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Abstract

Seismic wave propagation in porous rocks that are saturated with a liquid exhibits significant dispersion and attenuation due to

fluid flow at the pore scale, so-called squirt flow. This phenomenon takes place in compliant flat pores such as microcracks and

grain contacts that are connected to stiffer isometric pores. Accurate quantitative description is crucial for inverting rock and

fluid properties from seismic attributes such as attenuation. Up to now, many analytical models for squirt flow were proposed

based on simplified geometries of the pore space. These models were either not compared with a numerical solution or showed

poor accuracy. We present a new analytical model for squirt flow which is validated against a three-dimensional numerical

solution for a simple pore geometry that has been classically used to explain squirt flow; that is why we refer to it as classical

geometry. The pore space is represented by a flat cylindrical (penny-shaped) pore whose curved edge is fully connected to a

toroidal (stiff) pore. Compared with correct numerical solutions, our analytical model provides very accurate predictions for

the attenuation and dispersion across the whole frequency range. This includes correct low-and high-frequency limits of the

stiffness modulus, the characteristic frequency, and the shape of the dispersion and attenuation curves. In a companion paper

(Part 2), we extend our analytical model to more complex pore geometries. We provide as supplementary material Matlab and

symbolic Maple routines to reproduce our main results.
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ABSTRACT

Seismic wave propagation in porous rocks that are saturated with a liquid exhibits significant

dispersion and attenuation due to fluid flow at the pore scale, so-called squirt flow. This

phenomenon takes place in compliant flat pores such as microcracks and grain contacts

that are connected to stiffer isometric pores. Accurate quantitative description is crucial

for inverting rock and fluid properties from seismic attributes such as attenuation. Up to

now, many analytical models for squirt flow were proposed based on simplified geometries

of the pore space. These models were either not compared with a numerical solution or

showed poor accuracy. We present a new analytical model for squirt flow which is validated

against a three-dimensional numerical solution for a simple pore geometry that has been

classically used to explain squirt flow; that is why we refer to it as classical geometry.

The pore space is represented by a flat cylindrical (penny-shaped) pore whose curved edge

is fully connected to a toroidal (stiff) pore. Compared with correct numerical solutions,

our analytical model provides very accurate predictions for the attenuation and dispersion

across the whole frequency range. This includes correct low- and high-frequency limits of

the stiffness modulus, the characteristic frequency, and the shape of the dispersion and

attenuation curves. In a companion paper (Part 2), we extend our analytical model to

more complex pore geometries. We provide as supplementary material Matlab and symbolic

Maple routines to reproduce our main results.
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INTRODUCTION

Wave propagation in fluid-saturated porous rocks exhibits energy loss, or attenuation, and

velocity dispersion. Most of the attenuation and dispersion of seismic waves in such rocks are

usually due to fluid flow taking place at various scales. At the pore scale, this energy loss is

referred to as squirt flow (Mavko and Nur, 1975; Mavko and Jizba, 1991; Dvorkin et al., 1995;

Pride et al., 2004; Gurevich et al., 2010; Müller et al., 2010; Pimienta et al., 2015a,b). Squirt

flow occurs between interconnected pores due to different shapes or different orientations

(Mavko et al., 2009; Müller et al., 2010). Many analytical models describing squirt flow

have been suggested. These models explore squirt flow between interconnected compliant

cracks (O’Connell and Budiansky, 1977; Palmer and Traviolia, 1980), between compliant

cracks and stiff pores (Murphy et al., 1986; Mukerji and Mavko, 1994; Dvorkin et al.,

1995; Pride et al., 2004; Gurevich et al., 2010; Collet and Gurevich, 2016) and between

cracks and spheroidal pores (Xu, 1998; Chapman et al., 2002; Chapman, 2003; Jakobsen

and Chapman, 2009). In real rocks, examples of compliant pores, which here are simply

referred to as cracks, are microcracks and grain contacts. An overview of early theoretical

studies on squirt flow is given by Jones (1986). Several experimental studies confirmed the

importance of squirt flow at different frequency ranges, including sesimic frequencies (Mayr

and Burkhardt, 2006; Adelinet et al., 2010; Mikhaltsevitch et al., 2015; Subramaniyan et al.,

2015; Pimienta et al., 2015a,b; Chapman et al., 2019; Borgomano et al., 2019).

Numerically, squirt flow can be modeled by solving a set of equations describing coupled

fluid-solid deformation (Zhang et al., 2010; Zhang and Toksöz, 2012; Quintal et al., 2016,

2019; Das et al., 2019; Alkhimenkov et al., 2020a,b; Lissa et al., 2020, 2021). Quintal et al.

(2016, 2019) proposed a simplified numerical solution based on the linearized quasistatic

Navier-Stokes equation. Alkhimenkov et al. (2020a) benchmarked this numerical solution

using a published analytical model (Collet and Gurevich, 2016) under a specific scenario,

while identifying and quantifying the causes of inaccuracies due to the assumptions used in

the analytical model for scenarios corresponding to the described pore geometry. Guided by

the numerical simulations presented in Alkhimenkov et al. (2020a), we develop an analytical

model for squirt flow which allows us to accurately calculate the corresponding seismic

dispersion and attenuation. This model does not have any fitting parameters and is in a

very good agreement with three-dimensional numerical solutions across a wide frequency

band. This article (Part 1) is focused on describing the analytical model for the classical

geometry used in many previous studies: a penny shaped crack surrounded by a toroidal

pore (Murphy et al., 1986; Gurevich et al., 2010; Collet and Gurevich, 2016). In a companion

article (Part 2), we propose an analytical model for more complex geometries and investigate

in further details the characteristic frequency of attenuation due to squirt flow. We provide

Matlab and symbolic Maple routines to allow the reader to reproduce our main results

and/or to obtain results for other material properties and pore sizes. The routines archive

(v1.0) (Alkhimenkov and Quintal, 2021) is available from a permanent DOI repository

(Zenodo) at http://doi.org/10.5281/zenodo.5752570 (last access: 3 December 2021).
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Importance of validating analytical models against numerical simulations

Rock physics relies on models that quantitatively describe certain physical concepts with

predictive power. For squirt flow, all the models presented in the literature quantitatively

describe the dispersion and attenuation based on many assumptions. Only recently, com-

putational advances made it possible to directly compare analytical models against three-

dimensional numerical solutions. As a result, it has been shown that certain analytical

models are not accurate because some of their assumptions are not fulfilled even for ideal-

ized geometries (Alkhimenkov et al., 2020a).

We propose a simple and logical workflow which will make it possible to (i) benchmark

published analytical models and (ii) ensure the quality of future models (Figure 1). There

are five key steps. For a given physical concept, an analytical model for a simple geometry

is considered (step 1). The solution can also be calculated numerically for the same simple

geometry (step 2). The results predicted by the analytical model are benchmarked through

the comparison with the numerical solution (step 3). If the analytical model can adequately

describe the physics for a simple geometry, it then could be extrapolated for real rocks (step

4). This can be done by finding key parameters of the analytical models. If the analytical

model for a simple geometry cannot describe the key features of the exact numerical solution

for the same simple geometry, then this model shouldn’t be applied to real rocks.

Up to now, “validation” of analytical models involved only steps 1 and 4. However, step

4 does not appropriately validate the analytical model because of obvious differences in cor-

responding geometries. Furthermore, other physical mechanisms, which were not accounted

for in the analytical model, could have an important effect on the laboratory results. In-

deed, “validation” against laboratory results usually require a number of fitting parameters.

Therefore, validating analytical models against inherently accurate three-dimensional nu-

merical simulations based on exact same model geometry and same physical mechanisms is

of primary importance. Using a numerical solution helps to better understand the involved

physical mechanism by evaluating the effect of key parameters as well as to improve the

analytical model by testing assumptions.

Seismic attenuation and dispersion due to squirt flow

One measure of seismic P-wave attenuation is the so-called inverse quality factor 1/Q(ω) =

Im (M(ω))/Re (M(ω)) (O’Connell and Budiansky, 1978), where ω = 2πf is the angular

frequency (f is the frequency) and M = K +4/3G is the complex-valued P-wave modulus,

K andG are the bulk and shear moduli, respectively. Throughout the article, by attenuation

we imply the inverse quality factor.

We recall a brief overview of the physics based on previous analytical studies (Mavko

and Jizba, 1991) with some additional information obtained from numerical simulations

(Quintal et al., 2019; Alkhimenkov et al., 2020a,b; Lissa et al., 2020). In the physics of
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squirt flow, the cause of energy dissipation is fluid pressure diffusion at the pore scale.

An idealized rock model can be parameterized by three components: solid elastic matrix,

isometric pores and thin compliant cracks (Figure 2). Pores and cracks are interconnected

and saturated with a fluid. A passing seismic wave deforms the compliant cracks more than

the stiff pores, which causes fluid pressure gradients in the cracks. This results in fluid

pressure diffusion, sometimes referred to as local fluid flow or squirt flow, which strongly

depends on the frequency of the propagating wave.

At low-frequencies, the fluid pressure becomes uniform throughout the pore space be-

cause there is enough time for it to equilibrate. This is called relaxed state. The effective

elastic properties can be calculated by using Gassmann’s equations (Gassmann, 1951) given

that the elastic moduli of the dry frame are known. At low-frequencies, 1/Q is proportional

to ≈ ω1 according to numerical simulations for simple geometries (Alkhimenkov et al.,

2020a). At intermediate frequencies, the fluid pressure gradients are at their maximum,

which corresponds to the attenuation peak. The frequency at which the attenuation is at

its maximum is called the characteristic frequency ωc. At high frequencies, there is no time

for fluid to flow or fluid pressure to diffuse between cracks and pores; cracks behave as

hydraulically isolated from pores. This is called unrelaxed state. The slope of the high-

frequency asymptote of the attenuation curve depends on the pore geometry (Alkhimenkov

et al., 2020a,b). If the pore space is represented by a penny shaped crack connected to a

toroidal pore, then 1/Q at high-frequencies is proportional to ≈ ω−1/2. An evaluation of

the high-frequency asymptote of 1/Q for more complex geometries is presented in the Part

2 of the present study.

THE ANALYTICAL MODEL

An analytical model for seismic attenuation and dispersion caused by squirt flow should,

at least, accurately determine three key features: the low- and high-frequency limits for

the elastic moduli and the characteristic frequency. To calculate the low-frequency limit,

one needs the correct dry moduli of the rock and then use Gassmann’s equations to obtain

the moduli in the case of saturation with a fluid. To calculate the high-frequency limit,

one needs the dry moduli of the rock where the crack normal compliance is zero and again

use Gassmann’s equations to obtain the moduli of the saturated rock. The characteristic

frequency is directly related to the aspect ratio of compliant cracks and can be reasonably

estimated. If these three parameters are determined, the dispersion and attenuation curves

can be plotted using, for example, a standard linear solid (SLS) rheology. The disadvantage

of the SLS model is that the resulting 1/Q is a symmetric curve if plotted in a bi-logarithmic

scale, which is usually not the case for attenuation caused by squirt flow (Alkhimenkov et al.,

2020a,b; Lissa et al., 2020).

The analytical model that we present here features the key components of previous an-

alytical models for squirt flow (e.g., Dvorkin and Nur (1993); Mukerji and Mavko (1994);
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Dvorkin et al. (1995); Gurevich et al. (2010); Glubokovskikh et al. (2016); Collet and Gure-

vich (2016)) but with several key modifications which make it accurate. The main building

block of our analytical model is the so-called modified frame, which was originally intro-

duced by Mavko and Jizba (1991). The modified frame represents a rock configuration

where cracks are saturated with a fluid, whereas the isometric pores are dry. The devel-

opment of our analytical model is shown in Figure 3. First, we calculate the moduli of

the dry rock for two configurations: the dry rock containing the torus connected to the

crack and the dry rock containing the torus connected to the crack with zero normal com-

pliance (step 1, Figure 3). Then, we calculate the relaxation of the crack stiffness due to

fluid pressure diffusion and obtain accurate values of the frequency-dependent moduli of

the modified frame (step 2, Figure 3). Finally, we use Gassmann’s equations to obtain the

frequency-dependent moduli of the fully saturated medium (step 3, Figure 3).

General expressions

Let us consider the classical model for squirt flow presented in Figure 4, assuming a repre-

sentative volume element (RVE) (for clarity, later in this article we will show slices of half

of the models as in Figure 4b). The stiff isometric pore is represented by a torus and the

penny-shaped crack is represented by a flat cylinder. The embedding medium consists of

an elastic grain material described by a compliance tensor Sg
ijkl. The m-th inclusion (inter-

connected isometric pore and crack) is represented by a compliance contribution tensor H

with components Hm
ijkl. The relation for the overall strain ϵij can be written as

ϵij = Sg
ijklσkl +∆ϵij = Sg

ijklσkl +
∑
m

Hm
ijklσkl, (1)

where σkl represents remotely applied stresses, ∆ϵij represents the extra strain due to

the presence of the inclusion described by the H-tensor. The components of the effective

compliance tensor of a three-dimensional medium with inclusion(s) are

S∗
ijkl = Sg

ijkl +
∑
m

Hm
ijkl. (2)

The expression 2 is exact and valid for a finite and infinitely extended RVE (Nemat-Nasser

and Hori, 2013). The main assumption is that the grain material and inclusions are elastic

and homogeneous. The compliance tensors can be complex functions of frequency (Hashin,

1970). In three-dimensions, the H-tensors can be calculated exactly for ellipsoids by us-

ing the Eshelby result; in two-dimensions, exact results are known for several geometries

(Kachanov and Sevostianov, 2018). In our particular case, in equations 1 and 2 m = 1

since we have only one inclusion. For our pore space geometry (Figure 4), no closed form

expression of this H-tensor exist, thus, we derive an approximation.
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General expressions for our geometry

The key components of our model are illustrated in Figure 5. The effective compliance

tensor with components S∗
ijkl for the dry model represented in Figure 5c can be written

similarly to expression 2 (in Voigt notation),

[S∗
mn]dry = Sg

mn + [Hmn]dry . (3)

The effective frequency-dependent compliance tensor with components S∗
ijkl(ω) for the fluid-

saturated model is (Figure 5e)

[S∗
mn(ω)]sat = Sg

mn + [Hmn(ω)]sat . (4)

The corresponding effective stiffness matrix for the saturated model is

[C∗
mn(ω)]sat = [S∗

mn(ω)]
−1
sat . (5)

The compliance matrix of an elastic grain material Sg
mn is frequency independent. We also

introduce the compliance contribution matrix of the dry torus
[
Htp

mn

]
dry

and the compliance

contribution matrix [Hmn(ω)]
MF of an inclusion represented by a dry torus connected to

a crack saturated with a fluid (this compliance contribution can be used to obtain the

moduli of the modified frame). By using expressions 3-5, several configurations of the

model (illustrated in Figure 5) can be evaluated. For example, the effective compliance

tensor for the dry model containing only the torus (Figure 5b) [S∗
mn]

tp is

[S∗
mn]

tp = Sg
mn +

[
Htp

mn

]
dry

. (6)

The effective compliance matrix for the modified frame model (Figure 5d) is

[S∗
mn(ω)]

MF = Sg
mn + [Hmn(ω)]

MF . (7)

Finally, the effective compliance matrix for the fluid-saturated model [S∗
mn(ω)]sat can be

calculated by applying anisotropic Gassmann’s equations to expression 7 for each frequency.

The result will be equivalent to that obtained via expression 4.

Some remarks

To calculate the resulting effective moduli, one needs to find the frequency-dependent com-

pliance contribution matrix [Hmn(ω)]sat of a saturated pore space represented by a torus

connected to a flat cylinder (see expression 4). Equivalently, instead of finding [Hmn(ω)]sat
directly, we can find [S∗

mn(ω)]
MF and then obtain [Hmn(ω)]sat. Let’s assume that a torus

and a flat cylinder are disconnected and far from each other. We can represent the H-tensor

in the form

[Hmn]dry =
[
Htp

mn

]
dry

+ [Hcr
mn]dry , (8)
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where
[
Htp

mn

]
dry

and [Hcr
mn]dry represent the compliance contribution matrices of the dry

torus and the dry crack, respectively. The compliance contribution matrix for the modified

frame (dry torus and saturated crack with a frequency-dependent fluid bulk modulus) is

[Hmn(ω)]
MF =

[
Htp

mn

]
dry

+ [Hcr
mn(ω)]sat , (9)

where the compliance contribution matrix of the torus
[
Htp

mn

]
dry

is frequency-independent

but the compliance contribution matrix of the crack [Hcr
mn(ω)]sat is frequency-dependent.

However, the expressions 8 and 9 are accurate only when the torus and the crack are not

connected and far from each other, so that there is no elastic interactions. Since we are

working with a model where the torus and the crack are interconnected, the expressions 8

and 9 are not valid as illustrated by Alkhimenkov et al. (2020a). The compliance contribu-

tion matrix [Hmn(ω)]
MF should be calculated differently, such as in the procedure that we

describe below.

Calculation of the model compliance

The overall dispersion and attenuation magnitudes of the modified frame (and hence, of

the fully saturated model) are controlled by the elastic bounds: the low-frequency limit —

the dry moduli of the model containing the interconnected torus and crack (Figure 5c),

and the high-frequency limit — the dry moduli of the model containing the torus while the

crack normal compliance is zero (Figure 5b). The corresponding values of the dispersion are

illustrated in Figure 6. These low- and high-frequency values can be taken from different

sources:

i) These values can be estimated from the laboratory measurements by measuring the

low- and high-pressure rock moduli, this procedure is described in many studies, e.g., (Gure-

vich et al., 2010). We do not examine nor use this approach here.

ii) The second option is to calculate the low- and high-frequency moduli of a dry model

numerically.

iii) The third option is to calculate the low- and high-frequency moduli of a dry model

analytically.

If the analytical methods are properly used, then the resulting moduli are equivalent

to that ones obtained numerically. In this study, we adopt the dry moduli calculated

numerically and we provide the workflow to calculate the dry moduli analytically; the

numerical and analytical approaches provide us identical results.

One of the most important outcomes of this study is the adequate calculation of the

effective elastic moduli of the interconnected pore space using an analytical approach. The

pore space consists of two interconnected cavities: the stiff isometric pore (torus) and the

compliant crack (flat cylinder). The correct values for the elastic moduli are obtained
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numerically for several configurations and shown in Figure 6. Details on the numerical

solutions and applied boundary conditions are given in Appendix A. These correct values are

used to benchmark the model compliance obtained analytically. The analytical expressions

are provided below.

Analytical expressions

To derive the compliance contribution matrix of the interconnected torus and crack [Hmn]dry,

we employ the conventional approach used in micromechanics to construct the property con-

tribution matrix of complex geometries (e.g., intersecting cracks, inclusions of “irregular”

shapes), see chapters 4.3 and 4.4 in Kachanov and Sevostianov (2018). Several different

techniques exist, which can be used separately or in combinations. Here, we adopt the

following method: by using the results of three-dimensional numerical simulations for the

interconnected torus and crack, we find the structure of the compliance contribution matrix,

its principal directions and the key geometrical characteristics of inclusions which control the

compliance contribution matrix. Then, we construct the compliance contribution matrix of

the interconnected torus and crack [Hmn]dry by using the known property contribution ten-

sors for simple geometries (in our case, the crack, the torus and spheroid). It turns out, that

all components of the [Hmn]dry are controlled by the torus except for [H33]dry, [H44]dry and

[H55]dry. This is simple to understand because the compliance contribution matrix of the

crack is described by the two components only (Schoenberg and Douma, 1988; Schoenberg

and Helbig, 1997); thus, the only non-zero components are [Hcr
33]dry, [H

cr
44]dry ≡ [Hcr

55]dry.

However, the crack is connected to the torus, therefore, the theory for cracks embedded into

a homogenous material by Schoenberg and Douma (1988); Schoenberg and Helbig (1997)

cannot be used here to calculate [Hcr
33]dry, [H

cr
44]dry, [H

cr
55]dry. Instead, from the numerical

experiments we find that the [H33]dry, [H44]dry and [H55]dry components of the compliance

contribution matrix of the interconnected torus and crack are the same as for a spheroid[
HEcr

mn

]
dry

. From now on, we refer to this spheroid as the extended crack. The shape of

the extended crack is such that it works as an envelope for the torus as shown in Figure 7.

Thus, we employ
[
HEcr

33

]
dry

,
[
HEcr

44

]
dry

,
[
HEcr

55

]
dry

components to the contribution matrix of

the interconnected torus and crack [Hmn]dry. This approach provide us with a very good

approximation of the compliance contribution matrix for this particular geometry — the

interconnected torus and crack. A detailed workflow is given below (see also Figure 7).

i) The compliance contribution matrix of the dry torus
[
Htp

mn

]
dry

should be calculated
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as

[
Htp

mn

]
dry

=



[
Htp

11

]
dry

[
Htp

12

]
dry

[
Htp

13

]
dry

0 0 0[
Htp

21

]
dry

[
Htp

22

]
dry

[
Htp

23

]
dry

0 0 0[
Htp

31

]
dry

[
Htp

32

]
dry

[
Htp

33

]
dry

0 0 0

0 0 0
[
Htp

44

]
dry

0 0

0 0 0 0
[
Htp

55

]
dry

0

0 0 0 0 0
[
Htp

66

]
dry


.

(10)

ii) The compliance contribution matrix of the extended dry crack is calculated
[
HEcr

mn

]
dry

.

The diameter of the extended crack is equal to the diameter of the crack (2b) plus an

extension corresponding to twice the minor diameter of the torus (4r), as shown in Figure 7.

In other words, the projection of the pore space containing the crack and torus and the

projection of the extended crack model onto the xy−plane are the same. The thickness

of the extended crack is such as the extended crack is a spheroidal envelope for the torus

as shown in Figure 7. For our particular geometry, the thickness of the extended crack is

approximately twice the minor diameter of the torus, dMn = 2r (see Figure 7 and Figure 4

for geometrical parameters).

iii) The compliance contribution matrix of the interconnected torus and crack [Hmn]dry

is thus constructed by using the obtained components of
[
Htp

mn

]
dry

and
[
HEcr

mn

]
dry

:

[Hmn]dry =



[
Htp

11

]
dry

[
Htp

12

]
dry

[
Htp

13

]
dry

0 0 0[
Htp

21

]
dry

[
Htp

22

]
dry

[
Htp

23

]
dry

0 0 0[
Htp

31

]
dry

[
Htp

32

]
dry

[
HEcr

33

]
dry

0 0 0

0 0 0
[
HEcr

44

]
dry

0 0

0 0 0 0
[
HEcr

55

]
dry

0

0 0 0 0 0
[
Htp

66

]
dry


.

(11)

The components
[
Htp

13

]
dry

and
[
Htp

23

]
dry

, and corresponding symmetric components, could

also be replaced by
[
HEcr

13

]
dry

and
[
HEcr

23

]
dry

(which may improve the accuracy) but this

effect is of minor importance, thus, we do not explore it in more details. The components[
Htp

33

]
dry

,
[
Htp

44

]
dry

and
[
Htp

55

]
dry

representing the torus are replaced by the components

representing the extended crack
[
HEcr

33

]
dry

,
[
HEcr

44

]
dry

and
[
HEcr

55

]
dry

. The compliance con-

tribution matrices of a torus and extended crack (spheroid) can be calculated analytically

as described in chapters 4.3 and 4.2 of Kachanov and Sevostianov (2018) (and references

therein).
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The compliance contribution matrix of the modified frame is

[Hmn(ω)]
MF =



[
Htp

11

]
dry

[
Htp

12

]
dry

[
Htp

13

]
dry

0 0 0[
Htp

21

]
dry

[
Htp

22

]
dry

[
Htp

23

]
dry

0 0 0[
Htp

31

]
dry

[
Htp

32

]
dry

[
HEcr

33 (ω)
]MF

0 0 0

0 0 0
[
HEcr

44

]
dry

0 0

0 0 0 0
[
HEcr

55

]
dry

0

0 0 0 0 0
[
Htp

66

]
dry


.

(12)

The only difference between the matrices in equation 11 and equation 12 is the component[
HEcr

33 (ω)
]MF

. Since the fluid flow takes place in the crack only when the displacement

boundary condition in the vertical (z) direction is applied, the component
[
HEcr

33 (ω)
]MF

is

the only frequency-dependent component. This statement is also supported by the numer-

ical simulations by Alkhimenkov et al. (2020a). The component
[
HEcr

13 (ω)
]MF

might also

exhibit some dispersion but the magnitude is negligibly small (Alkhimenkov et al., 2020a).

The limits of
[
HEcr

33 (ω)
]MF

are

lim
ω→+∞

[
HEcr

33 (ω)
]MF

=
[
Htp

33

]
dry

, (13)

and

lim
ω→+0

[
HEcr

33 (ω)
]MF

=
[
HEcr

33

]
dry

. (14)

To separate the contribution of the torus, which is a constant value across a full fre-

quency band, from the contribution of the extended crack compliance, which is frequency

dependent, we introduce

[
H

′
mn(ω)

]MF
= [Hmn(ω)]

MF−
[
Htp

mn

]
dry

=



0 0 0 0 0 0

0 0 0 0 0 0

0 0
[
H

′
33(ω)

]MF
0 0 0

0 0 0
[
H

′
44

]MF

dry
0 0

0 0 0 0
[
H

′
55

]MF

dry
0

0 0 0 0 0 0


.

(15)

Expression 15 has the same structure as the compliance contribution matrix of a crack

written in terms of normal and tangential compliances Zn and Zt. The limits of
[
H

′
33(ω)

]MF

are

lim
ω→+∞

[
H

′
33(ω)

]MF
= 0, (16)

and

lim
ω→+0

[
H

′
33(ω)

]MF
=
[
HEcr

33

]
dry

−
[
Htp

33

]
dry

≡ Zap
n , (17)
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where for simplicity we introduce the apparent normal crack compliance Zap
n . The apparent

tangential crack compliance is Zap
t =

[
H

′
44

]MF

dry
≡
[
H

′
55

]MF

dry
. Even though the structure

of the matrices is the same, the absolute values of the components in equation 15 are

calculated differently from the formulas for Zn and Zt suggested for cracks embedded into

a homogeneous material by Schoenberg and Douma (1988); Schoenberg and Helbig (1997).

The effective compliance matrix for the modified frame can be calculated using the equation

7 as

[S∗
mn(ω)]

MF = Sg
mn +

[
Htp

mn

]
dry

+
[
H

′
mn(ω)

]MF
. (18)

Finally, the effective compliance moduli of a fully saturated model [S∗
mn(ω)] can be obtained

by saturating the modified frame [S∗
mn(ω)]

MF with a fluid using Gassmann’s equations. The

expression 18 is the main result of this study and is valid for any geometry of the pore space

if the appropriate compliance contribution matrices are used.

Calculation of the frequency-dependent crack stiffness

To derive the frequency-dependent component of the contribution matrix
[
H

′
33(ω)

]MF
(i.e.

the normal crack compliance), we note that the thin crack is adequately described by two

parameters (as in equation 15), then we use anisotropic Gassmann’s equations to calculate

the moduli considering the crack saturated. The derivation is simple, requires only algebraic

manipulations which are cumbersome, thus we refer to the supplementary material for the

full derivation (Maple script). The resulting expression is

[
H

′
33(ω)

]MF
=

(Kg −K∗
f (ω))ϕc Z

ap
n

(Kg −K∗
f (ω))ϕc +K∗

f (ω)Kg Z
ap
n

, (19)

where ϕc is the compliant porosity (crack porosity), Zap
n is the normal apparent compliance

of the crack (see expression 17) and Kg is the bulk modulus of the solid grains. If a

crack cannot be described by two parameters (for example, the
[
H

′
13

]MF

dry
component is

also affected), then one can use our Maple script (supplementary material) with already

derived equations for the general (anisotropic) form of the solid background and the property

contribution matrix of the inclusion, e.g., crack. The expression for the frequency-dependent

bulk modulus of the fluid K∗
f (ω) will be given below.

Extension for cracks with finite thickness

If the crack thickness is not so small, so that the aspect ratio is larger than 0.0025 then the

limit given in 16 is not equal to zero. A small non-zero value [Zap
n ]

fth
will be present,

lim
ω→+∞

[
H

′
33(ω)

]MF
= [Zap

n ]fth (20)

11



and the normal apparent crack compliance becomes

[Zap
n ]f = Zap

n − [Zap
n ]fth (21)

In this case, the only modification that is needed is a slight change in expression 19 by

including the additional compliance [Zap
n ]

fth

[
H

′
33

]MF
=

(Kg −K∗
f (ω))ϕc [Z

ap
n ]

f

(Kg −K∗
f (ω))ϕc +K∗

f (ω)Kg [Zap
n ]

f
+ [Zap

n ]fth . (22)
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Relaxation of the crack stiffness

In the analytical model, the relaxation of the crack stiffness due to fluid pressure diffu-

sion controls the frequency-dependence of the effective elastic moduli of the medium. The

relaxation of the crack stiffness can be modeled via the the relaxation of the fluid bulk

modulus K∗
f (ω) in the crack. In several previous studies, the task is reduced to solving the

problem for a crack only by applying boundary conditions directly to the crack walls and

to the tip of the crack (e.g., Murphy et al. (1986)). Then, the derived expression for K∗
f (ω)

is treated as the crack stiffness. Unfortunately, applying boundary conditions to the crack

walls and to the crack tip produces a different result compared to applying the boundary

conditions directly to the walls of the model. For illustration, we show the models consid-

ering zero fluid pressure at the crack tip and the Big pore model, with the corresponding

results of numerical simulations (Figure 8).

In the rock physics literature, the relaxation of fluid pressure was derived by solving an

equation for fluid pressure distribution p in the the flat cylinder (crack) under sinusoidal

loading ∆heiωt applied to the walls of the crack, ∆h is the displacement of the crack

walls (e.g., Murphy et al. (1986); Dvorkin and Nur (1993)). Then, by integrating the fluid

pressure p over the thickness and area of the crack, the frequency-dependent fluid bulk

modulus K∗
f (ω) was determined. In the mechanics literature, similar problems were solved

in time domain for different visco-elastic materials (e.g., Chalhoub and Kelly (1990); Tsai

and Lee (1998)). All the solutions are very similar for the same geometries and applied

boundary conditions with slight differences depending on the approximations done during

the derivation.

We use symbolic environment Maple to derive a general structure of the solutions for

the frequency-dependent fluid bulk modulus K∗
f (ω). We start with the known approach

by applying the boundary conditions to the walls of the crack (Murphy et al., 1986; Tsai

and Lee, 1998). But afterwards we modify the resulting solution by taking into account the

heterogeneous stress field induced by the torus. In Cartesian coordinates, the expression

for fluid pressure under the compression strain ϵc applied to the walls of the crack is

∂2p

∂x2
+

∂2p

∂y2
− k2 p = −k2Kf ϵc, (23)

where k is a parameter a function of the applied strain and rheology of the crack (e.g., Tsai

and Lee (1998)). In polar coordinates, the expression for fluid pressure becomes

∂2p

∂r2
+

1

r

∂p

∂r
− k2 p = −k2Kf ϵc (24)

The stiffness of the crack H can be expressed via the surface integral over the crack area S

for the averaged vertical stress σ̄zz,

H = −
[∫

S
σ̄zz dS

]
/(Sϵc), σ̄zz =

[∫
h
σzz dh

]
/h. (25)

If the crack rheology represents a pure fluid, then H ≡ Kf . Similar equations were consid-

ered in the previous studies by Murphy et al. (1986); Chalhoub and Kelly (1990).
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Zero fluid pressure at the crack tip

In the modified frame configuration, the crack is connected to the dry isometric pore,

which corresponds to zero fluid pressure boundary condition at the edge of the crack. This

configuration was studied by Chalhoub and Kelly (1990); Tsai and Lee (1998). The solution

for K∗
f (ω) treating the crack as a flat cylinder is

K∗
f (ω) = Kf +

4

3
iωη −

(
Kf − 2

5
iωη

)2

(
Kf +

4

3
iωη

)
k̄1 J0(k̄1)

J1(k̄1)
− iωη

, (26)

where η is a fluid dynamic viscosity, J0 and J1 are the are the Bessel functions of the first

kind of order 0 and 1, respectively, and k̄1 is defined as

k̄1 =
1

α

√
3iωη/(Kf +

4

3
iωη), (27)

where α = h/(2b) is the crack aspect ratio. A different expression for K∗
f (ω) was provided

by Chalhoub and Kelly (1990)

K∗
f (ω) = Kf

[
1− 2 J1(k̄2)

k̄2 J0(k̄2)

]
, (28)

where k̄2 is

k̄2 =
1

α

√
−3iωη/Kf . (29)

It was pointed out by Tsai and Lee (1998) that the solution 28 is similar to 26 for Poisson

ratio = 0.5 but different if Poisson ratio ≤ 0.5 (the solution 26 matches numerical solutions

for Poisson ratio ≤ 0.5). Thus, for fluids (Poisson ratio = 0.5) either solution 26 or 28

can be used (Figure 9). The expression 28 was used by Gurevich et al. (2010); Collet and

Gurevich (2016) for the relaxation of the fluid bulk modulus of the modified frame.

Non-zero fluid pressure at the crack tip

In this configuration, the crack is connected to the saturated isometric pore meaning that

the fluid pressure in such a pore will increase due to the fluid flow from the crack (see Murphy

et al. (1986) for the precise boundary conditions). In this case, during the relaxation of the

fluid bulk modulus, the fluid “feels” the finite volume of the isometric pore. The solution

of 25 for this boundary condition is (Murphy et al., 1986)

K∗
f (ω) = Kf

[
1− 2Vpor J1(k̄2)

2VcrJ1(k̄2) + k̄3 Vpor J0(k̄2)

]
(30)

Vpor is the volume of the stiff pore and Vcr = πhb2 is the volume of the compliant crack.

The geometrical parameters h, b and r are given in Table 1. For a torus, Vpor is calculated
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as Vpor = 2π2(b + r)r2. Under the assumption of Vpor → ∞, the expression 30 reduces

to expression 28 (it can be seen from expression 30 by removing terms with 1/Vpor). The

low-frequency limit of K∗
f calculated using equation 30 is

lim
ω→0

K∗
f =

VcrKf

Vcr + Vpor
. (31)

Note, that the shape of the curves in expressions 26, 28 and 30 is the same (Figure 9a),

which means that for the Big pore model solutions 26, 28 and 30 are equivalent. In other

words, the volume of the Big pore is so large compare to the volume of the crack, that zero

fluid pressure boundary condition provides us a good approximation. The low-frequency

limit K∗
f ̸= 0 (but close to 0) in equation 30 compared to expressions for zero fluid pressure

boundary condition at the edge of the crack (expressions 26, 28 where K∗
f = 0). The

high-frequency limit of the K∗
f is

lim
ω→∞

K∗
f =

(
1 + 2

(
cos(ka+ π/4)

sin(ka+ π/4)

)
1

ka

)
Kf . (32)

This high-frequency limit (Eq. 32) also applies to expression 28 for K∗
f (ω).

Modification of the relaxation of the fluid bulk modulus for the classical geometry

Alkhimenkov et al. (2020a) showed that the [C∗
33(ω)]sat component obtained via the ana-

lytical model by using K∗
f (ω) (Eq. 28) is in agreement with the numerical simulation for

zero fluid pressure at the crack tip and no stiff pore (Figure 8). It means that if the back-

ground material is homogeneous, the relaxation of the fluid bulk modulus is not affected (or

the effect is negligible) by the surrounding homogeneous grains. In other words, applying

boundary conditions to the walls of the crack or to the walls of the model produces similar

results in this special case of no stiff pore (Figure 8ab). But this configuration is not real-

istic. For a more realistic scenario, when a stiff pore is present (Figure 8c), the [C∗
33(ω)]sat

component obtained via the analytical model by using K∗
f (ω) obtained analytically for the

configuration shown in Figure 8a diverges from the numerical result (Alkhimenkov et al.,

2020a). This disagreement is due to the presence of the isometric pore connected to the

crack, which changes the stress field in the model. Because of the modified stress field, the

fluid flow is also affected and the boundary conditions applied to the wall of the crack are no

longer accurate (Figure 8cd). According to numerical solutions for the models where a torus

is connected to a crack, the high-frequency slopes of the dispersion and attenuation curves

are substantially different from those obtained via solution for the crack only having a zero

fluid pressure boundary condition at the tip (Eq. 28) (Figure 8e). A similar observation

has been pointed out by Solazzi et al. (2021) for partially saturated cracks.

By analyzing the numerical results, we find that the 1/Q at high-frequencies is pro-

portional to ≈ ω−1/2 for the classical geometry (the crack connected to the toroidal pore).

However, the solutions for K∗
f (ω) (expressions 26, 28 and 30) and the resulting 1/Q exhibit
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different behavior at high-frequencies compare to the numerical solutions. Therefore, we

derive an approximation to the relaxation of the fluid bulk modulus K∗
f (ω) for the classical

geometry by simply using the solution 30 with a modified high-frequency asymptote. For

that, we use a special form of a branching function. The concept of a branching function

is simple and allows us to find an accurate approximation for a given cumbersome exact

solution (Pride et al., 1993; Johnson, 2001). A branching function is designed such that it

satisfies the Kramers–Kronig relations, thus can be used to approximate seismic attenuation

and dispersion curves. To construct the branching function, one needs to know the low-

and high-frequency limits along with the low- and high-frequency asymptotes of the exact

solution. We use the following branching function,

K∗
f (ω) = Kf − (Kf − y ·KLF

f )/(1− ζ + ζ
√
1 + iωτ/ζ2), (33)

where y = 0 for the solution considering zero fluid pressure at the crack tip or y = 1 for

the solution considering non-zero fluid pressure boundary condition at the crack tip. In

equation 33, Kf corresponds to the high frequency limit of the exact solution (which is

exactly the fluid bulk modulus), KLF
f (if y = 1) or 0 (if y = 0) correspond to the low

frequency limit of the exact solution 30 or 26, respectively. The two parameters ζ and τ

control the shape of the branching function. The recipe to construct the branching function

is the following:

i) We extract several parameters of the solution 30 for K∗
f (ω): the low- and high-

frequency limits ofK∗
f (ω), the low-frequency asymptote of 1/QK∗

f
= Im

(
K∗

f (ω)
)
/Re

(
K∗

f (ω)
)

and the characteristic frequency f crack
c of 1/QK∗

f
(at the maximum of 1/QK∗

f
). This gives

us four parameters.

ii) We construct the branching function 33 with y = 1 to approximate the solution 30

using the known parameters obtained in i) but with the modified high-frequency asymptote

being proportional to ≈ ω−1/2. There are only four parameters in the branching function 33.

The last relation to close the system of equations is that the intersection of low- and high-

frequency asymptotes of the branching function coincides with the characteristic frequency

f crack
c obtained in i). The resulting modified solution is shown in Figure 9 (black squares).

iii) The final modified solution for K∗
f (ω) is obtained from the step ii) by setting y = 0

in the expression 33. This step is needed to obtain the solution for the zero fluid pressure

boundary condition at the crack tip since our analytical model is based on the modified

frame (Figure 3).

The calculations in steps i), ii) and iii) are simple, require only algebraic manipulations

but they are cumbersome, thus we refer to the supplementary material for the full derivation

(Maple script). The resulting expressions for the branching function are given below.

By setting y = 0 in expression 33 (corresponding to zero fluid pressure at the crack tip),

the frequency-dependent bulk modulus of the fluid K∗
f (ω) becomes

K∗
f (ω) = Kf −Kf/(1− ζ + ζ

√
1 + iωτ/ζ2), (34)
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where the parameter τ is calculated as

τ =
3

4

η

Kf

ζ

α2
, (35)

and the parameter ζ is calculated as

ζ =
128

27

Kf

η3
(KLF

f )2

(f crack
c )3

α6, (36)

with f crack
c given by

f crack
c =

4√
3

√
Kf ·KLF

f

η
α2. (37)

The parameter f crack
c determines the characteristic frequency of K∗

f (ω). The apparent fluid

bulk modulus at low frequencies KLF
f is

KLF
f =

VcrKf

Vcr + Vpor
, (38)

The low-frequency asymptote of the K∗
f calculated using equation 33 is

lim
ω→0

K∗
f =

(Kf −KLF
f )τ

KLF
f ζ

ω. (39)

The high-frequency asymptote of the K∗
f calculated using equation 33 is

lim
ω→∞

K∗
f =

(Kf −KLF
f )

√
2

2Kf
√
τ

1

ω2
. (40)

It is possible that for some specific parameters that expressions 34-38 lose their accuracy.

In this case, one can modify the expressions 34-38 using the Maple symbolic environment to

improve the accuracy. We do not explore in detail the accuracy of the boundary conditions

for the crack tip proposed by Murphy et al. (1986) (the solution 30), different boundary con-

ditions may slightly modify the expression 30 and the derived modification of this solution

34-38.

Note that the branching function of the form 33 was used to approximate cumbersome

exact solutions in different contexts by many authors (Pride et al., 1993; Johnson, 2001).

Note that 33 is designed to approximate solutions in the stiffness. A similar branching

functions exists to approximate solutions in the compliance, which is more suitable for

some applications (Gurevich et al., 2009).

Big pore model

Figure 9 shows the real part of the frequency-dependent fluid bulk modulus K∗
f and the

dimensionless attenuation calculated using different expressions for the Big pore model
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with α = 0.005. Since the volume of the big pore is large, the expressions for K∗
f 26 and

28 reduce to expression 30. Note, that 1/Q of K∗
f of Eq. 26 and 28 is the same as for 30

for frequencies larger than the characteristic frequency but tend to infinity for frequencies

lower than the characteristic frequency because K∗
f → 0 as ω → 0. K∗

f calculated via the

branching function 33 (y = 1) is identical to 30 except for the high frequency asymptote.

Note, that asymptotes of the branching function intersect at the characteristic frequency of

K∗
f calculated via equation 30.

Figure 10 is similar to Figure 9 but K∗
f calculated via the equation 34 is shown together

with the numerical solution. The numerical solution was obtained from the simulations

for the modified frame of the Big pore model (α = 0.005), and then inverting for K∗
f via

the analytical formulas 18 and 19. K∗
f calculated via equation 34 is in agreement with the

numerical solution (note, that there are no fitting parameters in equation 34).

Small pore model

Figure 11 shows the real part of the frequency-dependent fluid bulk modulus K∗
f and the

dimensionless attenuation calculated using different formulas for the Small pore model with

α = 0.0025. The branching function with y = 0 (equation 33 or, equivalent, equation 34)

corresponds to the configuration with zero fluid pressure at crack tip (which is used in the

present analytical model for the modified frame). At low frequencies, K∗
f calculated via the

branching function 33 (y = 0) and the solution 30 are not equal to zero because the volume

of the Small pore is only slightly larger than the volume of the crack. 1/Q calculated via the

the branching with y = 0 (equation 33 or equation 34) is in agreement with the numerical

solution.

Summary

Our analytical model requires (i) the calculation of the effective compliance matrix of the

modified frame (expression 18), (ii) the calculation of the frequency dependent component[
H

′
33

]MF
(expression 19), which represents the frequency-dependent crack stiffness, (iii)

the calculation of the effective stiffness moduli of a fully saturated model by applying

Gassmann’s equations (Gassmann, 1951). If the low- and high-frequency limits of the dry

model are known, then the step (i) can be skipped; the frequency dependent component[
H

′
33

]MF
(expression 19) provides the transition from low- to high-frequencies (step (ii)).
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(i) The modified frame

Our analytical model requires the calculation of effective compliance matrix of the modified

frame (expression 18),

[S∗
mn(ω)]

MF = Sg
mn +

[
Htp

mn

]
dry

+
[
H

′
mn(ω)

]MF
, (41)

where Sg
mn is the compliance matrix of the solid grain material,

[
Htp

mn

]
dry

is the com-

pliance contribution matrix of the isometric pore (torus) and
[
H

′
mn(ω)

]MF
is the addi-

tional compliance contribution matrix of the crack connected to the torus. The compliance

contribution matrices of a torus
[
Htp

mn

]
dry

and extended crack (ellipsoid)
[
HEcr

mn

]
dry

can

be calculated analytically using expressions from e.g., Kachanov and Sevostianov (2018).

Then, following the workflow presented in Figure 7, the
[
H

′
mn(ω)

]MF
can be calculated as[

H
′
mn(ω)

]MF
= [Hmn(ω)]

MF −
[
Htp

mn

]
dry

(see formula 15 for details), where [Hmn(ω)]
MF is

constructed by expression 12 using the already obtained
[
Htp

mn

]
dry

and
[
HEcr

mn

]
dry

.

(ii) The frequency-dependent crack stiffness

The
[
H

′
33

]MF
component is calculated by

[
H

′
33(ω)

]MF
=

(Kg −K∗
f (ω))ϕc Z

ap
n

(Kg −K∗
f (ω))ϕc +K∗

f (ω)Kg Z
ap
n

, (42)

where ϕc is the compliant porosity (crack porosity), Zap
n is the apparent normal compliance

of the crack (see expression 17) and Kg is the bulk modulus of the solid grains. The

expression for the frequency-dependent bulk modulus of the fluid K∗
f (ω) can be calculated

by using equation 34. For cracks of finite thickness, equation 22 should be used instead of

equation 42.

(iii) The moduli of a fully saturated model

Finally, the effective stiffness moduli of a fully saturated model [C∗
mn(ω)]sat can be ob-

tained by using anisotropic Gassmann’s equations (Gassmann, 1951) at each frequency to

[S∗
mn(ω)]

MF:

[C∗
mn(ω)]sat =

(
[S∗

mn(ω)]
MF
)−1

+ αmαnM, (43)

αm = 1−

(
3∑

n=1

CMF
mn

)
/Kg/3, (44)
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for m = 1, 2, 3 and α4 = α5 = α6 = 0, and where

M =
(
ϕ/Kf + (1− ϕ)/Kg −K∗/K2

g

)−1
, (45)

K∗ =
1

9

3∑
m=1

3∑
n=1

CMF
mn (ω), (46)

where ϕ is the total porosity of the medium without the compliant porosity (which is

neglected because the compliant porosity is usually two or more orders of magnitude lower

than the stiff pore’s porosity), K∗ is the generalized bulk modulus of the modified frame

and αm is the Biot-Willis coefficient.
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VALIDATION AGAINST THREE-DIMENSIONAL NUMERICAL

SOLUTIONS

For the validation, we consider several 3-D models consisting of a pore space embedded in

an elastic solid grain material. The numerical methodology is described in Appendix A and

was introduced by Quintal et al. (2016, 2019); the boundary conditions for the direct relax-

ation tests to compute all components of the stiffness matrix are described in Alkhimenkov

et al. (2020a,b). The models considered are the following:

i) The saturated Big pore model with crack aspect ratio α = 0.0025. This is the model that

was shown in Figure 4.

ii) The saturated Big pore model with finite thickness crack (aspect ratio α = 0.005).

iii) The modified frame of the Big pore model with finite thickness crack (aspect ratio

α = 0.005).

iv) The modified frame of the Small pore model with crack aspect ratio α = 0.0025. Here

the isometric pore represented by the torus is small.

The geometrical properties of the models with crack aspect ratio α = 0.0025 are shown

in Table 1 and the material parameters are shown in Table 2. The model geometry is

scalable; i.e., if all geometric parameters of the models are divided or multiplied by any

number, the results will be the same.

Big pore model

Figure 12 shows results for the [C∗
33]sat complex-valued component of the stiffness matrix

obtained using the present analytical model, the model of Collet and Gurevich (2016) with

two different sets of normal and tangential compliances (see Appendix B and Alkhimenkov

et al. (2020a) for more details) and the numerical solution for the model shown in Figure 4.

The model A of Collet and Gurevich (2016) doesn’t take into account the connectivity of

the crack and pore gives stiffer moduli of the rock at low frequencies compared to the correct

moduli. The model B of Collet and Gurevich (2016) takes into account the connectivity

of the crack and pore using the modification introduced by Alkhimenkov et al. (2020a)

and gives correct moduli of the rock at low frequencies. The aspect ratio is α = 0.0025

which corresponds to the limit where the crack aperture is small enough so that at high-

frequencies the fluid stiffens the crack to the point that Zap
n = 0. Our analytical model is

in good agreement with the numerical solution. For the big pore model, f crack
c (equation

37) is almost identical to the characteristic frequency fc of the fully saturated model.
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Big pore model with the finite thickness crack

Figure 13 shows results for the [C∗
33]sat complex-valued component of the stiffness matrix

obtained from the our analytical model, the models A and B of Collet and Gurevich (2016)

and from the numerical simulation. The aspect ratio here is α = 0.005. The high frequency

limit of the [C∗
33]sat slightly lower due to the increased crack aperture and, thus, compliance.

Our present analytical model takes into account the non-zero value of Zap
n corresponding

to larger aspect ratios showing a good agreement with numerical solutions.

Modified frame of the Big pore model with finite thickness crack

We also validate the extension of the analytical model to finite thickness crack against

a modified frame configuration. Figure 14 shows results for the [C∗
33]

MF complex-valued

component of the stiffness matrix obtained from the present analytical model, the models

A and B of Collet and Gurevich (2016) and from the numerical simulation. In this case,

dispersion and attenuation is much stronger than in Figure 13 because the fluid in the

crack can freely flow into the empty pore without experiencing any difficulties due to the

finite volume of the torus that would otherwise result in an increase in fluid pressure at low

frequencies. Our analytical model is in good agreement with numerical solutions confirming

that it can adequately describe the frequency-dependence of the modified frame.

Modified frame of the Small pore model

We also apply our analytical model to a different pore space configuration — Small pore

model (Table 1). In this configuration, the volume of the torus is small, thus dispersion

and attenuation are also small. But the modified frame of the Small pore model shows

significant dispersion and attenuation (Figure 15). We consider an aspect ratio α = 0.0025.

The result from pur analytical model is in a good agreement with the numerical solutions.
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DISCUSSION

The key features making our model accurate

There are two key features which make the present analytical model very accurate. The first

one is the correct calculation of the model compliances. We provide the workflow to obtain

the effective compliance matrix which takes into account the connectivity of the stiff pore

and the compliant crack; it provides the correct values of the low and high frequency limits

of the stiffness moduli. The second feature is the accurate description of the relaxation

of the compliant crack due to fluid pressure diffusion; it gives the correct shape of the

dispersion and attenuation curves across the whole frequency range.

The usual treatment of the pore and crack as being disconnected when calculating the

model compliance provides inaccurate predictions of the overall attenuation and dispersion.

The error of the low frequency limit of the dispersion curve can be as large as 100% of the

crack compliance, as it can be seen in Figure 12 (blue curve, analytical model A of Collet and

Gurevich (2016)). However, once the workflow for calculating the model compliance takes

into account the connectivity of the pore and crack, the low and high frequency limits of the

dispersion curve become accurate (green curve, modification of analytical model of Collet

and Gurevich (2016)). The modification of the analytical model of Collet and Gurevich

(2016) (model B) was provided by Alkhimenkov et al. (2020a)(Appendix B). Our analytical

model is based on the property contribution tensors which provides a general approach for

calculating the moduli and can be extended for more complex geometries of the pore space

(equation 41). The presented workflow (Figure 7) to construct the property contribution

tensor of the interconnected pore and crack provides the correct values of the low and high

frequency limits of the dispersion curve (Figures 12-15).

Small deformations caused by the wave propagation compress the compliant crack and

cause fluid pressure diffusion or squirt flow. The fluid pressure distribution in the crack

is significantly affected by the inhomogeneous stress field introduced by the isometric pore

(especially at frequencies higher than the characteristic frequency). The stiffening effect of

the fluid in the crack is substantially different for homogeneous and heterogeneous stress

field distributions surrounding the crack (see Figure 8). Thus, we had to modify the ex-

pression for the relaxation of the crack stiffness for this specific geometry of the pore space

represented by the interconnected torus and crack. This modification depends on the shape

of the pore space and is explored in more details in Part 2 of this study. The popular

idea of considering certain viscoelastic moduli describing the stiffening effect of fluid is, in

general, imprecise. The stiffness of the fluid can be replaced by viscoelastic moduli only for

particular pore space geometries, as we show in the present and follow up studies.

23



The effect of the finite volume of the stiff pore

The volume of the isometric (stiff) pore Vpor has a key influence on the magnitude of the

dispersion and attention. If this volume is significantly larger than the volume of a compliant

crack Vcr (i.e. by two orders of magnitude or more), then the fluid in the crack does not

“feel” that the volume of the isometric pore is finite. In other words, in the low-frequency

limit the normal crack compliance of the saturated model is the same as if it was dry. This

can be seen in Figure 10, where in the low frequency limit K∗
f approaches zero.

On the other hand, if the volume of an isometric pore is similar to the volume of a com-

pliant crack (or just an order of magnitude larger), then the fluid in the crack does “feel”

that the volume of the isometric pore is finite and the resulting dispersion and attenuation

are reduced. At low-frequencies fluid flow from the crack into the isometric pore signifi-

cantly increases fluid pressure in the stiff pore. As a result, in the low-frequency limit the

normal crack compliance has a finite non-zero value. This can be seen in Figure 11 (Small

pore model) where in the low frequency limit K∗
f approaches ≈ 0.6 GPa. The resulting

attenuation and dispersion are very small (Alkhimenkov et al., 2020a).

The expression 31 gives an estimate of K∗
f (ω) for the case where the fluid flow in the

crack “feels” the finite volume of the isometric pore, the low frequency limit of K∗
f (ω) is

KLF
f =

VcrKf

Vcr + Vpor
. (47)

The resulting value of KLF
f can be used in expression 19 to calculate the normal fracture

compliance

ZLF
n =

(Kg −KLF
f )ϕc Z

ap
n

(Kg −KLF
f )ϕc +KLF

f Kg Z
ap
n

, (48)

The value ZLF
n gives the quantitative answer to the question: “how strong will be the

stiffening effect of the crack at low frequencies?”

The importance of pore connectivity and elastic interactions

Elastic interaction is a very popular topic in mechanics as well as in rock physics. When

the concentration of cracks or pores is small, the elastic interactions are also small and can

be ignored. In this case, for calculating the effective elastic moduli one can use methods

which do not take into account elastic interactions (so-called non-interactive approximation

of effective medium theory); these methods usually provide exact results for simple pore

geometries. When the concentration of cracks or pores is increased, the elastic interactions

take place and affect the effective elastic properties. Exact results are possible only for a

limited number of configurations, usually for two-body problems. For many-body problems

many approximations exist. The effect of pore connectivity, however, is a distinct subject

with a distinct contribution.
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Figure 16 shows a slice equivalent to that in Figure 4 with the three pore configurations:

the torus and the crack are connected, the torus and the crack are disconnected but close to

each other, and the torus and the crack are disconnected and a bit further from each other.

On top of each subplot, the effective stiffness component [C∗
33]dry calculated numerically

(with properties given in Tables 1 and 2) is shown. Roughly, the pore is reducing the [C∗
33]dry

component of the solid grain material by 10.6 GPa (from 94.6 GPa to 84 GPa) (Figure 6).

Then, embedding the crack connected to the pore is further reducing the [C∗
33]dry component

by 22.5 GPa (from 84 GPa to 61.5 GPa). Conversely, if the crack is not connected to the

pore, the reduction of the [C∗
33]dry component is only 11 GPa (from 84 GPa to 73 GPa),

thus the “connectivity” costs 11.5 GPa. The “connectivity” cost to the stiffness of the

model (11.5 GPa) is five times bigger than the effect of elastic interactions (2 GPa) shown

in Figure 16. This example shows that the first order effect to the effective elastic properties

is due to the connectivity of the pores and cracks. The effect of elastic interactions on the

effective elastic properties is of secondary importance and can be considered only when

interconnectivity is taken into account. Roughly, interconnectivity significantly increases

the “apparent” crack density in such a way that the surface of the crack together with its

invisible continuation into the isometric pore control the effective elastic properties. Such

“apparent” crack density can be two or even more times bigger than the crack density of

the cracks only. Unfortunately, elastic interactions are very popular in research articles but

interconnectivity is usually ignored.

The correctness of expression 19 for the normal crack compliance

The expression 19 is equivalent to the expression derived before (e.g., Gurevich (2003)):

Zsat
n =

Zn

1 + Zn
ϕc(1/Kf−1/Kg)

, (49)

where Zsat
n is the normal crack compliance of the saturated crack, Kf can be replaced by

K∗
f (ω) (e.g., Collet and Gurevich (2016)). The expression 19 (or 49) is exact for the following

configuration: a thin crack embedded into a solid grain material; the crack compliance is

described by the only two parameters Zn and Zt. Then, we apply anisotropic Gassmann’s

equation to calculate the moduli considering the crack saturated. The result of Gassmann’s

equations is the only modification of Zn, which becomes Zsat
n .

In the present framework, we use Gassmann’s equations in two ways. First, we use

them to saturate the crack while the stiff pore remains dry. This violates the assumptions

for the applicability of Gassmann’s equations (because the model is three-phase: grains,

dry stiff pore and crack saturated with a fluid). Second, we apply Gassmann’s equations

to the modified frame to calculate the moduli of the fully saturated model. Since the

modified frame is heterogeneous, this also violates the assumptions for the applicability

of Gassmann’s equations. However, numerical solutions show that the present analytical

model is very accurate for the modified frame as well as for the fully saturated pore space.
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One explanation for such accuracy is that the pore space is correctly partitioned into the

stiff pore and compliant crack. The stiff pore acts as a “storage” volume for the fluid and

doesn’t contribute directly to the overall attenuation; the fluid pressure is approximately

uniform at each frequency. The fluid flow in the compliant crack is responsible for the

overall attenuation of the model.

In the low-frequency limit, the expression 19 gives the normal crack compliance Zap
n

of the dry crack. In this case, we apply anisotropic Gassmann’s equations to saturate the

model where the pore and the crack are present; this procedure is correct without regard

to the pore space structure. If in the anisotropic Gassmann’s equations we use the whole

porosity (stiff pore and crack porosities), then the result is exact in the low-frequency limit.

The choice of the model

Figure 17 shows the Big torus model with the crack aperture h on the left and the crack

aperture 50h on the right. Surprisingly, the [C∗
33]dry component of the effective elastic moduli

of the dry model is the same for both models. This means that the torus surrounding cracks

controls the stiffness because it is connected to the whole circumference of the crack. The

components of the stiffness matrix [H33]dry, [H44]dry and [H55]dry are controlled by the

torus only. This geometry cannot represent the rock pore space adequately since cracks do

control the stiffness in real rocks. That’s why in Part 2 we explore more complex pore space

geometries where isometric stiff pores are rather spherical and the crack circumference is

only partially connected to stiff pores.

A standard linear solid as an analytical model

The standard linear solid (SLS) rheology for the [C∗
33(ω)]sat component can be written as

[C∗
33(ω)]sat =

[C∗
33]

LF
sat + i [C∗

33]
HF
sat (ω/ωc)

1 + i (ω/ωc)
, (50)

where [C∗
33]

LF
sat and [C∗

33]
HF
sat are the effective moduli of the saturated model at low- and high-

frequency limits, respectively and ωc is the characteristic frequency (Mavko et al., 2020).

Thus, only three input parameters are needed to calculate dispersion and attenuation.

Figure 18 shows results for the [C∗
33(ω)]sat complex-valued component of the stiffness matrix

obtained with the present analytical model, with the SLS model, with the modified model

of Collet and Gurevich (2016) (model B, with correct limits), with the approximation of the

modified model of Collet and Gurevich (2016) (model B) and with the numerical solution.

Note, that model of Collet and Gurevich (2016) is the same as the model of Gurevich et al.

(2010) but for anisotropic media (all cracks with the same orientation). Gurevich et al.

(2010) proposed an approximation for the relaxation of the fluid bulk modulus K∗
f (ω) (Eq.

28),

K∗
f (ω) = −(k̄2)

2Kf/8 (51)

26



If this approximation 51 is used for K∗
f (ω) in the modified model of Collet and Gurevich

(2016) (model B), then it becomes identical to the SLS result across all frequencies (Fig-

ure 18). In other words, SLS is almost identical to the model of Collet and Gurevich (2016),

thus a single expression 50 can be used to obtain the same dispersion and attenuation curves.

A similar observation is given in Carcione and Gurevich (2011) for an isotropic squirt flow

model of Gurevich et al. (2010).
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CONCLUSIONS

We have developed an analytical model for seismic attenuation and dispersion in a fluid-

saturated porous medium caused by squirt flow. We used the classical pore space geometry

used in many previous studies, a penny-shaped crack surrounded by a toroidal stiff pore.

Our model can be applied to very thin cracks as well as to cracks with finite thicknesses. We

compared our analytical model with three-dimensional numerical solutions. The analytical

and numerical results are in a very good agreement for all considered relative sizes of pores

and cracks. Our analytical model features several key differences compared with previously

published analytical models making it much more accurate. First, we provide an approach

to calculate the elastic moduli of interconnected pore and crack. We showed that ignoring

the inter-connectivity of cracks and pores in the calculation of the model compliance leads to

inaccurate predictions of low- and high- frequency limits of the moduli dispersion. Second,

we derived a good approximation for the relaxation of the crack stiffness due to fluid pressure

diffusion, which makes our model accurate for the whole frequency band. Furthermore, we

showed that the crack stiffness is significantly affected by the surrounding heterogenities.

Thus, precise expressions for the crack stiffness are possible only for specific pore geometries.

Figures
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APPENDIX A

NUMERICAL METHODOLOGY

The numerical methodology we use for validation of the analytical models is described by

Quintal et al. (2019) and Alkhimenkov et al. (2020a,b), here we briefly outline the main

equations. We consider that a model is composed by a solid material (grains) and a pore

space saturated with a fluid. The solid phase is described as a linear isotropic elastic
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material for which the conservation of momentum is (e.g., Landau and Lifshitz (1959b) and

Nemat-Nasser and Hori (2013))

∇ · σσσ = 0, (A-1)

where “∇ · ” stands for the divergence operator acting on the stress tensor σσσ. The infinites-
imal stress-strain relation for an isotropic elastic material can be written as

σ = (K − 2

3
µ)tr

(
1

2

(
(∇⊗ u) + (∇⊗ u)T

))
I2 + 2µ

(
1

2

(
(∇⊗ u) + (∇⊗ u)T

))
, (A-2)

where I2 is the second order identity tensor, tr is the trace operator, “⊗” denotes the tensor
product, the superscript “T” corresponds to the transpose operator, u is the displacement

vector, K and µ are the bulk and shear moduli, respectively. The fluid phase is described

by the quasi-static linearised compressible Navier-Stokes momentum equation (Landau and

Lifshitz, 1959a):

−∇p+ η∇2v+
1

3
η∇ (∇ · v) = 0, (A-3)

where v is the particle velocity, p is the fluid pressure and η is the shear viscosity. Equation

(A-3) is valid for the laminar flow of a Newtonian fluid. In the numerical solver, equations

(A-2)-(A-3) are written in the space-frequency domain as

σij = λeδij + 2µϵij + iω

(
2ηϵij −

2

3
ηeδij

)
, (A-4)

where ϵij are the components of the strain tensor ϵij = 0.5 (ui,j + uj,i), e is the trace

of the strain tensor, λ and µ are the Lame parameters, ui is the displacement in the i-th

direction, δij is the Kronekecker delta, i is the imaginary unit and ω is the angular frequency.

Equations (A-1) and (A-4) are implemented into a finite-element solver. In the domain

representing a solid material, the equation (A-4) reduces to equation (A-2) by setting the

shear viscosity η to zero. In the domain representing compressible viscous fluid, equation

(A-3) is recovered by setting the shear modulus µ to zero. The solid and fluid displacements

are described by the same variable and, thus, naturally coupled at the boundaries between

subdomains (Quintal et al., 2016, 2019). The numerical model is discretized using an

unstructured mesh with tetrahedral elements (Figure A-1). A direct PARDISO solver

(Schenk and Gärtner, 2004) is used for solving the linear system of equations.

Direct relaxation tests are performed to compute all components of the stiffness matrix

Cij (Voigt notation) by applying a displacement boundary condition of the form u = 10−8×
exp(iωt) to a certain external wall of the model and in a certain direction, while at other

walls of the model, the displacements are set to zero or let free to change. In the direct tests

that we perform, only one component of the stiffness matrix cij can be directly calculated

after one numrical simulation. A detailed description of the boundary conditions is given in

Alkhimenkov et al. (2020a,b). The resulting stress and strains are averaged over the spatial

domain for each frequency. Then, the complex valued Cii(ω) components (diagonal) are

calculated for each frequency (in Voigt notation, no index summation):

Cii(ω) =
⟨σi(ω)⟩
⟨ϵi(ω)⟩

, (A-5)
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where ⟨·⟩ represents the volume averaging over the sample volume. For calculating the
P-wave modulus (ii = 11, 22, 33), a harmonic displacement on the i direction is applied

perpendicularlly to a wall of the model. At the other walls of the model, the normal

component of the displacement is set to zero. For calculating shear components of the

stiffness matrix (ii = 44, 55, 66), the boundary conditions applied are those of a simple

shear test. For the C12(ω), C13(ω) and C23(ω) components (off-diagonal), mixed direct

tests are performed. The corresponding inverse quality factor is (O’Connell and Budiansky,

1978)
1

Qij(ω)
=

Im (Cij(ω))

Re (Cij(ω))
, (A-6)

which is used as a measure of attenuation (O’Connell and Budiansky, 1978). In the
simulations, the energy dissipation is caused by fluid pressure diffusion. The viscous shear

relaxation in the fluid (O’Connell and Budiansky, 1977) is negligible in our study.

APPENDIX B

ANALYTICAL MODEL OF COLLET AND GUREVICH (2016)

We compare the results of our numerical simulation against an anisotropic version of the

squirt flow analytical solution of Gurevich et al. (2010) proposed by Collet and Gurevich

(2016). Here we use the formulation presented by Alkhimenkov et al. (2020a). Collet and

Gurevich (2016) consider a double-porosity medium with aligned identical cracks embedded

in a hypothetical background rock matrix made up of grains and stiff pores only. The crack

is fully described in terms of normal and tangential compliances Zn and Zt, respectively

(Kachanov, 1993; Schoenberg and Sayers, 1995; Sayers and Kachanov, 1995). They consider

the so-called modified frame in which only the cracks are filled with fluid, whereas the stiffer

pores are empty (Mavko and Jizba, 1991). In the low frequency limit, the relaxed moduli of

the modified frame are equal to the rock dry moduli (which means that ZMF
n = Zn); while

in the high frequency limit, the fluid in the cracks stiffens the frame and the unrelaxed

moduli of the modified frame are equal to the dry moduli of the rock without a compliant

porosity (which means that ZMF
n = 0) (Mavko and Jizba, 1991).

In the analytical solution of Collet and Gurevich (2016), the frequency dependent com-

pliance tensor of the modified frame is written as (for a vertical transversely isotropic (VTI)

medium)

SMF
mn (ω) = Sb

mn +∆SMF
mn (ω), (B-1)

where Sb
mn is the compliance tensor of the rock matrix, and ∆SMF

mn (ω) is the additional
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compliance due to the crack (Schoenberg and Helbig, 1997):

∆SMF
mn (ω) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 ZMF
n (ω) 0 0 0

0 0 0 Zt 0 0

0 0 0 0 Zt 0

0 0 0 0 0 0


. (B-2)

The frequency-dependent normal fracture compliance is

ZMF
n (ω) =

Zn

1 + Zn
ϕc(1/K∗

f (ω)−1/Kg)

, (B-3)

where ϕc is the compliant porosity (crack porosity), Zn is the normal compliance of the

crack. Gurevich et al. (2010) proposed that the stiffness of the crack can be described using

a frequency-dependent fluid bulk modulus K∗
f (ω):

K∗
f (ω) =

[
1− 2J1(ka)

kaJ0(kr)

]
Kf , (B-4)

where Jξ is Bessel function of the first kind (ξ = 0 or ξ = 1 correspond to the zero or first

order Bessel function), Kf is the fluid bulk modulus, a is the radius of the crack, k is the

wavenumber of the pressure wave:

ka =
1

α

(
−3iωη

Kf

)1/2

, (B-5)

α is the aspect ratio of the crack (crack thickness divided by diameter) and η is the vis-

cosity of the fluid. Equations (B-4)-(B-5) were obtained by imposing a zero fluid pressure

boundary condition (Pf = 0) at the edge of the cylindrical crack (Gurevich et al., 2010).

The frequency-dependent stiffness tensor of the fluid saturated medium is given by the

anisotropic Gassmann’s equation (Gassmann, 1951):

Csat
mn(ω) = CMF

mn (ω) + αmαnM, (B-6)

αm = 1−

(
3∑

n=1

CMF
mn

)
βg/3, (B-7)

for m = 1, 2, 3 and α4 = α5 = α6 = 0, and where

M =
(
ϕβf + (1− ϕ)βg −K∗β2

g

)−1
, (B-8)

K∗ =
1

9

3∑
m=1

3∑
n=1

CMF
mn (ω), (B-9)
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ϕ is the total porosity of the medium without the compliant porosity, K∗ is the generalized

bulk modulus of the modified frame, βf is the compressibility of the fluid, αm is the Biot-

Willis coefficient, βg is the compressibility of the grain material.

For the comparison between the analytical solution and the numerical results, all stiffness

properties of the dry medium are calculated numerically (or are the same as in the numerical

simulation) and used as input to the analytical solution. In order to obtain the normal Zn

and tangential Zt compliances of the crack we numerically calculate several (homogenized)

elastic stiffness tensors of a dry medium (Figure B-1): a torus embedded into the solid grain

material (CV TI
1 stiffness tensor); a crack embedded into a medium described by the CV TI

1

stiffness tensor (CV TI
2 stiffness tensor); a torus connected with a crack embedded into the

solid grain material (CV TI
3 stiffness tensor). Then, all CV TI stiffness tensors are inverted to

the corresponding compliance tensors SV TI . For obtaining Zn and Zt there are two options:

Workflow A) Zn and Zt are calculated using the difference between the SV TI
1 compliance

tensor and the SV TI
2 compliance tensor (Figure B-1). In this case, we first homogenize the

torus (and obtain CV TI
1 ) and then, embed the crack into this homogenized material CV TI

1 .

Thus, Zn and Zt do not take into account the fact that the crack is connected with the

stiffer pore. This approach is used by Collet and Gurevich (2016).

Workflow B) Zn and Zt are calculated using the difference between the SV TI
1 compliance

tensor and the SV TI
3 compliance tensor (Figure B-1). In this case, we also first homogenize

the torus but then, embed the crack connected to the torus into the solid grain material.

Thus, the CV TI
3 stiffness tensor corresponds to the dry stiffness tensor of the model, so the

difference SV TI
1 − SV TI

3 gives the correct compliances Zn and Zt for the dry model (using

the the homogenized material CV TI
1 ).
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Figure 1: Workflow to (i) benchmark published analytical models and (ii) ensure the quality

of future models.
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Figure 2: Raw synchrotron radiation X-ray tomographic microscopy image of dry Berea

sandstone. One slice of the total data cube with 10243 voxels [from Madonna et al. (2013)].
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Figure 3: The development of the present analytical model.
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Figure 4: (a) Sketch illustrating the Big pore model: a flat cylinder representing a crack

whose edge is connected to a torus representing a stiff isometric pore. (b) A vertical slice

across half of the model. r is the minor radius of the torus (dMn = 2r is the minor diameter

of the torus), dMj = r + b is the major radius of the torus.
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Figure 5: Cartoon illustrating the different model configurations used to obtain the corre-

sponding compliance matrices.
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Figure 6: Sketch illustrating the configurations of our model that corresponds to the high-

and low-frequency limits obtained from the numerical calculations for the [C∗
33]sat component

(properties in Tables 1 and 2).
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Figure 7: Sketch illustrating the workflow for calculating analytically different components

of the compliance matrix for the model with interconnected isometric pore and crack.

Alkhimenkov Y. and Quintal B. –

46



Figure 8: Sketch illustrating the simplifications made in analytical models via applied

boundary conditions (a vertical slice of the two models shown in Figure 4). Panels a)

and c) — boundary conditions applied to the walls of the model. Panels b) and d) —

boundary conditions applied to the walls of the crack. Panel e) shows the numerical result;

note, that the high-frequency slope of the attenuation curve is substantially different if the

crack is connected to an actual pore.
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Figure 9: The real part of the frequency-dependent fluid bulk modulus K∗
f and the di-

mensionless attenuation calculated using different expressions for the Big pore model with

α = 0.005.
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Figure 10: The real part of the frequency-dependent fluid bulk modulus K∗
f and the di-

mensionless attenuation calculated using different expressions for the Big pore model with

α = 0.005.
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Figure 11: The real part of the frequency-dependent fluid bulk modulus K∗
f and the dimen-

sionless attenuation calculated using different expressions for the Small pore model with

α = 0.0025.
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Geometrical parameter Big pore model Small pore model

Flat cylinder (crack) radius, b 0.1 m 0.1 m

Flat cylinder (crack) thickness, h 0.0005 m 0.0005 m

Crack aspect ratio, α = h/(2b) 0.0025 0.0025

Major radius of torus, b+ r 0.124 m 0.1067 m

Minor radius of torus, r 0.024 m 0.0067 m

Total porosity 0.045 0.0034

Crack porosity ≈ 4.9 · 10−4 ≈ 4.9 · 10−4

Table 1: Geometrical properties for the Big pore model and the Small pore model. Major

radius — the distance from the center of the tube to the center of the torus. Minor radius

— the radius of the tube (our isometric pore).
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Material parameter Solid Fluid

Bulk modulus K 36 GPa 4.3 GPa

Shear modulus µ 44 GPa 0 GPa

Shear viscosity η 0 Pa·s 1.414 Pa·s

Table 2: Material properties used in all models.
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Figure 12: Numerical and analytical results for the Big pore model (Figure 4) with a crack

aspect ratio α = 0.0025: (a) Real part of the [C∗
33]sat component and (b) dimensionless

attenuation for the [C∗
33]sat component. On the right, snapshots of the fluid pressure Pf

at three different frequencies : LF - low frequency limit (relaxed state), Fc - intermediate

frequency (close to the characteristic frequency) and HF - high frequency limit (unrelaxed

state). The spatial dimension of the snapshots are not-to-scale and their colors represent-

ing the fluid pressure Pf correspond to a downward displacement (compression) of 10−8m

applied to the top boundary of the model. The inset represents the cross section of half of

the model.
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Figure 13: Numerical and analytical results for the Big pore model with the crack aspect

ratio α = 0.005 (i.e., finite thickness crack): (a) Real part of the [C∗
33]sat component and (b)

dimensionless attenuation for the [C∗
33]sat component. Here the crack aperture is two times

larger than in the model with aspect ratio of α = 0.0025 (Figure 12). The inset represents

the cross section of half of the model.
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Figure 14: Numerical and analytical results for the modified frame of the Big pore model

with the crack aspect ratio α = 0.005 (i.e., finite thickness crack): (a) Real part of the

[C∗
33]

MF component and (b) dimensionless attenuation for the [C∗
33]

MF component. The

inset represents the cross section of half of the model.
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Figure 15: Numerical and analytical results for the modified frame of the Small pore model

with the crack aspect ratio α = 0.0025: (a) Real part of the [C∗
33]

MF component and (b)

dimensionless attenuation for the [C∗
33]

MF component. The inset represents the cross section

of half of the model.
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Figure 16: A slice of the three-dimensional models illustrating the effect of elastic interac-

tions on the [C∗
33]dry component. (a) The isometric pore is connected to the crack represent-

ing a unified interconnected pore space, (b) the isometric pore and crack are disconnected

but close and (c) disconnected and far from each other.
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Figure 17: Sketch illustrating the pore space (dry) of the Big pore model with two different

crack apertures — h (left) and 50h (right).
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Figure 18: Numerical and analytical results for the big pore model with the crack aspect

ratio α = 0.025: (a) Real part of the [C∗
33]sat component and (b) dimensionless attenuation

for the [C∗
33]sat component.
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Figure A-1: The element’s size distribution for the Big pore model. The element’s size in

the crack is ≈ 6× 10−4 m, and in the surrounding grain material it is 7.2× 10−3− 4× 10−2

m. The element’s size distribution for the other models is similar. The total number of

elements is 1.5× 106 − 5× 106 depending on the model configuration, e.g., Big/Small pore

or full/half/quarter of a model was used.
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Figure B-1: Sketch illustrating the calculation of normal and tangential compliances of the

crack for workflows A and B. SV TI
r denotes the compliance tensor, which is the inverse of

the corresponding stiffness tensor, i.e., SV TI
r = (CV TI

r )−1, for r = 1, 2, 3. The resulting Zn

and Zt are used to calculate the analytical solution for corresponding models.
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