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Abstract

The abundance and size distribution of marine organic particles are two major factors controlling biological carbon sequestration

in the ocean. These quantities are the result of complex physical-biological interactions that are difficult to observe, and their

spatial and temporal patterns remain uncertain. Here, we present a novel analysis of particle size distributions (PSD) from a

global compilation of in situ Underwater Vision Profiler 5 (UVP5) optical measurements. Using a machine learning algorithm,

we extrapolate sparse UVP5 observations to the global ocean from well-sampled oceanographic variables. We reconstruct global

maps of PSD parameters (biovolume and slope) for particles at the base of the euphotic zone. These reconstructions reveal

consistent global patterns, with high chlorophyll regions generally characterized by high particle biovolume and flatter PSD

slope, i.e., a high relative abundance of large vs. small particles. The resulting negative correlations between particle biovolume

and slope further suggests amplified effects on sinking particle fluxes. Our approach and estimates provide a baseline for an

improved understanding of particle cycles in the ocean, and pave the way to global, three-dimensional reconstructions of sinking

particle fluxes from UVP5 observations.
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Key Points:

« We use optical observations of marine particle size distribution to reconstruct global
climatological particle biovolume and spectral slope.

« We describe the importance of different biogeochemical variables on particle bio-
volume and spectral slope.

« Spatial and seasonal variations of biovolume and slope have synergistic effects on
carbon export.
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Abstract

The abundance and size distribution of marine organic particles are two major factors
controlling biological carbon sequestration in the ocean. These quantities are the result
of complex physical-biological interactions that are difficult to observe, and their spa-

tial and temporal patterns remain uncertain. Here, we present a novel analysis of par-
ticle size distributions (PSD) from a global compilation of in situ Underwater Vision Pro-
filer 5 (UVP5) optical measurements. Using a machine learning algorithm, we extrap-
olate sparse UVP5 observations to the global ocean from well-sampled oceanographic
variables. We reconstruct global maps of PSD parameters (biovolume and slope) for par-
ticles at the base of the euphotic zone. These reconstructions reveal consistent global pat-
terns, with high chlorophyll regions generally characterized by high particle biovolume
and flatter PSD slope, i.e., a high relative abundance of large vs. small particles. The
resulting negative correlations between particle biovolume and slope further suggests am-
plified effects on sinking particle fluxes. Our approach and estimates provide a baseline
for an improved understanding of particle cycles in the ocean, and pave the way to global,
three-dimensional reconstructions of sinking particle fluxes from UVP5 observations.

1 Introduction

The ocean absorbs CO4 from the atmosphere, which is used by phytoplankton and
other autotrophs to build their organic biomass. A fraction of this organic matter even-
tually sinks into the ocean interior, where much of it is remineralized back to COs, ef-
fectively removing carbon from the atmosphere over time scales from decades to millen-
nia. The set of processes responsible for carbon export from the ocean’s surface and se-
questration into deep layers are collectively referred to as the ocean’s biological pump.

This biological carbon sequestration is largely dependent on the ability of sinking
particles to escape shallow remineralization and reach the deep layers, the so-called par-
ticle transfer efficiency. Large, dense organic particles tend to sink at a speed propor-
tional to their size (Kriest, 2002). Aggregation and coagulation of particles (Alldredge
& Gotschalk, 1988) as well as repackaging by marine organisms (e.g., by formation of
fecal pellets and sinking carcasses) lead to a substantial increase in the size of organic
particles, and hence of their sinking velocity (Stemmann & Boss, 2012; Boyd et al., 2019).
Conversely, disaggregation and consumption by microorganisms and filter-feeders tend
to reduce the size of particles and their sinking speed. Ultimately, the abundance and
fate of organic matter in the surface ocean results from a delicate balance of both phys-
ical and biogeochemical processes. The rate and effect of these processes is typically as-
sumed to be size dependent (Burd & Jackson, 2009a; Devries et al., 2014). Thus, the abun-
dance of particles of different sizes, i.e., the particle size distribution (PSD) is a primary
determinant of organic carbon export and sequestration, and retains important infor-
mation on particle dynamics (Stemmann & Boss, 2012).

Importantly, this sinking of organic matter removes carbon and bioavailable ele-
ments from the surface ocean at a rate proportional to the size of the particle (Kriest,
2002), eventually storing them in the interior ocean for timescales that range from decades
to millenia. Particle consumption in the deep ocean provides energy to deep ocean mi-
croorganisms and food webs, while simultaneously consuming oxygen. The amount of
carbon removed via sinking particles thus has major implications for deep ocean ecosys-
tems (Siegel et al., 2014), atmospheric CO4 and climate change (Kwon et al., 2009; Palevsky
& Doney, 2018), and the ocean microbiome (Karl et al., 1984; Bianchi et al., 2018). All
these effects are influenced by the surface particle size distribution. However, quantify-
ing the large scale abundance, distribution, and size structure of sinking organic parti-
cles has been historically difficult.

Satellite-based observations allow to estimate the PSD in the surface ocean, for par-
ticle size ranges that typically include phytoplankton and small, slowly sinking particles
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(Kostadinov et al., 2009, 2010a, 2010b). However, satellite retrievals miss larger parti-
cles that more directly contribute to particle export, and are limited to the upper few
tens of meters of the ocean, thus providing little direct information on subsurface par-
ticle fluxes and transfer efficiency. Despite the limitations, satellite-based PSD estimates
have proven helpful to constrain models of the ocean’s biological pump (DeVries & We-
ber, 2017).

Recent advances in ocean optical observations enable direct determination of in situ
PSD throughout the water column (Stemmann & Boss, 2012; Boss et al., 2015; Lombard
et al., 2019). The Underwater Vision Profiler 5 (UVP5) is an optical particle counter that
provides the in situ particle abundance for relatively large particles (80 ym - 2.6 cm) in
a given sampled volume (Picheral et al., 2010). The UVP5 consists of a camera attached
to the CTD rosette, and is able to collect images at high frequency as it is lowered in
the water column. Vertical profiles of PSD from the UVP5 are commonly taken at up
to 20 images per second, with downward speeds of 1 m s™1, as deep at 6 km (Picheral
et al., 2010). Since 2008, UVP5s have been routinely deployed on oceanographic cruises,
in all ocean basins.

Because UVP5 instruments observe a range of sizes that includes rapidly sinking
particles, they are especially helpful for characterizing patterns and fate of sinking car-
bon fluxes. Prior studies have utilized UVP5 observations to shed light on the ocean’s
biological pump. For example, Guidi et al. (2008) showed that PSD observations from
UVP5 can be combined with sediment trap data to estimate sinking carbon fluxes. A
similar approach was later used to estimate regional carbon fluxes (Forest et al., 2012;
Guidi et al., 2016; Kiko et al., 2017), as well as regional patterns of particle transfer ef-
ficiency and deep carbon sequestration (Guidi et al., 2015). Recently, the study by Cram
et al. (2018) combined UVP5 observations taken along a meridional section in the Pa-
cific Ocean and satellite-based surface chlorophyll to reconstruct global PSD and drive
a model of marine particle dynamics. While these studies demonstrate the potential of
UVP5 observations for regional and global investigations, they are based on relatively
small data sets, which limits the robustness of extrapolations to the entire ocean.

In this study, we take advantage of the rapid growth of UVP5 observations and em-
ploy a machine learning approach to reconstruct global patterns of PSD in the upper ocean,
and investigate their drivers. Specifically, we train a supervised machine learning algo-
rithm to reconstruct PSD from relatively sparse UVP5 observations and well-sampled
oceanographic variables. By comparing patterns in PSD with environmental drivers, we
further gain insight into the potential mechanisms responsible for shaping the surface
ocean’s PSD and its variability. In a companion paper (Clements et al., 2021), these global
reconstructions are used to estimate global particle carbon export and investigate its re-
gional variability and controls.

The rest of the paper is organized as follows. Section 2 describes the machine-learning
approach used to globally extrapolate PSD globally. Section 3 presents the reconstruc-
tions of particle distributions and compares our results to previous studies, discussing
the uncertainties and caveats inherent to our approach. Section 4 summarizes the main
findings and discusses future directions.

2 Methods

Observations with a variety of optical instruments, including UVP5, reveal that the
PSD of organic particles in the ocean can be well approximated by a power law over a
relatively broad size range (from micrometers to centimeters) (Stemmann & Boss, 2012).
Accordingly, the PSD can be described by the following equation (Stemmann & Boss,
2012):
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n(s) =ng - s, (1)

where s is the particle equivalent spherical diameter, or size, and n(s)ds is the num-
ber of particles in an arbitrarily small size range [s, s+ds]. This power law approxima-
tion depends on two parameters: the intercept ng (i.e., the size-independent coefficient),
and the slope 8 (the exponent for size-dependence). The intercept of the PSD represents
the number of particles at an arbitrary reference size, and the slope encapsulates the rel-
ative proportion between small and large particles. For a given slope, increasing the in-
tercept proportionally increases the total number of particles. Conversely, for a given in-
tercept, increasing the slope (i.e., making the spectrum “steeper”) increases the propor-
tion of small particles, while decreasing the slope (i.e., making the spectrum “flatter”)
increases the proportion of large particles. Relatively small changes in the slope can thus
result in dramatic changes in the size partitioning of particles and in quantities that de-
pend on this partitioning, such as the total particle biovolume and surface area.

Here, we use UVP5 observations to estimate PSDs (i.e., ng and ) at the base of
the euphotic zone, by fitting Equation 1 to observed particle abundances. We then ex-
trapolate the sparse UVP5 observations to a global grid, by training a supervised learn-
ing algorithm to predict spatially-varying PSD parameters from well-sampled environ-
mental predictors. We exploit the three-dimensional nature of UVP5 observations to per-
form these calculation at a varying base of the euphotic zone, here defined by the 1% light
level according to Morel et al. (2007), rather than a single depth. The steps used to re-
construct global PSD from UVP5 observations are illustrated in the workflow schematic
in Fig. 1, and are discussed in the following sections.

2.1 Reconstructions of particle size spectra from UVP5 data

We use observations from a new compilation of UVP5 measurements spanning the
global ocean (Kiko et al., 2021). The data set consists of over 6700 profiles from 119 cruises,
collected from 2008 to 2020 (Fig. 2). These observations provide robust particle counts
for the 105 pum - 5 mm size range at each location and depth. Under the power law as-

sumption (Equation 1), the two parameters ny and S are needed to capture the PSD (Stemmann

et al., 2004; Stemmann & Boss, 2012; Devries et al., 2014).

We calculate the power law slope 3 by fitting a linear least-squares regression through
the log-transformed particle abundance and size. We then calculate the observed par-
ticle biovolume (BV) by multiplying the volume of a particle of a given size s by the ob-
served size distribution n(s), and integrating over all size ranges:

BV = / o n(s) - % .53 ds. (2)

Smin

In practice, the continuous integral is approximated by a summation over all size
bins in which the UVP5 observations are discretized.

Under the power law assumption, the biovolume can also be expressed analytically
as a function of the slope and intercept, by substituting Equation 1 into Equation 2:

Smax

5 T Smaz g _ T si=B 4B
BV = ng- S 5-E~s3ds:/ 6-n0~s3ﬂds:G-no~<4_ﬁ—4T% . (3)

Smin Smin

By fixing the size range, i.e., the minimum and maximum particle size that can be
robustly derived from UVP5 instruments (Syin and Sp,q. respectively), we solve Equa-
tion 3 for the intercept ng as a function of the PSD slope and the observed biovolume:
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Figure 1. Schematic diagram illustrating the general workflow of processing UVP5 obser-
vations into a global PSD dataset. Observations are ensembled onto a normal 1 degree grid,
with observation representing an average of a 20 meter vertical bin about the export horizon.
PSD observations (power law slope and biovolume) are calculated for the 105 pm to 5 mm size
range. The PSD slope and biovolume are globally extrapolated using a bagged Random Forest
algorithm.
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We set the minimum and maximum size for this equation to the same values used
to estimate the slope and biovolume from UVP5 observations. We use a minimum size
Smin=105 pm to avoid a potential slight instrument bias in the lowest size classes. We
set the maximum size to S;,4,=5 mm, which corresponds to the size where zooplank-
ton start to dominate the biovolume at a variety of locations sampled by UVP5 (Forest
et al., 2012; Stemmann et al., 2008; Stemmann & Boss, 2012).

We coarsen the temporal and spatial resolution of the UVP5 profiles by binning
them onto the standard monthly 1 degree-resolution grid of the World Ocean Atlas (H. Gar-
cia et al., 2018; H. E. Garcia et al., 2019). That is, we combine multiple profiles in a given
grid cell and month together, thus reducing variability due to the noisy and episodic na-
ture of particle observations. We also combine all observations within a 20 meter-thick
depth bin around each chosen depth horizon, to further smooth out small-scale vertical
variability, and to increase the significance of particle counts, especially for the largest
sizes. To reconstruct global PSDs, we calculate slope and biovolume at each location,
at the given depth horizon, using the gridded observations, and assume that these av-
erages are representative of the climatological monthly PSD in each grid cell.
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Although the gridding procedure reduces noise and data patchiness in many well-
sampled regions, a significant proportion of grid cells only contains a single profile (~
45%). As a further quality check, we test the assumption that a power law distribution
is a good approximation for the observed PSD. For each grid cell with observations, we
place an objective goodness of fit threshold to determine the robustness of the power law
fit. If a power law fit has a Pearson correlation coefficient R? of less than 0.9, we remove
the data point, as it likely does not closely follow a power law distribution. This qual-
ity control step removes less than 1% of data (Supplementary Information Fig. S1). The
final processed UVP5 observation data set contains 2,034 gridded observations at the ex-
port horizon, which together cover slightly less than 10% of the ocean surface. Figure
2 shows the spatial and temporal resolution of the final gridded data set, and an exam-
ple of the observed PSD from UVP5 with the corresponding power law fit.
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Figure 2. Global distribution of the UVP5 observations used in this study. (a) Number of
profiles per one-degree resolution grid cell. (b) Number of months represented in each grid cell.
(c) Typical particle size distribution sampled by the UVP5, in log-log space. The red dots indi-
cate actual observations, and the black line the linear fit (R* = 0.99).

2.1.1 Training and evaluating a Random Forest model

Monthly flux reconstructions require extrapolation of PSD parameters to the whole
ocean on monthly time scales. We use a bagged Random Forest (RF) algorithm to re-
construct climatological PSD slope and biovolume globally, following an approach sim-
ilar to Yang et al. (2020). A RF deploys a decision tree learning scheme to solve a re-
gression equation iteratively, and reports the ensemble average. Using a RF, each indi-
vidual decision tree is trained on a subset of the available data, with a subset of predic-
tors, but the power of the method emerges when considering the ensemble average. The
RF is able to learn statistical relationships between target variables (here, UVP5-derived
slope and biovolume) and a series of predictors (here, environmental variables), to make
reconstructions that minimize the error between predicted and observed data. Because
a RF is highly non-linear, it runs the risk of overfitting the data, producing solutions with
low error, but also limited extrapolation power outside of the training data set. To mit-



igate the risk of overfitting, the RF does not use all data points for training. Instead,

a bootstrapped sample ( 70%) of the data is selected for each tree in the forest. The de-
gree of overfitting is determined by finding the error between the model and the data not
used for training, i.e., the “out-of-bag” data.

The rank of predictors is given by the out-of-bag error coupled with an internally
derived measure of importance, using a so-called “recursive feature elimination” approach.
A recursive feature elimination systematically removes the least important predictor and
records the out-of-bag error to describe the contribution of each predictor to the final
solution. When there is relatively no change in the out-of-bag error for every additional
predictor, these predictors are considered not important for the RF (Supplementary Fig.
S2). We determine statistical importance in order to establish a reduced set of predic-
tors, reducing the risk of over-fitting while not losing predictive power. When interpret-
ing the RF results, we apply qualitative understanding of the predictors combined with
the recursive feature elimination to determine if a predictor should be included in the
final regression or if it should be excluded.

2.1.2 Environmental Predictors

The RF algorithm relies on a set of predictors and target data at the resolution of
the desired reconstruction. In our case, we use climatological monthly predictors at 1-
degree spatial resolution. We include a variety of predictors that are globally sampled
and could be mechanistically related to particle production in the surface ocean, rang-
ing from physical variables (e.g., temperature and salinity) to ecosystem-level quanti-
ties (e.g., primary production, euphotic zone depth). A list of all predictors is shown in
Table 1.

Some of these predictors are obtained from satellite products at high spatial and
temporal resolution (e.g., surface chlorophyll and net primary production), and include
missing values caused by the presence of clouds or sea-ice. For these variables, we first
average observations into monthly climatologies, then replace missing data by using a
spherical interpolation algorithm (D’Errico, 2016; Yang et al., 2020). To avoid excessive
extrapolation in high latitude regions in wintertime, only points with at least 8 months
of satellite observations are used for the final reconstruction, following the approach of
Siegel et al. (2014). To process net primary production, we also calculate the Sverdrup
critical depth, where light becomes too limiting to support photosynthesis, based on cli-
matological chlorophyll concentration and incident shortwave radiation (Siegel et al., 2002).
When the critical depth is exceeded, we assume that phytoplankton spent too much of
their life cycle in light-limited depths, thus making net productivity negligible. Surface
net primary production is thus set to zero at all points where, in a given month, the mixed
layer depth exceeds the critical depth, before interpolating. We also include as a predic-
tor the standard deviation of the primary production, using it as a proxy for intermit-
tency and sub-seasonal variability. Similarly, we restrict chlorophyll and net primary pro-
duction based on climatological sea ice cover from ERAS5 reanalysis (Copernicus Climate
Change Service, 2017), and assume that regions with at least 30% sea ice coverage are
characterized by limited production.

We use two different depth-dependent averaging procedures to generate two-dimensional

predictor fields from three-dimensional variables, such as temperature. We generate a
“surface” predictor by taking the average of the variable over the mixed layer, and a “sub-
surface” predictor by taking the average from the base of the mixed layer to 100 m be-
low it. For surface-only variables (e.g., chlorophyll, net primary production) and nutri-
ents we also include predictors that quantify the change of the variable over time, be-
cause time variability (e.g., blooms in chlorophyll) could also be related to export flux.
In practice, we calculate the time derivative of each variable by taking the difference be-
tween the month of observation and the prior month. We refer to these depth- and time-



Table 1.

Variables used to predict PSD parameters, variations (i.e., vertical or temporal

changes) and data sources. The categories are organized based on predictor type, where universal

predictors are used in every Random Forest realization.

Category Variable Short Name Variations Source
Universal
Topography topo N.G.D.C (2006)
Temperature
below MLD temp deep Time Derivative Locarnini et al. (2019)
Chlorophyll Chlorophyll modis Time Derivative NASA G.S.F.C (2014)
02 _ml ML/ ML+100m
Oxygen 02 deep Time Derivative H. E. Garcia et al. (2019)
Shortwave
Radiation shortwave Time Derivative  Copernicus Climate Change Service (2017)
no3 ml ML/ ML+100m
Nitrate no3_deep Time Derivative H. Garcia et al. (2018)
po4_ml ML/ ML+100m
Phosphate pod deep Time Derivative H. Garcia et al. (2018)
Salinity salt ML/ ML+100m Zweng et al. (2019)
Mixed Layer
Mixed Layer MLD MIMOC Time Derivative Johnson et al. (2012)
Mixed Layer MLD DBM Time Derivative de Boyer Montégut et al. (2004)
Primary
Production
Eppley VGPM Eppvgpm Time Derivative Antoine and Morel (1996)
VGPM vgpm Time Derivative Behrenfeld and Falkowski (1997)
CBPM cbpm Time Derivative Westberry et al. (2008)
CAFE cafe Time Derivative Silsbe et al. (2016)
NPP Standard
Deviation
Eppley VGPM Eppvgpm _std Antoine and Morel (1996)
VGPM vgpm_ std Behrenfeld and Falkowski (1997)
CBPM cbpm_ std Westberry et al. (2008)
Euphotic
Zone Depth
VGPM zeuph vgpm Morel et al. (2007)
CBPM zeuph vgpm Morel et al. (2007)
Iron
Soluble Iron HAM SFE Time Derivative Hamilton et al. (2019)
Labile Iron LFE Time Derivative Myriokefalitakis et al. (2018)
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change variables as “variations” in Table 1. We test the significance of each predictor,
including vertical and time variations, with the recursive feature elimination. Finally,
we group predictors into different categories, with variations for selected variables (Ta-
ble 1). If a predictor is in the “universal” category in Table 1, it is always included in all
RF realizations. For all other categories, only one predictor is randomly chosen for each
realization, but if a predictor is chosen, all variations are included too. After process-
ing, all predictors consist of monthly climatological two-dimensional fields.

The predictors are used to reconstruct PSD slope and intercept at the climatolog-
ical euphotic zone depth . Each prediction is based on the ensemble average of 100 RF
realizations with variable hyper-parameters (the number of trees and their complexity),
with the inter-model spread representing the error. Each RF realization uses a total of
29 predictors randomly chosen from the categories listed in Table 1. By generating an
ensemble of 100 RFs for each reconstruction, with varying hyper-parameters and pre-
dictors, we reduce biases and overfitting, making the results robust with respect to pa-
rameter tuning and the choice of different observational products. Thus, our reconstruc-
tions are not the result of tuning the hyper-parameters, or choosing only the best pre-
dictors. We evaluate the overall robustness of the predictions by reporting goodness-of-
fit statistics that include the correlation coefficient, the root mean square error (RMSE),
and the average bias, calculated by comparing predictions to in situ data.

3 Results and Discussion
3.1 Particle size distribution reconstructions

Figs. 3 and 4 show the global reconstructions of PSD biovolume and slope. Our
reconstruction method is able to capture most of the variability of the UVP5 observa-
tions, and robustly reproduce the gridded measurements, with global average values of
0.6 ppm for biovolume (r2=0.91) and 3.9 for slope (r2=0.86) when considering the en-
tire data set. Observations that are not used in the training (out-of-bag) provide a more
stringent test for the method’s robustness. As shown in Figs. 3d and 4d, these out-of-
bag observations are also robustly predicted, with a RMSE of 2.1 ppm for biovolume (r2=0.74)
and 0.33 for slope (r?=0.68). Relative to both the full data set and the out-of-bag ob-
servations, our reconstructions show a negligible bias. That is, there is an overall com-
pensation between data points where our method overestimates observations, and data
points where our method underestimates them.

While most observations are generally accurately reproduced, there remains a de-
gree of uncertainty in the reconstructions, as shown by the scatter around the one-to-
one line in Figs. 3c¢,d and 4c,d. Some of this remaining uncertainty could be explained
by the episodic nature of particle production and export, and by factors not captured
by our climatological predictors. Our method operates under the assumption that the
input data (i.e., the UVP5 observations) consists of monthly climatological averages, rather
than instantaneous snapshots. By ensembling in situ UVP5 measurements into 2,034 monthly
data points, we reduce part of the episodic nature of these observations; however some
variability and patchy behavior may still exist in the gridded data. Finally, while the mean
bias is zero, the reconstructions show a slight underestimate of extreme values at both
the high and low range of the observations, i.e., our reconstructions have a slightly re-
duced range compared to observations (Figs. 3c,d and 4c,d). This slightly reduced range
in the reconstructions is typical for bagged ensemble ML methods such as the RF used
here, which results in a limited ability to extrapolate data and tends to smooth out ex-
treme values (Zhang & Lu, 2012). We discuss the consequences of this potential range
reduction in Section 3.5.
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Figure 3. Observed and reconstructed particle biovolume (in parts per million, ppm) at the

base of the euphotic zone. (a) Observed average biovolume. (b) Annual mean biovolume recon-
structions. (c) Performance of the RF reconstruction shown as density scatter plots of predicted
vs. observed biovolume (colors indicate the normalized density of observations at each point). (d)
Same as (c), but using out-of-bag (OOB) predictions, i.e., predictions vs. observations withheld
from training. Annotations in (b) and (c) show the coefficient of determination (r?), the rmse,
and the global bias.

3.2 Global patterns in particle size distribution

Our reconstructions of the PSD for the time frame 2008 to 2020, reveal high bio-
volume in productive regions such as high latitudes, coastal waters, and upwelling sys-
tems, and low biovolume in the oligotrophic subtropical gyres (Fig. 3b and Supplemen-
tary Fig S3). PSD slopes show a nearly opposite pattern, with smaller slopes (i.e., “flat-
ter” PSD) in more productive regions, and larger slopes (i.e., “steeper” PSD) in oligotrophic
waters (Fig. 4b and Supplementary Fig S4), although with somewhat less pronounced
variations compared to biovolume. Consistent with this, we find that slope and biovol-
ume are negatively correlated (7?2 = 0.4,p < 0.01 Fig. 5a,b). Spatial patterns in bio-
volume and slope roughly follow the distribution of satellite-derived primary chlorophyll
and primary production estimates, suggesting that phytoplankton and photosynthesis
exert a strong control on total abundance of particles in any given region (Kostadinov
et al., 2009, 2017). Accordingly, we find a positive correlation between biovolume and
surface chlorophyll (Robserved = 0.49, Rrcconstruct = 0.68,p < 0.01 Fig. 5avb) and a
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Figure 4. Observed and reconstructed PSD slope at the base of the euphotic zone. (a) Ob-
served average PSD slope. (b) Annual mean PSD slope reconstructions (c) Performance of the
RF reconstruction shown as density scatter plots of predicted vs. observed particulate slope (col-
ors indicate the normalized density of observations at each point). (d) Same as (c), but using
out-of-bag (OOB) predictions, i.e., predictions vs. observations withheld from training. Annota-

tions in (b) and (c) show the coefficient of determination (r?), the rmse, and the global bias.

negative correlation for slope (Ropserved = —0.18, Rrcconstruct = —0.37,p < 0.01 Fig.
5¢,d).

The negative correlation between particle biovolume and slope (R = —0.40, —0.64
Fig. 5e,f) indicates that particle-rich regions (higher biovolume) are also characterized
by an excess of large particles over small particles (i.e., flatter slope), relative to aver-
age oceanic conditions. Since large particles contribute proportionally more than smaller
particles to export fluxes, given the faster sinking speed, this relationship suggests that
biovolume and slope will synergistically enhance export fluxes in particle-rich regions,
and depress them in particle-poor regions.

While this pattern of correlations holds true for most regions, we find few signif-
icant exceptions where the PSD slope and biovolume do not co-vary as closely as expected.
For example, in the North Pacific subpolar gyre, flatter slopes are found in the open ocean
(Fig. 4b), in particular close to the subpolar-subtropical transition, while the highest bio-
volumes are found closer to the coast and in marginal seas. Similarly, slopes in coastal
upwelling systems, such as the California Current and the Arabian Sea upwelling, are
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Figure 5. Relationships between PSD parameters and surface chlorophyll. (a,b) Relationship
between PSD slope and chlorophyll for (a) observed and (b) predicted data. (c,d) Relationship
between particle biovolume and chlorophyll for (a) observed and (b) predicted data. (e,f) Rela-
tionships between PSD slope and particle biovolume. The black line in each panel shows a linear

fit between the two variables, and R is the Pearson’s correlation coefficient.

not as flat as the high biovolumes would suggest. We also find relatively flatter slopes
in the North Pacific subtropical gyre as compared to other oligotrophic regions.

These patterns suggest that while the partitioning between large and small par-
ticles typically reflects the strength of primary production, as previously noted (Stemmann
et al., 2002, 2008), there are regions where the dynamics are more complex. Coastal up-
welling regions are generally productive and exhibit high export (Bishop et al., 2016).
However, according to our reconstruction, the California Current exhibits steeper slopes
than expected, nearly matching the North Pacific subtropical gyre. It is possible that
in the coastal water, slopes are higher due to an increased number of large pytoplank-
ton (Kostadinov et al., 2010a). Diatoms observed by the UVP5 could artificially inflate
the particle abundance in the smaller size ranges, resulting in a lower slope. Also, this
could be due to reduced surface aggregation or effective disaggregation of particles, or
less efficient surface remineralization, which tends to proportionally reduce small par-
ticles faster than large ones. Conversely, relative to other oligotrophic gyres, the North
Pacific subtropical gyre may be characterized by somewhat larger phytoplankton cells,
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increased surface aggregation and reduced disaggregation, or more efficient remineral-
ization, especially due to the deep euphotic zone present in the region.
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Figure 6. Annual seasonal cycle of particle biovolume (blue lines, in ppm) and slope (red
lines) from the Random Forest reconstructions. Each seasonal cycle is from the euphotic zone for

the regions specified on the map (top).

3.3 Seasonal variability in particle size distribution

The seasonal dynamics of biovolume and slope confirms the general anti-correlation
of these two variables, and reveals significant seasonal cycles, with maximum biovolume
and minimum slope generally found in spring, and minimum biovolume and maximum
slope in late fall to winter (Fig. 6). Similar to the spatial distribution, we find signifi-
cant deviations from the general anti-correlation between biovolume and slope. For ex-
ample, in the North Atlantic, the peak in biovolume (May) precedes the minimum in slope
(July). In some of the tropical regions (e.g., in the North Pacific and North Atlantic) the
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anti-correlation is also less robust, with periods of several months where biovolume and
slope increase or decrease simultaneously. As discussed above, spatial and temporal de-
coupling of the biovolume-slope relationship could have important consequences for the
patterns of particle export flux.

In general, regions that show higher total biovolume and lower slopes also display
higher seasonality. High latitude regions are characterized by large biovolume and flat-
ter slopes, following the pattern of productivity for these waters. Conversely subtrop-
ical regions characterized by low biovolume also exhibit low seasonal variability. The syn-
ergistic variability between biovolume and slope suggests a reduced overall variability
in carbon export in low and mid latitudes relative to high latitudes. Similarly, large bio-
volumes and low slopes suggest that particle fluxes would be larger in high latitudes. These
hypotheses are explored further in a companion paper (Clements et al., 2021).

3.4 Empirical Drivers of PSD

A recursive feature elimination indicates that multiple variables are required for
a robust reconstruction of PSD, as each one increases the ability of the reconstruction
to explain observations (Supplementary Fig. S2). Among the important features, we high-
light chlorophyll, mixed layer depth, and oxygen, although each has a somewhat differ-
ent importance for explaining biovolume and slope variability. Interpretation of these
rankings should be done with care because of the statistical nature of the RF algorithm.
However, while a mechanistic understanding of PSD patterns can not be directly tied
to these rankings, highlighted predictors can provide insights into the role of different
processes that may be affecting PSDs.

We find that biovolume at the base of the euphotic zone correlates positively and
significantly with chlorophyll (Ropserved = 0.49, Rreconstruct = 0.68,p < 0.01, Fig 5a,b).
This is not surprising, since chlorophyll is an indicator of phytoplankton, the main source
of organic matter and sinking particles in the ocean (Stemmann et al., 2002). However,
we find that chlorophyll is not as strong a predictor of slope, when the whole ocean is
considered (Ropserved = —0.18, Rrcconstruct = —0.37, Fig 5¢,d), and that additional
predictors are needed for robust slope reconstructions. This result reflects previous find-
ings based on UVP5 observations along a meridional section in the Pacific Ocean (Cram
et al., 2018). Slope reconstructions also reveal a significant predictive power for subsur-
face oxygen. Previous work indicates that there is a connection between oxygen and to-
tal particle concentration(Roullier et al., 2014), whereby particle concentrations increase
as oxygen decreases. Oxygen is a proxy of respiration in the water column, which in turn
reflects the characteristics of both the surface community that drives export, and of the
subsurface community responsible for this respiration (Sarmiento & Gruber, 2006). We
note that the PSD slope is an emergent property that reflects the interaction of phys-
ical and biological processes that are still poorly understood.

Spatial patterns in slope and biovolume share several features with estimates of phy-
toplankton size spectra and composition from observations and models (Kostadinov et
al., 2009; Roy et al., 2013; Barton et al., 2013; Ward et al., 2014). Regions with higher
biovolume and flatter slope are dominated by larger phytoplankton, while the subtrop-
ics, with lower biovolume and steeper slope, are dominated by smaller phytoplankton
(Kostadinov et al., 2009; Mouw et al., 2017). The composition and size structure of phy-
toplankton can be linked mechanistically to the size of particles and aggregates in the
upper ocean (Burd & Jackson, 2009b). Large cells, for example chain-forming diatoms,
can more easily aggregate to form large phytodetritus particles. More indirectly, phy-
toplankton composition and size structure exert an important control on the size struc-
ture of zooplankton and the upper ocean food web, thus of affecting the abundance and
size structure of fecal pellets and other aggregates that are the byproduct of zooplank-
ton feeding processes (Turner, 2015).
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Phytoplankton functional groups (e.g., Mouw et al., 2017) and abundance should
be considered as important controlling factors on both biovolume and slope (Guidi et
al., 2009; Stemmann et al., 2002), and could be used as predictors alongside other phys-
ical and biogeochemical variables. However, methodological shortcomings and disagree-
ment between different approaches (such as satellite based retrievals) currently limit the
applicability of these datasets—something that may be mitigated by future advances.

It is also likely that information related to phytoplankton composition and size struc-
ture retrieved from satellite implicitly enters the RF regression via relationships with en-
vironmental predictors such as satellite retrieved surface chlorophyll and temperature
(Kostadinov et al., 2017; Mouw et al., 2017).

3.5 Caveats to our approach

While the global data set of UVP5 observation enables robust global reconstruc-
tion of PSD properties, there remain sources of uncertainty and inherent limitations that
could affect our estimates and call for further work. First, expanding the coverage of ob-
servations with UVP5 and similar instruments, in particular in under-sampled regions
characterized by large variability, such as coastal and high latitude regions, would im-
prove the robustness of our estimates, and shed additional light on regional particle size
distribution patterns not captured by previous work. Regional correlations between en-
vironmental properties and PSD may not be well captured by extrapolation with a RF
algorithm trained on data from different regions, especially when non-linear relationships
between variables are important.

Our reconstructions also rely on a two-parameter power law equation to describe
the observed PSD. While our tests suggest that this assumption is globally robust, other
statistical models may be more appropriate, and could result in somewhat different pat-
terns of PSD and biovolume globally. Furthermore, we do not test how well our PSD slope
translates to particles smaller or larger than the range robustly sampled by the UVP5,
which may be possible by combining UVP5 observations with other optical instruments
(Stemmann & Boss, 2012; Boss et al., 2015; Lombard et al., 2019).

Supervised learning methods are only as reliable as the data used for training; there-
fore, continued work on improving satellite reconstructions of surface chlorophyll, net
primary production, and other remotely-sensed variables, in particular at high latitudes,
would help improve the robustness of these methods. These remotely sensed variables
also have inherent seasonal biases, which may limit the interpret-ability of the correla-
tions observed, and have a greater inherent error compared to other features used for the
reconstruction (i.e. temperature) (Bisson et al., 2020).

Some variables that are known to be mechanistically linked to particle production
are not considered important by the random forest method. For example silicate, which
could serve as a proxy for diatom biomass or production, did not significantly reduce the
RF error when included, and thus were excluded from the final reconstructions (Supple-
mental Figure. S2). It is possible that our random forest method is biased to select only
few of highly correlated variables, even if other features are mechanistically important
(Nicodemus et al., 2010).

Lastly, different machine learning approaches are likely characterized by different
biases. Here, we note a slight underestimate of extreme values in reconstructed PSD prop-
erties, which may affect the reconstructed variability in particle size spectra (Zhang &

Lu, 2012). Different machine learning methods (i.e. Artificial Neural Networks, Boosted
Forests, etc.) have been used to reconstruct particulate matter in the surface ocean (Liu
et al., 2021). Adoption of additional machine learning algorithms in conjunction with
increased data coverage may eventually reduce our error. Additionally, increasing num-
ber of measurements, more detailed analyses of particle size spectra distribution, includ-
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ing at time-series stations, and spatial clustering techniques, may allow reconstruction
of interannual variability (Gregor & Gruber, 2021).

4 Conclusions

In this paper, we provide a new, data-constrained estimate of particle size spectra
based on global UVP5 observations obtained between 2008 and 2020. It captures regional
and seasonal variability in observed PSD properties, and demonstrates the ability of sta-
tistical machine learning methods to extrapolate these quantities globally. These global
PSD reconstructions in turn pave the way to global reconstructions of sinking particle
fluxes (Clements et al., 2021).

The statistical nature of our machine learning approach does not directly reveal
mechanisms behind PSD and export fluxes. However, we are able to highlight spatially
coherent patterns, and the seasonal variability of particle abundance and size structure.
Specifically, we show that the total particle biovolume and the PSD slope are character-
ized by similar but inverse patterns, with regions of high particle biovolume generally
characterized by flatter slopes, i.e., relatively more abundant large particles. Similarly,
the seasonal cycle of the particle slope and biovolume are inversely correlated over time
through most of the ocean. Importantly, because of this anti-correlation, biovolume and
slope variations would act synergistically on sinking particle fluxes, by enhancing them
in region of higher biovolume and flatter slope, and reducing them in regions of low bio-
volume and steeper slope. We also show that biovolume and slope tend to correlate with
observed sea surface chlorophyll and other biogeochemical variables. Specifically, regions
of high chlorophyll tend to be characterized by higher particle biovolume and flatter slope,
suggesting an important role for primary production and phytoplankton size structure
for the determination of the PSD at the lower limit of the euphotic zone.

UVP5 and other optical observations are not limited to the surface ocean, but are
generally highly resolved in the vertical direction, thus enabling fully three-dimensional
reconstructions of PSD. This allows a closer investigation of the processes controlling par-
ticle abundance in the water column, and makes three-dimensional reconstructions of
sinking particle fluxes possible. Enhanced deployments of UVPs—also on Argo floats—
combined with the approaches developed in this paper could also enable to decadal or
even annual estimates of global PSD and particle flux through the water column. Ul-
timately, a three-dimensional view of particle export would shed light on the ocean’s abil-
ity to sequester carbon, and inform models of change in the ocean’s biological pump.
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X-2 CLEMENTS ET AL.: GLOBAL POC EXPORT

Correlation Coefficient (r*2) of the powelaw fits through the observed particle size distribution.
Each dot represents an individual profile used. Fits with R2<90 are removed.
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Figure S1. The correlation coefficient (R?) of the linear least squares fits between the log of
the particle counts and the log of their size. The slope and intercept of these fits are the powerlaw
parameters to describe the PSD. r-squared less than 0.9 are removed from the dataset, before

extrapolating globally.
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Figure S2.

Euphotic zone. The y-axis shows the r-squared of a random forest, using all predictors at and to

the point along the x-axis. It shows the strength of adding additional predictors. A) shows the

ranking for the Biovolume, and B) for the Slope.
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Figure S3. Particulate carbon biovolume at the base of the euphotic zone reconstructed from

the random forest calculations, showing monthly climatologies.
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Figure S4. Particulate carbon PSD slope at the base of the euphotic zone reconstructed from

the random forest calculations, showing monthly climatologies.
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