
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
9
08
3.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Constraining the ocean’s biological pump with in situ optical

observations and supervised learning. Part 1:particle size

distributions

Daniel J Clements1, Simon Yang1, Thomas Weber2, Andrew McDonnell3, Rainer Kiko4,
Lars Stemmann5, and Daniele Bianchi1

1Department of Atmospheric and Oceanic Sciences, University of California Los Angeles,
Los Angeles, CA, USA.
2Department of Earth and Environmental Sciences, University of Rochester,Rochester,
New York, USA
3College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks,
Alaska 99775-7220, USA.
4Sorbonne Université
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Abstract

The abundance and size distribution of marine organic particles are two major factors controlling biological carbon sequestration

in the ocean. These quantities are the result of complex physical-biological interactions that are difficult to observe, and their

spatial and temporal patterns remain uncertain. Here, we present a novel analysis of particle size distributions (PSD) from a

global compilation of in situ Underwater Vision Profiler 5 (UVP5) optical measurements. Using a machine learning algorithm,

we extrapolate sparse UVP5 observations to the global ocean from well-sampled oceanographic variables. We reconstruct global

maps of PSD parameters (biovolume and slope) for particles at the base of the euphotic zone. These reconstructions reveal

consistent global patterns, with high chlorophyll regions generally characterized by high particle biovolume and flatter PSD

slope, i.e., a high relative abundance of large vs. small particles. The resulting negative correlations between particle biovolume

and slope further suggests amplified effects on sinking particle fluxes. Our approach and estimates provide a baseline for an

improved understanding of particle cycles in the ocean, and pave the way to global, three-dimensional reconstructions of sinking

particle fluxes from UVP5 observations.
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Abstract20

The abundance and size distribution of marine organic particles are two major factors21

controlling biological carbon sequestration in the ocean. These quantities are the result22

of complex physical-biological interactions that are difficult to observe, and their spa-23

tial and temporal patterns remain uncertain. Here, we present a novel analysis of par-24

ticle size distributions (PSD) from a global compilation of in situ Underwater Vision Pro-25

filer 5 (UVP5) optical measurements. Using a machine learning algorithm, we extrap-26

olate sparse UVP5 observations to the global ocean from well-sampled oceanographic27

variables. We reconstruct global maps of PSD parameters (biovolume and slope) for par-28

ticles at the base of the euphotic zone. These reconstructions reveal consistent global pat-29

terns, with high chlorophyll regions generally characterized by high particle biovolume30

and flatter PSD slope, i.e., a high relative abundance of large vs. small particles. The31

resulting negative correlations between particle biovolume and slope further suggests am-32

plified effects on sinking particle fluxes. Our approach and estimates provide a baseline33

for an improved understanding of particle cycles in the ocean, and pave the way to global,34

three-dimensional reconstructions of sinking particle fluxes from UVP5 observations.35

1 Introduction36

The ocean absorbs CO2 from the atmosphere, which is used by phytoplankton and37

other autotrophs to build their organic biomass. A fraction of this organic matter even-38

tually sinks into the ocean interior, where much of it is remineralized back to CO2, ef-39

fectively removing carbon from the atmosphere over time scales from decades to millen-40

nia. The set of processes responsible for carbon export from the ocean’s surface and se-41

questration into deep layers are collectively referred to as the ocean’s biological pump.42

This biological carbon sequestration is largely dependent on the ability of sinking43

particles to escape shallow remineralization and reach the deep layers, the so-called par-44

ticle transfer efficiency. Large, dense organic particles tend to sink at a speed propor-45

tional to their size (Kriest, 2002). Aggregation and coagulation of particles (Alldredge46

& Gotschalk, 1988) as well as repackaging by marine organisms (e.g., by formation of47

fecal pellets and sinking carcasses) lead to a substantial increase in the size of organic48

particles, and hence of their sinking velocity (Stemmann & Boss, 2012; Boyd et al., 2019).49

Conversely, disaggregation and consumption by microorganisms and filter-feeders tend50

to reduce the size of particles and their sinking speed. Ultimately, the abundance and51

fate of organic matter in the surface ocean results from a delicate balance of both phys-52

ical and biogeochemical processes. The rate and effect of these processes is typically as-53

sumed to be size dependent (Burd & Jackson, 2009a; Devries et al., 2014). Thus, the abun-54

dance of particles of different sizes, i.e., the particle size distribution (PSD) is a primary55

determinant of organic carbon export and sequestration, and retains important infor-56

mation on particle dynamics (Stemmann & Boss, 2012).57

Importantly, this sinking of organic matter removes carbon and bioavailable ele-58

ments from the surface ocean at a rate proportional to the size of the particle (Kriest,59

2002), eventually storing them in the interior ocean for timescales that range from decades60

to millenia. Particle consumption in the deep ocean provides energy to deep ocean mi-61

croorganisms and food webs, while simultaneously consuming oxygen. The amount of62

carbon removed via sinking particles thus has major implications for deep ocean ecosys-63

tems (Siegel et al., 2014), atmospheric CO2 and climate change (Kwon et al., 2009; Palevsky64

& Doney, 2018), and the ocean microbiome (Karl et al., 1984; Bianchi et al., 2018). All65

these effects are influenced by the surface particle size distribution. However, quantify-66

ing the large scale abundance, distribution, and size structure of sinking organic parti-67

cles has been historically difficult.68

Satellite-based observations allow to estimate the PSD in the surface ocean, for par-69

ticle size ranges that typically include phytoplankton and small, slowly sinking particles70
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(Kostadinov et al., 2009, 2010a, 2010b). However, satellite retrievals miss larger parti-71

cles that more directly contribute to particle export, and are limited to the upper few72

tens of meters of the ocean, thus providing little direct information on subsurface par-73

ticle fluxes and transfer efficiency. Despite the limitations, satellite-based PSD estimates74

have proven helpful to constrain models of the ocean’s biological pump (DeVries & We-75

ber, 2017).76

Recent advances in ocean optical observations enable direct determination of in situ77

PSD throughout the water column (Stemmann & Boss, 2012; Boss et al., 2015; Lombard78

et al., 2019). The Underwater Vision Profiler 5 (UVP5) is an optical particle counter that79

provides the in situ particle abundance for relatively large particles (80 µm - 2.6 cm) in80

a given sampled volume (Picheral et al., 2010). The UVP5 consists of a camera attached81

to the CTD rosette, and is able to collect images at high frequency as it is lowered in82

the water column. Vertical profiles of PSD from the UVP5 are commonly taken at up83

to 20 images per second, with downward speeds of 1 m s−1, as deep at 6 km (Picheral84

et al., 2010). Since 2008, UVP5s have been routinely deployed on oceanographic cruises,85

in all ocean basins.86

Because UVP5 instruments observe a range of sizes that includes rapidly sinking87

particles, they are especially helpful for characterizing patterns and fate of sinking car-88

bon fluxes. Prior studies have utilized UVP5 observations to shed light on the ocean’s89

biological pump. For example, Guidi et al. (2008) showed that PSD observations from90

UVP5 can be combined with sediment trap data to estimate sinking carbon fluxes. A91

similar approach was later used to estimate regional carbon fluxes (Forest et al., 2012;92

Guidi et al., 2016; Kiko et al., 2017), as well as regional patterns of particle transfer ef-93

ficiency and deep carbon sequestration (Guidi et al., 2015). Recently, the study by Cram94

et al. (2018) combined UVP5 observations taken along a meridional section in the Pa-95

cific Ocean and satellite-based surface chlorophyll to reconstruct global PSD and drive96

a model of marine particle dynamics. While these studies demonstrate the potential of97

UVP5 observations for regional and global investigations, they are based on relatively98

small data sets, which limits the robustness of extrapolations to the entire ocean.99

In this study, we take advantage of the rapid growth of UVP5 observations and em-100

ploy a machine learning approach to reconstruct global patterns of PSD in the upper ocean,101

and investigate their drivers. Specifically, we train a supervised machine learning algo-102

rithm to reconstruct PSD from relatively sparse UVP5 observations and well-sampled103

oceanographic variables. By comparing patterns in PSD with environmental drivers, we104

further gain insight into the potential mechanisms responsible for shaping the surface105

ocean’s PSD and its variability. In a companion paper (Clements et al., 2021), these global106

reconstructions are used to estimate global particle carbon export and investigate its re-107

gional variability and controls.108

The rest of the paper is organized as follows. Section 2 describes the machine-learning109

approach used to globally extrapolate PSD globally. Section 3 presents the reconstruc-110

tions of particle distributions and compares our results to previous studies, discussing111

the uncertainties and caveats inherent to our approach. Section 4 summarizes the main112

findings and discusses future directions.113

2 Methods114

Observations with a variety of optical instruments, including UVP5, reveal that the115

PSD of organic particles in the ocean can be well approximated by a power law over a116

relatively broad size range (from micrometers to centimeters) (Stemmann & Boss, 2012).117

Accordingly, the PSD can be described by the following equation (Stemmann & Boss,118

2012):119
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n(s) = n0 · s−β , (1)120

where s is the particle equivalent spherical diameter, or size, and n(s)ds is the num-121

ber of particles in an arbitrarily small size range [s, s+ds]. This power law approxima-122

tion depends on two parameters: the intercept n0 (i.e., the size-independent coefficient),123

and the slope β (the exponent for size-dependence). The intercept of the PSD represents124

the number of particles at an arbitrary reference size, and the slope encapsulates the rel-125

ative proportion between small and large particles. For a given slope, increasing the in-126

tercept proportionally increases the total number of particles. Conversely, for a given in-127

tercept, increasing the slope (i.e., making the spectrum “steeper”) increases the propor-128

tion of small particles, while decreasing the slope (i.e., making the spectrum “flatter”)129

increases the proportion of large particles. Relatively small changes in the slope can thus130

result in dramatic changes in the size partitioning of particles and in quantities that de-131

pend on this partitioning, such as the total particle biovolume and surface area.132

Here, we use UVP5 observations to estimate PSDs (i.e., n0 and β) at the base of133

the euphotic zone, by fitting Equation 1 to observed particle abundances. We then ex-134

trapolate the sparse UVP5 observations to a global grid, by training a supervised learn-135

ing algorithm to predict spatially-varying PSD parameters from well-sampled environ-136

mental predictors. We exploit the three-dimensional nature of UVP5 observations to per-137

form these calculation at a varying base of the euphotic zone, here defined by the 1% light138

level according to Morel et al. (2007), rather than a single depth. The steps used to re-139

construct global PSD from UVP5 observations are illustrated in the workflow schematic140

in Fig. 1, and are discussed in the following sections.141

2.1 Reconstructions of particle size spectra from UVP5 data142

We use observations from a new compilation of UVP5 measurements spanning the143

global ocean (Kiko et al., 2021). The data set consists of over 6700 profiles from 119 cruises,144

collected from 2008 to 2020 (Fig. 2). These observations provide robust particle counts145

for the 105 µm - 5 mm size range at each location and depth. Under the power law as-146

sumption (Equation 1), the two parameters n0 and β are needed to capture the PSD (Stemmann147

et al., 2004; Stemmann & Boss, 2012; Devries et al., 2014).148

We calculate the power law slope β by fitting a linear least-squares regression through149

the log-transformed particle abundance and size. We then calculate the observed par-150

ticle biovolume (BV) by multiplying the volume of a particle of a given size s by the ob-151

served size distribution n(s), and integrating over all size ranges:152

BV =

∫ smax

smin

n(s) · π
6
· s3 ds. (2)153

In practice, the continuous integral is approximated by a summation over all size154

bins in which the UVP5 observations are discretized.155

Under the power law assumption, the biovolume can also be expressed analytically156

as a function of the slope and intercept, by substituting Equation 1 into Equation 2:157

BV =

∫ smax

smin

n0 · s−β ·
π

6
· s3 ds =

∫ smax

smin

π

6
· n0 · s3−β ds =

π

6
· n0 ·

(
s4−βmax

4− β
− s4−βmin

4− β

)
. (3)158

By fixing the size range, i.e., the minimum and maximum particle size that can be159

robustly derived from UVP5 instruments (smin and smax respectively), we solve Equa-160

tion 3 for the intercept n0 as a function of the PSD slope and the observed biovolume:161
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Process DataCalculate abundance of particles on a 
1-degree grid

SlopeBiovolume

Random ForestCreate Predictor Structure Use gridded data to train

Find predictor importance

Randomize hyperparameters and create 100 
random forests

Predict Biovolume and Slope

Create subsets of 
important predictors

Find the average particle abundance 
at the horizon of interest ± 10 m

Calculate the powerlaw slope and biovolume 
for particles 105 μm to 5 mm

Figure 1. Schematic diagram illustrating the general workflow of processing UVP5 obser-
vations into a global PSD dataset. Observations are ensembled onto a normal 1 degree grid,
with observation representing an average of a 20 meter vertical bin about the export horizon.
PSD observations (power law slope and biovolume) are calculated for the 105 µm to 5 mm size
range. The PSD slope and biovolume are globally extrapolated using a bagged Random Forest
algorithm.

n0 =
6 ·BV
π

·

(
s4−βmax

4− β
− s4−βmin

4− β

)−1

. (4)162

We set the minimum and maximum size for this equation to the same values used163

to estimate the slope and biovolume from UVP5 observations. We use a minimum size164

smin=105 µm to avoid a potential slight instrument bias in the lowest size classes. We165

set the maximum size to smax=5 mm, which corresponds to the size where zooplank-166

ton start to dominate the biovolume at a variety of locations sampled by UVP5 (Forest167

et al., 2012; Stemmann et al., 2008; Stemmann & Boss, 2012).168

We coarsen the temporal and spatial resolution of the UVP5 profiles by binning169

them onto the standard monthly 1 degree-resolution grid of the World Ocean Atlas (H. Gar-170

cia et al., 2018; H. E. Garcia et al., 2019). That is, we combine multiple profiles in a given171

grid cell and month together, thus reducing variability due to the noisy and episodic na-172

ture of particle observations. We also combine all observations within a 20 meter-thick173

depth bin around each chosen depth horizon, to further smooth out small-scale vertical174

variability, and to increase the significance of particle counts, especially for the largest175

sizes. To reconstruct global PSDs, we calculate slope and biovolume at each location,176

at the given depth horizon, using the gridded observations, and assume that these av-177

erages are representative of the climatological monthly PSD in each grid cell.178
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Although the gridding procedure reduces noise and data patchiness in many well-179

sampled regions, a significant proportion of grid cells only contains a single profile (∼180

45%). As a further quality check, we test the assumption that a power law distribution181

is a good approximation for the observed PSD. For each grid cell with observations, we182

place an objective goodness of fit threshold to determine the robustness of the power law183

fit. If a power law fit has a Pearson correlation coefficient R2 of less than 0.9, we remove184

the data point, as it likely does not closely follow a power law distribution. This qual-185

ity control step removes less than 1% of data (Supplementary Information Fig. S1). The186

final processed UVP5 observation data set contains 2,034 gridded observations at the ex-187

port horizon, which together cover slightly less than 10% of the ocean surface. Figure188

2 shows the spatial and temporal resolution of the final gridded data set, and an exam-189

ple of the observed PSD from UVP5 with the corresponding power law fit.190

Profiles per grid Profiles per month
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Figure 2. Global distribution of the UVP5 observations used in this study. (a) Number of
profiles per one-degree resolution grid cell. (b) Number of months represented in each grid cell.
(c) Typical particle size distribution sampled by the UVP5, in log-log space. The red dots indi-
cate actual observations, and the black line the linear fit (R2 = 0.99).

2.1.1 Training and evaluating a Random Forest model191

Monthly flux reconstructions require extrapolation of PSD parameters to the whole192

ocean on monthly time scales. We use a bagged Random Forest (RF) algorithm to re-193

construct climatological PSD slope and biovolume globally, following an approach sim-194

ilar to Yang et al. (2020). A RF deploys a decision tree learning scheme to solve a re-195

gression equation iteratively, and reports the ensemble average. Using a RF, each indi-196

vidual decision tree is trained on a subset of the available data, with a subset of predic-197

tors, but the power of the method emerges when considering the ensemble average. The198

RF is able to learn statistical relationships between target variables (here, UVP5-derived199

slope and biovolume) and a series of predictors (here, environmental variables), to make200

reconstructions that minimize the error between predicted and observed data. Because201

a RF is highly non-linear, it runs the risk of overfitting the data, producing solutions with202

low error, but also limited extrapolation power outside of the training data set. To mit-203
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igate the risk of overfitting, the RF does not use all data points for training. Instead,204

a bootstrapped sample ( 70%) of the data is selected for each tree in the forest. The de-205

gree of overfitting is determined by finding the error between the model and the data not206

used for training, i.e., the “out-of-bag” data.207

The rank of predictors is given by the out-of-bag error coupled with an internally208

derived measure of importance, using a so-called “recursive feature elimination” approach.209

A recursive feature elimination systematically removes the least important predictor and210

records the out-of-bag error to describe the contribution of each predictor to the final211

solution. When there is relatively no change in the out-of-bag error for every additional212

predictor, these predictors are considered not important for the RF (Supplementary Fig.213

S2). We determine statistical importance in order to establish a reduced set of predic-214

tors, reducing the risk of over-fitting while not losing predictive power. When interpret-215

ing the RF results, we apply qualitative understanding of the predictors combined with216

the recursive feature elimination to determine if a predictor should be included in the217

final regression or if it should be excluded.218

2.1.2 Environmental Predictors219

The RF algorithm relies on a set of predictors and target data at the resolution of220

the desired reconstruction. In our case, we use climatological monthly predictors at 1-221

degree spatial resolution. We include a variety of predictors that are globally sampled222

and could be mechanistically related to particle production in the surface ocean, rang-223

ing from physical variables (e.g., temperature and salinity) to ecosystem-level quanti-224

ties (e.g., primary production, euphotic zone depth). A list of all predictors is shown in225

Table 1.226

Some of these predictors are obtained from satellite products at high spatial and227

temporal resolution (e.g., surface chlorophyll and net primary production), and include228

missing values caused by the presence of clouds or sea-ice. For these variables, we first229

average observations into monthly climatologies, then replace missing data by using a230

spherical interpolation algorithm (D’Errico, 2016; Yang et al., 2020). To avoid excessive231

extrapolation in high latitude regions in wintertime, only points with at least 8 months232

of satellite observations are used for the final reconstruction, following the approach of233

Siegel et al. (2014). To process net primary production, we also calculate the Sverdrup234

critical depth, where light becomes too limiting to support photosynthesis, based on cli-235

matological chlorophyll concentration and incident shortwave radiation (Siegel et al., 2002).236

When the critical depth is exceeded, we assume that phytoplankton spent too much of237

their life cycle in light-limited depths, thus making net productivity negligible. Surface238

net primary production is thus set to zero at all points where, in a given month, the mixed239

layer depth exceeds the critical depth, before interpolating. We also include as a predic-240

tor the standard deviation of the primary production, using it as a proxy for intermit-241

tency and sub-seasonal variability. Similarly, we restrict chlorophyll and net primary pro-242

duction based on climatological sea ice cover from ERA5 reanalysis (Copernicus Climate243

Change Service, 2017), and assume that regions with at least 30% sea ice coverage are244

characterized by limited production.245

We use two different depth-dependent averaging procedures to generate two-dimensional246

predictor fields from three-dimensional variables, such as temperature. We generate a247

“surface” predictor by taking the average of the variable over the mixed layer, and a “sub-248

surface” predictor by taking the average from the base of the mixed layer to 100 m be-249

low it. For surface-only variables (e.g., chlorophyll, net primary production) and nutri-250

ents we also include predictors that quantify the change of the variable over time, be-251

cause time variability (e.g., blooms in chlorophyll) could also be related to export flux.252

In practice, we calculate the time derivative of each variable by taking the difference be-253

tween the month of observation and the prior month. We refer to these depth- and time-254
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Table 1. Variables used to predict PSD parameters, variations (i.e., vertical or temporal
changes) and data sources. The categories are organized based on predictor type, where universal
predictors are used in every Random Forest realization.

Category Variable Short Name Variations Source

Universal

Topography topo N.G.D.C (2006)

Temperature
below MLD temp_deep Time Derivative Locarnini et al. (2019)

Chlorophyll Chlorophyll_modis Time Derivative NASA G.S.F.C (2014)

Oxygen
o2_ml
o2_deep

ML/ ML+100m
Time Derivative H. E. Garcia et al. (2019)

Shortwave
Radiation shortwave Time Derivative Copernicus Climate Change Service (2017)

Nitrate
no3_ml
no3_deep

ML/ ML+100m
Time Derivative H. Garcia et al. (2018)

Phosphate
po4_ml
po4_deep

ML/ ML+100m
Time Derivative H. Garcia et al. (2018)

Salinity salt ML/ ML+100m Zweng et al. (2019)

Mixed Layer

Mixed Layer MLD_MIMOC Time Derivative Johnson et al. (2012)

Mixed Layer MLD_DBM Time Derivative de Boyer Montégut et al. (2004)

Primary
Production

Eppley VGPM Eppvgpm Time Derivative Antoine and Morel (1996)

VGPM vgpm Time Derivative Behrenfeld and Falkowski (1997)

CBPM cbpm Time Derivative Westberry et al. (2008)

CAFE cafe Time Derivative Silsbe et al. (2016)

NPP Standard
Deviation

Eppley VGPM Eppvgpm_std Antoine and Morel (1996)

VGPM vgpm_std Behrenfeld and Falkowski (1997)

CBPM cbpm_std Westberry et al. (2008)

Euphotic
Zone Depth

VGPM zeuph_vgpm Morel et al. (2007)

CBPM zeuph_vgpm Morel et al. (2007)

Iron

Soluble Iron HAM_SFE Time Derivative Hamilton et al. (2019)

Labile Iron LFE Time Derivative Myriokefalitakis et al. (2018)

–8–
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change variables as “variations” in Table 1. We test the significance of each predictor,255

including vertical and time variations, with the recursive feature elimination. Finally,256

we group predictors into different categories, with variations for selected variables (Ta-257

ble 1). If a predictor is in the “universal” category in Table 1, it is always included in all258

RF realizations. For all other categories, only one predictor is randomly chosen for each259

realization, but if a predictor is chosen, all variations are included too. After process-260

ing, all predictors consist of monthly climatological two-dimensional fields.261

The predictors are used to reconstruct PSD slope and intercept at the climatolog-262

ical euphotic zone depth . Each prediction is based on the ensemble average of 100 RF263

realizations with variable hyper-parameters (the number of trees and their complexity),264

with the inter-model spread representing the error. Each RF realization uses a total of265

29 predictors randomly chosen from the categories listed in Table 1. By generating an266

ensemble of 100 RFs for each reconstruction, with varying hyper-parameters and pre-267

dictors, we reduce biases and overfitting, making the results robust with respect to pa-268

rameter tuning and the choice of different observational products. Thus, our reconstruc-269

tions are not the result of tuning the hyper-parameters, or choosing only the best pre-270

dictors. We evaluate the overall robustness of the predictions by reporting goodness-of-271

fit statistics that include the correlation coefficient, the root mean square error (RMSE),272

and the average bias, calculated by comparing predictions to in situ data.273

3 Results and Discussion274

3.1 Particle size distribution reconstructions275

Figs. 3 and 4 show the global reconstructions of PSD biovolume and slope. Our276

reconstruction method is able to capture most of the variability of the UVP5 observa-277

tions, and robustly reproduce the gridded measurements, with global average values of278

0.6 ppm for biovolume (r2=0.91) and 3.9 for slope (r2=0.86) when considering the en-279

tire data set. Observations that are not used in the training (out-of-bag) provide a more280

stringent test for the method’s robustness. As shown in Figs. 3d and 4d, these out-of-281

bag observations are also robustly predicted, with a RMSE of 2.1 ppm for biovolume (r2=0.74)282

and 0.33 for slope (r2=0.68). Relative to both the full data set and the out-of-bag ob-283

servations, our reconstructions show a negligible bias. That is, there is an overall com-284

pensation between data points where our method overestimates observations, and data285

points where our method underestimates them.286

While most observations are generally accurately reproduced, there remains a de-287

gree of uncertainty in the reconstructions, as shown by the scatter around the one-to-288

one line in Figs. 3c,d and 4c,d. Some of this remaining uncertainty could be explained289

by the episodic nature of particle production and export, and by factors not captured290

by our climatological predictors. Our method operates under the assumption that the291

input data (i.e., the UVP5 observations) consists of monthly climatological averages, rather292

than instantaneous snapshots. By ensembling in situ UVP5 measurements into 2,034 monthly293

data points, we reduce part of the episodic nature of these observations; however some294

variability and patchy behavior may still exist in the gridded data. Finally, while the mean295

bias is zero, the reconstructions show a slight underestimate of extreme values at both296

the high and low range of the observations, i.e., our reconstructions have a slightly re-297

duced range compared to observations (Figs. 3c,d and 4c,d). This slightly reduced range298

in the reconstructions is typical for bagged ensemble ML methods such as the RF used299

here, which results in a limited ability to extrapolate data and tends to smooth out ex-300

treme values (Zhang & Lu, 2012). We discuss the consequences of this potential range301

reduction in Section 3.5.302
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Figure 3. Observed and reconstructed particle biovolume (in parts per million, ppm) at the
base of the euphotic zone. (a) Observed average biovolume. (b) Annual mean biovolume recon-
structions. (c) Performance of the RF reconstruction shown as density scatter plots of predicted
vs. observed biovolume (colors indicate the normalized density of observations at each point). (d)
Same as (c), but using out-of-bag (OOB) predictions, i.e., predictions vs. observations withheld
from training. Annotations in (b) and (c) show the coefficient of determination (r2), the rmse,
and the global bias.

3.2 Global patterns in particle size distribution303

Our reconstructions of the PSD for the time frame 2008 to 2020, reveal high bio-304

volume in productive regions such as high latitudes, coastal waters, and upwelling sys-305

tems, and low biovolume in the oligotrophic subtropical gyres (Fig. 3b and Supplemen-306

tary Fig S3). PSD slopes show a nearly opposite pattern, with smaller slopes (i.e., “flat-307

ter” PSD) in more productive regions, and larger slopes (i.e., “steeper” PSD) in oligotrophic308

waters (Fig. 4b and Supplementary Fig S4), although with somewhat less pronounced309

variations compared to biovolume. Consistent with this, we find that slope and biovol-310

ume are negatively correlated (r2 = 0.4, p < 0.01 Fig. 5a,b). Spatial patterns in bio-311

volume and slope roughly follow the distribution of satellite-derived primary chlorophyll312

and primary production estimates, suggesting that phytoplankton and photosynthesis313

exert a strong control on total abundance of particles in any given region (Kostadinov314

et al., 2009, 2017). Accordingly, we find a positive correlation between biovolume and315

surface chlorophyll (Robserved = 0.49, Rreconstruct = 0.68, p < 0.01 Fig. 5a,b) and a316
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Figure 4. Observed and reconstructed PSD slope at the base of the euphotic zone. (a) Ob-
served average PSD slope. (b) Annual mean PSD slope reconstructions (c) Performance of the
RF reconstruction shown as density scatter plots of predicted vs. observed particulate slope (col-
ors indicate the normalized density of observations at each point). (d) Same as (c), but using
out-of-bag (OOB) predictions, i.e., predictions vs. observations withheld from training. Annota-
tions in (b) and (c) show the coefficient of determination (r2), the rmse, and the global bias.

negative correlation for slope (Robserved = −0.18, Rreconstruct = −0.37, p < 0.01 Fig.317

5c,d).318

The negative correlation between particle biovolume and slope (R = −0.40,−0.64319

Fig. 5e,f) indicates that particle-rich regions (higher biovolume) are also characterized320

by an excess of large particles over small particles (i.e., flatter slope), relative to aver-321

age oceanic conditions. Since large particles contribute proportionally more than smaller322

particles to export fluxes, given the faster sinking speed, this relationship suggests that323

biovolume and slope will synergistically enhance export fluxes in particle-rich regions,324

and depress them in particle-poor regions.325

While this pattern of correlations holds true for most regions, we find few signif-326

icant exceptions where the PSD slope and biovolume do not co-vary as closely as expected.327

For example, in the North Pacific subpolar gyre, flatter slopes are found in the open ocean328

(Fig. 4b), in particular close to the subpolar-subtropical transition, while the highest bio-329

volumes are found closer to the coast and in marginal seas. Similarly, slopes in coastal330

upwelling systems, such as the California Current and the Arabian Sea upwelling, are331
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Figure 5. Relationships between PSD parameters and surface chlorophyll. (a,b) Relationship
between PSD slope and chlorophyll for (a) observed and (b) predicted data. (c,d) Relationship
between particle biovolume and chlorophyll for (a) observed and (b) predicted data. (e,f) Rela-
tionships between PSD slope and particle biovolume. The black line in each panel shows a linear
fit between the two variables, and R is the Pearson’s correlation coefficient.

not as flat as the high biovolumes would suggest. We also find relatively flatter slopes332

in the North Pacific subtropical gyre as compared to other oligotrophic regions.333

These patterns suggest that while the partitioning between large and small par-334

ticles typically reflects the strength of primary production, as previously noted (Stemmann335

et al., 2002, 2008), there are regions where the dynamics are more complex. Coastal up-336

welling regions are generally productive and exhibit high export (Bishop et al., 2016).337

However, according to our reconstruction, the California Current exhibits steeper slopes338

than expected, nearly matching the North Pacific subtropical gyre. It is possible that339

in the coastal water, slopes are higher due to an increased number of large pytoplank-340

ton (Kostadinov et al., 2010a). Diatoms observed by the UVP5 could artificially inflate341

the particle abundance in the smaller size ranges, resulting in a lower slope. Also, this342

could be due to reduced surface aggregation or effective disaggregation of particles, or343

less efficient surface remineralization, which tends to proportionally reduce small par-344

ticles faster than large ones. Conversely, relative to other oligotrophic gyres, the North345

Pacific subtropical gyre may be characterized by somewhat larger phytoplankton cells,346
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increased surface aggregation and reduced disaggregation, or more efficient remineral-347

ization, especially due to the deep euphotic zone present in the region.348

N. Atlantic (NA)N. Pacific (NP)

S. TP

S. Indian

SAZ

AAZ

N. TP

N. STP

S. STP S. STA

N. STA

N. TA

S. TA

N. Indian

Figure 6. Annual seasonal cycle of particle biovolume (blue lines, in ppm) and slope (red
lines) from the Random Forest reconstructions. Each seasonal cycle is from the euphotic zone for
the regions specified on the map (top).

3.3 Seasonal variability in particle size distribution349

The seasonal dynamics of biovolume and slope confirms the general anti-correlation350

of these two variables, and reveals significant seasonal cycles, with maximum biovolume351

and minimum slope generally found in spring, and minimum biovolume and maximum352

slope in late fall to winter (Fig. 6). Similar to the spatial distribution, we find signifi-353

cant deviations from the general anti-correlation between biovolume and slope. For ex-354

ample, in the North Atlantic, the peak in biovolume (May) precedes the minimum in slope355

(July). In some of the tropical regions (e.g., in the North Pacific and North Atlantic) the356
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anti-correlation is also less robust, with periods of several months where biovolume and357

slope increase or decrease simultaneously. As discussed above, spatial and temporal de-358

coupling of the biovolume-slope relationship could have important consequences for the359

patterns of particle export flux.360

In general, regions that show higher total biovolume and lower slopes also display361

higher seasonality. High latitude regions are characterized by large biovolume and flat-362

ter slopes, following the pattern of productivity for these waters. Conversely subtrop-363

ical regions characterized by low biovolume also exhibit low seasonal variability. The syn-364

ergistic variability between biovolume and slope suggests a reduced overall variability365

in carbon export in low and mid latitudes relative to high latitudes. Similarly, large bio-366

volumes and low slopes suggest that particle fluxes would be larger in high latitudes. These367

hypotheses are explored further in a companion paper (Clements et al., 2021).368

3.4 Empirical Drivers of PSD369

A recursive feature elimination indicates that multiple variables are required for370

a robust reconstruction of PSD, as each one increases the ability of the reconstruction371

to explain observations (Supplementary Fig. S2). Among the important features, we high-372

light chlorophyll, mixed layer depth, and oxygen, although each has a somewhat differ-373

ent importance for explaining biovolume and slope variability. Interpretation of these374

rankings should be done with care because of the statistical nature of the RF algorithm.375

However, while a mechanistic understanding of PSD patterns can not be directly tied376

to these rankings, highlighted predictors can provide insights into the role of different377

processes that may be affecting PSDs.378

We find that biovolume at the base of the euphotic zone correlates positively and379

significantly with chlorophyll (Robserved = 0.49, Rreconstruct = 0.68, p < 0.01, Fig 5a,b).380

This is not surprising, since chlorophyll is an indicator of phytoplankton, the main source381

of organic matter and sinking particles in the ocean (Stemmann et al., 2002). However,382

we find that chlorophyll is not as strong a predictor of slope, when the whole ocean is383

considered (Robserved = −0.18, Rreconstruct = −0.37, Fig 5c,d), and that additional384

predictors are needed for robust slope reconstructions. This result reflects previous find-385

ings based on UVP5 observations along a meridional section in the Pacific Ocean (Cram386

et al., 2018). Slope reconstructions also reveal a significant predictive power for subsur-387

face oxygen. Previous work indicates that there is a connection between oxygen and to-388

tal particle concentration(Roullier et al., 2014), whereby particle concentrations increase389

as oxygen decreases. Oxygen is a proxy of respiration in the water column, which in turn390

reflects the characteristics of both the surface community that drives export, and of the391

subsurface community responsible for this respiration (Sarmiento & Gruber, 2006). We392

note that the PSD slope is an emergent property that reflects the interaction of phys-393

ical and biological processes that are still poorly understood.394

Spatial patterns in slope and biovolume share several features with estimates of phy-395

toplankton size spectra and composition from observations and models (Kostadinov et396

al., 2009; Roy et al., 2013; Barton et al., 2013; Ward et al., 2014). Regions with higher397

biovolume and flatter slope are dominated by larger phytoplankton, while the subtrop-398

ics, with lower biovolume and steeper slope, are dominated by smaller phytoplankton399

(Kostadinov et al., 2009; Mouw et al., 2017). The composition and size structure of phy-400

toplankton can be linked mechanistically to the size of particles and aggregates in the401

upper ocean (Burd & Jackson, 2009b). Large cells, for example chain-forming diatoms,402

can more easily aggregate to form large phytodetritus particles. More indirectly, phy-403

toplankton composition and size structure exert an important control on the size struc-404

ture of zooplankton and the upper ocean food web, thus of affecting the abundance and405

size structure of fecal pellets and other aggregates that are the byproduct of zooplank-406

ton feeding processes (Turner, 2015).407
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Phytoplankton functional groups (e.g., Mouw et al., 2017) and abundance should408

be considered as important controlling factors on both biovolume and slope (Guidi et409

al., 2009; Stemmann et al., 2002), and could be used as predictors alongside other phys-410

ical and biogeochemical variables. However, methodological shortcomings and disagree-411

ment between different approaches (such as satellite based retrievals) currently limit the412

applicability of these datasets—something that may be mitigated by future advances.413

It is also likely that information related to phytoplankton composition and size struc-414

ture retrieved from satellite implicitly enters the RF regression via relationships with en-415

vironmental predictors such as satellite retrieved surface chlorophyll and temperature416

(Kostadinov et al., 2017; Mouw et al., 2017).417

3.5 Caveats to our approach418

While the global data set of UVP5 observation enables robust global reconstruc-419

tion of PSD properties, there remain sources of uncertainty and inherent limitations that420

could affect our estimates and call for further work. First, expanding the coverage of ob-421

servations with UVP5 and similar instruments, in particular in under-sampled regions422

characterized by large variability, such as coastal and high latitude regions, would im-423

prove the robustness of our estimates, and shed additional light on regional particle size424

distribution patterns not captured by previous work. Regional correlations between en-425

vironmental properties and PSD may not be well captured by extrapolation with a RF426

algorithm trained on data from different regions, especially when non-linear relationships427

between variables are important.428

Our reconstructions also rely on a two-parameter power law equation to describe429

the observed PSD. While our tests suggest that this assumption is globally robust, other430

statistical models may be more appropriate, and could result in somewhat different pat-431

terns of PSD and biovolume globally. Furthermore, we do not test how well our PSD slope432

translates to particles smaller or larger than the range robustly sampled by the UVP5,433

which may be possible by combining UVP5 observations with other optical instruments434

(Stemmann & Boss, 2012; Boss et al., 2015; Lombard et al., 2019).435

Supervised learning methods are only as reliable as the data used for training; there-436

fore, continued work on improving satellite reconstructions of surface chlorophyll, net437

primary production, and other remotely-sensed variables, in particular at high latitudes,438

would help improve the robustness of these methods. These remotely sensed variables439

also have inherent seasonal biases, which may limit the interpret-ability of the correla-440

tions observed, and have a greater inherent error compared to other features used for the441

reconstruction (i.e. temperature) (Bisson et al., 2020).442

Some variables that are known to be mechanistically linked to particle production443

are not considered important by the random forest method. For example silicate, which444

could serve as a proxy for diatom biomass or production, did not significantly reduce the445

RF error when included, and thus were excluded from the final reconstructions (Supple-446

mental Figure. S2). It is possible that our random forest method is biased to select only447

few of highly correlated variables, even if other features are mechanistically important448

(Nicodemus et al., 2010).449

Lastly, different machine learning approaches are likely characterized by different450

biases. Here, we note a slight underestimate of extreme values in reconstructed PSD prop-451

erties, which may affect the reconstructed variability in particle size spectra (Zhang &452

Lu, 2012). Different machine learning methods (i.e. Artificial Neural Networks, Boosted453

Forests, etc.) have been used to reconstruct particulate matter in the surface ocean (Liu454

et al., 2021). Adoption of additional machine learning algorithms in conjunction with455

increased data coverage may eventually reduce our error. Additionally, increasing num-456

ber of measurements, more detailed analyses of particle size spectra distribution, includ-457
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ing at time-series stations, and spatial clustering techniques, may allow reconstruction458

of interannual variability (Gregor & Gruber, 2021).459

4 Conclusions460

In this paper, we provide a new, data-constrained estimate of particle size spectra461

based on global UVP5 observations obtained between 2008 and 2020. It captures regional462

and seasonal variability in observed PSD properties, and demonstrates the ability of sta-463

tistical machine learning methods to extrapolate these quantities globally. These global464

PSD reconstructions in turn pave the way to global reconstructions of sinking particle465

fluxes (Clements et al., 2021).466

The statistical nature of our machine learning approach does not directly reveal467

mechanisms behind PSD and export fluxes. However, we are able to highlight spatially468

coherent patterns, and the seasonal variability of particle abundance and size structure.469

Specifically, we show that the total particle biovolume and the PSD slope are character-470

ized by similar but inverse patterns, with regions of high particle biovolume generally471

characterized by flatter slopes, i.e., relatively more abundant large particles. Similarly,472

the seasonal cycle of the particle slope and biovolume are inversely correlated over time473

through most of the ocean. Importantly, because of this anti-correlation, biovolume and474

slope variations would act synergistically on sinking particle fluxes, by enhancing them475

in region of higher biovolume and flatter slope, and reducing them in regions of low bio-476

volume and steeper slope. We also show that biovolume and slope tend to correlate with477

observed sea surface chlorophyll and other biogeochemical variables. Specifically, regions478

of high chlorophyll tend to be characterized by higher particle biovolume and flatter slope,479

suggesting an important role for primary production and phytoplankton size structure480

for the determination of the PSD at the lower limit of the euphotic zone.481

UVP5 and other optical observations are not limited to the surface ocean, but are482

generally highly resolved in the vertical direction, thus enabling fully three-dimensional483

reconstructions of PSD. This allows a closer investigation of the processes controlling par-484

ticle abundance in the water column, and makes three-dimensional reconstructions of485

sinking particle fluxes possible. Enhanced deployments of UVPs—also on Argo floats—486

combined with the approaches developed in this paper could also enable to decadal or487

even annual estimates of global PSD and particle flux through the water column. Ul-488

timately, a three-dimensional view of particle export would shed light on the ocean’s abil-489

ity to sequester carbon, and inform models of change in the ocean’s biological pump.490
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Correlation Coefficient (r^2) of the powelaw fits through the observed particle size distribution. 
Each dot represents an individual profile used. Fits with R2 <90 are removed. 

Figure S1. The correlation coefficient (R2) of the linear least squares fits between the log of

the particle counts and the log of their size. The slope and intercept of these fits are the powerlaw

parameters to describe the PSD. r-squared less than 0.9 are removed from the dataset, before

extrapolating globally.
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a)

b)

Figure S2. The relative importance of each predictor for each predicted variable from the

Euphotic zone. The y-axis shows the r-squared of a random forest, using all predictors at and to

the point along the x-axis. It shows the strength of adding additional predictors. A) shows the

ranking for the Biovolume, and B) for the Slope.
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Figure S3. Particulate carbon biovolume at the base of the euphotic zone reconstructed from

the random forest calculations, showing monthly climatologies.
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Figure S4. Particulate carbon PSD slope at the base of the euphotic zone reconstructed from

the random forest calculations, showing monthly climatologies.
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