated by multiple edges and have longer path length, 339 

therefore, the connectivity between nodes is weakened. In Samples 4~7, the length of the shortest 340 

path connecting two nodes is shorter, and the fluid can reach another node through fewer edges. 341 

Thus, the fluid can communicate, transform, and transmit in each node with greater efficiency, 342 

which ultimately lead to higher permeability. With the increase of fine grains, the entropy 343 

reflecting the node connection inhomogeneity increases. The complex networks with higher 344 

entropy demonstrate lower permeability (see Figure 12b). The networks with larger transitivity 345 

also display higher permeability (see Figure 12c). We can conclude from this analysis that 346 

granular packings with relatively clustered pores that are linked by high connectivity throats have 347 

high permeability.  348 
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 349 

Figure 12 The relationships between permeability and three complex network features: (a) 350 

Global efficiency; (b) Entropy; (c) Transitivity. 351 

4 Microscopic investigation by pore network analysis 352 

The above analysis indicates that both conventional topological parameters and complex 353 

network measures can be used to investigate the relationship between pore structure and 354 

permeability at the macroscopic scale. Among these metrics, tortuosity and global efficiency 355 

perform better than others. We further investigate the relationship between the microscopic pore 356 

structure and pore scale flow dynamics. In this section, the pore and throat geometry obtained from 357 

PNM are analyzed in detail. We mainly focus on the pore and throat size distributions of different 358 

granular packings and their correlations with pore connectivity and flow dynamics.   359 

 Using Sample 3, Sample 5 and Sample 7 as typical examples, the distributions of pore size 360 

and pore coordination number and their correlations of different granular packings are shown in 361 

Figure 13. The pore connection number represents the number of throats connected to a pore. 362 

With the increase of coarse grains, the pore size gradually increases and varies in a wider range. 363 

The connection number increases with increasing pore size, indicating that larger pores tend to 364 

connect more throats. In Sample 3, the pore sizes scatter in a quite narrow range, while the pore 365 

connection numbers show a relatively wide range. Thus, the relationship between pore size and 366 

pore connection number is fitted by a line with a larger slope, indicating that small pores with few 367 

connection numbers are more likely to link to large pores with multiple connection numbers.  368 

The distributions of throat diameter and throat length and their correlations of different 369 

granular packings are presented in Figure 14. It clearly outlines the positive correlation between 370 

pore throat size and permeability, suggesting that longer and larger throats generally result in 371 

higher permeability of granular packing. With the increase of fine grains, the void space can be 372 
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filled by finer grains, the cross-section area of throat becomes smaller, which hinders the flow in 373 

granular packing. As the proportion of coarse grain increases, the granular packing tends to 374 

generate large void space without filling of finer grains, therefore, the pore space are manifested 375 

by larger pore and throat size with relatively evenly distributed connection number. We can 376 

categorize the granular packings into three groups according to the features of the pore throat 377 

geometry and their correlations. The significant difference in pore throat geometry and their 378 

connectivity results in permeability difference of orders of magnitude.  379 

 380 

Figure 13 Scatter plot of pore diameter and pore connection number with marginal boxplots of 381 

different granular packings (Permeability K, 10-9 m2). 382 
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 383 

Figure 14 Scatter plot of throat diameter and throat length with marginal boxplots of different 384 

granular packings (Permeability K, 10-9 m2). 385 

 386 

The correlations between pore throat geometry and flow characteristic are also analyzed at 387 

both the pore scale and the macroscale. The flow velocity at the throat center is plotted as the 388 

function of throat diameter (Figure 15a). At the pore scale, the flow velocity increases 389 

approximately linearly with throat diameter in the log-log scales with a slope of about 2.2, i.e. 390 

2.2

x tV d , which is in close agreement with Hagen–Poiseuille equation: the velocity of the fluid is 391 

proportional to the square of the pipe diameter. This demonstrates that the relationship between 392 

velocity and throat diameter in complex porous media is basically conformed with the simple 393 

theory. At the macroscopic scale, we observe a strong correlation between the average throat 394 

diameter and macroscopic permeability of various porous media. The data points from different 395 

sources (Encalada et al., 2020; Lala & El-Sayed, 2017; LU et al., 2018; Pang et al., 2018) collapse 396 

onto a single master curve shown in Figure 15b. The slope of the fit is 2.18, which is basically in 397 

accordance with the results of 
2K D  by combining the Hagen-Poiseuille equation and Darcy’s 398 

Law (Ozgumus et al., 2014). This indicates that there are strong connections between the pore 399 
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structure and the fluid flow characteristics, and that the connections exist at both micro-and macro-400 

scales.  401 

 402 

Figure 15 (a) The relationship between throat diameter and pore-scale velocity plotted with error 403 

bars (b) The relationship between average throat diameter and macroscopic permeability. Data 404 

points from different sources are colored differently. Solid lines are a guide to the eye. 405 

5 Connectivity analysis based on complex pore network 406 

The connectivity among nodes with different degrees has been found to play an important 407 

role in the transportation and communication within a network. These dependencies can be related 408 

to the degree-degree correlations or assortativity, which measures the likelihood that nodes link to 409 

nodes of similar or dissimilar nodal degree. The degree correlations can be simply characterized 410 

using the degree correlation coefficient r  proposed by Newman (2002). It varies between 411 

1 1r−   : for 0r   the network is disassortative, for 0r =  the network is neutral and for 0r   412 

the network is assortative. Another way to quantify the degree correlations is to measure for each 413 

node i  the average degree of its neighbors (Pastor-Satorras et al., 2001): 414 

 ,

1 1

i

nn i j ij j

j V j Vi i

k k A k
k k 

= =                                                            (6) 415 

where ,i jk k  are the connectivity degree of node i and j, respectively. Define V  as the set of nodes 416 

in the complex network, and iV  denote the set of neighbors of node i . A  is the adjacency matrix 417 

of the complex networks. If node i is connected with node j, then ijA =1; otherwise, ijA =0.  418 

For all nodes with degree k , ( )nnk k  is the average degree of the neighbors of all nodes 419 

with degree k . 420 
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k k k
N 

=                                                                   (7) 421 

where kV  is the subset of nodes with degree value equal to k , and 
k kN V=  is the number of nodes 422 

with degree equal to k . A subset of nodes with degree equal to k  is more likely to be connected 423 

with a subset of nodes with degree equal to ( )nnk k . 424 

We can inspect the dependence of ( )nnk k  on k  to quantify the degree correlations 425 

(Newman, 2002). As shown in Figure 16, we discover a slightly overall decreasing trend in ( )nnk k  426 

for samples 1~3, which indicates nodes of high degree prefer to link with low-degree nodes (see 427 

Figure 11). For samples 4~7, ( )nnk k  increases gradually with the increasing degree value, 428 

indicating that nodes of comparable degree tend to link to each other, i.e., small-degree nodes to 429 

small-degree nodes and hubs to hubs, and the network is called assortative. Thus, the networks for 430 

samples 1~3 are disassortative, and networks for samples 4~7 are assortative. 431 

 432 

Figure 16 (a) The distributions of nodes degree; (b) The relationships between ( )nnk k  and node 433 

degree. 434 

 435 

For disassortative networks (Samples 1~3), the wide and inhomogeneous distributions of 436 

node degree implies complicated pore connection patterns. The fluid has a tendency to flow from 437 

low-degree pores to high-degree pores. These networks show a scattered and messy distribution 438 

of flow paths that results in the flow process tending to be disordered and of high entropy. Thus, 439 

more energy will be dissipated during flow, which ultimately leads to low permeability. The 440 

assortative networks (Samples 4~7) have relatively simple connection patterns. The flow paths are 441 
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relatively regular, and the flow process is in an orderly manner, indicating that less energy will be 442 

dissipated and the permeability tends to be high. 443 

Then, we analyze local correlations between the complex network measures of each pore 444 

and the pore scale velocity. These measures are summarized in Table 4 and are calculated in terms 445 

of the adjacency matrix and node degree, in which A  is the adjacency matrix of the graph G  with 446 

eigenvalue  ; jk  is the number of paths between node j and k ; ( )jk i  is the number of paths 447 

between node j and k that pass through node i ;   is the eigenvalue of matrix A . The local 448 

clustering coefficient iC  measures the local density of 3-cycles surrounding a node (Watts & 449 

Strogatz, 1998). Closeness centrality iCC  is used to describe the importance of a node to transport 450 

across the network, which is calculated as the reciprocal of the shortest path length (Bavelas, 1950). 451 

A node with high closeness centrality indicates it has close relationships with many nodes (Metcalf 452 

& Casey, 2016). Betweenness centrality iBC  is a measure of traffic flow that represents the total 453 

fraction of all-pairs shortest paths that pass through node i (Brandes, 2001). Eigenvector centrality 454 

iEC  describes the qualitative aspect of the connections of node i. It is based on the assumption 455 

that connections to more critical nodes are more momentous than to less critical nodes (Parau et 456 

al., 2017).  457 

Figure 17 shows the correlation matrix of pore scale velocity and measures reflecting node 458 

importance. Correlations exist between flow velocity and the node features extracted from 459 

complex network analysis, especially the closeness centrality. The results in Figure 18 suggest 460 

that pores with higher closeness centrality have shorter shortest path length and larger flow 461 

velocity. On the contrary, pores with lower closeness centrality have longer shortest path length 462 

and smaller flow velocity. That is, porous media with more centered pores connected with others 463 

make a positive contribution to the fluid flow and show a high permeability. We adopt the 464 

closeness centrality of nodes to measure the importance of pore space for fluid flow and reveal the 465 

interplay between fluid flow, shortest paths, and pore size in the microcosmic scale.  466 

 467 

 468 

 469 

 470 
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Table 4 Local parameter calculation formula 471 

Parameter Variable Equation 

Velocity V  - 

Degree k  
1

N

i ij

j

k A
=

=  

Clustering C  
,

1

( 1)
i ij jk ki

j ki i

C A A A
k k

=
−
  

Closeness centrality CC  1

1

1 1

1
i n

ijj

n n
CC

N d
−

=

− −
=

− 
 

Betweenness centrality BC  
,

( )2

( 1)( 2)

jk

i

j k V jk
i j k

i
BC

N N




 

=
− −

  

Eigenvector centrality EC  
1

i ij j

j V

EC A EC
 

=   

 472 

 473 

 474 
Figure 17 Correlation matrix of pore scale velocity and node importance measures of complex 475 

network. 476 

 477 
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 478 
 479 

Figure 18 (a) Scatter plots of the node closeness centrality and pore-scale flow velocity and the 480 

distributions of the closeness centrality of two granular packings. Dots are colored by pore size; 481 

(b) Two typical complex networks. The node size and color depth represent the closeness 482 

centrality value. 483 

6 Conclusions 484 

We report a systematic investigation on the influences of pore structure on the flow 485 

characteristics of landslide deposits from both micro-and macroscopic perspectives. Seven 486 

granular packings with significantly different grain gradations are constructed to represent typical 487 

landslide materials. Both pore-space topological measurements and complex network analysis are 488 

employed to characterize the pore structure of the idealized landslide materials. The main findings 489 

are as follows: 490 

(1) Due to the complex pore structure of landslide materials, there is 1~2 orders of 491 

magnitude permeability variation for approximately the same porosity, indicating that porosity 492 

alone is not sufficient to determine the macroscopic permeability. The topological characterization 493 

of pore structure using tortuosity, heterogeneity, and fractal dimension shows correlation with 494 

macroscopic permeability. This is especially evident for pore tortuosity, which demonstrates a 495 
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clear relation with permeability that covers eight orders of magnitude for permeability on a variety 496 

of porous medium.  497 

(2) The pore network modeling is a powerful tool in analyzing the pore structure of 498 

landslide materials. With the increase of coarse grains, the pore throat size becomes larger and the 499 

distributions are wider and more heterogeneous, resulting in a high permeability. The pore throat 500 

geometry displays clearly three distinctive distributions in the scope of this study. The 501 

correspondence between pore throat size distribution and pore connectivity and permeability range 502 

suggests the importance of pore size heterogeneity and pore connectivity on the fluid flow. The 503 

pore-scale flow velocity and macroscopic permeability show power law growth with throat 504 

diameter and its ensemble average value, respectively, with an exponent close to 2, which is in 505 

accordance with the Hagen–Poiseuille equation. This means that the relationship between fluid 506 

characteristics and complex pore structures is conformed with the simple theory.  507 

(3) The pore space topology is also explored by using complex network approach. The 508 

overall measures of complex networks, such as network entropy, global efficiency, and transitivity 509 

show significant correlations with macroscopic permeability. The careful inspection of connection 510 

patterns between pores reveals that disassortative pore networks have lower permeability and 511 

assortative pore networks generally have higher permeability. The closeness centrality is a good 512 

measure to link the internal connectivity and the efficiency of transmission pathways across spatial 513 

scales. 514 
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